JP2016068471A - Method for bonding metallic member and resin member - Google Patents

Method for bonding metallic member and resin member Download PDF

Info

Publication number
JP2016068471A
JP2016068471A JP2014201839A JP2014201839A JP2016068471A JP 2016068471 A JP2016068471 A JP 2016068471A JP 2014201839 A JP2014201839 A JP 2014201839A JP 2014201839 A JP2014201839 A JP 2014201839A JP 2016068471 A JP2016068471 A JP 2016068471A
Authority
JP
Japan
Prior art keywords
resin member
metal member
rotary tool
resin
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201839A
Other languages
Japanese (ja)
Other versions
JP6102877B2 (en
Inventor
耕二郎 田中
Kojiro Tanaka
耕二郎 田中
嗣久 宮本
Tsuguhisa Miyamoto
嗣久 宮本
勝也 西口
Katsuya Nishiguchi
勝也 西口
松田 祐之
Sukeyuki Matsuda
祐之 松田
宣夫 坂手
Nobuo Sakate
宣夫 坂手
小林 めぐみ
Megumi Kobayashi
めぐみ 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2014201839A priority Critical patent/JP6102877B2/en
Publication of JP2016068471A publication Critical patent/JP2016068471A/en
Application granted granted Critical
Publication of JP6102877B2 publication Critical patent/JP6102877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • B29C65/0681Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding created by a tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/44Joining a heated non plastics element to a plastics element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/64Joining a non-plastics element to a plastics element, e.g. by force
    • B29C65/645Joining a non-plastics element to a plastics element, e.g. by force using friction or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8215Tensile tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7214Fibre-reinforced materials characterised by the length of the fibres
    • B29C66/72143Fibres of discontinuous lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81427General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth
    • B29C66/81429General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined comprising a single ridge, e.g. for making a weakening line; comprising a single tooth comprising a single tooth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • B29C66/83221Joining or pressing tools reciprocating along one axis cooperating reciprocating tools, each tool reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for bonding a metallic member and a resin member, which can achieve bonding between the resin member and the metallic member with sufficient strength.SOLUTION: Provided is a method for bonding a metallic member 11 and a resin member 12 by a hot pressing bonding method, comprising: overlapping a metallic member 11 and a resin member 12 containing reinforcing fibers; providing the members with heat and pressure locally by pressing by a pressing member 16 from the metallic member side to soften and melt the resin member 12; and thereafter solidifying the resin member. The method for bonding a metallic member 11 and a resin member 12 includes a solidification step for performing the solidification by continuing pressing by the pressing member 16 even after a heat supply from the pressing member 16 is terminated.SELECTED DRAWING: Figure 1

Description

本発明は、金属部材と樹脂部材との接合方法に関する。   The present invention relates to a method for joining a metal member and a resin member.

従来、自動車、鉄道車両、航空機等の分野では軽量化が求められている。例えば、自動車の分野では、ハイテン材の利用により薄鋼板化が進められ、またスチール材の代替材としてアルミ合金材が用いられ、さらには樹脂材の利用も進んでいる。このような分野において金属部材と樹脂部材との接合技術の開発は、単に車体の軽量化に留まらず、接合部材の高強度化や高剛性化、生産性の向上を実現させる観点からも重要である。これまで、金属部材と樹脂部材との接合方法として、いわゆる摩擦撹拌接合(FSW:friction stir welding)方法が提案されている。摩擦撹拌接合方法とは、図7に示すように、金属部材211と樹脂部材212とを重ね合わせ、回転ツール216を回転させつつ、金属部材211に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材212を溶融させた後、固化させて金属部材211と樹脂部材212とを接合する方法である。   Conventionally, weight reduction is required in the fields of automobiles, railway vehicles, airplanes, and the like. For example, in the field of automobiles, the use of high-tensile materials has made it possible to make steel sheets thinner, aluminum alloy materials have been used as substitutes for steel materials, and resin materials have also been increasingly used. In these fields, development of joining technology for metal members and resin members is important not only for reducing the weight of the car body, but also for increasing the strength and rigidity of the joining members and improving productivity. is there. So far, a so-called friction stir welding (FSW) method has been proposed as a method for joining a metal member and a resin member. As shown in FIG. 7, the friction stir welding method is a method in which a metal member 211 and a resin member 212 are overlapped, and the rotary tool 216 is rotated and pressed against the metal member 211 to generate frictional heat. In this method, the resin member 212 is melted and then solidified to join the metal member 211 and the resin member 212 together.

このような摩擦撹拌接合方法においては、例えば、接合強度および簡易接合の観点から、回転ツールの形状や押込み量を特定範囲内に設定する技術(特許文献1)が開示されている。また従来の摩擦撹拌接合方法において、接合作業の終了時には、回転ツールを回転させたまま、金属部材から離すと同時に、接合部近傍は拘束状態から解除されるのが一般的である。   In such a friction stir welding method, for example, a technique (Patent Document 1) is disclosed in which the shape and push-in amount of the rotary tool are set within a specific range from the viewpoint of joining strength and simple joining. Further, in the conventional friction stir welding method, at the end of the joining operation, it is general that the vicinity of the joint is released from the restrained state at the same time as the rotary tool is rotated and separated from the metal member.

一方、樹脂部材に強化繊維を含有させて、樹脂部材の強度を向上させる技術が知られている。例えば、圧縮成形方法の分野では、樹脂の劣化防止、生産性の向上、高強度・高弾性率化の観点から、強化繊維と熱可塑性樹脂により構成される繊維強化熱可塑性樹脂複合材料であって、特定繊維長の強化繊維が特定の体積含有率および同一の繊維軸方向で含有される圧縮成形用材料が開示されている(特許文献2)。   On the other hand, a technique for improving the strength of a resin member by adding a reinforcing fiber to the resin member is known. For example, in the field of compression molding methods, it is a fiber reinforced thermoplastic resin composite material composed of reinforced fibers and a thermoplastic resin from the viewpoint of preventing resin deterioration, improving productivity, and increasing strength and elastic modulus. A compression molding material in which reinforcing fibers having a specific fiber length are contained in a specific volume content and the same fiber axis direction is disclosed (Patent Document 2).

特開2010−158885号公報JP 2010-158885 A 特開2004−142165号公報JP 2004-142165 A

しかしながら、従来の摩擦撹拌接合方法において、従来の繊維強化樹脂部材を用いた場合、接合強度が低下することがあった。   However, in the conventional friction stir welding method, when a conventional fiber reinforced resin member is used, the bonding strength may be reduced.

本発明の発明者等は、このような接合強度の低下の現象を鋭意研究した結果、当該現象は、樹脂部材に含有される強化繊維のスプリングバックに起因することを見い出した。具体的には、図8(A)に示すように、押圧部材216を金属部材211に押し込んで、摩擦熱により、樹脂部材212の押圧部材直下領域221およびその外周領域を溶融させた後、固化させると、樹脂部材212の当該溶融固化領域においてスプリングバックが生じた。スプリングバックとは、湾曲した強化繊維が樹脂部材212の溶融時に拘束力から解放され、まっすぐに戻ろうと変形する現象である。このようなスプリングバックが生じると、図8(B)に示すように、樹脂部材212における溶融固化領域において、気泡が混入して、見掛け上、発泡したように見える気泡層222が形成され、強度の低い気包層222内で層内破断が生じることで接合強度が低下するものと考えられる。   The inventors of the present invention have intensively studied the phenomenon of such a decrease in bonding strength, and as a result, have found that the phenomenon is caused by springback of reinforcing fibers contained in the resin member. Specifically, as shown in FIG. 8A, the pressing member 216 is pressed into the metal member 211, and the region 221 directly below the pressing member of the resin member 212 and its outer peripheral region are melted by frictional heat, and then solidified. As a result, springback occurred in the melted and solidified region of the resin member 212. The spring back is a phenomenon in which the curved reinforcing fiber is released from the restraining force when the resin member 212 is melted and deforms so as to return straight. When such a springback occurs, as shown in FIG. 8B, bubbles are mixed in the melt-solidified region of the resin member 212 to form a bubble layer 222 that appears to be foamed. It is considered that the bond strength is lowered by the occurrence of the intralayer breakage in the low envelope layer 222.

本発明は、樹脂部材と金属部材との接合を十分な強度で達成することができる金属部材と樹脂部材との接合方法を提供することを目的とする。   An object of this invention is to provide the joining method of the metal member and resin member which can achieve joining with sufficient intensity | strength of a resin member and a metal member.

本発明は、
金属部材と強化繊維を含有する樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により熱および圧力を局所的に付与し、樹脂部材を軟化および溶融させた後、固化させる熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
押圧部材による熱の付与を停止した後も押圧部材による押圧を継続して、前記固化を行う固化工程を備えていることを特徴とする金属部材と樹脂部材との接合方法に関する。
The present invention
Thermo-pressure bonding in which a metal member and a resin member containing reinforcing fibers are superposed, heat and pressure are locally applied by pressing from the metal member side by the pressing member, and the resin member is softened and melted and then solidified A method of joining a metal member and a resin member by a method,
The present invention relates to a method for joining a metal member and a resin member, characterized by including a solidification step in which the solidification is performed by continuing the pressing by the pressing member even after the application of heat by the pressing member is stopped.

本発明はまた、
金属部材と樹脂部材とを重ね合わせる第1ステップ;および
回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法による金属部材と樹脂部材との接合方法であって、
前記第2ステップが、回転ツールの回転を停止した後も回転ツールによる押圧を継続して、前記固化を行う固化工程を備えていることを特徴とする金属部材と樹脂部材との接合方法に関する。
The present invention also provides
A first step of superposing the metal member and the resin member; and while rotating the rotary tool, the metal member is pressed against the metal member to generate frictional heat. The resin member is softened and melted by the frictional heat and then solidified. A method of joining a metal member and a resin member by a friction stir welding method including a second step of joining the metal member and the resin member,
The second step relates to a method for joining a metal member and a resin member, characterized in that the second step includes a solidification step of continuing the pressing by the rotary tool even after the rotation of the rotary tool is stopped and performing the solidification.

本発明の接合方法によれば、樹脂部材に強化繊維を含有させた場合であっても、樹脂部材と金属部材との接合を十分な強度で達成することができる。   According to the joining method of the present invention, even when the reinforcing fiber is contained in the resin member, the joining of the resin member and the metal member can be achieved with sufficient strength.

本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部の一例を示す模式図である。It is a schematic diagram which shows an example of a part of friction stir welding apparatus suitable for the joining method of the metal member and resin member concerning this invention. 本発明の接合方法に使用される押圧部材としての回転ツールの一例の先端部の拡大図である。It is an enlarged view of the front-end | tip part of an example of the rotation tool as a press member used for the joining method of this invention. 本発明の予熱工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the preheating process of this invention. 本発明の押込み撹拌工程、撹拌維持工程及び固化工程の一例を説明するための概略断面図である。It is a schematic sectional drawing for demonstrating an example of the indentation stirring process of this invention, a stirring maintenance process, and a solidification process. 本発明の方法により接合された金属部材と樹脂部材との接合体の一例の概略断面図である。It is a schematic sectional drawing of an example of the joined body of the metal member and resin member which were joined by the method of the present invention. 実施例における接合強度の測定方法を説明するための概略図である。It is the schematic for demonstrating the measuring method of the joint strength in an Example. 従来技術における金属部材と樹脂部材との接合方法を説明するための該略見取り図である。It is this schematic sketch for demonstrating the joining method of the metal member and resin member in a prior art. (A)は従来技術における金属部材と樹脂部材との接合方法を説明するための概略断面図であり、(B)は、(A)の方法により得られた接合体における金属部材と樹脂部材との接合境界面の拡大図である。(A) is a schematic sectional drawing for demonstrating the joining method of the metal member and resin member in a prior art, (B) is the metal member and resin member in the joined_body | zygote obtained by the method of (A). It is an enlarged view of the joining boundary surface.

本発明の接合方法は、金属部材と樹脂部材とを重ね合わせ、押圧部材による金属部材側または樹脂部材側からの押圧により熱および圧力を局所的に付与し、樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する熱圧式接合方法である。本発明の接合方法において採用される接合方式は、押圧部材により熱および圧力を局所的に付与する方法であれば特に限定されるものではなく、例えば、摩擦撹拌接合方法、超音波加熱接合方法等であってもよい。好ましくは押圧部材により熱および圧力を金属部材側から局所的に付与する方法であり、より好ましくは摩擦撹拌接合方法が採用される。   In the joining method of the present invention, the metal member and the resin member are overlapped, and heat and pressure are locally applied by pressing from the metal member side or the resin member side by the pressing member, and the resin member is softened and melted. This is a hot-pressure joining method in which a metal member and a resin member are joined by solidification. The joining method employed in the joining method of the present invention is not particularly limited as long as it is a method of locally applying heat and pressure by a pressing member. For example, a friction stir welding method, an ultrasonic heating joining method, etc. It may be. Preferably, it is a method in which heat and pressure are locally applied from the metal member side by a pressing member, and a friction stir welding method is more preferably employed.

摩擦撹拌接合方法とは、後で詳述するように、金属部材と樹脂部材とを重ね合わせ、押圧部材としての回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   As will be described in detail later, the friction stir welding method is a method in which a metal member and a resin member are overlapped and a rotating tool as a pressing member is rotated to press the metal member to generate frictional heat. In this method, the resin member is softened and melted by heat and then solidified to join the metal member and the resin member.

超音波加熱接合方法とは、金属部材と樹脂部材とを重ね合わせ、押圧部材により樹脂部材を加圧しながら、押圧部材及び樹脂部材に超音波振動を起こさせ、該振動により生じる樹脂部材/金属部材の摩擦熱で樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する方法である。   The ultrasonic heating bonding method is a resin member / metal member produced by superposing a metal member and a resin member and causing the pressing member and the resin member to ultrasonically vibrate while pressing the resin member with the pressing member. In this method, the resin member is softened and melted by the frictional heat, and then solidified to join the metal member and the resin member.

以下、摩擦撹拌接合方法を採用した本発明の接合方法について、図面を用いて詳しく説明するが、当該説明により、他の方法においても、本発明の効果が得られることは明らかである。なお、以下の説明において、回転ツールの回転の停止とは、超音波加熱接合方法における押圧部材による熱の付与の停止を意味する。   Hereinafter, although the joining method of the present invention employing the friction stir welding method will be described in detail with reference to the drawings, it is apparent that the effects of the present invention can be obtained by other methods as well. In the following description, the stop of rotation of the rotary tool means stop of application of heat by the pressing member in the ultrasonic heating joining method.

[摩擦撹拌接合方法による金属部材と樹脂部材との接合方法]
本発明の接合方法(摩擦撹拌接合方法)について図1〜図5を用いて具体的に説明する。図1は本発明にかかる金属部材と樹脂部材との接合方法に好適な摩擦撹拌接合装置の一部一例を示す模式図である。図2は本発明の接合方法に使用される回転ツールの一例の先端部の拡大図である。図3は本発明の予熱工程の一例を説明するための概略断面図である。図4は本発明の押込み撹拌工程、撹拌維持工程及び固化工程の一例を説明するための概略断面図である。図5は本発明の方法により接合された金属部材と樹脂部材との接合体の一例の概略断面図である。これらの図において、共通する符号は同じ部材を示すものとする。
[Method of joining metal member and resin member by friction stir welding method]
The joining method (friction stir welding method) of the present invention will be specifically described with reference to FIGS. FIG. 1 is a schematic view showing an example of a part of a friction stir welding apparatus suitable for a method for joining a metal member and a resin member according to the present invention. FIG. 2 is an enlarged view of the tip of an example of a rotary tool used in the joining method of the present invention. FIG. 3 is a schematic sectional view for explaining an example of the preheating step of the present invention. FIG. 4 is a schematic cross-sectional view for explaining an example of the indentation stirring process, stirring maintaining process and solidification process of the present invention. FIG. 5 is a schematic cross-sectional view of an example of a joined body of a metal member and a resin member joined by the method of the present invention. In these drawings, common reference numerals indicate the same members.

(1)接合装置
まず図1は、本発明の接合方法を実施するのに適した摩擦撹拌接合装置の一部の一例を模式的に示す図である。図1に示される摩擦撹拌接合装置1は、金属部材11と樹脂部材12とを摩擦撹拌接合する装置として構成されており、押圧部材としての円柱状の回転ツール16を具備している。
(1) Joining Device First, FIG. 1 is a diagram schematically showing an example of a part of a friction stir welding device suitable for carrying out the joining method of the present invention. A friction stir welding apparatus 1 shown in FIG. 1 is configured as a device for friction stir welding a metal member 11 and a resin member 12, and includes a columnar rotary tool 16 as a pressing member.

回転ツール16は、図示したように、金属部材11が上、樹脂部材12が下になるように重ね合わされたワーク10に対し、図外の駆動源により、矢印A1のように該回転ツール16の中心軸線X(図2参照)回りに回転しつつ、矢印A2のように下方に向けて移動する。このとき、回転ツール16は金属部材11表面における押圧領域P(押圧予定領域)において圧力を付与する。この回転ツール16の押圧により摩擦熱が発生し、この摩擦熱が樹脂部材12に伝導して樹脂部材12が軟化および溶融し、その後、溶融樹脂が固化する。その結果、金属部材11と樹脂部材12とが接合される。   As shown in the figure, the rotary tool 16 is applied to the workpiece 10 with the metal member 11 on the top and the resin member 12 on the bottom, by a drive source (not shown) as indicated by an arrow A1. While rotating around the central axis X (see FIG. 2), it moves downward as indicated by an arrow A2. At this time, the rotary tool 16 applies pressure in the pressing region P (scheduled pressing region) on the surface of the metal member 11. Friction heat is generated by the pressing of the rotary tool 16, and the friction heat is conducted to the resin member 12 to soften and melt the resin member 12, and then the molten resin is solidified. As a result, the metal member 11 and the resin member 12 are joined.

図2は、回転ツール16の先端部の拡大図である。図2において、右半分は回転ツール16の外観を示し、左半分は断面を示している。図2に示すように、円柱状の回転ツール16は、先端部(図2では下端部)にピン部16a及びショルダ部16bを有している。ショルダ部16bは、回転ツール16の円形の先端面を含む回転ツール16の先端の部分である。ピン部16aは、回転ツール16の中心軸線X上において、回転ツール16の円形の先端面から外方(図2では下方)に突設された、ショルダ部16bよりも小径の円柱状の部分である。ピン部16aは、回転している回転ツール16をワーク10に最初に接触させて押圧するときに回転ツール16を位置決めするためのものである。   FIG. 2 is an enlarged view of the distal end portion of the rotary tool 16. In FIG. 2, the right half shows the appearance of the rotary tool 16, and the left half shows a cross section. As shown in FIG. 2, the columnar rotary tool 16 has a pin portion 16 a and a shoulder portion 16 b at the distal end portion (lower end portion in FIG. 2). The shoulder portion 16 b is a portion at the tip of the rotary tool 16 including the circular tip surface of the rotary tool 16. The pin portion 16a is a cylindrical portion having a smaller diameter than the shoulder portion 16b, which protrudes outwardly (downward in FIG. 2) from the circular tip surface of the rotary tool 16 on the central axis X of the rotary tool 16. is there. The pin portion 16a is for positioning the rotating tool 16 when the rotating tool 16 that is rotating is first brought into contact with the workpiece 10 and pressed.

回転ツール16の素材及び各部の寸法は、主として、回転ツール16が押圧する金属部材11の金属の種類に応じて設定される。例えば、金属部材11がアルミニウム合金よりなる場合、回転ツール16は工具鋼(例えばSKD61等)で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は2mm、ピン部16aの突出長さhは0.5mmに設定される。また、例えば、金属部材11がスチールよりなる場合、回転ツール16は窒化珪素やPCBN(立方晶窒化ホウ素焼結体)等で作製され、ショルダ部16bの直径D1は10mm、ピン部16aの直径D2は3mm、ピン部16aの突出長さhは0.5mmに設定される。もっとも、これらは例示に過ぎず、これらに限定されないことはいうまでもない。例えば、ショルダ部16bの直径D1は通常、5〜30mm、好ましくは5〜15mmであるがこれに限定されるものではない。   The material of the rotary tool 16 and the dimensions of each part are mainly set according to the metal type of the metal member 11 pressed by the rotary tool 16. For example, when the metal member 11 is made of an aluminum alloy, the rotary tool 16 is made of tool steel (for example, SKD61), the diameter D1 of the shoulder portion 16b is 10 mm, the diameter D2 of the pin portion 16a is 2 mm, and the pin portion 16a protrudes. The length h is set to 0.5 mm. For example, when the metal member 11 is made of steel, the rotary tool 16 is made of silicon nitride, PCBN (cubic boron nitride sintered body), etc., the diameter D1 of the shoulder portion 16b is 10 mm, and the diameter D2 of the pin portion 16a. Is set to 3 mm, and the protruding length h of the pin portion 16a is set to 0.5 mm. Needless to say, these are merely examples, and the present invention is not limited thereto. For example, the diameter D1 of the shoulder portion 16b is usually 5 to 30 mm, preferably 5 to 15 mm, but is not limited thereto.

回転ツール16の下方には、回転ツール16と同径又は回転ツール16よりも大径の円柱状の受け具17が回転ツール16と同軸に配置されている。受け具17は、上記ワーク10に対し、図外の駆動源により、矢印A3のように上方に移動される。受け具17は、遅くとも回転ツール16がワーク10の押圧を開始するまでに、上端面がワーク10の下面(より詳しくは樹脂部材12の下面)に当接する。そして、受け具17は、回転ツール16との間にワーク10を挟んで、回転ツール16による押圧期間中、つまり摩擦撹拌接合中、上記押圧力に抗してワーク10を下方から支持する。なお、受け具17は必ずしも矢印A3方向へ移動させる必要はなく、受け具17にワーク10を載せた後に回転ツール16を矢印A2の方向に移動させる方法を採用することもできる。   Below the rotary tool 16, a cylindrical receiving member 17 having the same diameter as the rotary tool 16 or a larger diameter than the rotary tool 16 is arranged coaxially with the rotary tool 16. The receiving member 17 is moved upward with respect to the work 10 as shown by an arrow A3 by a driving source (not shown). The upper end surface of the receiving member 17 abuts on the lower surface of the workpiece 10 (more specifically, the lower surface of the resin member 12) by the time the rotating tool 16 starts pressing the workpiece 10 at the latest. The support 17 sandwiches the workpiece 10 between the rotary tool 16 and supports the workpiece 10 from below against the pressing force during a pressing period by the rotary tool 16, that is, during friction stir welding. Note that the receiving tool 17 does not necessarily have to be moved in the direction of the arrow A3, and a method of moving the rotary tool 16 in the direction of the arrow A2 after placing the workpiece 10 on the receiving tool 17 can also be adopted.

摩擦撹拌接合装置1は、多関節ロボット等からなる図外の駆動制御装置に装着されている。そして、回転ツール16及び受け具17の座標位置、回転ツール16の回転数(rpm)、加圧力(N)、加圧時間(秒)等が上記駆動制御装置により適宜制御される。なお、図1には図示を省略したが、摩擦撹拌接合装置1は、予めワーク10を固定し、また回転ツール16を押圧したときの金属部材11の浮き上がりを防止するためのスペーサやクランプ等の治具を備えている。   The friction stir welding apparatus 1 is attached to a drive control device (not shown) composed of an articulated robot or the like. The coordinate positions of the rotary tool 16 and the receiving tool 17, the rotational speed (rpm) of the rotary tool 16, the pressure (N), the pressurization time (second), and the like are appropriately controlled by the drive control device. Although not shown in FIG. 1, the friction stir welding apparatus 1 uses a spacer, a clamp, or the like for fixing the work 10 in advance and preventing the metal member 11 from floating when the rotary tool 16 is pressed. A jig is provided.

(2)接合方法
本発明に係る摩擦撹拌接合方法による金属部材と樹脂部材との接合方法は少なくとも以下のステップ:
金属部材11と樹脂部材12とを重ね合わせる第1ステップ;および
回転ツール16を回転させつつ、金属部材11に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材12を軟化および溶融させた後、固化させて金属部材11と樹脂部材12とを接合する第2ステップ:
を含むものである。
(2) Joining method The joining method of the metal member and the resin member by the friction stir welding method according to the present invention is at least the following steps:
A first step of superimposing the metal member 11 and the resin member 12; and while rotating the rotary tool 16, the metal member 11 is pressed to generate frictional heat, and the resin member 12 is softened and melted by the frictional heat. Then, the second step of solidifying and joining the metal member 11 and the resin member 12:
Is included.

第1ステップ:
第1ステップにおいては、図1に示すように、金属部材11と樹脂部材12とを所望の接合部位で重ね合わせる。
First step:
In the first step, as shown in FIG. 1, the metal member 11 and the resin member 12 are overlapped at a desired joint portion.

第2ステップ:
本発明においては、第2ステップにおいて、回転ツール16を回転させつつ、金属部材11表面への押圧により、樹脂部材12を軟化および溶融させた後、所定の固化工程を行う。
Second step:
In the present invention, in the second step, the resin member 12 is softened and melted by pressing the surface of the metal member 11 while rotating the rotary tool 16, and then a predetermined solidification process is performed.

(固化工程)
固化工程においては、まず、回転ツール16の回転を停止するが、回転ツール16の回転を停止した後も回転ツール16による押圧を継続する。これにより、回転が停止された回転ツール16が金属部材11と樹脂部材12との圧締めを達成しながら、冷却が起こるため、スプリングバックを十分に防止することができ、接合強度が向上する。圧締めとは、圧力の付与により、樹脂部材12に圧縮作用を発生させるための加圧処理である。第2ステップにおいて樹脂部材における樹脂成分の溶融により、強化繊維が樹脂成分による拘束力から解放されても、本工程において、回転が停止された回転ツール16による押圧により、樹脂部材12に圧縮作用が働くため、強化繊維の変形が抑制され、溶融した樹脂成分が固化するまで樹脂部材12への圧縮作用が継続されることでスプリングバックを十分に防止することができる。回転ツールを回転させたまま、金属部材への押圧を終了し、金属部材から離すと、圧縮作用から解放された樹脂部材12の溶融領域においてスプリングバックが発生する。
(Solidification process)
In the solidification step, first, the rotation of the rotary tool 16 is stopped, but the pressing by the rotary tool 16 is continued even after the rotation of the rotary tool 16 is stopped. As a result, the rotating tool 16 whose rotation has stopped is cooled while achieving the press-clamping of the metal member 11 and the resin member 12, so that the spring back can be sufficiently prevented and the bonding strength is improved. The press-clamping is a pressurizing process for generating a compression action on the resin member 12 by applying pressure. Even if the reinforcing fiber is released from the restraining force of the resin component due to the melting of the resin component in the resin member in the second step, in this step, the resin member 12 is compressed by the pressing by the rotating tool 16 whose rotation is stopped. Therefore, the deformation of the reinforcing fibers is suppressed, and the compression action on the resin member 12 is continued until the molten resin component is solidified, so that the spring back can be sufficiently prevented. When the pressing on the metal member is finished and the metal member is separated from the metal member while the rotary tool is rotated, a springback occurs in the melting region of the resin member 12 released from the compression action.

回転が停止された回転ツール16による加圧力は、スプリングバックの防止および過度な加圧の回避の観点から設定され、その値は通常、5〜500Nであり、好ましくは10〜300Nである。この加圧力は一連のプロセスにより樹脂部材12が溶融する領域、つまり樹脂部材12のスプリングバックが生じうる領域に対し、そのスプリングバックを防止するために必要な総加圧力であり、押圧部材の形状に寄らない。そのため、押圧部材の形状により変化する押圧領域の単位面積当たりの加圧力は規定しない。本工程中の当該加圧力は通常、一定であるが、上記範囲内で変動してもよい。   The pressure applied by the rotary tool 16 whose rotation has been stopped is set from the viewpoint of preventing springback and avoiding excessive pressurization, and the value is usually 5 to 500 N, preferably 10 to 300 N. This pressing force is a total pressing force necessary to prevent the spring back of the region where the resin member 12 is melted by a series of processes, that is, the region where the spring back of the resin member 12 can occur. Do not stop by. For this reason, the pressing force per unit area of the pressing region that varies depending on the shape of the pressing member is not defined. The applied pressure during this step is usually constant, but may vary within the above range.

回転が停止された回転ツール16による押圧は、スプリングバックをより一層、十分に防止する観点から、樹脂部材12の融点をTm(℃)としたとき、金属部材12表面において回転ツール16により押圧されている領域の直下における金属部材11と樹脂部材12の界面温度(≒樹脂部材12の溶融領域の温度)がTm未満、好ましくはTm−100〜Tm−10℃、より好ましくはTm−100〜Tm−20℃になるまで行うことが好ましい。換言すると、金属部材11と樹脂部材12の界面温度が上記温度範囲まで低下した以降に、回転ツール16による押圧を終了することが好ましい。回転ツール16による押圧の終了時における金属部材11と樹脂部材12の界面温度が高すぎると、スプリングバックを十分に防止することができない。   The pressing by the rotating tool 16 whose rotation has been stopped is pressed by the rotating tool 16 on the surface of the metal member 12 when the melting point of the resin member 12 is Tm (° C.) from the viewpoint of further sufficiently preventing the springback. The temperature at the interface between the metal member 11 and the resin member 12 immediately below the region (≈the temperature of the molten region of the resin member 12) is less than Tm, preferably Tm-100 to Tm-10 ° C., more preferably Tm-100 to Tm. It is preferable to carry out until it reaches −20 ° C. In other words, after the interface temperature between the metal member 11 and the resin member 12 is lowered to the above temperature range, it is preferable to end the pressing by the rotary tool 16. If the interface temperature between the metal member 11 and the resin member 12 at the end of pressing by the rotary tool 16 is too high, springback cannot be prevented sufficiently.

本発明においては、回転ツール16による押圧の終了直後、すなわち回転ツール16を金属部材11から離した直後において測定された金属部材11と樹脂部材12の界面温度が上記温度範囲内であればよい。   In the present invention, the interface temperature between the metal member 11 and the resin member 12 measured immediately after the end of pressing by the rotary tool 16, that is, immediately after the rotary tool 16 is separated from the metal member 11, may be within the above temperature range.

回転が停止された回転ツール16による押圧時間は、金属部材11の厚みおよび素材の種類、樹脂部材12の厚みおよび素材の種類、回転ツール16の形状、素材の種類等に依存するため、一概に決定できるものではない。回転が停止された回転ツール16による押圧時間とは、回転ツール16の回転が停止された時点から回転ツール16が金属部材11から離れる時点までの時間である。   The pressing time by the rotating tool 16 whose rotation has been stopped depends on the thickness of the metal member 11 and the type of material, the thickness of the resin member 12 and the type of material, the shape of the rotating tool 16, the type of material, etc. It cannot be determined. The pressing time by the rotating tool 16 whose rotation is stopped is the time from the time when the rotation of the rotating tool 16 is stopped until the time when the rotating tool 16 leaves the metal member 11.

固化工程において回転ツール16による押圧を継続する間、回転ツール16もしくは金属部材11の押圧面111近傍に対して冷却を強制的に行うことが好ましい。この方法により金属部材11と樹脂部材12の界面温度の低下が促進され、回転ツール16による押圧時間を短時間化、つまり一連の接合プロセスを短時間化することが可能になる。冷却方法としては、空気流を吹き付ける方法が挙げられる。   While the pressing by the rotary tool 16 is continued in the solidification step, it is preferable to forcibly cool the rotating tool 16 or the vicinity of the pressing surface 111 of the metal member 11. By this method, a decrease in the interface temperature between the metal member 11 and the resin member 12 is promoted, and the pressing time by the rotary tool 16 can be shortened, that is, a series of joining processes can be shortened. An example of the cooling method is a method of blowing an air flow.

固化工程を行った後、すなわち回転ツール16を金属部材11から離して回転ツール16による押圧を終了した後は、通常は室温まで冷却を行う。冷却方法は特に限定されず、例えば、放置冷却法、エアー冷却法等が挙げられる。   After performing the solidification step, that is, after the rotary tool 16 is separated from the metal member 11 and the pressing by the rotary tool 16 is finished, the cooling is usually performed to room temperature. The cooling method is not particularly limited, and examples thereof include a standing cooling method and an air cooling method.

固化工程においては、回転ツールの回転の停止に先立って、加圧力を、必要に応じて回転数と併せて、停止直前の値の5〜80%、好ましくは10〜60%に低下させる圧力緩和処理を行うことが好ましい。このような圧力緩和処理により、回転ツールの回転の停止後における回転ツール16への金属部材11の凝着を防止することができる。   In the solidification process, prior to stopping the rotation of the rotary tool, the pressure is reduced to 5 to 80%, preferably 10 to 60% of the value immediately before the stop, together with the number of rotations as necessary. It is preferable to carry out the treatment. By such a pressure relaxation process, adhesion of the metal member 11 to the rotary tool 16 after the rotation of the rotary tool is stopped can be prevented.

加圧力、回転数を低下させるときの基準となる直前の値とは、圧力緩和処理を行う直前まで設定されていた回転ツール16による金属部材11に対する加圧力とその回転数であり、例えば、直前の工程が後述する押込み撹拌工程C2である場合には当該押込み撹拌工程C2で設定される加圧力、回転数であり、直前の工程が後述する撹拌維持工程C3である場合には当該撹拌維持工程C3で設定される加圧力、回転数である。   The value immediately before serving as a reference for lowering the pressure and the number of rotations is the pressure applied to the metal member 11 by the rotary tool 16 set immediately before the pressure relaxation process and the number of rotations. When the step is an indentation stirring step C2 to be described later, the applied pressure and the rotation speed are set in the indentation stirring step C2, and when the immediately preceding step is an agitation maintaining step C3 to be described later, the agitation maintaining step The pressing force and the rotational speed set in C3.

第2ステップにおいては、前記固化工程の前に、回転ツール16を金属部材11に押し込んで、金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる押込み撹拌工程C2を少なくとも行うことが好ましい。   In the second step, prior to the solidification step, at least a pushing agitation step C2 in which the rotary tool 16 is pushed into the metal member 11 to enter a depth that does not reach the joining boundary surface 13 between the metal member 11 and the resin member 12 is performed. Preferably it is done.

第2ステップにおいては、前記押込み撹拌工程の前に、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で上記回転ツール16を回転させる予熱工程C1を行うことが好ましいが、必ずしも行わなければならないというわけではない。
前記押込撹拌工程の後であって、前記固化工程の前に、回転ツール16を接合境界面に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させる撹拌維持工程C3を行うことが好ましいが、当該工程も必ずしも行わなければならないというわけではない。
本発明における各工程は回転ツールの押圧力(加圧力)及び押圧時間の制御によって成されても良いし、また、回転ツールの押圧方向の移動量(接合部材に接触してからの接合部材への挿入量)及びその移動時間の制御によって成されても良い。
In the second step, it is preferable to perform a preheating step C1 for rotating the rotary tool 16 in a state where only the tip portion of the rotary tool 16 is in contact with the surface portion of the metal member 11 before the pushing and stirring step. It does not necessarily have to be done.
After the indentation stirring step and before the solidification step, a stirring maintaining step C3 is performed in which the rotary tool 16 continues to rotate at a position where the rotary tool 16 has entered to a depth that does not reach the joining boundary surface. Although it is preferable, this step is not necessarily performed.
Each step in the present invention may be performed by controlling the pressing force (pressing force) and pressing time of the rotating tool, and the amount of movement of the rotating tool in the pressing direction (to the bonding member after contacting the bonding member) The amount of insertion) and the movement time thereof may be controlled.

以下、これらの工程について詳しく説明する。   Hereinafter, these steps will be described in detail.

(予熱工程C1)
予熱工程C1は、回転ツール16と受け具17とを相互に近接させることにより、図3に示すように、回転ツール16の先端部のみを金属部材11の表面部(図例では上面部)に接触させた状態で回転ツール16を回転させる工程である。予熱工程C1では、回転ツール16を、第1の加圧力(例えば、900N)で、第1の加圧時間(例えば、1.00秒)だけ、所定回転数(例えば、3000rpm)で回転させる。
(Preheating process C1)
In the preheating step C1, by bringing the rotary tool 16 and the receiving member 17 close to each other, as shown in FIG. 3, only the tip of the rotary tool 16 is placed on the surface portion (upper surface portion in the illustrated example) of the metal member 11. This is a step of rotating the rotary tool 16 in a contacted state. In the preheating step C1, the rotary tool 16 is rotated at a predetermined rotation speed (for example, 3000 rpm) for a first pressurizing time (for example, 1.00 seconds) with a first pressure (for example, 900 N).

具体的には、予熱工程C1では、回転ツール16の押圧により金属部材11の表面部(図例では上面部)で摩擦熱が発生する。摩擦熱は金属部材11の内部に伝わり、金属部材11の上記押圧領域P(回転ツール16による押圧領域)の範囲及び上記押圧領域Pの近傍の範囲が予熱される。これにより、次の押込み撹拌工程C2で、回転ツール16を金属部材11に押込み易くなる。   Specifically, in the preheating step C <b> 1, frictional heat is generated at the surface portion (upper surface portion in the illustrated example) of the metal member 11 by pressing of the rotary tool 16. The frictional heat is transmitted to the inside of the metal member 11, and the range of the pressing area P (the pressing area by the rotary tool 16) of the metal member 11 and the area in the vicinity of the pressing area P are preheated. Thereby, it becomes easy to push the rotary tool 16 into the metal member 11 in the next pushing and stirring step C2.

予熱工程C1の第1の加圧力及び第1の加圧時間は、上記のような回転ツール16の押込み易さの観点及び樹脂部材12の軟化・溶融し易さの他、生産性の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、予熱工程C1における第1の加圧力は、700N以上1200N未満の値が好ましい。第1の加圧時間は、0.5秒以上2.0秒未満の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。   The first pressurizing force and the first pressurizing time in the preheating step C1 are from the viewpoint of productivity in addition to the ease of pushing the rotary tool 16 and the ease of softening and melting of the resin member 12 as described above. The value is set and varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the first pressing force in the preheating step C1 is preferably a value of 700 N or more and less than 1200 N. The first pressurizing time is preferably 0.5 seconds or more and less than 2.0 seconds. The number of rotations of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

(押込み撹拌工程C2)
押込み撹拌工程C2では、回転ツール16と受け具17とを相互に近接させることにより、図4に示すように、回転ツール16を金属部材11に押し込む。押込み撹拌工程C2を予熱工程C1に次いで行う場合には、回転ツール16と受け具17とをさらに相互に近接させることにより、図4に示すように、回転ツール16を金属部材11に押し込む。これにより、回転ツール16を金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させる。このとき、金属部材11の回転ツール直下部110を、図4に示すように、樹脂部材12側に突出変形させることが好ましい。これにより、回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂121について、その溶融と該直下領域から外周領域への流動(図4の矢印方向)を促進させることができる。
(Indentation stirring step C2)
In the pushing and stirring step C2, the rotating tool 16 and the receiving member 17 are brought close to each other, thereby pushing the rotating tool 16 into the metal member 11 as shown in FIG. When the indentation stirring step C2 is performed after the preheating step C1, the rotary tool 16 and the receiving member 17 are brought closer to each other, thereby pushing the rotary tool 16 into the metal member 11 as shown in FIG. Thereby, the rotary tool 16 is advanced to a depth that does not reach the joint boundary surface 13 between the metal member 11 and the resin member 12. At this time, it is preferable that the lower part 110 of the metal member 11 is protruded and deformed toward the resin member 12 as shown in FIG. Thereby, about the molten resin 121 of the resin member surface melt | dissolved in the area | region directly under a rotating tool, the fusion | melting and the flow (arrow direction of FIG. 4) to the outer periphery area | region can be accelerated | stimulated.

詳しくは、押込み撹拌工程C2では、回転ツール16を、第1の加圧力より大きい第2の加圧力(例えば、1500N)で、第1の加圧時間より短い第2の加圧時間(例えば、0.25秒)だけ、所定回転数(例えば、3000rpm)で回転させる。   Specifically, in the indentation stirring step C2, the rotary tool 16 is moved at a second pressurizing time (for example, 1500 N) that is larger than the first pressurizing time and shorter than the first pressurizing time (for example, Rotate at a predetermined rotation speed (for example, 3000 rpm) for 0.25 seconds.

押込み撹拌工程C2では、加圧力が予熱工程C1よりも大きくなることにより、回転ツール16が金属部材11に押し込まれる。すなわち、回転ツール16が金属部材11の内部に深く進入する。好ましくは、この回転ツール16の押込みにより、金属部材11の回転ツール直下部110において、金属部材11と樹脂部材12との接合境界面13が受け具17側(図例では下側)に移動し、当該直下部110が樹脂部材12側に突出変形する。これにより、接合境界面13において回転ツールの直下領域で溶融している樹脂部材表面の溶融樹脂121の溶融が促進されると共に、該直下領域を超えて、その外周領域まで流動する(図4の矢印方向)。溶融樹脂は回転ツール直下領域を中心とする略円形状で広がる。その結果、溶融樹脂と金属部材11との接触面積が拡大され、得られる接合体において冷却により溶融樹脂が固化してなる溶融固化域(接合領域)もまた拡大されるため、樹脂部材と金属部材との接合が十分に良好な作業効率かつ十分な強度で達成することができる。   In the indentation stirring step C2, the rotating tool 16 is pushed into the metal member 11 when the applied pressure is larger than that in the preheating step C1. That is, the rotary tool 16 enters deep inside the metal member 11. Preferably, when the rotary tool 16 is pressed, the joining boundary surface 13 between the metal member 11 and the resin member 12 moves to the support 17 side (lower side in the illustrated example) in the lower portion 110 of the metal member 11. The right lower part 110 projects and deforms toward the resin member 12 side. As a result, melting of the molten resin 121 on the surface of the resin member melted in the region immediately below the rotary tool at the joining boundary surface 13 is promoted, and flows beyond the region directly below to the outer peripheral region (see FIG. 4). Arrow direction). The molten resin spreads in a substantially circular shape centering on the region directly under the rotary tool. As a result, the contact area between the molten resin and the metal member 11 is expanded, and the melted and solidified region (bonding region) formed by solidifying the molten resin by cooling in the obtained bonded body is also expanded. Can be achieved with sufficiently good working efficiency and sufficient strength.

仮に、回転ツール16がさらに押し込まれると(つまり加圧力が高過ぎ及び/又は加圧時間が長過ぎると)、回転ツール16のショルダ部16bが上記接合境界面を超える。すなわち、回転ツール16が金属部材11を貫通し、回転ツール16の外周部が樹脂部材12に接触する。すると、金属部材11に回転ツール16が通過した孔が開いた孔開き状態となり、接合不良が起きる。   If the rotary tool 16 is further pushed in (that is, if the applied pressure is too high and / or the pressurizing time is too long), the shoulder portion 16b of the rotary tool 16 exceeds the joining boundary surface. That is, the rotary tool 16 penetrates the metal member 11, and the outer peripheral portion of the rotary tool 16 contacts the resin member 12. Then, the metal member 11 is in a holed state in which the hole through which the rotary tool 16 has passed is opened, resulting in poor bonding.

そこで、この押込み撹拌工程C2において、回転ツール16のショルダ部16bが上記接合境界面に達しない深さまで進入した時点で、回転ツール16の押込みを停止する。換言すれば、回転ツール16を上記接合境界面に達しない深さまで進入させる。これにより、次の撹拌維持工程C3で、樹脂部材12に近い基準位置で摩擦熱が発生し、多量の摩擦熱が樹脂部材12に伝わり、樹脂部材12の軟化および溶融が促進される。   Therefore, in this indentation stirring step C2, the indentation of the rotation tool 16 is stopped when the shoulder portion 16b of the rotation tool 16 enters a depth that does not reach the joint boundary surface. In other words, the rotary tool 16 is advanced to a depth that does not reach the joint interface. As a result, in the next agitation maintaining step C3, frictional heat is generated at a reference position close to the resin member 12, a large amount of frictional heat is transmitted to the resin member 12, and softening and melting of the resin member 12 are promoted.

押込み撹拌工程C2の第2の加圧力及び第2の加圧時間は、上記のような金属部材11の孔開き回避の観点及び回転ツール16をできるだけ樹脂部材12に近接させる観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、押込み撹拌工程C2における第2の加圧力は、1200N以上1800N未満の値が好ましい。第2の加圧時間は、0.1秒以上0.5秒未満の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。   The second pressing force and the second pressurizing time in the indentation stirring step C2 are set from the viewpoint of avoiding the opening of the metal member 11 as described above and the rotating tool 16 as close to the resin member 12 as possible. The value varies depending on, for example, the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the second applied pressure in the indentation stirring step C2 is preferably a value of 1200 N or more and less than 1800 N. The second pressurization time is preferably 0.1 seconds or more and less than 0.5 seconds. The number of rotations of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

(撹拌維持工程C3)
撹拌維持工程C3は、回転ツール16と受け具17との相互近接を停止することにより、同じく図4に示すように、上記接合境界面13に達しない深さまで進入させた位置(これを「基準位置」という)で回転ツール16の回転動作を継続させる工程である。撹拌維持工程C3では、回転ツール16を、第1の加圧力より小さい第3の加圧力(例えば、500N)で、第1の加圧時間より長い第3の加圧時間(例えば、6.75秒)だけ、所定回転数(例えば、3000rpm)で回転させる。
(Stirring maintenance step C3)
The agitation maintaining step C3 stops the mutual approach between the rotary tool 16 and the receiving member 17 and, as shown in FIG. This is a step of continuing the rotation operation of the rotary tool 16 at the “position”). In the agitation maintaining step C3, the rotary tool 16 is moved to a third pressurization time (for example, 6.75) longer than the first pressurization time with a third pressurization force (for example, 500 N) smaller than the first pressurization force. Seconds) at a predetermined rotation speed (for example, 3000 rpm).

撹拌維持工程C3では、加圧力が予熱工程C1よりも小さくなることにより(もちろん押込み撹拌工程C2よりも小さくなることにより)、回転ツール16が上記基準位置にほぼ維持される。この樹脂部材12に近い基準位置で回転ツール16の回転動作が継続されるため、多量の摩擦熱が発生し、発生した摩擦熱の大部分が樹脂部材12に移動する。そのため、樹脂部材12は、上記押圧領域P直下の領域の範囲を超えて、広い範囲で十分に軟化および溶融する。   In the stirring maintaining step C3, the rotating tool 16 is substantially maintained at the reference position by the applied pressure being smaller than that of the preheating step C1 (of course, being smaller than the pushing stirring step C2). Since the rotary tool 16 continues to rotate at the reference position close to the resin member 12, a large amount of frictional heat is generated, and most of the generated frictional heat moves to the resin member 12. Therefore, the resin member 12 is sufficiently softened and melted over a wide range beyond the range of the region immediately below the pressing region P.

撹拌維持工程C3の第3の加圧力及び第3の加圧時間は、上記のような樹脂部材12の広い範囲での十分な軟化・溶融および生産性の観点から設定され、その値は、例えば回転ツール16の回転数や金属部材11の厚みおよび素材の種類等に依存して変化する。例えば、1mm以上2mm以下の厚みのアルミニウム合金製金属部材11を使用する場合、撹拌維持工程C3における第3の加圧力は、100N以上700N未満の値が好ましい。第3の加圧時間は、1.0秒以上20秒未満の値、特に3.0秒以上10秒以下の値が好ましい。回転ツールの回転数は2000rpm以上4000rpm以下の値が好ましい。   The third pressing force and the third pressurizing time in the stirring maintaining step C3 are set from the viewpoint of sufficient softening / melting and productivity in a wide range of the resin member 12 as described above, and the values thereof are, for example, It changes depending on the number of rotations of the rotary tool 16, the thickness of the metal member 11, the type of material, and the like. For example, when the aluminum alloy metal member 11 having a thickness of 1 mm or more and 2 mm or less is used, the third pressing force in the stirring and maintaining step C3 is preferably a value of 100 N or more and less than 700 N. The third pressurizing time is preferably a value of 1.0 second or more and less than 20 seconds, particularly a value of 3.0 seconds or more and 10 seconds or less. The number of rotations of the rotary tool is preferably 2000 rpm or more and 4000 rpm or less.

(3)樹脂部材
本発明の接合方法において使用される樹脂部材12は熱可塑性ポリマーおよび強化繊維を含むものである。
(3) Resin member The resin member 12 used in the joining method of the present invention contains a thermoplastic polymer and reinforcing fibers.

樹脂部材12を構成する熱可塑性ポリマーとしては、熱可塑性を有するあらゆるポリマーが使用可能である。中でも、自動車の分野で使用されている熱可塑性ポリマーが好ましく使用される。そのような熱可塑性ポリマーの具体例として、例えば、以下のポリマーおよびそれらの混合物が挙げられる:
ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂およびその酸変性物;
ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリ乳酸(PLA)などのポリエステル系樹脂;
ポリメタクリル酸メチル樹脂(PMMA)などのポリアクリレート系樹脂;
ポリエーテルエーテルケトン(PEEK)、ポリフェニレンエーテル(PPE)などのポリエーテル系樹脂;
ポリアセタール(POM);
アクリロニトリル−ブタジエン−スチレンコポリマー系樹脂(ABS);
ポリフェニレンサルファイド(PPS);
PA6、PA66、PA11、PA12、PA6T、PA9T、MXD6などのポリアミド系樹脂(PA);
ポリカーボネート系樹脂(PC);
ポリウレタン系樹脂;
フッ素系ポリマー樹脂;および
液晶ポリマー(LCP)。
As the thermoplastic polymer constituting the resin member 12, any polymer having thermoplasticity can be used. Of these, thermoplastic polymers used in the field of automobiles are preferably used. Specific examples of such thermoplastic polymers include, for example, the following polymers and mixtures thereof:
Polyolefin resins such as polyethylene and polypropylene and acid-modified products thereof;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polylactic acid (PLA);
Polyacrylate resins such as polymethyl methacrylate resin (PMMA);
Polyether resins such as polyether ether ketone (PEEK) and polyphenylene ether (PPE);
Polyacetal (POM);
Acrylonitrile-butadiene-styrene copolymer resin (ABS);
Polyphenylene sulfide (PPS);
PA6, PA66, PA11, PA12, PA6T, PA9T, MXD6 and other polyamide-based resins (PA);
Polycarbonate resin (PC);
Polyurethane resin;
A fluoropolymer resin; and a liquid crystal polymer (LCP).

樹脂部材12を構成する熱可塑性ポリマーとしては、安価で機械特性に優れるポリオレフィン系樹脂、特にポリプロピレンが好ましく使用される。   As the thermoplastic polymer constituting the resin member 12, a polyolefin resin, particularly polypropylene, which is inexpensive and excellent in mechanical properties is preferably used.

熱可塑性ポリマーの分子量は特に限定されるものではなく、例えば230℃でのMFR(メルトフローレート値)が2〜200g/10分間、特に2〜55g/10分間となるような分子量であればよい。   The molecular weight of the thermoplastic polymer is not particularly limited. For example, the molecular weight may be such that the MFR (melt flow rate value) at 230 ° C. is 2 to 200 g / 10 minutes, particularly 2 to 55 g / 10 minutes. .

本明細書中、ポリマーのMFRはJIS K 7210により測定された値を用いている。   In this specification, the value measured by JIS K 7210 is used for the MFR of the polymer.

樹脂部材12は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために金属部材11と重ね合わせたときに、金属部材11直下の部分が略平板形状を有する限り、いかなる形状を有していてもよい。   The resin member 12 has a substantially flat plate shape as an overall shape in FIG. 1 and the like, but is not limited to this. When the resin member 12 is overlapped with the metal member 11 for bonding, the resin member 12 is directly below the metal member 11. As long as the portion has a substantially flat plate shape, it may have any shape.

樹脂部材12における金属部材11直下の部分の厚みt(接合処理前の厚み;図3参照)は通常、2〜10mm、特に2〜5mmであるがこれに限定されるものではない。   The thickness t (thickness before joining treatment; see FIG. 3) of the portion immediately below the metal member 11 in the resin member 12 is usually 2 to 10 mm, particularly 2 to 5 mm, but is not limited thereto.

樹脂部材12に含有される強化繊維は、ポリマー含有複合材料の分野で、強度向上のために、ポリマー中に含有される繊維であり、一般に、連続繊維と不連続繊維とに大別されるが、本発明において強化繊維は、特に不連続繊維を意味するものとする。不連続繊維は、スプリングバックが起こりやすいものと考えられているところ、本発明においてはそのような不連続繊維が含有される場合であっても、スプリングバックを十分に防止できるためである。   The reinforcing fiber contained in the resin member 12 is a fiber contained in the polymer in order to improve strength in the field of polymer-containing composite materials, and is generally classified into continuous fibers and discontinuous fibers. In the present invention, the reinforcing fiber particularly means a discontinuous fiber. This is because discontinuous fibers are considered to be prone to spring back, and in the present invention, even when such discontinuous fibers are contained, spring back can be sufficiently prevented.

強化繊維は樹脂部材中、ランダム配向形態で含有され、平均繊維長が通常、50mm以下、特に0.1〜50mm、好ましくは1〜50mmである。強化繊維の平均繊維径は特に制限されるものではなく、例えば、2〜20μmであり、好ましくは6〜15μmである。強化繊維の種類としては、特に制限されず、例えば、炭素繊維、ガラス繊維等が挙げられる。   The reinforcing fibers are contained in the resin member in a randomly oriented form, and the average fiber length is usually 50 mm or less, particularly 0.1 to 50 mm, preferably 1 to 50 mm. The average fiber diameter of the reinforcing fibers is not particularly limited, and is, for example, 2 to 20 μm, preferably 6 to 15 μm. The type of reinforcing fiber is not particularly limited, and examples thereof include carbon fiber and glass fiber.

強化繊維の含有量は通常、樹脂部材全量に対して1重量%以上、特に10〜50重量%であり、好ましくは20〜50重量%、より好ましくは30〜50重量%である。   The content of the reinforcing fiber is usually 1% by weight or more, particularly 10 to 50% by weight, preferably 20 to 50% by weight, more preferably 30 to 50% by weight, based on the total amount of the resin member.

強化繊維の含有量は、樹脂部材の製造時における各材料の使用量に基づく値を使用することができるし、以下の方法により測定される値を使用することもできる。まず、樹脂部材を、電気炉等により、熱可塑性ポリマーの分解温度以上、強化繊維の分解温度以下で加熱することによって、熱可塑性ポリマーを取り除き、強化繊維のみを取り出す。加熱前後の重量測定により、強化繊維の含有量を加熱前の重量に対する割合として算出することができる。または、比重を測定することによっても、含有量の測定ができる。   As the content of the reinforcing fiber, a value based on the amount of each material used at the time of manufacturing the resin member can be used, and a value measured by the following method can also be used. First, the resin member is heated by an electric furnace or the like above the decomposition temperature of the thermoplastic polymer and below the decomposition temperature of the reinforcing fiber, thereby removing the thermoplastic polymer and taking out only the reinforcing fiber. By measuring the weight before and after heating, the content of reinforcing fibers can be calculated as a ratio to the weight before heating. Alternatively, the content can be measured by measuring the specific gravity.

樹脂部材12には、強化繊維以外の添加剤、例えば安定剤、難燃剤、着色材、発泡剤などがさらに含有されてもよい。   The resin member 12 may further contain additives other than reinforcing fibers, such as stabilizers, flame retardants, colorants, foaming agents, and the like.

樹脂部材12は、熱可塑性ポリマーおよび強化繊維ならびに所望の添加剤を含む混合物を、射出成形法、プレス成形法などの成形法に供することにより、製造することができる。   The resin member 12 can be manufactured by subjecting a mixture containing a thermoplastic polymer and reinforcing fibers and a desired additive to a molding method such as an injection molding method or a press molding method.

樹脂部材12の融点Tmは樹脂部材12の種類によって異なり、通常、130〜350℃である。
樹脂部材12の融点Tmは、JIS7121により測定された値を用いている。
The melting point Tm of the resin member 12 varies depending on the type of the resin member 12, and is usually 130 to 350 ° C.
As the melting point Tm of the resin member 12, a value measured according to JIS 7121 is used.

(4)金属部材
金属部材11は、図1等において、全体形状として略平板形状を有しているが、これに限定されるものではなく、接合のために樹脂部材12と重ね合わせる部分のみが少なくとも略平板形状を有する限り、いかなる形状を有していてもよい。
(4) Metal member Although the metal member 11 has a substantially flat plate shape as an overall shape in FIG. 1 and the like, it is not limited to this, and only the portion that overlaps the resin member 12 for bonding is provided. As long as it has at least a substantially flat plate shape, it may have any shape.

金属部材11において樹脂部材12と重ね合わせる略平板形状部分の厚みT(接合処理前の厚み;図3参照)は通常、0.5〜4mmであるがこれに限定されるものではない。   The thickness T (thickness before the bonding treatment; see FIG. 3) of the substantially flat plate-shaped portion that overlaps the resin member 12 in the metal member 11 is usually 0.5 to 4 mm, but is not limited thereto.

金属部材11を構成する金属としては、融点が、樹脂部材12を構成する熱可塑性ポリマーよりも高いあらゆる金属が使用可能である。中でも、自動車の分野で使用されている以下の金属および合金が好ましく使用される:
アルミニウム;
5000系、6000系などのアルミニウム合金;
スチール;
マグネシウムおよびその合金;
チタンおよびその合金。
As the metal constituting the metal member 11, any metal having a melting point higher than that of the thermoplastic polymer constituting the resin member 12 can be used. Among these, the following metals and alloys used in the automotive field are preferably used:
aluminum;
Aluminum alloys such as 5000 series and 6000 series;
steel;
Magnesium and its alloys;
Titanium and its alloys.

[実施例1]
(樹脂部材)
炭素繊維を40重量%含むポリプロピレンペレット(PP−CF40−11;ダイセルポリマー社製)を用いて射出成形法により、縦100mm×横30mm×厚み3mm寸法の樹脂部材12を製造した。樹脂部材において炭素繊維の平均繊維長は3mm、平均繊維径は7μmであった。樹脂部材の融点Tmは170℃であった。
[Example 1]
(Resin member)
A resin member 12 having dimensions of 100 mm in length, 30 mm in width, and 3 mm in thickness was produced by an injection molding method using polypropylene pellets containing 40% by weight of carbon fibers (PP-CF40-11; manufactured by Daicel Polymer Co., Ltd.). In the resin member, the average fiber length of the carbon fibers was 3 mm, and the average fiber diameter was 7 μm. The melting point Tm of the resin member was 170 ° C.

(金属部材)
金属部材としては、6000系のアルミニウム合金製の平板状部材(厚さ1.2mm)を用いた。
(回転ツール)
回転ツールとしては、図2の各部の寸法がD1=10mm、D2=2mm、h=0.5mmの工具鋼製のものを用いた。
(Metal member)
As the metal member, a flat plate member (thickness: 1.2 mm) made of a 6000 series aluminum alloy was used.
(Rotation tool)
As the rotating tool, a tool made of tool steel having dimensions of each part in FIG. 2 of D1 = 10 mm, D2 = 2 mm, and h = 0.5 mm was used.

(接合方法)
以下の方法により、金属部材11と樹脂部材12との接合体を製造した。
第1ステップ:
金属部材11の端部と樹脂部材12の端部とを図1に示すように重ね合わせた。
(Joining method)
The joined body of the metal member 11 and the resin member 12 was manufactured by the following method.
First step:
The end of the metal member 11 and the end of the resin member 12 were overlapped as shown in FIG.

第2ステップ:
まず、図3に示すように、回転ツール16の先端部のみを金属部材11の表面部に接触させた状態で回転ツール16を回転させた(予熱工程C1:加圧力900N、加圧時間1.00秒、ツール回転数3000rpm)。
Second step:
First, as shown in FIG. 3, the rotary tool 16 was rotated in a state where only the tip portion of the rotary tool 16 was in contact with the surface portion of the metal member 11 (preheating step C1: pressure 900N, pressurization time 1. 00 seconds, tool rotation speed 3000 rpm).

その後、図4に示すように、回転ツール16を金属部材11に押し込んで金属部材11と樹脂部材12との接合境界面13に達しない深さまで進入させた(押込み撹拌工程C2:加圧力1500N、加圧時間0.25秒、ツール回転数3000rpm)。
次いで、図4に示すように、回転ツール16を接合境界面13に達しない深さまで進入させた位置で、回転ツール16の回転動作を継続させた(撹拌維持工程C3:加圧力500N、加圧時間6.75秒、ツール回転数3000rpm)。
Thereafter, as shown in FIG. 4, the rotary tool 16 was pushed into the metal member 11 to a depth not reaching the joining boundary surface 13 between the metal member 11 and the resin member 12 (pushing stirring step C2: pressure 1500N, (Pressurization time 0.25 seconds, tool rotation speed 3000 rpm).
Next, as shown in FIG. 4, the rotation operation of the rotary tool 16 was continued at a position where the rotary tool 16 was advanced to a depth that did not reach the joining boundary surface 13 (stirring maintenance step C3: pressurizing force 500 N, pressurization) (Time 6.75 seconds, tool rotation speed 3000 rpm).

次いで、回転ツール16の回転を停止し、回転ツールの回転を停止した後も、図4に示すように、回転ツールによる金属部材11表面への押圧を所定の加圧力で継続した(固化工程:加圧力200N、加圧時間10秒)。所定の加圧時間経過後、直ちに、回転ツール16による押圧を終了し、図5に示すように、回転ツール16を金属部材11から離した。   Next, after the rotation of the rotary tool 16 is stopped and the rotation of the rotary tool is stopped, the pressing on the surface of the metal member 11 by the rotary tool is continued with a predetermined pressure as shown in FIG. 4 (solidification process: (Pressure 200N, pressurization time 10 seconds). Immediately after the elapse of a predetermined pressurizing time, pressing by the rotary tool 16 was terminated, and the rotary tool 16 was separated from the metal member 11 as shown in FIG.

(接合強度)
図6に示すように、金属部材11と樹脂部材12との接合体を治具100内に配置した。治具100は、該治具100を下方へ引っ張ることにより樹脂部材12の上端部に下方への力が働くように構成されたものである。治具100を固定し、かつ金属部材11を上方へ引っ張ることにより、樹脂部材12の上端部に下方への力が働き、樹脂部材12の母材強度に影響を受けることなく接合部の剪断強度Sを測定した。
◎;4.00≦S;
○;3.00≦S<4.00(実用上問題なし);
×;S<3.00。
(Joint strength)
As shown in FIG. 6, the joined body of the metal member 11 and the resin member 12 was placed in the jig 100. The jig 100 is configured such that a downward force acts on the upper end portion of the resin member 12 by pulling the jig 100 downward. By fixing the jig 100 and pulling the metal member 11 upward, a downward force acts on the upper end portion of the resin member 12, and the shear strength of the joint portion is not affected by the strength of the base material of the resin member 12. S was measured.
A: 4.00 ≦ S;
○: 3.00 ≦ S <4.00 (no problem in practical use);
X: S <3.00.

(測定)
回転ツール16による押圧を終了した直後の金属部材11と樹脂部材12の界面温度(回転ツール16の回転軸位置)をK式熱電対にて測定した。
(Measurement)
The interface temperature (rotational axis position of the rotary tool 16) between the metal member 11 and the resin member 12 immediately after the end of pressing by the rotary tool 16 was measured with a K-type thermocouple.

[実施例2〜7および比較例1〜2]
工程条件を表に記載のように変更したこと以外、実施例1と同様の方法により、樹脂部材と金属部材との接合およびその評価を行った。
固化工程において圧力緩和処理を行う場合、工程C3の後であって、回転ツール16の回転停止前に、加圧力を所定の値に低下させて回転ツール16の回転動作を所定の回転数で所定時間継続させた。
実施例6および7においては、固化工程において回転ツール16の回転停止後、回転ツールによる金属部材11表面への押圧を継続する間、回転ツール16の先端及び金属部材11との接触部近傍に対して温度25℃の空気流を所定の流量にて吹き付けた。
比較例1および2においては、工程C3の終了時において、回転ツール16を回転させたまま、金属部材11から離した。
[Examples 2-7 and Comparative Examples 1-2]
A resin member and a metal member were joined and evaluated by the same method as in Example 1 except that the process conditions were changed as described in the table.
When the pressure relaxation process is performed in the solidification process, after the process C3 and before the rotation of the rotary tool 16, the pressing force is reduced to a predetermined value to rotate the rotary tool 16 at a predetermined rotational speed. Continued for hours.
In Examples 6 and 7, after the rotation of the rotary tool 16 is stopped in the solidification process, while the pressing of the rotary tool on the surface of the metal member 11 is continued, the tip of the rotary tool 16 and the vicinity of the contact portion with the metal member 11 are used. Then, an air flow having a temperature of 25 ° C. was blown at a predetermined flow rate.
In Comparative Examples 1 and 2, at the end of Step C3, the rotary tool 16 was kept rotating and separated from the metal member 11.

Figure 2016068471
Figure 2016068471

本発明に係る接合方法は、自動車、鉄道車両、航空機、家電製品等の分野における金属部材と樹脂部材との接合に有用である。   The joining method according to the present invention is useful for joining a metal member and a resin member in the fields of automobiles, railway vehicles, aircraft, home appliances, and the like.

1:摩擦撹拌接合装置
10:ワーク
11:金属部材
12:樹脂部材
13:金属部材と樹脂部材との接合境界面
16:回転ツール
17:受け具
100:接合強度を測定するための治具
110:金属部材の回転ツール直下部
111:押込面
121:回転ツールの直下領域で溶融している溶融樹脂
1: Friction stir welding apparatus 10: Workpiece 11: Metal member 12: Resin member 13: Joining interface between metal member and resin member 16: Rotating tool 17: Receiving tool 100: Jig for measuring joint strength 110: Directly below the rotating tool of the metal member 111: Push-in surface 121: Molten resin melted in the region immediately below the rotating tool

Claims (12)

金属部材と強化繊維を含有する樹脂部材とを重ね合わせ、押圧部材による金属部材側からの押圧により熱および圧力を局所的に付与し、樹脂部材を軟化および溶融させた後、固化させる熱圧式接合方法による金属部材と樹脂部材との接合方法であって、
押圧部材による熱の付与を停止した後も押圧部材による押圧を継続して、前記固化を行う固化工程を備えていることを特徴とする金属部材と樹脂部材との接合方法。
Thermo-pressure bonding in which a metal member and a resin member containing reinforcing fibers are superposed, heat and pressure are locally applied by pressing from the metal member side by the pressing member, and the resin member is softened and melted and then solidified A method of joining a metal member and a resin member by a method,
A method for joining a metal member and a resin member, comprising: a solidification step in which the solidification is performed by continuing the pressing by the pressing member even after the application of heat by the pressing member is stopped.
樹脂部材の融点をTm(℃)としたとき、前記固化工程において、押圧部材により押圧されている領域の直下における金属部材及び樹脂部材の界面温度がTm(℃)未満になるまで、押圧部材による押圧を継続する請求項1に記載の金属部材と樹脂部材との接合方法。   When the melting point of the resin member is Tm (° C.), in the solidification step, until the interface temperature between the metal member and the resin member immediately below the region pressed by the press member becomes less than Tm (° C.), The joining method of the metal member and resin member of Claim 1 which continues a press. 前記固化工程において、押圧部材による熱の付与の停止に先立って、加圧力を直前の加圧力の5〜80%の値に低下させて回転ツールを回転させる圧力緩和処理を行う請求項1または2に記載の金属部材と樹脂部材との接合方法。   In the solidification step, prior to stopping the application of heat by the pressing member, a pressure relaxation process is performed in which the pressure is reduced to a value of 5 to 80% of the previous pressure and the rotary tool is rotated. The joining method of the metal member and resin member of description. 金属部材と樹脂部材とを重ね合わせる第1ステップ;および
回転ツールを回転させつつ、金属部材に押圧して摩擦熱を発生させ、この摩擦熱により樹脂部材を軟化および溶融させた後、固化させて金属部材と樹脂部材とを接合する第2ステップを含む摩擦撹拌接合方法による金属部材と樹脂部材との接合方法であって、
前記第2ステップが、回転ツールの回転を停止した後も回転ツールによる押圧を継続して、前記固化を行う固化工程を備えていることを特徴とする金属部材と樹脂部材との接合方法。
A first step of superposing the metal member and the resin member; and while rotating the rotary tool, the metal member is pressed against the metal member to generate frictional heat. The resin member is softened and melted by the frictional heat and then solidified. A method of joining a metal member and a resin member by a friction stir welding method including a second step of joining the metal member and the resin member,
The method of joining a metal member and a resin member, wherein the second step includes a solidification step of continuing the pressing by the rotary tool even after the rotation of the rotary tool is stopped and performing the solidification.
樹脂部材の融点をTm(℃)としたとき、前記固化工程において、回転ツールにより押圧されている領域の直下における金属部材及び樹脂部材の界面温度がTm(℃)未満になるまで、回転ツールによる押圧を継続する請求項4に記載の金属部材と樹脂部材との接合方法。   When the melting point of the resin member is Tm (° C.), in the solidification step, until the interface temperature between the metal member and the resin member immediately below the region pressed by the rotary tool becomes less than Tm (° C.), The joining method of the metal member and resin member of Claim 4 which continues a press. 前記固化工程において、回転ツールの回転の停止に先立って、加圧力を直前の加圧力の5〜80%の値に低下させて回転ツールを回転させる圧力緩和処理を行う請求項4または5に記載の金属部材と樹脂部材との接合方法。   6. The pressure relaxation process for rotating the rotary tool by reducing the applied pressure to a value of 5 to 80% of the immediately preceding applied pressure prior to stopping the rotation of the rotary tool in the solidification step. Joining method of metal member and resin member. 前記第2ステップが、前記固化工程の前に、前記回転ツールを金属部材に押し込んで、金属部材と樹脂部材との接合境界面に達しない深さまで進入させる押込み撹拌工程をさらに備えている請求項4〜6のいずれかに記載の金属部材と樹脂部材との接合方法。   The said 2nd step is further provided with the pushing stirring process which pushes the said rotary tool into a metal member before the said solidification process, and makes it approach to the depth which does not reach the joining interface of a metal member and a resin member. The joining method of the metal member and resin member in any one of 4-6. 前記第2ステップが、前記押込み撹拌工程の前に、前記回転ツールの先端部のみを金属部材の表面部に接触させた状態で回転ツールを回転させる予熱工程をさらに備えている請求項7に記載の金属部材と樹脂部材との接合方法。   The said 2nd step is further equipped with the preheating process which rotates a rotary tool in the state which made only the front-end | tip part of the said rotary tool contact the surface part of the metal member before the said pushing stirring process. Joining method of metal member and resin member. 前記予熱工程では前記回転ツールを第1の加圧力で押圧しつつ第1の加圧時間だけ回転させ、
前記押込み撹拌工程では前記回転ツールを前記第1の加圧力より大きい第2の加圧力で押圧しつつ前記第1の加圧時間より短い第2の加圧時間だけ回転させる請求項8に記載の金属部材と樹脂部材との接合方法。
In the preheating step, the rotary tool is rotated by a first pressurizing time while being pressed with a first pressing force,
9. The method according to claim 8, wherein in the indentation stirring step, the rotary tool is rotated by a second pressurization time shorter than the first pressurization time while pressing the rotary tool with a second pressurization force larger than the first pressurization force. A method of joining a metal member and a resin member.
前記第2ステップが、前記押込撹拌工程の後であって、前記固化工程の前に、前記回転ツールを接合境界面に達しない深さまで進入させた位置で、回転ツールの回転動作を継続させる撹拌維持工程をさらに備え、
前記撹拌維持工程では前記回転ツールを前記第1の加圧力より小さい第3の加圧力で押圧しつつ前記第1の加圧時間より長い第3の加圧時間だけ回転させる請求項9に記載の金属部材と樹脂部材との接合方法。
Stirring in which the rotation of the rotary tool is continued at a position where the second step is after the indentation stirring step and before the solidification step, so that the rotary tool enters a depth not reaching the joining boundary surface. A maintenance process,
The said stirring maintenance process WHEREIN: It rotates only for 3rd pressurization time longer than the said 1st pressurization time, pressing the said rotary tool with the 3rd pressurization force smaller than the said 1st pressurization force. A method of joining a metal member and a resin member.
強化繊維が0.1〜50mmの平均繊維長を有する請求項1〜10のいずれかに記載の金属部材と樹脂部材との接合方法。   The joining method of the metal member and resin member in any one of Claims 1-10 in which a reinforced fiber has an average fiber length of 0.1-50 mm. 樹脂部材が該樹脂部材全量に対して10〜50重量%の割合で強化繊維を含有する請求項1〜11のいずれかに記載の金属部材と樹脂部材との接合方法。   The joining method of the metal member and resin member in any one of Claims 1-11 in which a resin member contains a reinforcement fiber in the ratio of 10 to 50 weight% with respect to this resin member whole quantity.
JP2014201839A 2014-09-30 2014-09-30 Method of joining metal member and resin member Active JP6102877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201839A JP6102877B2 (en) 2014-09-30 2014-09-30 Method of joining metal member and resin member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014201839A JP6102877B2 (en) 2014-09-30 2014-09-30 Method of joining metal member and resin member

Publications (2)

Publication Number Publication Date
JP2016068471A true JP2016068471A (en) 2016-05-09
JP6102877B2 JP6102877B2 (en) 2017-03-29

Family

ID=55863665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201839A Active JP6102877B2 (en) 2014-09-30 2014-09-30 Method of joining metal member and resin member

Country Status (1)

Country Link
JP (1) JP6102877B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109967858A (en) * 2019-03-22 2019-07-05 哈尔滨工业大学 A kind of friction stir welding method suitable between metal and polymer
CN111531265A (en) * 2020-04-22 2020-08-14 上海航天设备制造总厂有限公司 Keyhole-free friction spot welding method
JP2021154574A (en) * 2020-03-26 2021-10-07 マツダ株式会社 Joint structure and joint method of metal member and resin member
JP2021529919A (en) * 2018-07-18 2021-11-04 エジョット ゲーエムベーハー ウント コンパニー カーゲー Connection elements and how to install connection elements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029440A1 (en) * 2005-09-01 2007-03-15 Osaka University Method for joining metal and resin and metal-resin composite, method for joining glass and resin and glass-resin composite, and method for joining ceramic and resin and ceramic-resin composite
JP2011116127A (en) * 2009-12-03 2011-06-16 Helmholtz-Zentrum Geesthacht Zentrum Fur Material & Kustenforschung Gmbh Method for joining metal and plastic workpieces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029440A1 (en) * 2005-09-01 2007-03-15 Osaka University Method for joining metal and resin and metal-resin composite, method for joining glass and resin and glass-resin composite, and method for joining ceramic and resin and ceramic-resin composite
JP2011116127A (en) * 2009-12-03 2011-06-16 Helmholtz-Zentrum Geesthacht Zentrum Fur Material & Kustenforschung Gmbh Method for joining metal and plastic workpieces

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021529919A (en) * 2018-07-18 2021-11-04 エジョット ゲーエムベーハー ウント コンパニー カーゲー Connection elements and how to install connection elements
JP7444522B2 (en) 2018-07-18 2024-03-06 エジョット ゲーエムベーハー ウント コンパニー カーゲー Connection elements and how to introduce them
CN109967858A (en) * 2019-03-22 2019-07-05 哈尔滨工业大学 A kind of friction stir welding method suitable between metal and polymer
CN109967858B (en) * 2019-03-22 2021-03-12 哈尔滨工业大学 Friction stir welding method suitable for metal and polymer
JP2021154574A (en) * 2020-03-26 2021-10-07 マツダ株式会社 Joint structure and joint method of metal member and resin member
JP7376044B2 (en) 2020-03-26 2023-11-08 マツダ株式会社 Bonding structure and bonding method between metal and resin components
CN111531265A (en) * 2020-04-22 2020-08-14 上海航天设备制造总厂有限公司 Keyhole-free friction spot welding method
WO2021212650A1 (en) * 2020-04-22 2021-10-28 上海航天设备制造总厂有限公司 Key-hole-free friction stir spot welding method

Also Published As

Publication number Publication date
JP6102877B2 (en) 2017-03-29

Similar Documents

Publication Publication Date Title
JP6098526B2 (en) Method of joining metal member and resin member
JP6315017B2 (en) Method of joining metal member and resin member
JP6102806B2 (en) Dissimilar member joining method
JP6102813B2 (en) Method of joining metal member and resin member
JP6102877B2 (en) Method of joining metal member and resin member
JP6102876B2 (en) Method of joining metal member and resin member
JP6384411B2 (en) Method of joining metal member and resin member, and metal member used in the method
JP6098605B2 (en) Method of joining metal member and resin member
JP6098562B2 (en) Method of joining metal member and resin member
JP6330760B2 (en) Method of joining metal member and resin member
JP6098527B2 (en) Method of joining metal member and resin member
JP7376044B2 (en) Bonding structure and bonding method between metal and resin components
JP6098606B2 (en) Method of joining metal member and resin member
JP6098563B2 (en) Method of joining metal member and resin member
JP6319341B2 (en) Method of joining metal member and resin member, and joining member set comprising metal member and resin member used in the method
JP6314935B2 (en) Method of joining metal member and resin member
JP6311677B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6098607B2 (en) Method of joining metal member and resin member
JP6137104B2 (en) Method of joining metal member and resin member
JP6384408B2 (en) Friction stir welding method and joining apparatus therefor
JP6098565B2 (en) Method of joining metal member and resin member
JP6056828B2 (en) Method of joining metal member and resin member and resin member used in the method
JP6327268B2 (en) Method and apparatus for joining metal member and resin member
JP7156086B2 (en) METHOD AND APPARATUS FOR JOINING METAL MEMBER AND RESIN MEMBER
JP6098564B2 (en) Method of joining metal member and resin member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170213

R150 Certificate of patent or registration of utility model

Ref document number: 6102877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150