JP2021151077A - 電力変換装置、および電力変換装置の制御方法 - Google Patents

電力変換装置、および電力変換装置の制御方法 Download PDF

Info

Publication number
JP2021151077A
JP2021151077A JP2020048508A JP2020048508A JP2021151077A JP 2021151077 A JP2021151077 A JP 2021151077A JP 2020048508 A JP2020048508 A JP 2020048508A JP 2020048508 A JP2020048508 A JP 2020048508A JP 2021151077 A JP2021151077 A JP 2021151077A
Authority
JP
Japan
Prior art keywords
voltage
voltage command
power conversion
command value
carrier wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020048508A
Other languages
English (en)
Inventor
矩也 中尾
Takuya Nakao
矩也 中尾
公久 古川
Kimihisa Furukawa
公久 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020048508A priority Critical patent/JP2021151077A/ja
Priority to CN202080098287.XA priority patent/CN115176406A/zh
Priority to PCT/JP2020/049081 priority patent/WO2021186841A1/ja
Publication of JP2021151077A publication Critical patent/JP2021151077A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

【課題】電圧指令値に対して搬送波の周波数を十分に高く設定できない場合、電圧指令値と搬送波の位相ずれに伴い出力電圧の対称性が崩れ、電力変換部により発生する電圧・電流に含有する高調波の増大が課題であった。【解決手段】複数のスイッチング素子のオンオフを制御して電力を変換する電力変換部と、所望の出力電圧を指示する複数相の第一電圧指令値に基づいて前記スイッチング素子のオンオフを制御するゲートパルス信号を生成するゲートパルス生成部とを備える電力変換装置であって、前記ゲートパルス生成部は、前記複数相の各第一電圧指令値に基づいて、第一電圧指令値に対して位相が同期した搬送波を生成し、前記搬送波を前記第一電圧指令値に加算して第二電圧指令値を生成する電力変換装置。【選択図】図3

Description

本発明は、電力変換装置、および電力変換装置の制御方法に関する。
例えば、直流電力と交流電力とを相互に変換する電力変換部には、種々の回路方式が知られている。高電圧用途向けには、単相ブリッジ回路で構成される電力変換部を複数直列に接続するマルチステージ型がよく用いられる。
電力変換部内のスイッチング素子は、オンまたはオフを指示するゲートパルス信号が入力されることで動作する。ゲートパルス信号を生成する方法としては、一般的にPWM(Pulse Width Modulation)制御が用いられる。この制御では、所望の出力電圧を指示する電圧指令値と、別途生成される三角波等の搬送波に基づいてゲートパルス信号を生成する。電力変換部ではスイッチング素子のスイッチング損失に起因する発熱が発生する。そのため、実用上は搬送波の周波数に上限があり、可能な限りスイッチング回数(パルス数)を抑えた制御が行われる。
特許文献1には、搬送波と出力電圧指令とをそれぞれ比較してPWMパルスを作成し、搬送波振幅または搬送波周波数を徐々に小さくする制御方法が記載されている。
特開2003−319662号公報
電圧指令値に対して搬送波の周波数を十分に高く設定できない場合に、電力変換部より出力される電圧・電流に含有している高調波の増大が課題であった。
本発明による電力変換装置は、複数のスイッチング素子のオンオフを制御して電力を変換する電力変換部と、所望の出力電圧を指示する複数相の第一電圧指令値に基づいて前記スイッチング素子のオンオフを制御するゲートパルス信号を生成するゲートパルス生成部とを備える電力変換装置であって、前記ゲートパルス生成部は、前記複数相の各第一電圧指令値に基づいて、第一電圧指令値に対して位相が同期した搬送波を生成し、前記搬送波を前記第一電圧指令値に加算して第二電圧指令値を生成する。
本発明による電力変換装置の制御方法は、複数のスイッチング素子のオンオフを制御して電力を変換する電力変換部と、所望の出力電圧を指示する複数相の第一電圧指令値に基づいて前記スイッチング素子のオンオフを制御するゲートパルス信号を生成するゲートパルス生成部とを備える電力変換装置の制御方法であって、前記ゲートパルス生成部により、前記複数相の各第一電圧指令値に基づいて、第一電圧指令値に対して位相が同期した搬送波を生成し、前記搬送波を前記第一電圧指令値に加算して第二電圧指令値を生成する。
本発明によれば、電圧指令値に対して搬送波の周波数を十分に高く設定できない場合であっても、高調波を抑制できる。
電力変換装置のブロック図である。 コンバータセルの回路構成図である。 1次側ゲートパルス生成部のブロック図である。 搬送波生成部のブロック図である。 (a)〜(e)「k=3」とした場合の信号等の波形を示す図である。 比較例における1次側ゲートパルス生成部のブロック図である。 (a)〜(e)比較例における信号等の波形を示す図である。 (a)〜(e)「k=5」とした場合の信号等の波形を示す図である。 (a)〜(e)「k=3」とした場合の第2実施形態における信号等の波形を示す図である。 第3実施形態における電力変換装置のブロック図である。 第3実施形態における電力変換部の回路構成図である。 第4実施形態における搬送波生成部のブロック図である。 (a)〜(e)「k=4」とした場合の第4実施形態における信号等の波形を示す図である。
[第1実施形態]
図1は、第1実施形態による電力変換装置100のブロック図である。
電力変換装置100は、電力変換部101と、1次側ゲートパルス生成部102と、2次側ゲートパルス生成部103と、を備えている。電力変換装置100は、何れも3相交流系統である1次側系統30と、2次側系統40との間で、双方向または一方向の電力変換を行うものである。ここで、1次側系統30は、中性線30Nと、R相、S相、T相の電圧がそれぞれ現れるR相線30R、S相線30S、T相線30Tと、を有している。また、2次側系統40は、中性線40Nと、U相、V相、W相の電圧がそれぞれ現れるU相線40U、V相線40V、W相線40Wと、を有している。ここで、中性線30Nと、T相線30Tとの間、および、中性線40NとW相線40Wとの間には、図示省略したが図1と同様の電力変換装置100が設けられる。また、中性線30Nと、S相線30Sとの間、および中性線40NとV相線40Vとの間には、図示省略したが図1と同様の電力変換装置100が設けられる。
1次側系統30と2次側系統40とは、電圧振幅、周波数および位相が互いに独立している。そして、R相、S相、T相電圧は、1次側周波数において互いに「2π/3」の位相差を有し、U相、V相、W相電圧は、2次側周波数において互いに「2π/3」の位相差を有する。1次側および2次側系統30,40としては、例えば商用電源系統、太陽光発電システム、モータ等、様々な発電設備や受電設備を採用することができる。
電力変換部101は、P台(Pは2以上の自然数)のコンバータセル20−1〜20−Pを有している。以下、コンバータセル20−1〜20−Pを「コンバータセル20」と総称することがある。コンバータセル20−1〜20−Pは、1次側のR相線30Rと中性線30Nとの間に直列に接続されている。また、2次側も同様に、U相線40Uと中性線40Nとの間に直列に接続されている。
1次側制御部104は、1次側系統30の電圧と電流を検出し、1次側電圧指令値VREFR,VREFS,VREFTを出力する。同様に、2次側制御部105は、2次側系統40の電圧と電流を検出し、2次側電圧指令値VREFU,VREFV,VREFWを出力する。
1次側ゲートパルス生成部102は、コンバータセル20−1〜20−Pの1次側に内包されているスイッチング素子を制御するためのゲートパルス信号GT11〜GT1PおよびGT11’〜GT1P’を発生させる。同様に、2次側ゲートパルス生成部103は、コンバータセル20−1〜20−Pの2次側に内包されているスイッチング素子を制御するためのゲートパルス信号GT21〜GT2PおよびGT21’〜GT2P’を発生させる。
図2は、コンバータセル20−1の回路構成図である。コンバータセル20−2〜20−Pはコンバータセル20−1と同一であるため、その詳細な説明は省略する。
コンバータセル20−1は、一対の1次側端子21a,21bと、一対の2次側端子22a,22bと、交直電力変換器23〜26と、コンデンサ27,28と、高周波トランス29と、を有している。
交直電力変換器23は、Hブリッジ状に接続された4個のスイッチング素子Q1〜Q4と、これらスイッチング素子Q1〜Q4に逆並列に接続されたFWD(Free Wheeling Diоde,符号なし)とを有している。スイッチング素子Q1〜Q4は、ゲートパルス信号GT11〜GT1PおよびGT11’〜GT1P’により制御される。
また、交直電力変換器26は、Hブリッジ状に接続された4個のスイッチング素子Q5〜Q8と、これらスイッチング素子Q5〜Q8に逆並列に接続されたFWDとを有している。同様に、交直電力変換器24,25は、Hブリッジ状に接続された4個のスイッチング素子と、これらスイッチング素子に逆並列に接続されたFWDとを有している(共に符号なし)。スイッチング素子Q5〜Q8は、ゲートパルス信号GT11〜GT1PおよびGT11’〜GT1P’により制御される。
なお、本実施形態において、これらスイッチング素子は、例えばMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)である。
1次側端子21a,21bの間に現れる電圧を1次側AC端子間電圧V1−1と呼び、コンデンサ27の両端の間に現れる電圧を1次側DCリンク電圧Vdc1と呼ぶ。そして、交直電力変換器23は、1次側AC端子間電圧V1−1と1次側DCリンク電圧Vdc1とを双方向または一方向に変換し、電力を伝送する。
高周波トランス29は、1次巻線29aと、2次巻線29bとを有し、1次巻線29aと2次巻線29bとの間で、所定の周波数で電力を伝送する。交直電力変換器24、25が高周波トランス29との間で入出力する電流は高周波である。ここで、高周波とは、例えば100Hz以上の周波数であるが、1kHz以上の周波数を採用することが好ましく、10kHz以上の周波数を採用することがより好ましい。交直電力変換器24は1次側DCリンク電圧Vdc1と、1次巻線29aに現れる交流電圧とを双方向または一方向に変換し、電力を伝送する。
2次側端子22a,22bの間に現れる電圧を2次側AC端子間電圧V2−1と呼び、コンデンサ28の両端の間に現れる電圧を2次側DCリンク電圧Vdc2と呼ぶ。交直電力変換器25は2次側DCリンク電圧Vdc2と、2次巻線29bに現れる交流電圧とを双方向または一方向に変換し、電力を伝送する。そして、交直電力変換器26は、2次側AC端子間電圧V2−1と、2次側DCリンク電圧Vdc2とを双方向または一方向に変換し、電力を伝送する。
ここで、1次側ゲートパルス生成部102(図1参照)は、1次側電圧指令値VREFR,VREFS,VREFTに基づいて“LOW”あるいは“HIGH”のゲートパルス信号GT11〜GT1PおよびGT11’〜GT1P’を発生する。コンバータセル20−1を例にとると、ゲート信号GT11が交直電力変換器23のスイッチング素子Q1,Q4に供給され、これらのオン/オフ状態を制御する。ゲート信号GT11が“HIGH”であればスイッチング素子Q1,Q4はオン状態になり、ゲート信号GT11が“LOW”であれば、スイッチング素子Q1,Q4はオフ状態になる。同様に、ゲート信号GT11’は、交直電力変換器23のスイッチング素子Q2,Q3に供給され、これらのオン/オフ状態を制御する。
交直電力変換器23では、スイッチング素子Q1,Q4がオン状態の時、1次側端子21a,21bの間に現れる電圧はVdc1となり、スイッチング素子Q2,Q3がオン状態の時、1次側端子21a,21bの間に現れる電圧は−Vdc1となる。また、スイッチング素子Q1〜Q4の全てがオフ状態の時、1次側端子21a,21bの間に現れる電圧はゼロである。すなわち、交直電力変換器23は、3レベル(−Vdc1,0,Vdc1)の電圧を出力することが可能である。
2次側ゲートパルス生成部103(図1参照)は、1次側ゲートパルス生成部102と同様に、2次側電圧指令値VREFU,VREFV,VREFWに基づいて“LOW”あるいは“HIGH”のゲートパルス信号GT21〜GT2PおよびGT21’〜GT2P’を発生する。コンバータセル20−1を例にとると、ゲート信号GT21は交直電力変換器26のスイッチング素子Q5,Q8に供給され、これらのオン/オフ状態を制御する。すなわち、ゲート信号GT21が“HIGH”であればスイッチング素子Q5,Q8はオン状態になり、ゲート信号GT21が“LOW”であれば、スイッチング素子Q5,Q8はオフ状態になる。同様に、ゲート信号GT21’は、交直電力変換器26のスイッチング素子Q6,Q7に供給され、これらのオン/オフ状態を制御する。
交直電力変換器26では、スイッチング素子Q5,Q8がオン状態の時、2次側端子22a,22bの間に現れる電圧はVdc2となり、スイッチング素子Q6,Q7がオン状態の時、1次側端子22a,22bの間に現れる電圧は−Vdc2となる。また、スイッチング素子Q5〜Q8の全てがオフ状態の時、2次側端子22a,22bの間に現れる電圧はゼロである。すなわち、電力変換部101の交直電力変換器26は、交直電力変換器23と同様に、3レベル(−Vdc2,0,Vdc2)の電圧を出力することが可能である。
図3は、1次側ゲートパルス生成部102のブロック図である。1次側ゲートパルス生成部102は、搬送波生成部300と、加算器301と、比較器CMP11〜CMP1PおよびCMP11’〜CMP1P’と、を有する。
搬送波生成部300は、所望の出力電圧を指示するR相、S相、T相の電圧指令値VREFR,VREFS,VREFTに基づいて、電圧指令値VREFRに対して位相が同期した搬送波Smを生成する。そして、加算器301で電圧指令値VREFR(第一電圧指令値)と搬送波Smが加算され、電圧指令値VREFR’(第二電圧指令値)が生成される。
図3では、R相に対応する搬送波生成部300を示すが、図示省略したS相に対応する搬送波生成部300は、所望の出力電圧を指示するR相、S相、T相の電圧指令値VREFR,VREFS,VREFTに基づいて、電圧指令値VREFSに対して位相が同期した搬送波Smを生成する。そして、加算器301で電圧指令値VREFS(第一電圧指令値)と搬送波Smが加算され、電圧指令値VREFS’(第二電圧指令値)が生成される。
また、図示省略したT相に対応する搬送波生成部300は、所望の出力電圧を指示するR相、S相、T相の電圧指令値VREFR,VREFS,VREFTに基づいて、電圧指令値VREFTに対して位相が同期した搬送波Smを生成する。そして、加算器301で電圧指令値VREFT(第一電圧指令値)と搬送波Smが加算され、電圧指令値VREFT’(第二電圧指令値)が生成される。
図3に示すように、第二電圧指令値VREFR’は、比較器CMP11〜CMP1PおよびCMP11’〜CMP1P’において、電圧の大きさに対して予め設定された、しきい値1〜しきい値P、およびしきい値1’〜しきい値P’とそれぞれ比較される。比較器CMP11〜CMP1PおよびCMP11’〜CMP1P’により、ゲートパルス信号GT11〜GT1PおよびGT11’〜GT1P’が生成される。例えば、比較器CMP11は第二電圧指令値VREFR’がしきい値1よりも小さいときにゲートパルス信号GT11をLOWにし、第二電圧指令値VREFR’がしきい値1よりも大きいときにゲートパルス信号GT11をHIGHにする。また、比較器CMP11’は第二電圧指令値VREFR’がしきい値1’よりも大きいときにゲートパルス信号GT11’をLOWにし、第二電圧指令値VREFR’がしきい値1’よりも小さいときにゲートパルス信号GT11’をHIGHにする。ゲートパルス信号GT11、GT11’は、コンバータセル20−1へ出力される。
他の比較器CMP12〜CMP1Pおよび比較器CMP12’〜CMP1P’についても、設定されるしきい値が異なる点を除き、動作は同様である。
図示省略するが、第二電圧指令値VREFS’、第二電圧指令値VREFT’も同様に、比較器CMP11〜CMP1PおよびCMP11’〜CMP1P’において、しきい値1〜しきい値Pおよびしきい値1’〜しきい値P’とそれぞれ比較され、ゲートパルス信号を発生する。
図4は、R相に対応する搬送波生成部300のブロック図である。搬送波生成部300は、電圧指令比較部400と、電圧振幅演算部401と、三角波発生部402と、減算器403と、リミッタ404と、乗算器405を有する。S相、T相に対応する搬送波生成部300も同様の構成でありその説明を省略する。
電圧指令比較部400は、第一電圧指令値VREFR,VREFS,VREFTを互いに比較し、それらの中から最大値Vmaxと最小値Vminを出力する。
電圧振幅演算部401は、第一電圧指令値VREFR,VREFS,VREFTから以下の式(1)〜(3)に従い、電圧振幅値Vaを演算する。
VREFA=√(2/3)・(VREFR―1/2・VREFS―1/2・VREFT) ・・・(1)
VREFB=√(2/3)・(√(3)/2・VREFS―√(3)/2・VREFT) ・・・(2)
Va=√(2/3)√(VREFA^2+VREFB^2)
・・・(3)
また、三角波発生部402は、以下の式(4)あるいは(5)に従い、振幅が1となる三角波Striを発生する。
[k=1,5,9,13,…]の場合、式(4)に従い、
Stri=(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin))) ・・・(4)
[k=3,7,11,15,…]の場合、式(5)に従い、
Stri=−(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin)))・・・(5)
式(4)、式(5)において、係数kは1以上の奇数である。式(4)、式(5)の演算結果は、厳密には直線に増減する三角波とはならないが、本実施形態においてはStriを三角波と称して説明する。三角波Striは、振幅が1であり、かつ第一電圧指令値VREFR(あるいはVREFS,VREFT)の周波数の3k倍の周波数で変動する信号である。なお、“arcsin”はsinの逆関数を表す。
減算器403は、電力変換装置100が出力可能な最大電圧Vlimから電圧振幅Vaを減算し、「Vlim−Va」を演算する。最大電圧Vlimは、電力変換部101が出力可能な最大電圧である。例えば、コンバータセルの直列接続数Pが3の場合、各コンバータセルの1次側DCリンク電圧がVdc1であるとすれば、「Vlim=3・Vdc1」である。
リミッタ404は、「Va≦Vlim」の場合は減算器403の演算結果「Vlim−Va」をそのまま出力し、「Vlim<Va」の場合は減算器403の演算結果をゼロに制限する。すなわち、リミッタ404は、減算器403の演算結果「Vlim−Va」が負の値とならないように(最小値が0以上となるように)制限する。
乗算器405は、三角波発生部402で生成された三角波Striと、リミッタ404を介した減算器403の演算結果を乗算して搬送波Smを生成する。具体的には、減算器403の演算結果「Vlim−Va」は、リミッタ404を介して乗算器405にて振幅が1の三角波に乗算される。すなわち、乗算器405にて三角波Striに乗算される値は、搬送波Smの振幅値に相当する(以下、リミッタ404通過後の信号を搬送波振幅Maとも呼ぶ)。搬送波生成部300が出力する搬送波Smは、電圧振幅Vaが最大電圧Vlimより大きくなる場合(Vlim<Va)、リミッタ404の働きによりゼロとなる。
なお、1次側S相、T相の1次側ゲートパルス生成部および2次側U相、V相、W相の2次側ゲートパルス生成部については図示を省略するが、前述したように、主な構成は図3で示した1次側R相と同様である。例えば、1次側S相では、第一電圧指令値VREFSと搬送波Smが加算され、第二電圧指令値VREFS’が生成される。その後、第二電圧指令値VREFS’は、複数ある比較器においてしきい値とそれぞれ比較され、ゲートパルス信号を発生する。1次側T相では、第一電圧指令値VREFTと搬送波Smが加算され、第二電圧指令値VREFT’が生成される。その後、第二電圧指令値VREFT’は、複数ある比較器においてしきい値とそれぞれ比較され、ゲートパルス信号を発生する。2次側U相、V相、W相についても同様の要領で構成される。搬送波生成部300は、全ての相で共通して用いる。すなわち、全ての相で第一電圧指令値に加算される搬送波Smは共通である。
図5(a)〜図5(e)は、式(5)において「k=3」とした場合の信号等の波形を示す図である。ただし、コンバータセルの直列接続数Pは「1」である。また、電力変換部101の出力電圧範囲を−1〜1としており(Vlim=Vdc1=1)、しきい値1と1’をそれぞれ0.5,−0.5としている。
図5(a)は、第一電圧指令値VREFR、および搬送波Smを示し、横軸は位相、縦軸は電圧である。図5(b)は、ゲートパルス信号GT11を実線で、ゲートパルス信号GT11’を破線で示し、横軸は位相、縦軸は電圧である。図5(c)は、第二電圧指令値VREFR’、およびR相線30Rと中性線30N間の相電圧を示し、横軸は位相、縦軸は電圧である。図5(d)は、第二電圧指令値VREFR’−第二電圧指令値VREFS’、およびR相線30RとS相線30S間の線間電圧を示し、横軸は位相、縦軸は電圧である。図5(e)は、線間電圧の高調波成分を示し、横軸は次数、縦軸は電圧である。
図5(a)に示すように、搬送波Smは、搬送波生成部300にて第一電圧指令値VREFR,VREFS,VREFTに基づいて生成されることから、搬送波Smと第一電圧指令値VREFRの位相関係は同期している。これにより、図5(b)に示すように、搬送波Smと第一電圧指令値VREFRとの加算結果である第二電圧指令値VREFR’としきい値との比較結果から得られるゲートパルス信号GT11,GT11’は180°の位相差をもった同一の信号となる。
そして、図5(c)に示すように、R相線30Rと中性線30Nの間に現れる電力変換部101の相電圧は180°を境に対称の波形となっている。また、第二電圧指令値VREFR’は出力電圧範囲である−1〜1を超過しないように制御されており、第一電圧指令値VREFRに相当する電圧を精度よく出力できている。これは、1次側ゲートパルス生成部102により、第一電圧指令値VREFRの1周期内に、第二電圧指令値VREFR’が電圧の大きさに対して設定されるしきい値を複数回跨ぐように搬送波の振幅を制御しているためである。
R相線30RとS相線30Sの間に現れる電力変換部101の線間電圧は、「VREFR’−VREFS’」に相当し、図5(d)に示すように正弦波状の波形となっている。このことから、搬送波Smの影響は現れていない。これは、搬送波Smが3の倍数の次数で変動する信号であり、線間電圧において互いに相殺されるためである。図5(e)に示す線間電圧の高調波成分の結果からも、線間電圧に3の倍数の次数の高調波成分が現れないことが確認できる。
図6は、比較例における1次側ゲートパルス生成部600のブロック図である。この比較例は、本実施形態を適用しない例であり、本実施形態と比較するために記載した。
本実施形態における1次側ゲートパルス生成部300との違いは、搬送波Smを発生する搬送波生成部601が独立して設けられている点である。そのため、搬送波Smと電圧指令値VREFRの位相関係は必ずしも同期するとは限らない。
加算器602にて、第一電圧指令値VREFRと搬送波Smを加算して第二電圧指令値VREFR’を生成した後の動作は、本実施形態における1次側ゲートパルス生成部300と同一である。
図7(a)〜図7(e)は、図6に示した比較例における信号等の波形を示す図である。ただし、コンバータセルの直列接続数Pは「1」である。また、電力変換部101の出力電圧範囲を−1〜1としており(Vlim=Vdc1=1)、しきい値1としきい値1’をそれぞれ0.5,−0.5としている。
図7(a)は、第一電圧指令値VREFR、および搬送波Smを示し、横軸は位相、縦軸は電圧である。図7(b)は、ゲートパルス信号GT11を実線で、ゲートパルス信号GT11’を破線で示し、横軸は位相、縦軸は電圧である。図7(c)は、第二電圧指令値VREFR’、およびR相線30Rと中性線30N間の相電圧を示し、横軸は位相、縦軸は電圧である。図7(d)は、第二電圧指令値VREFR’−第二電圧指令値VREFS’、およびR相線30RとS相線30S間の線間電圧を示し、横軸は位相、縦軸は電圧である。図7(e)は、線間電圧の高調波成分を示し、横軸は次数、縦軸は電圧である。
比較例において、搬送波Smは、第一電圧指令値VREFRの周波数の12倍の周波数で変動する三角波とし、搬送波Smと第一電圧指令値VREFRの和である第二電圧指令値VREFR’が出力電圧範囲―1〜1を超過しないように調整した。
図7(a)に示すように、搬送波Smと第一電圧指令値VREFRの位相関係は同期していない。そして、図7(c)に示すように、R相線30Rと中性線30Nの間に現れる相電圧は、180°を境に対称の波形とはなっておらず、電圧アンバランスが生じている。これは、搬送波Smと第一電圧指令値VREFRの位相関係が同期していないことが原因である。この電圧アンバランスは、出力電圧の高調波成分を増大させる一因となる可能性がある。図7(e)に示すように、線間電圧の高調波成分は、3の倍数の次数成分を除き、全体的に分布していることが確認できる。
以上のように、本実施形態による電力変換装置100は、第一電圧指令値VREFR,VREFS,VREFTに基づいて搬送波Smを発生し、スイッチング素子Q1〜Q4を制御するためのゲートパルス信号GT11〜GT1P、およびGT11’〜GT1P’を発生する。
これにより、搬送波Smと第一電圧指令値VREFR,VREFS,VREFTの位相関係を同期させることができる。搬送波Smの周波数に上限があり、スイッチング回数(パルス数)が少なくなる条件であっても、本実施形態による電力変換装置100は電圧・電流に含有する高調波を効果的に抑制できる。
さらに、本実施形態による電力変換装置100は、第二電圧指令値VREFR’,VREFS’,VREFT’のピーク値が電力変換部101の最大出力電圧Vlimと一致するように、搬送波振幅Maを制御する。これにより、第一電圧指令値VREFR,VREFS,VREFTと出力電圧との間の誤差を抑制できる。
本実施形態による電力変換装置100は、コンバータセルの直列接続数(P)、あるいは式(4)、式(5)における係数kを大きくすることで、スイッチング回数(パルス数)を増加させることが可能である。
図8(a)〜図8(e)は、本実施形態において「k=5」とした場合の信号等の波形を示す図である。ただし、コンバータセルの直列接続数Pは「2」である。また、電力変換部101の出力電圧範囲を−1〜1としており(Vlim=(Vdc1)/2=1)、しきい値1としきい値1’をそれぞれ0.25,−0.25、しきい値2としきい値2’をそれぞれ0.75,−0.75としている。
図5(a)〜図5(e)に示す波形と比較すると、図8(a)に示すように、搬送波Smの周波数が増大している。さらにコンバータセルの直列接続数に応じて出力電圧範囲内のしきい値が、図8(c)に示すように、より細かく設定されている。これにより、第二電圧指令VREFR’がしきい値を跨ぐ回数、すなわち、スイッチング回数(パルス数)が増加している。その結果、図8(e)に示すように、電力変換装置100は、より高調波成分の少ない電圧を出力することができている。
[第2実施形態]
第1実施形態では、複数のコンバータセル20を直列接続したマルチステージ型の電力変換装置100において、各コンバータセル20が3レベルの電圧を出力する場合について説明した。第2実施形態では、各コンバータセル20が2レベルの電圧を出力する場合について、図9を参照して、説明する。なお、第2実施形態でも、図1に示した電力変換装置100のブロック図、図2に示したコンバータセル20の回路構成図、図3に示した1次側ゲートパルス生成部102のブロック図、図4に示した搬送波生成部300のブロック図は同様の構成である。
第2実施形態では、図2に示すコンバータセル20−1の構成において、1次側にある交直電力変換器23が2レベルの電圧を出力するためには、スイッチング素子Q1〜Q4の全てがオフ状態にある期間を無くし、スイッチング素子Q1とQ4、あるいはスイッチング素子Q2とQ3のいずれかのペアが必ずオン状態になるように制御する。これにより、電力変換部101の交直電力変換器23は、2レベル(−Vdc1,Vdc1)の電圧を出力する。
図9(a)〜図9(e)は、「k=3」とした場合の第2実施形態における信号等の波形を示す図である。ただし、コンバータセル20の直列接続数Pは「1」である。また、電力変換部101の出力電圧範囲を−1〜1としており(Vlim=Vdc1=1)、しきい値1としきい値1’はいずれも0としている。
図9(a)は、第一電圧指令値VREFR、および搬送波Smを示し、横軸は位相、縦軸は電圧である。図9(b)は、ゲートパルス信号GT11を実線で、ゲートパルス信号GT11’を破線で示し、横軸は位相、縦軸は電圧である。図9(c)は、第二電圧指令値VREFR’、およびR相線30Rと中性線30N間の相電圧を示し、横軸は位相、縦軸は電圧である。図9(d)は、第二電圧指令値VREFR’−第二電圧指令値VREFS’、およびR相線30RとS相線30S間の線間電圧を示し、横軸は位相、縦軸は電圧である。図9(e)は、線間電圧の高調波成分を示し、横軸は次数、縦軸は電圧である。
第1実施形態と同様に、図9(a)に示すように、搬送波Smと第一電圧指令値VREFRの位相関係は同期している。図9(c)に示すように、R相線30Rと中性線30Nの間に現れる電力変換部101の相電圧は180°を境に対称の波形となっている。また、第二電圧指令値VREFR’は出力電圧範囲である−1〜1を超過しないように制御されている。図9(e)に示す線間電圧の高調波成分の結果からも、線間電圧に3の倍数の次数の高調波成分が現れないことが確認できる。
以上のように、複数のコンバータセル20を直列接続したマルチステージ型の電力変換装置100において、各コンバータセル20が2レベルの電圧を出力する場合であっても、第1実施形態と同様の効果が得られる。
[第3実施形態]
第1実施形態および第2実施形態では、図1に示すマルチステージ型の電力変換装置100を対象としたが、その他の形式の電力変換装置に適用してもよい。図10は、第3実施形態における電力変換装置1000のブロック図である。
図10に示すように、電力変換装置1000は、電力変換部1001と、ゲートパルス生成部1002と、を備えている。電力変換装置1000は、直流系統50と、三相の交流系統60との間で、双方向または一方向の電力変換を行う。ここで、直流系統50は、端子50Pと端子50Nを有している。また、交流系統60は、U相端子60Uと、V相端子60Vと、W相端子60Wと、を有している。一例として、直流系統50としてはバッテリ電源、交流系統60としてはモータ等を採用することができる。
制御部1003は、直流系統50と交流系統60の電圧と電流を検出し、第一電圧指令値VREFU,VREFV,VREFWをゲートパルス生成部1002へ出力する。
ゲートパルス生成部1002は、電力変換部1001に内包されているスイッチング素子Qup,Qun,Qvp,Qvn,Qwp,Qwnを制御するためのゲートパルス信号GTup,GTun,GTvp,GTvn,GTwp,GTwnを発生させる。
図11は、電力変換部1001の回路構成図を示したものである。
電力変換部1001は、一対の直流系統端子70a,70bと、一対の交流系統端子71a,71b,71cと、コンデンサ72a,72bと、を有している。また、電力変換部1001は、スイッチング素子Qupとスイッチング素子Qun、スイッチング素子Qvpとスイッチング素子Qvn、スイッチング素子Qwpとスイッチング素子Qwnが直列に接続され、これらの2つのスイッチング素子の対からなる回路が並列に接続されている。すなわち、各スイッチング素子は三相ブリッジ回路を構成し、電力変換部1001は、直流電力と三相交流電力と間で電力変換を行う。また、各スイッチング素子Qup,Qun,Qvp,Qvn,Qwp,Qwnは、逆並列に接続されたFWDを有している。本実施形態において、これらスイッチング素子Qup,Qun,Qvp,Qvn,Qwp,Qwnは、例えばMOSFETである。なお、電力変換部1001において、コンデンサ72a,72bの両端の間に現れる電圧をDCリンク電圧Vdcと呼ぶ。
ゲートパルス生成部1002の詳細は、図3に示した1次側ゲートパルス生成部102と同様であり、その説明を省略する。ゲートパルス生成部1002は、第一電圧指令値VREFU,VREFV,VREFWに基づいて、“LOW”あるいは“HIGH”のゲートパルス信号GTup,GTun,GTvp,GTvn,GTwp,GTwnを発生する。これらのゲートパルス信号GTup,GTun,GTvp,GTvn,GTwp,GTwnは、それぞれスイッチング素子Qup,Qun,Qvp,Qvn,Qwp,Qwnに供給され、これらのオン/オフ状態を制御する。
電力変換部1001において、スイッチング素子Qupとスイッチング素子Qun、スイッチング素子Qvpとスイッチング素子Qvn、スイッチング素子Qwpとスイッチング素子Qwnの対からなる回路において、いずれか一方がオン状態の場合、他方は必ずオフ状態となるように制御する。
電力変換部1001の交流系統端子71a,71b,71cのいずれか2つの端子間に現れる電圧は、Vdcあるいは−Vdcとなる。すなわち、電力変換部1001は、2レベルの電圧を出力する電力変換部である。
このことから、第3実施形態では、図9を参照して説明した第2実施形態に示す2レベルの電力変換装置を適用することができる。ただし、第3実施形態におけるゲートパルス信号GTup,GTunは、第2実施形態におけるゲートパルス信号GT11,GT11’に対応する。ゲートパルス信号GTvp,GTvn,GTwp,GTwnについても同様である。第3実施形態においても、第1実施形態あるいは第2実施形態と同様の効果が得られる。
[第4実施形態]
第4実施形態では、係数kを2以上の偶数を設定した場合の制御について説明する。
図12は、第4実施形態における搬送波生成部1200のブロック図である。第1実施形態における搬送波生成部300とは、搬送波振幅Maを調整する振幅調整部1201を備える点が異なる。なお、第4実施形態でも、図1に示した電力変換装置100のブロック図、図2に示したコンバータセル20の回路構成図、図3に示した1次側ゲートパルス生成部102のブロック図は同様の構成である。
図14に示すように、リミッタ404の出力は、振幅調整部1201を介して乗算器405にて三角波Striに乗算される。
振幅調整部1201は、第二電圧指令値VREFR’,VREFS’,VREFT’のピーク値が電力変換装置100の最大出力電圧Vlimと一致するように、搬送波振幅Maを制御する。すなわち、振幅調整部1201は、第二電圧指令値VREFR’,VREFS’,VREFT’の振幅値と、搬送波Smの振幅値との和が、最大電圧Vlimと一致するように、リミッタ404の演算結果を調整する。
係数kを2以上の偶数を設定する場合、三角波発生部402は、次式(6)に従い、三角波Striを発生する。
[k=2,4,6,8,…]の場合、
Stri=(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin))) ・・・(6)
図13(a)〜図13(e)は、「k=4」とした場合の第4実施形態における信号等の波形を示す図である。ただし、コンバータセル20の直列接続数Pは「1」である。また、電力変換部101の出力電圧範囲を−1〜1としており(Vlim=Vdc1=1)、しきい値1としきい値1’をそれぞれ0.5,−0.5としている。
図13(a)に示すように、搬送波Smは完全な三角波状とはならないが、搬送波Smと第一電圧指令値VREFRの位相関係は同期している。ただし、第一電圧指令値VRREFと搬送波Smがピーク値となるタイミングがずれている。なお、kを1以上の奇数(k=1,3,5,…)に設定する場合では、第一電圧指令値VRREFと搬送波Smがピーク値となるタイミングが一致する。このことから、第4実施形態では、他の実施形態と同様の効果を得るために、係数kの設定値に応じて搬送波振幅Maを調整する振幅調整部1201が付加されている。
また、図13(b)に示すように、搬送波Smと電圧指令値VREFRとの加算結果VREFR’としきい値との比較結果から得られるゲートパルス信号GT11,GT11’は180°の位相差をもった同一の信号となる。そして、図13(c)に示すように、R相線30Rと中性線30Nの間に現れる電力変換部101の相電圧は180°を境に対称の波形となっている。また、第二電圧指令値VREFR’は出力電圧範囲である−1〜1を超過しないように制御されており、第一電圧指令値VREFRに相当する電圧を精度よく出力できている。R相線30RとS相線30Sの間に現れる電力変換部101の線間電圧は、「VREFR’−VREFS’」に相当し、図13(d)に示すように正弦波状の波形となっている。図13(e)に示す線間電圧の高調波成分の結果からも、線間電圧に3の倍数の次数の高調波成分が現れないことが確認できる。
<変形例1>
なお、本発明は上述の各実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述の各実施形態は本発明に対する理解を助けるために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
上述の各実施形態に対して可能な変形は、例えば以下のようなものである。
図2に示した交直電力変換器23〜26は、双方向に電力を変換できるようにスイッチング素子を用いたHブリッジを適用したが、一方向に電力を変換できればよい場合は、交直電力変換器23〜26の一部において、整流素子を用いたHブリッジを適用してもよい。その一例としては、交直電力変換器25を、4個の整流素子(図示省略)を適用した交直電力変換器に置換できる。本変形例においても、高周波トランス29のトランス電位差は、上述の各実施形態と同様になるため、電力変換装置100を小型かつ安価に構成することができる。本変形例を構成する際に用いる4個の整流素子は、半導体ダイオード、あるいは真空管式の水銀整流器等であってもよい。半導体を適用する場合に、その材質はSi、SiC、GaN等、任意のものを適用できる。
<変形例2>
上述の各実施形態におけるコンバータセル20は、1次側および2次側が共に交流系統である場合を想定している。しかし、1次側または2次側のうち一方が直流系統であってもよい。その一例としては、図2に示す交直電力変換器26を除去した構成に置き換えることが可能である。この場合、端子22a,22bの間に現れる電圧V1−1は、コンデンサ28の両端に現れる2次側DCリンク電圧Vdc2となる。なお、本変形例では、1次側を交流系統とし、2次側を直流系統とした例を示したが、1次側を直流系統とし、2次側を交流系統としてもよい。
以上説明した実施形態によれば、次の作用効果が得られる。
(1)電力変換装置100,1000は、複数のスイッチング素子Q1〜Q4、Q5〜Q8のオンオフを制御して電力を変換する電力変換部101,1001と、所望の出力電圧を指示する複数相の第一電圧指令値VREFR,VREFS,VREFTに基づいてスイッチング素子Q1〜Q4、Q5〜Q8のオンオフを制御するゲートパルス信号GT11〜GT1P,GT11’〜GT1P’、GT21〜GT2P,GT21’〜GT2P’、GTup,GTvp,GTwp、GTun,GTvn,GTwnを生成するゲートパルス生成部102、103、1002とを備える電力変換装置であって、ゲートパルス生成部102、103、1002は、複数相の各第一電圧指令値VREFR,VREFS,VREFTに基づいて、第一電圧指令値VREFR,VREFS,VREFTに対して位相が同期した搬送波Smを生成し、搬送波Smを第一電圧指令値VREFR,VREFS,VREFTに加算して第二電圧指令値VREFR’,VREFS’,VREFT’を生成する。これにより、電圧指令値に対して搬送波の周波数を十分に高く設定できない場合であっても、高調波を抑制できる。
(2)電力変換装置100,1000の制御方法は、複数のスイッチング素子Q1〜Q4、Q5〜Q8のオンオフを制御して電力を変換する電力変換部101,1001と、所望の出力電圧を指示する複数相の第一電圧指令値VREFR,VREFS,VREFTに基づいてスイッチング素子Q1〜Q4、Q5〜Q8のオンオフを制御するゲートパルス信号GT11〜GT1P,GT11’〜GT1P’、GT21〜GT2P,GT21’〜GT2P’、GTup,GTvp,GTwp、GTun,GTvn,GTwnを生成するゲートパルス生成部102、103、1002とを備える電力変換装置100,1000の制御方法であって、ゲートパルス生成部102、103、1002により、複数相の各第一電圧指令値VREFR,VREFS,VREFTに基づいて、第一電圧指令値VREFR,VREFS,VREFTに対して位相が同期した搬送波Smを生成し、搬送波Smを第一電圧指令値VREFR,VREFS,VREFTに加算して第二電圧指令値VREFR’,VREFS’,VREFT’を生成する。これにより、電圧指令値に対して搬送波の周波数を十分に高く設定できない場合であっても、高調波を抑制できる。
本発明は、上述の各実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の各実施形態と複数の変形例とを組み合わせた構成としてもよい。
100,1000・・・電力変換装置、101,1001・・・電力変換部、102・・・1次側ゲートパルス生成部、103・・・2次側ゲートパルス生成部、104・・・1次側制御部、105・・・2次側制御部、20−1〜20−P・・・コンバータセル、300 ,600,1200・・・搬送波生成部、CMP11〜CMP1P・・・比較器、CMP11’〜CMP1P’・・・比較器、400・・・電圧指令比較部、401・・・電圧振幅演算部、402 ・・・三角波発生部、404・・・リミッタ、1002・・・ゲートパルス生成部、1003・・・制御部、1201・・・振幅調整部、Q1〜Q4、Q5〜Q8、Qup、Qun、Qvp、Qvn、Qwp、Qwn・・・スイッチング素子、GT11〜GT1P,GT11’〜GT1P’・・・ゲートパルス信号(1次側)、GT21〜GT2P,GT21’〜GT2P’・・・ゲートパルス信号(2次側)、GTup,GTvp,GTwp・・・ゲートパルス信号(上アーム側)、GTun,GTvn,GTwn・・・ゲートパルス信号(下アーム側)、VREFR,VREFS,VREFT・・・第一電圧指令値(1次側)、VREFU,VREFV,VREFW・・・第一電圧指令値(2次側)、VREFR’,VREFS’,VREFT’・・・第二電圧指令値(1次側)、VREFU’,VREFV’,VREFW’・・・第二電圧指令値(2次側)、Sm・・・搬送波、Stri・・・三角波、Ma・・・搬送波振幅、Va・・・電圧振幅、Vlim・・・最大電圧。

Claims (9)

  1. 複数のスイッチング素子のオンオフを制御して電力を変換する電力変換部と、所望の出力電圧を指示する複数相の第一電圧指令値に基づいて前記スイッチング素子のオンオフを制御するゲートパルス信号を生成するゲートパルス生成部とを備える電力変換装置であって、
    前記ゲートパルス生成部は、前記複数相の各第一電圧指令値に基づいて、第一電圧指令値に対して位相が同期した搬送波を生成し、前記搬送波を前記第一電圧指令値に加算して第二電圧指令値を生成する電力変換装置。
  2. 請求項1に記載の電力変換装置において、
    前記ゲートパルス生成部は、前記第一電圧指令値の1周期内に、前記第二電圧指令値が電圧の大きさに対して予め設定されたしきい値を複数回跨ぐように前記搬送波の振幅を制御し、前記第二電圧指令値と前記しきい値との比較結果に基づいて前記ゲートパルス信号を生成する電力変換装置。
  3. 請求項2に記載の電力変換装置において、
    前記ゲートパルス生成部は、搬送波生成部を含み、
    前記搬送波生成部は、電圧指令比較部と、電圧振幅演算部と、三角波発生部と、減算器と、リミッタと、乗算器と、を含み、
    前記電圧指令比較部は、各相の前記第一電圧指令値を互いに比較してそれらの中から最大値Vmaxと最小値Vminを出力し、
    電圧振幅演算部は、各相の前記第一電圧指令値をもとに電圧振幅Vaを演算し、
    前記三角波発生部は、下式にもとづいて振幅が1となる三角波Striを生成し、
    前記減算器は、前記電力変換装置が出力可能な最大電圧Vlimから前記電圧振幅Vaを減算した結果を出力し、
    前記リミッタは、前記減算器の演算結果が負の値とならないように制限し、
    前記乗算器は、前記三角波Striと、前記リミッタを介した前記減算器の演算結果を乗算して前記搬送波を生成する電力変換装置。
    [k=1,5,9,13,…]の場合、
    Stri=(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin)))
    [k=3,7,11,15,…]の場合、
    Stri=−(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin)))
    ただし、kは1以上の奇数(k=1,3,5,…)を表す。
  4. 請求項2に記載の電力変換装置において、
    前記ゲートパルス生成部は、搬送波生成部を含み、
    前記搬送波生成部は、電圧指令比較部と、電圧振幅演算部と、三角波発生部と、減算器と、リミッタと、振幅調整部と、乗算器と、を含み、
    前記電圧指令比較部は、各相の前記第一電圧指令値を互いに比較してそれらの中から最大値Vmaxと最小値Vminを出力し、
    電圧振幅演算部は、各相の前記第一電圧指令値をもとに電圧振幅Vaを演算し、
    前記三角波発生部は、下式にもとづいて振幅が1となる三角波Striを生成し、
    前記減算器は、前記電力変換装置が出力可能な最大電圧Vlimから前記電圧振幅Vaを減算した結果を出力し、
    前記リミッタは、前記減算器の演算結果が負とならないように制限し、
    前記振幅調整部は、前記第二電圧指令値の振幅値と、前記搬送波の振幅値との和が、前記最大電圧Vlimと一致するように、前記リミッタの演算結果を調整し、
    前記乗算器は、前記三角波Striと、前記リミッタを介した前記減算器の演算結果を乗算して前記搬送波を生成する電力変換装置。
    [k=2,4,6,8,…]の場合、
    Stri=(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin)))
    ただし、kは2以上の偶数(k=2,4,6,…)を表す。
  5. 請求項2から請求項4までの何れか一項に記載の電力変換装置において、
    前記電力変換部は、正、負、ゼロの3レベルの電圧を出力する電力変換装置。
  6. 請求項2から請求項4までの何れか一項に記載の電力変換装置において、
    前記電力変換部は、正、負の2レベルの電圧を出力する電力変換装置。
  7. 請求項2から請求項4までの何れか一項に記載の電力変換装置において、
    前記電力変換部は、直流電力と三相交流電力と間で電力変換を行う電力変換装置。
  8. 複数のスイッチング素子のオンオフを制御して電力を変換する電力変換部と、所望の出力電圧を指示する複数相の第一電圧指令値に基づいて前記スイッチング素子のオンオフを制御するゲートパルス信号を生成するゲートパルス生成部とを備える電力変換装置の制御方法であって、
    前記ゲートパルス生成部により、前記複数相の各第一電圧指令値に基づいて、第一電圧指令値に対して位相が同期した搬送波を生成し、前記搬送波を前記第一電圧指令値に加算して第二電圧指令値を生成する電力変換装置の制御方法。
  9. 請求項8に記載の電力変換装置の制御方法において、
    前記ゲートパルス生成部により、前記第一電圧指令値の1周期内に、前記第二電圧指令値が電圧の大きさに対して予め設定されたしきい値を複数回跨ぐように前記搬送波の振幅を制御し、前記第二電圧指令値と前記しきい値との比較結果に基づいて前記ゲートパルス信号を生成する電力変換装置の制御方法。
JP2020048508A 2020-03-18 2020-03-18 電力変換装置、および電力変換装置の制御方法 Pending JP2021151077A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020048508A JP2021151077A (ja) 2020-03-18 2020-03-18 電力変換装置、および電力変換装置の制御方法
CN202080098287.XA CN115176406A (zh) 2020-03-18 2020-12-28 电力变换装置以及电力变换装置的控制方法
PCT/JP2020/049081 WO2021186841A1 (ja) 2020-03-18 2020-12-28 電力変換装置、および電力変換装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048508A JP2021151077A (ja) 2020-03-18 2020-03-18 電力変換装置、および電力変換装置の制御方法

Publications (1)

Publication Number Publication Date
JP2021151077A true JP2021151077A (ja) 2021-09-27

Family

ID=77770755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048508A Pending JP2021151077A (ja) 2020-03-18 2020-03-18 電力変換装置、および電力変換装置の制御方法

Country Status (3)

Country Link
JP (1) JP2021151077A (ja)
CN (1) CN115176406A (ja)
WO (1) WO2021186841A1 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807340B2 (ja) * 2002-04-17 2006-08-09 富士電機システムズ株式会社 マルチレベルインバータの制御方法
US8519653B2 (en) * 2009-05-29 2013-08-27 Toyota Jidosha Kabushiki Kaisha Control device and control method for AC motor
JP2018007294A (ja) * 2016-06-27 2018-01-11 東芝三菱電機産業システム株式会社 電力変換装置及びその制御方法

Also Published As

Publication number Publication date
WO2021186841A1 (ja) 2021-09-23
CN115176406A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US10224830B2 (en) System and method for controlling a back-to-back three-level converter with voltage ripple compensation
Rodríguez et al. High-voltage multilevel converter with regeneration capability
EP2270968B1 (en) Power Transmission Method and Power Transmission Apparatus
WO2014196013A1 (ja) 電力変換装置
EP2779403B1 (en) Power conversion system and method
US9611836B2 (en) Wind turbine power conversion system
JP2015527032A (ja) 多相acまたはdc負荷用の拡張可能な電圧電流リンクパワーエレクトロニクスシステム
US11223297B2 (en) Modular multipoint power converter and method of operating it
JP5762329B2 (ja) 電力変換装置
RU2562251C2 (ru) Способ формирования выходного напряжения и устройство для осуществления способа
JP6104736B2 (ja) 電力変換装置
JP7008222B2 (ja) 電力変換システム
JP5047210B2 (ja) 電力変換装置
Melin et al. Analysis and design of a multicell topology based on three-phase/single-phase current-source cells
JP4019263B2 (ja) 交流−交流直接変換形電力変換装置
Sau et al. Reduction of capacitor ripple voltage and current in Modular Multilevel Converter based variable speed drives
Singh et al. PWM control of a dual inverter drive using a floating capacitor inverter
WO2021186841A1 (ja) 電力変換装置、および電力変換装置の制御方法
JP4015795B2 (ja) 電力変換装置
Tewari et al. Indirect matrix converter based open-end winding AC drives with zero common-mode voltage
WO2018179234A1 (ja) H型ブリッジ変換器およびパワーコンディショナ
Milan et al. A novel SPWM strategy for single-to three-phase matrix converter
Chai et al. Space vector PWM for three-to-five phase indirect matrix converters with d 2-q 2 vector elimination
Bhasker et al. Modeling of modular multilevel converter for grid application
JP5752580B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514