JP2021145529A - 電子回路及び半導体装置 - Google Patents

電子回路及び半導体装置 Download PDF

Info

Publication number
JP2021145529A
JP2021145529A JP2020044333A JP2020044333A JP2021145529A JP 2021145529 A JP2021145529 A JP 2021145529A JP 2020044333 A JP2020044333 A JP 2020044333A JP 2020044333 A JP2020044333 A JP 2020044333A JP 2021145529 A JP2021145529 A JP 2021145529A
Authority
JP
Japan
Prior art keywords
node
transistor
stage
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020044333A
Other languages
English (en)
Inventor
巧 藤本
Takumi Fujimoto
巧 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2020044333A priority Critical patent/JP2021145529A/ja
Priority to CN202110022351.2A priority patent/CN113394970B/zh
Priority to TW110100956A priority patent/TWI758064B/zh
Priority to US17/166,910 priority patent/US11386935B2/en
Publication of JP2021145529A publication Critical patent/JP2021145529A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/20Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits characterised by logic function, e.g. AND, OR, NOR, NOT circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/10EEPROM devices comprising charge-trapping gate insulators characterised by the top-view layout
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/40EEPROM devices comprising charge-trapping gate insulators characterised by the peripheral circuit region
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/08Word line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, for word lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

【課題】一つの実施形態は、電源電圧を用いた昇圧動作を適切に行うことができる電子回路を提供することを目的とする。【解決手段】一つの実施形態によれば、チャージポンプ回路において、第1の容量素子は、一端が第1のノードに接続され、他端が第2のノードに接続されている。第1のインバータは、クロック信号が供給される入力ノードと第1のラインを介して第2のノードに接続可能である出力ノードとを有する。第1の電圧検出回路は、第1のラインに電気的に接続された入力ノードを有する。第3のトランジスタは、ソースが第3のノードに接続され、ドレインが第2のノードに接続されている。第2のインバータは、第1の電圧検出回路の側に配された入力ノードと第2のラインを介して第4のノードに接続可能である出力ノードとを有する。第2の容量素子は、一端が第4のノードに接続され、他端が第3のノードに接続されている。【選択図】図4

Description

本実施形態は、電子回路、及び、当該電子回路を搭載する半導体装置、特に半導体記憶装置に関する。
例えば、半導体装置、特に半導体記憶装置では、電源電圧より高い電圧を生成するために、チャージポンプ回路で電源電圧を用いた昇圧動作を行うことがある。このため、電源電圧を用いた昇圧動作を適切に行うことができる電子回路が望まれる。
特許第3713267号公報 特開2009−148000号公報 米国特許第6566846号明細書
一つの実施形態は、電源電圧を用いた昇圧動作を適切に行うことができる電子回路、及び、当該電子回路を搭載する半導体装置、特に半導体記憶装置を提供することを目的とする。
一つの実施形態によれば、チャージポンプ回路を有する電子回路が提供される。チャージポンプ回路は、第1のトランジスタと第2のトランジスタと第1の容量素子と第1のインバータと第1の電圧検出回路と第3のトランジスタと第2のインバータと第2の容量素子とを有する。第1のトランジスタは、ドレインが入力ノードに接続され、ソースが第1のノードに接続されている。第2のトランジスタは、ドレインが第1のノードに接続され、ソースが出力ノードに接続されている。第1の容量素子は、一端が第1のノードに接続され、他端が第2のノードに接続されている。第1のインバータは、クロック信号が供給される入力ノードと第1のラインを介して第2のノードに接続可能である出力ノードとを有する。第1の電圧検出回路は、第1のラインに電気的に接続された入力ノードを有する。第3のトランジスタは、ソースが第3のノードに接続され、ドレインが第2のノードに接続されている。第2のインバータは、第1の電圧検出回路に電気的に接続された入力ノードと第2のラインを介して第4のノードに接続可能である出力ノードとを有する。第2の容量素子は、一端が第4のノードに接続され、他端が第3のノードに接続されている。
図1は、実施形態にかかる電子回路を搭載する半導体装置(半導体記憶装置)の構成を示す図である。 図2は、実施形態におけるメモリセルアレイの構成を示す図である。 図3は、実施形態におけるメモリセルアレイの構成を示す回路図である。 図4は、実施形態におけるチャージポンプ回路の構成を示す回路図である。 図5は、実施形態におけるチャージポンプ回路の動作(出力電圧が低い場合)を示す波形図である。 図6は、実施形態におけるチャージポンプ回路の動作を示す図である。 図7は、実施形態におけるチャージポンプ回路の動作(出力電圧が中程度の場合)を示す波形図である。 図8は、実施形態におけるチャージポンプ回路の動作(出力電圧が高い場合)を示す波形図である。 図9は、実施形態の第1の変形例におけるチャージポンプ回路の構成を示す回路図である。 図10は、実施形態の第2の変形例におけるチャージポンプ回路の構成を示す回路図である。 図11は、実施形態の第3の変形例におけるチャージポンプ回路の構成を示す回路図である。 図12は、実施形態及びその第1〜第3の変形例におけるチャージポンプ回路の特性を示す図である。 図13は、実施形態の第4の変形例におけるチャージポンプ回路の構成を示す回路図である。
以下に添付図面を参照して、実施形態にかかる電子回路、及び当該電子回路を搭載する半導体装置(半導体記憶装置)を詳細に説明する。なお、この実施形態により本発明が限定されるものではない。
(実施形態)
実施形態にかかる電子回路を搭載する半導体装置は、チャージポンプ回路を含み、電源電圧より高い電圧を生成するために、チャージポンプ回路で電源電圧を用いた昇圧動作を行うことがある。半導体装置は、メモリセルアレイを有する半導体記憶装置であってもよい。例えば、半導体記憶装置において、電源電圧より高い電圧でメモリセルアレイを制御するために、チャージポンプ回路で電源電圧を用いた昇圧動作を行うことがある。
実施形態にかかる電子回路を搭載する半導体装置としての半導体記憶装置100は、例えばNAND型フラッシュメモリ等の不揮発性メモリであり、図1に示すように構成され得る。
半導体記憶装置100は、メモリセルアレイ130及び周辺回路150を有する。
周辺回路150は、I/O制御部110、論理制御部111、制御部112、電圧発生回路113、コマンドレジスタ114、アドレスレジスタ115、ステータスレジスタ116、カラムアドレスバッファ117、カラムデコーダ118、データレジスタ119、センスアンプ120、ロウアドレスバッファ121、ロウデコーダ122、電源回路141、及びクロック生成回路142を有する。
論理制御部111は、各種制御信号の入力ピン(CE,ALEなど)を介して各種制御信号の入力を受け付ける。I/O制御部110は、論理制御部111で受け付けた制御信号に基づいて、I/O信号の格納先のレジスタの振り分けを実行する。また、論理制御部111は、受け付けた制御信号を制御部112に転送する。論理制御部111の入力ピンとして示されているCEは、半導体記憶装置100のチップイネーブルピンを示している。
制御部112は、論理制御部111を介して受信した各種制御信号に基づいて状態(ステート)遷移する状態遷移回路(ステートマシン)を含み、半導体記憶装置100全体の動作を制御する。
I/O制御部110は、I/O信号ピンI/O0−I/O7、ストローブピンDQS,/DQSを介してコントローラ20との間でI/O信号、ストローブ信号を送受信するためのバッファ回路である。I/O制御部110がI/O信号ピンI/O0−I/O7を介してI/O信号として取り込んだコマンド、アドレス、データ(書き込みデータ)は、夫々、アドレスレジスタ115、コマンドレジスタ114、データレジスタ119に振り分けられて格納される。
電源回路141は、電源ピンを介してコントローラ20から、例えば電源電圧Vcc、VccqおよびVssを受け、それらの電圧を半導体記憶装置100における各部に供給する。電源電圧Vccqは、例えば、I/O制御部110の動作に用いられる電源電圧である。電源電圧Vssは、例えば、接地電圧である。
制御部112は、電圧発生回路113に、発生すべき電圧値、電力供給タイミングを指示する。制御部112は、クロック生成回路142を含む。クロック生成回路142は、クロック信号CLKを、例えばチャージポンプ回路1に供給する。その他に、制御部112は、レディービジー信号R/Bをコントローラ20へ送信する。
電圧発生回路113は、制御部112の制御に従って電圧を発生させる。電圧発生回路113は、チャージポンプ回路1を有する。チャージポンプ回路1は、例えば、電源電圧Vccを電源回路141から受け、クロック信号CLKをクロック生成回路142から受ける。電源電圧Vccより高い電圧を発生させる場合、電圧発生回路113は、チャージポンプ回路1による昇圧動作を行う。電圧発生回路113は、チャージポンプ回路1の昇圧動作で生成された電圧を用いて、所定の電圧を発生させる。電圧発生回路113は、発生された電圧をメモリセルアレイ130、ロウデコーダ122、及びセンスアンプ120に供給する。
例えば、電圧発生回路113は、読み出し動作の際に5V〜10V程度の電圧をロウデコーダ122へ供給し、書き込み動作の際に15V〜25V程度の電圧をロウデコーダ122へ供給する。すなわち、チャージポンプ回路1は、異なる種類の(異なる大きさの)出力電圧を生成するために用いられる。
ステータスレジスタ116には、メモリセルアレイ130に対する書き込みが成功したか否かを示すステータス情報、メモリセルアレイ130に対する消去が成功したか否かを示すステータス情報などが格納される。これらのステータス情報は、I/O制御部110によってコントローラ20に応答信号として送信される。
メモリセルアレイ130は、複数のメモリセルが配列されて構成されており、ホスト(図示せず)からのライトデータが格納される。
ロウデコーダ122、カラムデコーダ118、センスアンプ120は、制御部112による制御に基づいて、メモリセルアレイ130に対するアクセスを実行する。ロウデコーダ122は、ロウアドレスに対応するワード線を選択し、選択したワード線を活性化する。カラムデコーダ118は、カラムアドレスに対応するビット線を選択して活性化する。センスアンプ120は、カラムデコーダ118により選択されたビット線に電圧を印加して、ロウデコーダ122が選択したワード線とカラムデコーダ118が選択したビット線との交点に位置するメモリセルトランジスタに、データレジスタ119に格納されているデータを書き込む。また、センスアンプ120は、ロウデコーダ122が選択したワード線とカラムデコーダ118が選択したビット線との交点に位置するメモリセルトランジスタに記憶されているデータをビット線を介して読み出し、読み出したデータをデータレジスタ119に格納する。データレジスタ119に格納されたデータは、データ線を通してI/O制御部110に送られ、I/O制御部110から外部(例えば、コントローラ)へ転送される。
図2は、メモリセルアレイ130の構成を示す図である。図2(a)は、メモリセルアレイ130の概略構成を示す斜視図であり、図2(b)は、図2(a)のメモリセルMCの部分の概略構成を示す断面図である。なお、図2の例では、メモリセルMCを4層分だけ積層し、これら4個のメモリセルMCを直列接続することでメモリストリングMSが形成される構成を示している。また、図2では、簡単のために、拡散防止層3を介して不純物添加シリコン層2間に形成される層間絶縁膜は省略している。
図2において、半導体基板SUB上には、ソース側セレクトゲート電極SGSが形成されている。なお、半導体基板SUBに代えて、導電層を用いてもよい。ソース側セレクトゲート電極SGS上には複数層のワード線が積層されている。図2においては、4層のワード線WL0〜WL3が積層されている例を示している。最上層のワード線WL3上にはドレイン側セレクトゲート電極SGD0〜SGD3が形成されている。
ソース側セレクトゲート線SGS、ワード線WL0〜WL3、およびドレイン側セレクトゲート線SGD0〜SGD3の延伸方向を、「ロウ」方向という場合がある。ロウ方向は、ソース側セレクトゲート線SGS、ワード線WL0〜WL3、およびドレイン側セレクトゲート線SGD0〜SGD3の積層方向に対して、直交する。
ドレイン側セレクトゲート線SGD0〜SGD3、ワード線WL0〜WL3およびソース側セレクトゲート電極SGSを貫くように、柱状体12が形成されている。ドレイン側セレクトゲート電極SGD0〜SGD3によって、それぞれ、ストリングユニットSUが構成されている。すなわち、ストリングユニットSUは、ロウ方向に沿って配置された複数のメモリストリングMSを含み、ドレイン側セレクトゲート電極SGD0〜SGD3によって選択的にアクセスすることが可能な単位である。
ドレイン側セレクトゲート電極SGD0〜SGD3上には、ビット線BL0〜BL2が、形成されている。ビット線BL0〜BL2の延伸方向を、「カラム」方向という場合がある。カラム方向は、ソース側セレクトゲート線SGS、ワード線WL0〜WL3、およびドレイン側セレクトゲート線SGD0〜SGD3の積層方向に対して直交するとともに、ロウ方向に対して直交する。柱状体12は、例えば、半導体基板SUBからビット線BL0〜BL2まで延伸する。
柱状体12は、ソース側セレクトゲート電極SGS、ワード線WL0〜WL3およびドレイン側セレクトゲート線SGD0〜SGD3を貫く貫通孔4の中に形成されている。この柱状体12の中心には柱状絶縁体11が形成されている。この柱状絶縁体11の材料は、例えば、シリコン酸化膜を用いることができる。
この柱状体12の中心には柱状絶縁体11が形成されている。この柱状絶縁体11の材料は、例えば、シリコン酸化膜を用いることができる。柱状絶縁体11の外面と貫通孔4の内面との間にはチャネル層7が形成され、貫通孔4の内面とチャネル層7との間にはトンネル絶縁膜8が形成され、貫通孔4の内面とトンネル絶縁膜8との間にはチャージトラップ層9が形成され、貫通孔4の内面とチャージトラップ層9との間にはブロック絶縁膜6が形成されている。例えば、チャネル層7、トンネル絶縁膜8、チャージトラップ層9およびブロック絶縁膜6が、それぞれ、ソース側セレクトゲート電極SGS、ワード線WL0〜WL3およびドレイン側セレクトゲート線SGD0〜SGD3を貫くように構成されている。チャネル層7は、例えば、Siなどの半導体を用いることができる。トンネル絶縁膜8およびブロック絶縁膜6は、例えば、シリコン酸化膜を用いることができる。チャージトラップ層9は、例えば、シリコン窒化膜またはONO膜(シリコン酸化膜/シリコン窒化膜/シリコン酸化膜の3層構造)を用いることができる。
なお、図2では、メモリセルMCを4層分だけ積層した構成について説明したが、メモリセルMCをn(nは2以上の整数)層分だけ積層するようにしてもよい。
また、図2の実施形態では、ソース側セレクトゲート電極SGS、ワード線WL0〜WL3およびドレイン側セレクトゲート線SGD0〜SGD3を貫く柱状体12の中心に柱状絶縁体11を形成する方法について説明したが、柱状絶縁体11の代わりに柱状半導体を埋め込むようにしてもよい。
メモリセルアレイ130は、複数のブロックを有する。各ブロックは、互いに離間して交差する複数のワード線および複数のビット線との交差位置にメモリセルを有する。図3は、1個のブロックの構成例を示す回路図である。
ブロックBLKは、複数のストリングユニットSU0〜SU3を有する。複数のストリングユニットSU0〜SU3は、ドレイン側セレクトゲート線SGD0〜SGD3に対応しているとともにソース側セレクトゲート線SGSを共有している。ストリングユニットSU0〜SU3は、ドレイン側セレクトゲート線SGD0〜SGD3によって、それぞれ、選択的にアクセスすることが可能である。また、各ストリングユニットSU0〜SU3は、複数のメモリストリングMSを含む。
各メモリストリングMSは、例えば64個のメモリセルトランジスタMT(MT0〜MT63)および選択トランジスタSDT,SSTを含んでいる。メモリセルトランジスタMTは、コントロールゲートと電荷蓄積膜とを有し、データを不揮発に保持する。そして64個のメモリセルトランジスタMT(MT0〜MT63)は、選択トランジスタSDTのソースと選択トランジスタSSTのドレインとの間に直列接続されている。なお、メモリストリングMS内のメモリセルトランジスタMTの個数は64個に限定されない。
ビットラインBL0〜BLp(各ビットラインを区別しない場合には、BLで示すことにする)は、メモリストリングMSに接続されている。選択トランジスタSDTがオンされた際に、メモリストリングMS内の各メモリセルトランジスタMTのチャネル領域がビットラインBLに導通され得る。各ビットラインBLには、センスアンプ回路SAC内の複数のセンスアンプSA0〜SApのうち対応するセンスアンプSAが接続されている。
ワードラインWL0〜WL63(各ワードラインを区別しない場合には、WLで示すことにする)は、物理ブロックBLK内の各ストリングユニットSU内の各メモリストリングMS間で、メモリセルトランジスタMTのコントロールゲートを共通に接続している。つまり、物理ブロックBLK内の各ストリングユニットSU内において同一行にあるメモリセルトランジスタMTのコントロールゲートは、同一のワードラインWLに接続される。すなわち、物理ブロックBLKのストリングユニットSUは複数のワードラインWLに対応した複数のメモリセルグループMCGを含み、各メモリセルグループMCGは同一のワードラインWLに接続される(p+1)個のメモリセルトランジスタMTを含む。各メモリセルトランジスタMTに1ビットの値を保持可能に構成される場合(シングルレベルセル(SLC)モードで動作する場合)には、同一のワードラインWLに接続される(p+1)個のメモリセルトランジスタMT(すなわち、メモリグループMCG)は1つの物理ページとして取り扱われ、この物理ページごとにデータの書き込み処理及びデータの読み出し処理が行われる。
各メモリセルトランジスタMTに複数ビットの値を保持可能に構成される場合がある。例えば、各メモリセルトランジスタMTがn(n≧2)ビットの値を記憶可能な場合、ワードラインWL当たりの記憶容量はn個の物理ページ分のサイズに等しくなる。すなわち、各メモリセルグループMCGは、n個の物理ページとして取り扱われる。例えば、各メモリセルトランジスタMTが2ビットの値を記憶するマルチレベルセル(MLC)モードでは、各ワードラインWLに2個の物理ページ分のデータが保持される。あるいは、各メモリセルトランジスタMTが3ビットの値を記憶するトリプルレベルセル(TLC)モードでは、各ワードラインWLに3個の物理ページ分のデータが保持される。
図1に示すように、半導体記憶装置100の電圧発生回路113は、チャージポンプ回路1を含んでいる。チャージポンプ回路1は、例えば、電源電圧Vccよりも高い電圧を生成することが可能な回路である。一般に、半導体記憶装置100の電源電圧は、数V程度である。これに対して、半導体記憶装置100は、読み出し動作/書き込み動作/消去動作において、10〜数10V程度の電圧を用いる場合がある。
ここで、例えば、読み出し動作の際には、5V〜10V程度の電圧が電圧発生回路113からロウデコーダ122へ供給される。一方で、例えば、書き込み動作の際には、15V〜25V程度の電圧が、電圧発生回路113からロウデコーダ122へ供給される。このため、チャージポンプ回路1は、異なる種類の大きさの出力電圧を生成可能であることが求められる。
チャージポンプ回路は、例えば、容量素子と整流素子を多段接続することで構成される。容量素子と整流素子の接続段数を多くすることで、入力電圧に対してより大きな出力電圧を得ることができるようになる。例えば、容量素子と整流素子のN段接続することで(Nは2以上の整数)、電源電圧のN+1倍に相当する電圧を生成することができる。
しかし、チャージポンプ回路の仕様として要求される出力電圧範囲を満たすために、単純にチャージポンプ回路における接続段数を増加させた場合、本来は不要な消費電流が発生することがある。N段のチャージポンプを動作させることは、1段のチャージポンプをNセット用意して縦続接続することに相当し、このとき、ある電流を出力するためにNセットそれぞれにおいて同じだけ容量素子の充放電電流が発生するからで電流効率ある。例えば、チャージポンプ回路の出力電圧が低い場合(例えば、電源電圧の1倍から2倍に相当する出力電圧を得ればよい場合)、1段分の容量素子のみ用いることで、所望の出力電圧を得ることができる。しかし、N段の縦続接続になっている場合、N段分の容量素子すべてを介して出力端へ電流を転送する必要があるため、(N−1)段分の容量素子の充放電による不要な消費電流が発生する。したがって、高効率なチャージポンプ回路を実現するためには、出力端の電圧に応じて適切な段数で動作させる必要がある。
そこで、本実施形態では、チャージポンプ回路1において使用される容量素子および整流素子の段数を動的に変更可能とすることで、チャージポンプ回路1の電流効率を改善する。
具体的には、チャージポンプ回路1は、シリーズ・ブーストタイプのチャージポンプを基本構成としつつ複数段の容量素子の間に電圧検出回路が追加された構成とする。すなわち、1段目の容量素子の一端が接続される中間ノードは、ダイオード接続されたトランジスタ(等価的にはダイオード)を介して出力ノードが接続されている。チャージポンプ回路1は、所定の期間に、1段目の容量素子の他端に電荷を充電していく。このとき、電圧検出回路は、1段目の容量素子の他端の電圧を検出する。出力電圧が低ければ、ダイオード接続されたトランジスタがオンしやすく、1段目の容量素子を介してダイオード接続トランジスタから出力ノードへと繋がる電流経路が生じる。したがって1段目の容量素子の他端の電圧を上げるためには、その一端から出力ノードへ転送される電荷も合わせて供給する必要がある。従って、1段目の容量素子の他端における容量性負荷が大きくなる。このため、結果的に時定数が大きくなり低速に電荷が充電される。ゆえに所定の期間内に、電圧検出回路は、検出された電圧が回路閾値を超えず、それに応じてノンアクティブレベルの信号を出力し、2段目の容量素子を非活性化する。これにより、2段目の容量素子を用いずに、1段の容量素子を用いた(1段階の)昇圧動作が行われる。一方、出力電圧が高くなると、ダイオード接続されたトランジスタがオンしにくくなり、1段目の容量素子の一端から出力ノードへと流れる電流が少なくなり、その他端における容量性負荷が小さくなるため、充電に要する時間が短くなる。したがって1段目の容量素子の他端へ小さな時定数で高速に電荷が充電されるため、所定の期間内に、電圧検出回路は、検出された電圧が回路閾値を超え、それに応じてアクティブレベルの信号を出力し、2段目の容量素子を活性化する。2段目の容量素子は、一端が転送トランジスタを介して1段目の容量素子の他端に接続されている。チャージポンプ回路1は、2段目の容量素子が活性化されると、2段目の容量素子の他端に電荷をチャージし、転送トランジスタをオンして2段目の容量素子に蓄積された電圧を1段目の容量素子の他端へ伝達する。これにより、2段の容量素子を用いた2段階の昇圧動作が行われる。この結果、チャージポンプ回路1は、出力電圧の大きさに応じて用いる容量素子の段数及び昇圧動作の段階数を自己整合的に調整できるので、余分な容量素子の動作を抑制でき、過剰な消費電力の発生を抑制できる。したがって、チャージポンプ回路1の電流効率を改善できる。
より具体的には、チャージポンプ回路1は、図4に示すように構成され得る。図4は、チャージポンプ回路1の構成を示す回路図である。チャージポンプ回路1は、トランジスタTr1、トランジスタTr2、容量素子C1、充放電回路2、電圧検出回路10、トランジスタTr3、トランジスタTr62、容量素子C2、充放電回路3を有する。
トランジスタTr1及びトランジスタTr2は、チャージポンプ回路1の入力ノードNinと出力ノードNoutとの間に電気的に直列に接続されている。入力ノードNinは、電源電圧Vccが供給されるノードである。出力ノードNoutは、チャージポンプ回路1の出力先となる負荷回路(例えば、図1に示すロウデコーダ122)が電気的に接続されるノードである。
トランジスタTr1及びトランジスタTr2は、それぞれ、ダイオード接続されている。トランジスタTr1は、例えば、NMOSトランジスタで構成され、ゲート及びドレインが互いに電気的に接続されているとともに入力ノードNinに電気的に接続され、ソースがノードN1に電気的に接続されている。トランジスタTr1は、入力ノードNinからノードN1へ向かう方向を順方向とするダイオードとして機能する。トランジスタTr2は、例えば、NMOSトランジスタで構成され、ゲート及びドレインが互いに電気的に接続されているとともにノードN1に接続され、ソースが出力ノードNoutに電気的に接続されている。トランジスタTr2は、入力ノードN1から出力ノードNoutへ向かう方向を順方向とするダイオードとして機能する。
容量素子C1は、チャージポンプ回路1における1段目の容量素子として機能する。容量素子C1は、ノードN1及びノードN2の間に配されている。容量素子C1は、一端がノードN1に電気的に接続され、他端がノードN2に電気的に接続されている。
充放電回路2は、入力ノードがチャージポンプ回路1のクロックノードNCLKに電気的に接続され、出力ノードがノードN2に電気的に接続されている。クロックノードNCLKは、クロック信号CLKが供給されるノードである。充放電回路2は、電源電圧Vccを用いて、ノードN2に電荷を供給する。これにより、充放電回路2は、容量素子C1の他端を電源電圧Vccまで充電できる。
充放電回路2は、インバータINV1及びトランジスタTr61を有する。インバータINV1は、入力ノードINV1a、及び出力ノードINV1bを有する。入力ノードINV1aは、クロックノードNCLKに電気的に接続され、クロック信号CLKが供給される。出力ノードINV1bは、ラインL1及びトランジスタTr61を介してノードN2に接続可能であり、トランジスタTr61がオンした際にノードN2に電気的に接続される。
インバータINV1は、トランジスタTr11及びトランジスタTr12を有する。トランジスタTr11及びトランジスタTr12は、互いにインバータ接続される。トランジスタTr11は、例えばPMOSトランジスタであり、ソースが電源電圧Vccに接続され、ドレインが出力ノードINV1bに接続され、ゲートが入力ノードINV1aに接続される。トランジスタTr12は、例えばNMOSトランジスタであり、ソースがグランド電位に接続され、ドレインが出力ノードINV1bに接続され、ゲートが入力ノードINV1aに接続される。
トランジスタTr61は、例えばNMOSトランジスタであり、ソースが出力ノードINV1bに接続され、ドレインがノードN2に接続され、ゲートに所定の信号が供給される。所定の信号は、例えば、クロック信号CLKがLレベルの期間にアクティブレベル(例えば、Vcc+Vth)になり、それ以外の期間にノンアクティブレベル(例えば、グランド電位)になる信号である。
トランジスタTr61は、トランジスタTr11及びトランジスタTr12にかかる電圧負荷を緩和し、回路の耐圧特性を向上させる機能を有する。また、トランジスタTr61は、ノードN2からインバータINV1への電流の逆流を防止する機能を有する。
電圧検出回路10は、入力ノード10a及び出力ノード10bを有する。入力ノード10aは、信号ラインL1に電気的に接続され、例えば、信号ラインL1における出力ノードINV1bとトランジスタTr61との間のノードに接続されている。これにより、電圧検出回路10は、信号ラインL1の電圧を介して、容量素子C1の他端の電圧を検出可能である。出力ノード10bは、充放電回路3に電気的に接続されている。これにより、電圧検出回路10は、検出結果を充放電回路3へ供給可能である。
電圧検出回路10は、例えば、インバータINV11として構成される。インバータINV11は、入力ノードINV11a及び出力ノードINV11bを有する。入力ノードINV11aは、入力ノード10aに接続され、出力ノードINV11bは、出力ノード10bに接続されている。
トランジスタTr3は、ノードN2とノードN3との間に配されている。トランジスタTr3は、ノードN3からノードN2へ電荷を転送するための転送トランジスタとして機能する。トランジスタTr3は、例えばPMOSトランジスタであり、ソースがノードN3に接続され、ドレインがノードN2に接続されている。
トランジスタTr62は、ノードN3を電位Vccに初期化するためのトランジスタとして機能する。トランジスタTr62は、例えばNMOSトランジスタであり、ゲートがクロックノードNCLKに接続され、ソースが電源電圧Vccに接続され、ドレインがノードN3に接続されている。
容量素子C2は、チャージポンプ回路1における2段目の容量素子として機能する。容量素子C2は、ノードN3及びノードN4の間に配されている。容量素子C2は、一端がノードN3に電気的に接続され、他端がノードN4に電気的に接続されている。容量素子C2の一端は、トランジスタTr3及びノードN2を介して容量素子C1の他端に接続可能である。
充放電回路3は、入力ノード3a、入力ノード3b、及び出力ノード3cを有する。入力ノード3aは、電圧検出回路10の出力ノード10bに電気的に接続されている。入力ノード3bは、クロックノードNCLKに電気的に接続されている。出力ノード3cは、ラインL2を介してノードN4に電気的に接続されている。充放電回路3は、電圧検出回路10の検出結果に応じて、容量素子C2の他端に電荷をチャージ可能である。
充放電回路3は、オアゲートOR1及びインバータINV2を有する。オアゲートOR1は、第1の入力ノードが入力ノード3aに電気的に接続され、第2の入力ノードが入力ノード3bに電気的に接続され、出力ノードがインバータINV2に電気的に接続されている。インバータINV2は、入力ノードINV2a及び出力ノードINV2bを有する。入力ノードINV2aは、オアゲートOR1に電気的に接続され、出力ノードINV2bは、出力ノード3cを介してラインL2に電気的に接続されている。
インバータINV2は、トランジスタTr21及びトランジスタTr22を有する。トランジスタTr21及びトランジスタTr22は、互いにインバータ接続される。トランジスタTr21は、例えばPMOSトランジスタであり、ソースが電源ノードINV2bに接続され、ドレインが出力ノードINV2cに接続され、ゲートが入力ノードINV2aに接続される。トランジスタTr22は、例えばNMOSトランジスタであり、ソースがグランド電位に接続され、ドレインが出力ノードINV2cに接続され、ゲートが入力ノードINV2aに接続される。
図4に示す構成により、チャージポンプ回路1では、図5〜図8に示すように、自己整合的な動作段数調節が可能である。図5は、チャージポンプ回路の動作(出力電圧が低い場合)を示す波形図である。図6は、チャージポンプ回路の動作を示す図である。図7は、チャージポンプ回路の動作(出力電圧が中程度の場合)を示す波形図である。図8は、チャージポンプ回路の動作(出力電圧が高い場合)を示す波形図である。
本実施形態における動作では、図5に示すように、クロック信号CLKの1周期が初期化フェーズφ1と転送フェーズφ2とを含む。初期化フェーズφ1は、クロック信号CLKがHレベルを維持する期間であり、転送フェーズφ2は、クロック信号CLKがLレベルを維持する期間である。初期化フェーズφ1では、各段の容量素子C1,C2の一端(図4中の上側の端子)を電源電圧Vccに他端(図4中の下側の端子)をグランド電位Vssに接続し、それぞれを初期化する。転送フェーズφ2では、容量素子の他端を電源電圧Vccもしくはより高い電圧に昇圧すること容量素子の一端の電圧が上昇し、電荷が出力ノードNoutから出力先へ転送される。
例えば、出力電圧Voutの負荷が小さく、電源電圧Vccの1倍程度(図5では、約1.25倍)である場合、チャージポンプ回路1は、図5に示すように動作する。
初期化フェーズφ1が開始されるタイミングt1において、クロック信号CLKがLレベルからHレベルに遷移すると、図6(a)に示すように、トランジスタTr11がオフし、トランジスタTr12がオンする。トランジスタTr61がオンしており、ノードN2の電荷がトランジスタTr61及びトランジスタTr12経由でグランド電位に放電され、ノードN2の電位が電源電圧Vcc程度のレベルから低下していく。このとき、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が出力電圧Voutのレベルから低下していく。
図5に示すタイミングt2になると、ノードN2の電位がグランド電位Vssまで下がり、グランド電位Vssに維持される。これに応じて、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が電源電圧Vccを若干下回ったレベルまで引き下げられる。これにより、トランジスタTr2がオフ状態に維持されたまま、トランジスタTr1がオンし、その後、ノードN1の電位が電源電圧Vccに引き戻される。ただし、ここでは簡略化のため、トランジスタTr2の閾値は十分に低いものとしている。
なお、初期化フェーズφ1において、トランジスタTr3がオフ状態に維持されており、トランジスタTr62がオン状態に維持されているので、ノードN3は電源電圧Vccのレベルに維持されている。また、クロック信号CLKがHレベルであり、オアゲートOR1がHレベルを出力するので、トランジスタTr21がオフし、トランジスタTr22がオンしている。これにより、ノードN4は、グランド電位Vssに維持されている。
図5に示す転送フェーズφ2が開始されるタイミングt3において、クロック信号CLKがHレベルからLレベルへ遷移すると、図6(b)に示すように、トランジスタTr11がオンし、トランジスタTr12がオフする。トランジスタTr61がオンしており、電源電圧Vccに応じた電荷がトランジスタTr11及びトランジスタTr61経由でノードN2に充電され、ノードN2の電位がグランド電位Vssから上昇していく。容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が電源電圧Vccから上昇していく。
これに応じて、タイミングt4において、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が出力電圧Voutより高いレベルまで引き上げられるが、トランジスタTr2(等価的にはダイオード)がオンして容量素子C1の一端からその電荷の一部が出力ノードNout側へ転送され始める。これにより、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じる。
したがって、タイミングt4〜t5の期間において、ノードN2の電圧を上げるためには、出力ノードNout側へ転送される電流も合わせて供給する必要があるため、ノードN2における容量性負荷が大きくなる。結果的に時定数が大きくなり容量素子C1は低速に充電される。同時に、ノードN1の電位は、出力電圧Voutより高いレベルから出力電圧Voutになるまで放電されていく。それとともに、容量素子C1によって保持されているノードN1の電荷がトランジスタTr2を介して出力ノードNout側へ転送される。このとき、容量素子C1の充電速度が低速でありノードN2の電位がある設定電圧に到達しないと、電圧検出回路10(インバータINV11)は、Hレベルの信号を出力し続ける。するとオアゲートOR1もHレベルを出力し続けることになり、トランジスタTr21がオフし、トランジスタTr22がオンしている。これにより、ノードN4は、グランド電位Vssに維持されている。このとき、トランジスタTr3がオフしている。したがって、ノードN3、ノードN4の電位はともに変化しないことになり、容量素子C2は非活性化されたままとなる。
これにより、2段目の容量素子C2を用いずに、1段の容量素子C1を用いた1段階の昇圧動作が行われる。したがって、図5の動作では、比較的長いタイミングt4〜t5の期間に、1段のチャージポンプとして動作し電流が出力される。
タイミングt5以降、タイミングt1〜t5までの動作と同様の動作が行われる。
例えば、出力電圧Voutがより高く、電源電圧Vccの1.5倍程度(図7では、約1.65倍)である場合、チャージポンプ回路1は、図7に示すように動作する。
初期化フェーズφ1が開始されるタイミングt11において、クロック信号CLKがLレベルからHレベルに遷移すると、図6(a)に示すように、トランジスタTr11がオフし、トランジスタTr12がオンする。トランジスタTr61がオンしており、ノードN2の電荷がトランジスタTr61及びトランジスタTr12経由でグランド電位に放電され、ノードN2の電位が出力電圧Voutより若干低いレベルから低下していく。このとき、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が出力電圧Voutのレベルから低下していく。オンしていたトランジスタTr3がオフするので、ノードN3の電位が出力電圧Voutより若干低いレベルから低下していく。
図7に示すタイミングt12になると、ノードN3の電位が電源電圧Vccより低いレベルまで低下するが、トランジスタTr62がオンしており、その後、ノードN3の電位が電源電圧Vccに引き戻される。
タイミングt13になると、ノードN1の電位が電源電圧Vccを若干下回ったレベルまで引き下げられる。これにより、トランジスタTr2がオフ状態に維持されたまま、トランジスタTr1がオンし、その後、ノードN1の電位が電源電圧Vccに引き戻される。
タイミングt14になると、ノードN2の電位がグランド電位Vssまで下がり、その後、グランド電位Vssに維持される。また、図示しないが、クロック信号CLKがHレベルであり、オアゲートOR1がHレベルを出力するので、トランジスタTr21がオフし、トランジスタTr22がオンしている。これにより、ノードN4は、グランド電位Vssに維持されている。
転送フェーズφ2が開始されるタイミングt15において、クロック信号CLKがHレベルからLレベルへ遷移すると、図6(b)に示すように、トランジスタTr11がオンし、トランジスタTr12がオフする。トランジスタTr61がオンしており、電源電圧Vccに応じた電荷がトランジスタTr11及びトランジスタTr61経由でノードN2に充電され、ノードN2の電位がグランド電位Vssから上昇していく。
これに応じて、タイミングt16において、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が電源電圧Vccから出力電圧Voutより高いレベルまで引き上げられるが、トランジスタTr2(等価的にはダイオード)がオンして容量素子C1の一端からその電荷の一部が出力ノードNout側へ転送され始める。このとき、図5の場合に比べると、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じにくい。
したがって、タイミングt16〜t17の期間において、ノードN2の電圧を上げるために、図5の場合より、出力ノードNout側へ転送される電流を供給しやすくなり、ノードN2における容量性負荷がより小さくなる。結果的に図5の場合より時定数が小さくなり容量素子C1はより高速に充電される。同時に、ノードN1の電位は、出力電圧Voutより高いレベルから出力電圧Voutのレベルになるまで放電されていく。それとともに、容量素子C1によって保持されているノードN1の電荷がトランジスタTr2を介して出力ノードNout側へ転送される。このとき、ノードN2への充電速度が図5の場合より高速であり、図5の場合に比べて速く電位が上昇する。これにより、1段階目の昇圧動作が行われる。
このため、タイミングt17になると、ノードN2の電位がある設定電圧に到達し、電圧検出回路10(インバータINV11)は、検出された電圧が回路閾値を超え、それに応じて、図6(c)に示すように、Lレベルの信号をオアゲートOR1に出力する。オアゲートOR1がLレベルを出力するので、トランジスタTr21がオンし、トランジスタTr22がオフする。これにより、電源電圧Vccに応じた電荷がトランジスタTr21経由でノードN4に充電され、ノードN4の電位がグランド電位Vssから電源電圧Vccまで上昇する。これに応じて、容量素子C2がその保持していた電圧を維持しようとすることにより、ノードN3の電位が電源電圧Vccから出力電圧Voutより高いレベルまで引き上げられる。このとき、トランジスタTr61,Tr62がオフするとともにトランジスタTr3がオンすると、ノードN3の電荷がトランジスタTr3経由でノードN2へ転送され、ノードN2が充電されていき、ノードN2の電位が上昇していく。これに応じて、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が出力電圧Vout程度のレベルから上昇していく。
タイミングt18において、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が出力電圧Voutより高いレベルまで引き上げられると、トランジスタTr2(等価的にはダイオード)がオンして容量素子C1の一端からその電荷の一部が出力ノードNout側へ転送され始める。このとき、図5の場合に比べると、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じにくい。
したがって、タイミングt18〜t19の期間において、図5の場合より、ノードN2から出力ノードNout側へ転送される電荷を補償しやすくなり、ノードN2における容量性負荷がより小さくなる。結果的に図5の場合より時定数が小さくなり容量素子C1がより高速に充電される。同時に、ノードN1の電位は、出力電圧Voutより高いレベルから出力電圧Voutのレベルになるまで放電されていく。それとともに、容量素子C1によって保持されていたノードN1の電荷がトランジスタTr2を介して出力ノードNout側へ転送される。また、容量素子C2によって保持されていたノードN3の電荷がノードN2へ転送される。このとき、ノードN2への充電速度が図5の場合より高速であり、図5の場合に比べて速く電位が上昇する。これにより、2段階目の昇圧動作が行われる。
タイミングt19になると、ノードN2の電位が出力電圧Voutより若干低いレベルに達するとともに、ノードN3の電位も出力電圧Voutより若干低いレベルに達し、ノードN2及びノードN3がほぼ等電位になり得る。
これにより、1段の容量素子C1と2段の容量素子C1,C2とを用いた2段階の昇圧動作が行われる。したがって、図7の動作では、タイミングt16〜t17の期間は1段のチャージポンプとして動作し、タイミングt18〜t19の期間は2段のチャージポンプとして動作し電流が出力される。
タイミングt19以降、タイミングt11〜t19までの動作と同様の動作が行われる。
例えば、出力電圧Voutの負荷が大きく、電源電圧Vccの2倍程度(図8では、約2.25倍)である場合、チャージポンプ回路1は、図8に示すように動作する。
初期化フェーズφ1が開始されるタイミングt21において、クロック信号CLKがLレベルからHレベルに遷移すると、図6(a)に示すように、トランジスタTr11がオフし、トランジスタTr12がオンする。トランジスタTr61がオンしており、ノードN2の電荷がトランジスタTr61及びトランジスタTr12経由でグランド電位に放電され、ノードN2の電位が出力電圧Vout及び電源電圧Vccの中間程度のレベルから低下していく。このとき、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が出力電圧Voutのレベルから低下していく。オンしていたトランジスタTr3がオフするので、ノードN3の電位が出力電圧Vout及び電源電圧Vccの中間程度のレベルから低下していく。
図8に示すタイミングt22になると、ノードN3の電位が電源電圧Vccより低いレベルまで低下するが、トランジスタTr62がオンしており、その後、ノードN3の電位が電源電圧Vccに引き戻される。
タイミングt23になると、ノードN1の電位が電源電圧Vccを若干下回ったレベルまで引き下げられる。これにより、トランジスタTr2がオフ状態に維持されたまま、トランジスタTr1がオンし、その後、ノードN1の電位が電源電圧Vccに引き戻される。
タイミングt24になると、ノードN2の電位がグランド電位Vssまで下がり、その後、グランド電位Vssに維持される。また、図示しないが、クロック信号CLKがHレベルであり、オアゲートOR1がHレベルを出力するので、トランジスタTr21がオフし、トランジスタTr22がオンしている。これにより、ノードN4は、グランド電位Vssに維持されている。
転送フェーズφ2が開始されるタイミングt25において、クロック信号CLKがHレベルからLレベルへ遷移すると、図6(b)に示すように、トランジスタTr11がオンし、トランジスタTr12がオフする。トランジスタTr61がオンしており、電源電圧Vccに応じた電荷がトランジスタTr11及びトランジスタTr61経由でノードN2に充電され、ノードN2の電位がグランド電位Vssから上昇していく。これに応じて、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が電源電圧Vccから上昇していく。
タイミングt26において、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が出力電圧Voutより若干低いレベルまで引き上げられるが、トランジスタTr2(等価的にはダイオード)がオフしており、容量素子C1の一端からその電荷の一部が出力ノードNout側へ転送されにくい。このとき、図7の場合に比べると電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じにくい。
したがって、タイミングt26〜t27の期間において、ノードN2における容量性負荷が小さい。結果的に時定数が小さくなり高速に充電される。同時に、ノードN1の電位は、出力電圧Voutより若干低いレベルをほぼ維持している。このとき、ノードN2への充電速度が高速であり、図7の場合に比べてさらに速く電位が上昇する。これにより、1段階目の昇圧動作が行われる。
このため、タイミングt27になると、ノードN2の電位が電源電圧Vcc程度のレベルに達し、電圧検出回路10(インバータINV11)は、検出された電圧が回路閾値を超え、それに応じて、図6(c)に示すように、Lレベルの信号をオアゲートOR1に出力する。オアゲートOR1がLレベルを出力するので、トランジスタTr21がオンし、トランジスタTr22がオフする。これにより、電源電圧Vccに応じた電荷がトランジスタTr21経由でノードN4に充電され、ノードN4の電位がグランド電位Vssから電源電圧Vccまで上昇する。これに応じて、容量素子C2がその保持していた電圧を維持しようとすることにより、ノードN3の電位が電源電圧Vccから出力電圧Voutより若干低いレベルまで引き上げられる。このとき、トランジスタTr61,Tr62がオフするとともにトランジスタTr3がオンすると、ノードN3の電荷がトランジスタTr3経由でノードN2へ転送され、ノードN2が充電されていき、ノードN2の電位が上昇していく。これに応じて、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が出力電圧Voutより若干低いレベルから上昇していく。
タイミングt28において、容量素子C1がその保持していた電圧を維持しようとすることにより、ノードN1の電位が出力電圧Voutより高いレベルまで引き上げられると、トランジスタTr2(等価的にはダイオード)がオンして容量素子C1の一端からその電荷の一部が出力ノードNout側へ転送され始める。このとき、図7の場合に比べると電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じにくい。
したがって、タイミングt28〜t29の期間において、ノードN2の電圧を上げるための充電の時間が短い。結果的に時定数が小さくなり高速に充電される。同時に、ノードN1の電位は、出力電圧Voutより高いレベルから出力電圧Voutのレベルになるまで放電されていく。それとともに、ノードN1の電荷がトランジスタTr2を介して出力ノードNout側へ抜けていく。また、ノードN3から放電速度が速いため、大きな時定数で高速にノードN3から放電される。このとき、ノードN2への充電速度が高速であり、図7の場合に比べて速く電位が上昇する。これにより、2段階目の昇圧動作が行われる。
タイミングt29になると、ノードN2の電位が出力電圧Vout及び電源電圧Vccの中間程度のレベルに達するとともに、ノードN3の電位も出力電圧Vout及び電源電圧Vccの中間程度のレベルに達し、ノードN2及びノードN3がほぼ等電位になり得る。
これにより、1段の容量素子C1と2段の容量素子C1,C2とを用いた2段階の昇圧動作が行われる。したがって、図8の動作では、タイミングt26〜t27の期間に、1段のチャージポンプとして動作し、タイミングt28〜t29の期間に、2段のチャージポンプとして動作し電流が出力される。
タイミングt29以降、タイミングt21〜t29までの動作と同様の動作が行われる。
以上のように、第1の実施形態では、チャージポンプ回路1において使用される容量素子および整流素子の段数を動的に変更可能としている。例えば、チャージポンプ回路1を、シリーズ・ブーストタイプのチャージポンプを基本構成としつつ複数段の容量素子C1〜C2の間に電圧検出回路10が追加された構成とする。これにより、チャージポンプ回路1は、出力電圧の大きさに応じて用いる容量素子の段数及び昇圧動作の段階数を自己整合的に調整できるので、余分な容量素子の動作を抑制でき、過剰な消費電力の発生を抑制できる。したがって、チャージポンプ回路1の電流効率を改善できる。
なお、チャージポンプ回路101は、図9に示すように、3段の容量素子C1〜C3の間に電圧検出回路が追加された構成であってもよい。図9は、実施形態の第1の変形例におけるチャージポンプ回路101の構成を示す回路図である。
チャージポンプ回路101は、充放電回路3(図4参照)に代えて充放電回路103を有し、電圧検出回路120、トランジスタTr4、容量素子C3、充放電回路104をさらに有する。
充放電回路103は、オアゲートOR1及びインバータINV2に加えて、トランジスタTr63を有する。トランジスタTr63は、例えばNMOSトランジスタであり、ソースがインバータINV2の出力ノードに接続され、ドレインがノードN4に接続され、ゲートに所定の信号が供給される。所定の信号は、例えば、クロック信号CLKがLレベルの期間にアクティブレベル(例えば、Vcc+Vth)になり、それ以外の期間にノンアクティブレベル(例えば、グランド電位)になる信号である。
トランジスタTr63は、トランジスタTr21及びトランジスタTr22にかかる電圧負荷を緩和し、回路の耐圧特性を向上させる機能を有する。また、トランジスタTr63は、ノードN4からインバータINV2への電流の逆流を防止する機能を有する。
電圧検出回路120は、入力ノード120a及び出力ノード120bを有する。入力ノード120aは、信号ラインL2に電気的に接続され、例えば、信号ラインL2におけるインバータINV2の出力ノードとトランジスタTr63との間にノードに接続されている。これにより、電圧検出回路120は、信号ラインL2の電圧を介して、容量素子C2の他端の電圧を検出可能である。出力ノード120bは、充放電回路104に電気的に接続されている。これにより、電圧検出回路120は、検出結果を充放電回路104へ供給可能である。
電圧検出回路120は、インバータINV21を有する。インバータINV21は、入力ノードINV21a及び出力ノードINV21bを有する。入力ノードINV21aは、入力ノード120aに接続され、出力ノードINV21bは、出力ノード120bに接続されている。
トランジスタTr4は、ノードN4とノードN5との間に配されている。トランジスタTr4は、例えばPMOSトランジスタであり、ソースがノードN5に接続され、ドレインがノードN4に接続されている。
トランジスタTr64は、ノードN5を電位Vcc初期化するためのトランジスタとして機能する。トランジスタTr64は、例えばNMOSトランジスタであり、ゲートがクロックノードNCLKに接続され、ソースが電源電位Vccに接続され、ドレインがノードN5に接続されている。
容量素子C3は、チャージポンプ回路101における3段目の容量素子として機能する。容量素子C3は、ノードN5及びノードN6の間に配されている。容量素子C3は、一端がノードN5に電気的に接続され、他端がノードN6に電気的に接続されている。容量素子C3の一端は、トランジスタTr4及びノードN4を介して容量素子C2の他端に接続可能である。
充放電回路104は、入力ノード104a、入力ノード104b、及び出力ノード104cを有する。入力ノード104aは、電圧検出回路120の出力ノード120bに電気的に接続されている。入力ノード104bは、クロックノードNCLKに電気的に接続されている。出力ノード104cは、ラインL2を介してノードN6に電気的に接続されている。充放電回路104は、電圧検出回路120の検出結果に応じて、容量素子C3の他端に電荷をチャージ可能である。
充放電回路104は、オアゲートOR2及びインバータINV3を有する。オアゲートOR2は、第1の入力ノードが入力ノード104aに電気的に接続され、第2の入力ノードが入力ノード104bに電気的に接続され、出力ノードがインバータINV3に電気的に接続されている。インバータINV3は、入力ノードINV3a及び出力ノードINV3bを有する。入力ノードINV3aは、オアゲートOR2に電気的に接続され、出力ノードINV3bは、出力ノード104cを介してラインL3に電気的に接続されている。
インバータINV3は、トランジスタTr31及びトランジスタTr32を有する。トランジスタTr31及びトランジスタTr32は、互いにインバータ接続される。トランジスタTr31は、例えばPMOSトランジスタであり、ソースが電源電圧Vccに接続され、ドレインが出力ノードINV3bに接続され、ゲートが入力ノードINV3aに接続される。トランジスタTr32は、例えばNMOSトランジスタであり、ソースがグランド電位に接続され、ドレインが出力ノードINV3bに接続され、ゲートが入力ノードINV3aに接続される。
図9に示すチャージポンプ回路101では、チャージポンプ回路101は、クロック周期の転送フェーズφ2において、1段目の容量素子C1の他端のノードN2に電荷を充電していく。このとき、電圧検出回路10は、1段目の容量素子C1の他端のノードN2の電圧を検出する。
出力電圧がV(例えば、電源電圧Vccの1.5倍程度)より低ければ、トランジスタTr2がオンしやすく、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されやすいため、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じやすく、1段目の容量素子C1の他端の電圧を上げるために出力ノードNout側へ転送される電流も合わせて供給する必要があり、1段目の容量素子C1の他端における容量性負荷が大きくなる。結果的に時定数が大きくなり容量素子C1が低速に充電されるため、電圧検出回路10は、ノンアクティブレベルの信号を出力し続け、2段目の容量素子C2は非活性化されたままとなる。また、電圧検出回路120は、ノンアクティブレベルの信号を出力し続け、3段目の容量素子C3は非活性化されたままとなる。これにより、2段目の容量素子C2及び3段目の容量素子C3を用いずに、1段の容量素子C1を用いた(1段階の)昇圧動作が行われる。
出力電圧がVより高くV(図12(b)参照)より低い値になると、トランジスタTr2がオンしにくくなり、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されにくくなる。これにより、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じにくくなり、1段目の容量素子C1の他端における容量性負荷がより小さくなる。結果的に時定数がより小さくなり容量素子C1が高速に充電されるため、電圧検出回路10は、アクティブレベルの信号を出力し、2段目の容量素子C2は活性化する。チャージポンプ回路101は、2段目の容量素子C2が活性化されると、2段目の容量素子C2の他端のノードN4に電荷をチャージし、その後、トランジスタTr3をオンして2段目の容量素子C2に蓄積された電荷を1段目の容量素子C1の他端へ転送する。このとき、容量素子C2の他端における容量性負荷が比較的に大きく、ラインL2の電圧の上昇速度も遅い。このため、電圧検出回路120は、ノンアクティブレベルの信号を出力し続け、3段目の容量素子C3は非活性化されたままとなる。これにより、3段目の容量素子C3を用いずに、2段の容量素子C1,C2を用いた2段階の昇圧動作が行われる。
出力電圧がVより高くなると、トランジスタTr2がよりオンしにくくなり、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されにくくなる。これにより、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じにくくなり、1段目の容量素子C1の他端における容量性負荷がより小さくなる。結果的に時定数がより小さくなり高速充電されるため、電圧検出回路10は、アクティブレベルの信号を出力し、2段目の容量素子C2は活性化する。チャージポンプ回路101は、2段目の容量素子C2が活性化されると、2段目の容量素子C2の他端のノードN4に電荷を充電し、その後、トランジスタTr3をオンして2段目の容量素子C2に蓄積された電荷を1段目の容量素子C1の他端へ転送する。このとき、容量素子C2の他端における容量性負荷が比較的に小さく、ラインL2の電圧の上昇速度も速い。このため、電圧検出回路120は、アクティブレベルの信号を出力し、3段目の容量素子C3は活性化する。これにより、3段の容量素子C1〜C3を用いた3段階の昇圧動作が行われる。
このように、3段の容量素子C1〜C3の間に電圧検出回路10,120が追加された構成によっても、出力電圧の大きさに応じて用いる容量素子の段数及び昇圧動作の段階数を自己整合的に調整できる。この結果、余分な容量素子の動作を抑制でき、過剰な消費電力の発生を抑制できる。したがって、チャージポンプ回路101の電流効率を改善できる。
あるいは、チャージポンプ回路201は、図10に示すように、4段の容量素子C1〜C4の間に電圧検出回路が追加された構成であってもよい。図10は、実施形態の第2の変形例におけるチャージポンプ回路201の構成を示す回路図である。
チャージポンプ回路201は、充放電回路104(図9参照)に代えて充放電回路204を有し、電圧検出回路230、トランジスタTr5、容量素子C4、充放電回路205をさらに有する。
充放電回路204は、オアゲートOR2及びインバータINV3に加えて、トランジスタTr66を有する。トランジスタTr65は、例えばNMOSトランジスタであり、ソースがインバータINV3の出力ノードに接続され、ドレインがノードN6に接続され、ゲートに所定の信号が供給される。所定の信号は、例えば、クロック信号CLKがLレベルの期間にアクティブレベル(例えば、Vcc+Vth)になり、それ以外の期間にノンアクティブレベル(例えば、グランド電位)になる信号である。
トランジスタTr65は、トランジスタTr31及びトランジスタTr32にかかる電圧負荷を緩和し、回路の耐圧特性を向上させる機能を有する。また、トランジスタTr65は、ノードN6からインバータINV3への電流の逆流を防止する機能を有する。
電圧検出回路230は、入力ノード230a及び出力ノード230bを有する。入力ノード230aは、信号ラインL3に電気的に接続され、例えば、信号ラインL3におけるインバータINV3の出力ノードとトランジスタTr66との間にノードに接続されている。これにより、電圧検出回路230は、信号ラインL3の電圧を介して、容量素子C3の他端の電圧を検出可能である。出力ノード230bは、充放電回路205に電気的に接続されている。これにより、電圧検出回路230は、検出結果を充放電回路205へ供給可能である。
電圧検出回路230は、例えば、インバータINV31として構成される。インバータINV31は、入力ノードINV31a及び出力ノードINV31bを有する。入力ノードINV31aは、入力ノード230aに接続され、出力ノードINV31bは、出力ノード230bに接続されている。
トランジスタTr5は、ノードN6とノードN7との間に配されている。トランジスタTr5は、例えばPMOSトランジスタであり、ソースがノードN7に接続され、ドレインがノードN6に接続されている。
トランジスタTr66は、ノードN7を電位Vccに初期化するためのトランジスタとして機能する。トランジスタTr66は、例えばNMOSトランジスタであり、ゲートがクロックノードNCLKに接続され、ソースが電源電圧Vccに接続され、ドレインがノードN7に接続されている。
容量素子C4は、チャージポンプ回路201における4段目の容量素子として機能する。容量素子C4は、ノードN7及びノードN8の間に配されている。容量素子C4は、一端がノードN7に電気的に接続され、他端がノードN8に電気的に接続されている。容量素子C4の一端は、トランジスタTr5及びノードN8を介して容量素子C3の他端に接続可能である。
充放電回路205は、入力ノード205a、入力ノード205b、及び出力ノード205cを有する。入力ノード205aは、電圧検出回路230の出力ノード230bに電気的に接続されている。入力ノード205bは、クロックノードNCLKに電気的に接続されている。出力ノード205cは、ラインL4を介してノードN8に電気的に接続されている。充放電回路205は、電圧検出回路230の検出結果に応じて、容量素子C4の他端に電荷をチャージ可能である。
充放電回路205は、オアゲートOR3及びインバータINV4を有する。オアゲートOR3は、第1の入力ノードが入力ノード205aに電気的に接続され、第2の入力ノードが入力ノード205bに電気的に接続され、出力ノードがインバータINV4に電気的に接続されている。インバータINV4は、入力ノードINV4a及び出力ノードINV4bを有する。入力ノードINV4aは、オアゲートOR3に電気的に接続され、出力ノードINV4bは、出力ノード205cを介してラインL4に電気的に接続されている。
インバータINV4は、トランジスタTr41及びトランジスタTr42を有する。トランジスタTr41及びトランジスタTr42は、互いにインバータ接続される。トランジスタTr41は、例えばPMOSトランジスタであり、ソースが電源電圧Vccに接続され、ドレインが出力ノードINV4bに接続され、ゲートが入力ノードINV4aに接続される。トランジスタTr42は、例えばNMOSトランジスタであり、ソースがグランド電位に接続され、ドレインが出力ノードINV4bに接続され、ゲートが入力ノードINV4aに接続される。
図10に示すチャージポンプ回路201では、チャージポンプ回路201は、クロック周期の転送フェーズφ2において、1段目の容量素子C1の他端のノードN2に電荷を充電していく。このとき、電圧検出回路10は、1段目の容量素子C1の他端のノードN2の電圧を検出する。
出力電圧がVより低ければ、トランジスタTr2がオンしやすく、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されやすいため、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じやすい。これにより、1段目の容量素子C1の他端における容量性負荷が大きくなる。結果的に時定数が大きくなり容量素子C1が低速に充電されるため、電圧検出回路10は、ノンアクティブレベルの信号を出力し続け、2段目の容量素子C2は非活性化されたままとなる。また、電圧検出回路120は、ノンアクティブレベルの信号を出力し続け、3段目の容量素子C3は非活性化されたままとなる。電圧検出回路230は、ノンアクティブレベルの信号を出力し続け、4段目の容量素子C4は非活性化されたままとなる。これにより、2段目の容量素子C2、3段目の容量素子C3及び4段目の容量素子C4を用いずに、1段の容量素子C1を用いた(1段階の)昇圧動作が行われる。
出力電圧がVより高くV(図12(c)参照)より低い値になると、トランジスタTr2がオンしにくくなり、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されにくくなる。これにより、1段目の容量素子C1の他端における容量性負荷がより小さくなる。結果的に時定数がより小さくなり容量素子C1が高速に充電されるため、電圧検出回路10は、アクティブレベルの信号を出力し、2段目の容量素子C2は活性化する。チャージポンプ回路201は、2段目の容量素子C2が活性化されると、2段目の容量素子C2の他端のノードN4に電荷を充電し、その後、トランジスタTr3をオンして2段目の容量素子C2に蓄積された電荷を1段目の容量素子C1の他端へ転送する。このとき、容量素子C2の他端における容量性負荷が比較的に大きく、ラインL2の電圧の上昇速度も遅い。このため、電圧検出回路120は、ノンアクティブレベルの信号を出力し続け、3段目の容量素子C3は非活性化されたままとなる。電圧検出回路230は、ノンアクティブレベルの信号を出力し続け、4段目の容量素子C4は非活性化されたままとなる。これにより、3段目の容量素子C3及び4段目の容量素子C4を用いずに、2段の容量素子C1,C2を用いた2段階の昇圧動作が行われる。
出力電圧がVより高くV(図12(c)参照)より低い値になると、トランジスタTr2がよりオンしにくくなり、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されにくくなる。これにより、1段目の容量素子C1の他端における容量性負荷がより小さくなる。結果的に時定数が小さくなり容量素子C1が高速に充電されるため、電圧検出回路10は、アクティブレベルの信号を出力し、2段目の容量素子C2は活性化する。チャージポンプ回路201は、2段目の容量素子C2が活性化されると、2段目の容量素子C2の他端のノードN4に電荷を充電し、その後、トランジスタTr3をオンして2段目の容量素子C2に蓄積された電荷を1段目の容量素子C1の他端へ転送する。このとき、容量素子C2の他端における容量性負荷が比較的に小さく、ラインL2の電圧の上昇速度も速い。このため、電圧検出回路120は、アクティブレベルの信号を出力し、3段目の容量素子C3は活性化する。チャージポンプ回路201は、3段目の容量素子C3が活性化されると、3段目の容量素子C3の他端のノードN6に電荷を充電し、その後、トランジスタTr4をオンして3段目の容量素子C3に蓄積された電荷を2段目の容量素子C2の他端へ転送する。このとき、容量素子C3の他端における容量性負荷が比較的に大きく、ラインL3の電圧の上昇速度も遅い。このため、電圧検出回路230は、ノンアクティブレベルの信号を出力し続け、4段目の容量素子C4は非活性化されたままとなる。これにより、4段目の容量素子C4を用いずに、3段の容量素子C1〜C3を用いた3段階の昇圧動作が行われる。
出力電圧がVより高くなると、トランジスタTr2がさらにオンしにくくなり、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されにくくなる。これにより、1段目の容量素子C1の他端の電圧を上げるための充電の時間が短くなる。結果的に時定数が小さくなり高速に充電されるため、電圧検出回路10は、アクティブレベルの信号を出力し、2段目の容量素子C2は活性化する。チャージポンプ回路201は、2段目の容量素子C2が活性化されると、2段目の容量素子C2の他端のノードN4に電荷を充電し、その後、トランジスタTr3をオンして2段目の容量素子C2に蓄積された電荷を1段目の容量素子C1の他端へ転送する。このとき、容量素子C2の他端における容量性負荷が比較的に小さく、ラインL2の電圧の上昇速度も速い。このため、電圧検出回路120は、アクティブレベルの信号を出力し、3段目の容量素子C3は活性化する。また、チャージポンプ回路201は、3段目の容量素子C3が活性化されると、3段目の容量素子C3の他端のノードN6に電荷を充電し、その後、トランジスタTr4をオンして3段目の容量素子C3に蓄積された電荷を2段目の容量素子C2の他端へ転送する。このとき、容量素子C3の他端における容量性負荷が比較的に小さく、ラインL3の電圧の上昇速度も速い。このため、電圧検出回路230は、アクティブレベルの信号を出力し、4段目の容量素子C4は活性化する。また、チャージポンプ回路201は、4段目の容量素子C4が活性化されると、4段目の容量素子C4の他端のノードN8に電荷を充電し、その後、トランジスタTr5をオンして4段目の容量素子C4に蓄積された電荷を3段目の容量素子C3の他端へ転送する。これにより、4段の容量素子C1〜C4を用いた4段階の昇圧動作が行われる。
このように、4段の容量素子C1〜C4の間に電圧検出回路10,120,230が追加された構成によっても、出力電圧の大きさに応じて用いる容量素子の段数及び昇圧動作の段階数を自己整合的に調整できる。この結果、余分な容量素子の動作を抑制でき、過剰な消費電力の発生を抑制できる。したがって、チャージポンプ回路201の電流効率を改善できる。
あるいは、チャージポンプ回路301は、図11に示すように、5段の容量素子C1〜C5の間に電圧検出回路が追加された構成であってもよい。図11は、実施形態の第3の変形例におけるチャージポンプ回路301の構成を示す回路図である。
チャージポンプ回路301は、充放電回路205(図10参照)に変えて充放電回路305を有し、電圧検出回路340、トランジスタTr6、容量素子C5、充放電回路306をさらに有する。
充放電回路305は、オアゲートOR3及びインバータINV4に加えて、トランジスタTr66を有する。トランジスタTr67は、例えばNMOSトランジスタであり、ソースがインバータINV4の出力ノードに接続され、ドレインがノードN8に接続され、ゲートに所定の信号が供給される。所定の信号は、例えば、クロック信号CLKがLレベルの期間にアクティブレベル(例えば、Vcc+Vth)になり、それ以外の期間にノンアクティブレベル(例えば、グランド電位)になる信号である。
トランジスタTr67は、トランジスタTr41及びトランジスタTr42にかかる電圧負荷を緩和し、回路の耐圧特性を向上させる機能を有する。また、トランジスタTr67は、ノードN8からインバータINV4への電流の逆流を防止する機能を有する。
電圧検出回路340は、入力ノード340a及び出力ノード340bを有する。入力ノード340aは、信号ラインL4に電気的に接続され、例えば、信号ラインL4におけるインバータINV4の出力ノードとトランジスタTr67との間にノードに接続されている。これにより、電圧検出回路340は、信号ラインL4の電圧を介して、容量素子C4の他端の電圧を検出可能である。出力ノード340bは、充放電回路306に電気的に接続されている。これにより、電圧検出回路340は、検出結果を充放電回路306へ供給可能である。
電圧検出回路340は、例えば、インバータINV41として構成される。インバータINV41は、入力ノードINV41a及び出力ノードINV41bを有する。入力ノードINV41aは、入力ノード340aに接続され、出力ノードINV41bは、出力ノード340bに接続されている。
トランジスタTr6は、ノードN8とノードN9との間に配されている。トランジスタTr6は、例えばPMOSトランジスタであり、ソースがノードN9に接続され、ドレインがノードN8に接続されている。
容量素子C5は、チャージポンプ回路301における5段目の容量素子として機能する。容量素子C5は、ノードN9及びノードN10の間に配されている。容量素子C5は、一端がノードN9に電気的に接続され、他端がノードN10に電気的に接続されている。容量素子C5の一端は、トランジスタTr6及びノードN10を介して容量素子C4の他端に接続可能である。
充放電回路306は、入力ノード306a、入力ノード306b、及び出力ノード306cを有する。入力ノード306aは、電圧検出回路340の出力ノード340bに電気的に接続されている。入力ノード306bは、クロックノードNCLKに電気的に接続されている。出力ノード306cは、ラインL5を介してノードN10に電気的に接続されている。充放電回路306は、電圧検出回路340の検出結果に応じて、容量素子C5の他端に電荷をチャージ可能である。
充放電回路306は、オアゲートOR4及びインバータINV5を有する。オアゲートOR4は、第1の入力ノードが入力ノード306aに電気的に接続され、第2の入力ノードが入力ノード306bに電気的に接続され、出力ノードがインバータINV5に電気的に接続されている。インバータINV5は、入力ノードINV5a及び出力ノードINV5bを有する。入力ノードINV5aは、オアゲートOR4に電気的に接続され、出力ノードINV5bは、出力ノード306cを介してラインL5に電気的に接続されている。
インバータINV5は、トランジスタTr51及びトランジスタTr52を有する。トランジスタTr51及びトランジスタTr52は、互いにインバータ接続される。トランジスタTr51は、例えばPMOSトランジスタであり、ソースが電源電圧Vccに接続され、ドレインが出力ノードINV5bに接続され、ゲートが入力ノードINV5aに接続される。トランジスタTr52は、例えばNMOSトランジスタであり、ソースがグランド電位に接続され、ドレインが出力ノードINV5bに接続され、ゲートが入力ノードINV5aに接続される。
図11に示すチャージポンプ回路301では、チャージポンプ回路301は、クロック周期の転送フェーズφ2において、1段目の容量素子C1の他端のノードN2に電荷を充電していく。このとき、電圧検出回路10は、1段目の容量素子C1の他端のノードN2の電圧を検出する。
出力電圧がVより低ければ、トランジスタTr2がオンしやすく、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されやすいため、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じやすい。これにより、1段目の容量素子C1における容量性負荷が大きくなる。結果的に時定数が大きくなり容量素子C1が低速に充電されるため、電圧検出回路10は、ノンアクティブレベルの信号を出力し続け、2段目の容量素子C2は非活性化されたままとなる。また、電圧検出回路120は、ノンアクティブレベルの信号を出力し続け、3段目の容量素子C3は非活性化されたままとなる。電圧検出回路230は、ノンアクティブレベルの信号を出力し続け、4段目の容量素子C4は非活性化されたままとなる。電圧検出回路340は、ノンアクティブレベルの信号を出力し続け、5段目の容量素子C5は非活性化されたままとなる。これにより、2段目の容量素子C2、3段目の容量素子C3、4段目の容量素子C4及び5段目の容量素子C5を用いずに、1段の容量素子C1を用いた(1段階の)昇圧動作が行われる。
出力電圧がVより高くV(図12(d)参照)より低い値になると、トランジスタTr2がオンしにくくなり、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されにくくなる。これにより、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じにくくなり、1段目の容量素子C1における容量性負荷がより小さくなる。結果的に時定数が小さくなり容量素子C1が高速に充電されるため、電圧検出回路10は、アクティブレベルの信号を出力し、2段目の容量素子C2は活性化する。チャージポンプ回路301は、2段目の容量素子C2が活性化されると、2段目の容量素子C2の他端のノードN4に電荷を充電し、その後、トランジスタTr3をオンして2段目の容量素子C2に蓄積された電荷を1段目の容量素子C1の他端へ転送する。このとき、容量素子C2の他端における容量性負荷が比較的に大きく、ラインL2の電圧の上昇速度も遅い。このため、電圧検出回路120は、ノンアクティブレベルの信号を出力し続け、3段目の容量素子C3は非活性化されたままとなる。電圧検出回路230は、ノンアクティブレベルの信号を出力し続け、4段目の容量素子C4は非活性化されたままとなる。電圧検出回路340は、ノンアクティブレベルの信号を出力し続け、5段目の容量素子C5は非活性化されたままとなる。これにより、3段目の容量素子C3、4段目の容量素子C4及び5段目の容量素子C5を用いずに、2段の容量素子C1,C2を用いた2段階の昇圧動作が行われる。
出力電圧がVより高くV(図12(d)参照)より低い値になると、トランジスタTr2がよりオンしにくくなり、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されにくくなる。これにより、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じにくくなり、1段目の容量素子C1における容量性負荷がより小さくなる。結果的に時定数が小さくなり容量素子C1が高速に充電されるため、電圧検出回路10は、アクティブレベルの信号を出力し、2段目の容量素子C2は活性化する。チャージポンプ回路301は、2段目の容量素子C2が活性化されると、2段目の容量素子C2の他端のノードN4に電荷を充電し、その後、トランジスタTr3をオンして2段目の容量素子C2に蓄積された電荷を1段目の容量素子C1の他端へ転送する。このとき、容量素子C2の他端における容量性負荷が比較的に小さく、ラインL2の電圧の上昇速度も速い。このため、電圧検出回路120は、アクティブレベルの信号を出力し、3段目の容量素子C3は活性化する。チャージポンプ回路301は、3段目の容量素子C3が活性化されると、3段目の容量素子C3の他端のノードN6に電荷を充電し、その後、トランジスタTr4をオンして3段目の容量素子C3に蓄積された電荷を2段目の容量素子C2の他端へ転送する。このとき、容量素子C3の他端における容量性負荷が比較的に大きく、ラインL3の電圧の上昇速度も遅い。このため、電圧検出回路230は、ノンアクティブレベルの信号を出力し続け、4段目の容量素子C4は非活性化されたままとなる。電圧検出回路340は、ノンアクティブレベルの信号を出力し続け、5段目の容量素子C5は非活性化されたままとなる。これにより、4段目の容量素子C4及び5段目の容量素子C5を用いずに、3段の容量素子C1〜C3を用いた3段階の昇圧動作が行われる。
出力電圧がVより高くV(図12(d)参照)より低い値になると、トランジスタTr2がさらにオンしにくくなり、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されにくくなる。これにより、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じにくくなり、1段目の容量素子C1における容量性負荷がより小さくなる。結果的に時定数が小さくなり容量素子C1が高速に充電されるため、電圧検出回路10は、アクティブレベルの信号を出力し、2段目の容量素子C2は活性化する。チャージポンプ回路301は、2段目の容量素子C2が活性化されると、2段目の容量素子C2の他端のノードN4に電荷を充電し、その後、トランジスタTr3をオンして2段目の容量素子C2に蓄積された電荷を1段目の容量素子C1の他端へ転送する。このとき、容量素子C2の他端における容量性負荷が比較的に小さく、ラインL2の電圧の上昇速度も速い。このため、電圧検出回路120は、アクティブレベルの信号を出力し、3段目の容量素子C3は活性化する。また、チャージポンプ回路301は、3段目の容量素子C3が活性化されると、3段目の容量素子C3の他端のノードN6に電荷を充電し、その後、トランジスタTr4をオンして3段目の容量素子C3に蓄積された電荷を2段目の容量素子C2の他端へ転送する。このとき、容量素子C3の他端における容量性負荷が比較的に小さく、ラインL3の電圧の上昇速度も速い。このため、電圧検出回路230は、アクティブレベルの信号を出力し、4段目の容量素子C4は活性化する。チャージポンプ回路301は、4段目の容量素子C4が活性化されると、4段目の容量素子C4の他端のノードN8に電荷を充電し、その後、トランジスタTr5をオンして4段目の容量素子C4に蓄積された電荷を3段目の容量素子C3の他端へ転送する。電圧検出回路340は、ノンアクティブレベルの信号を出力し続け、5段目の容量素子C5は非活性化されたままとなる。これにより、5段目の容量素子C5を用いずに、4段の容量素子C1〜C4を用いた4段階の昇圧動作が行われる。
出力電圧がVより高くなると、トランジスタTr2がさらにオンしにくくなり、1段目の容量素子C1の一端から電荷が出力ノードNout側へ転送されにくくなる。これにより、電源電圧VccからラインL1および容量素子C1、トランジスタTr2を経由して出力ノードNoutへ至る電流経路が生じにくくなり、1段目の容量素子C1における容量性負荷がより小さくなる。結果的に時定数が小さくなり容量素子C1が高速に充電されるため、電圧検出回路10は、アクティブレベルの信号を出力し、2段目の容量素子C2は活性化する。チャージポンプ回路301は、2段目の容量素子C2が活性化されると、2段目の容量素子C2の他端のノードN4に電荷を充電し、その後、トランジスタTr3をオンして2段目の容量素子C2に蓄積された電荷を1段目の容量素子C1の他端へ転送する。このとき、容量素子C2の他端における容量性負荷が比較的に小さく、ラインL2の電圧の上昇速度も速い。このため、電圧検出回路120は、アクティブレベルの信号を出力し、3段目の容量素子C3は活性化する。また、チャージポンプ回路301は、3段目の容量素子C3が活性化されると、3段目の容量素子C3の他端のノードN6に電荷を充電し、その後、トランジスタTr4をオンして3段目の容量素子C3に蓄積された電荷を2段目の容量素子C2の他端へ転送する。このとき、容量素子C3の他端における容量性負荷が比較的に小さく、ラインL3の電圧の上昇速度も速い。このため、電圧検出回路230は、アクティブレベルの信号を出力し、4段目の容量素子C4は活性化する。チャージポンプ回路301は、4段目の容量素子C4が活性化されると、4段目の容量素子C4の他端のノードN8に電荷を充電し、その後、トランジスタTr5をオンして4段目の容量素子C4に蓄積された電荷を3段目の容量素子C3の他端へ転送する。このとき、容量素子C4の他端における容量性負荷が比較的に小さく、ラインL4の電圧の上昇速度も速い。このため、電圧検出回路340は、アクティブレベルの信号を出力し、5段目の容量素子C5は活性化する。チャージポンプ回路301は、5段目の容量素子C5が活性化されると、5段目の容量素子C5の他端のノードN10に電荷を充電し、その後、トランジスタTr6をオンして5段目の容量素子C5に蓄積された電荷を4段目の容量素子C4の他端へ転送する。これにより、5段の容量素子C1〜C5を用いた5段階の昇圧動作が行われる。
このように、5段の容量素子C1〜C5の間に電圧検出回路10,120,230,340が追加された構成によっても、出力電圧の大きさに応じて用いる容量素子の段数及び昇圧動作の段階数を自己整合的に調整できる。この結果、余分な容量素子の動作を抑制でき、過剰な消費電力の発生を抑制できる。したがって、チャージポンプ回路301の電流効率を改善できる。
次に、チャージポンプ回路における容量素子段数とポンプ特性との関係について図12を用いて説明する。図12は、実施形態及びその第1〜第3の変形例におけるチャージポンプ回路の特性を示す図である。
チャージポンプ回路における容量素子の段数をM段とすると、チャージポンプ回路の実効的な電流効率Ieffは、次の数式1で表される。
eff∝1/(M+1)・・・数式1
また、チャージポンプ回路で発生可能な最高電圧をVmaxは、次の数式2で表される。
max=(M+1)×Vcc・・・数式2
数式1及び数式2に示されるように、容量素子の段数Mを増やすと、実効的な電流効率Ieffは下がるが、最高電圧Vmaxを上げることができる。
例えば、M=2の場合(すなわち、図4の構成の場合)、図12(a)に示すように、出力電圧が増加するとともに電流効率が低下する傾向にあり、その最高電圧2Vcc付近で急激に電流効率が低下する傾向にある。
M=3の場合(すなわち、図9の構成の場合)、図12(b)に示すように、出力電圧が増加するとともに電流効率が低下する傾向にあるが、出力電圧がVを超えると、点線で示す2段の昇圧動作から一点鎖線で示す3段の昇圧動作に自己整合的に切り替わる。これにより、電流効率の低下が抑制され、より高い最高電圧3Vccが発生可能となる。なお、Vは、Vccと2Vccとの間の値である。
M=4の場合(すなわち、図10の構成の場合)、図12(c)に示すように、出力電圧が増加するとともに電流効率が低下する傾向にあるが、出力電圧がVを超えると、点線で示す2段の昇圧動作から一点鎖線で示す3段の昇圧動作に自己整合的に切り替わる。出力電圧がVを超えると、一点鎖線で示す3段の昇圧動作から二点鎖線で示す4段の昇圧動作に自己整合的に切り替わる。これにより、段階的に電流効率の低下が抑制され、より高い最高電圧4Vccが発生可能となる。なお、Vは、2Vccと3Vccとの間の値である。
M=5の場合(すなわち、図11の構成の場合)、図12(d)に示すように、出力電圧が増加するとともに電流効率が低下する傾向にあるが、出力電圧がVを超えると、点線で示す2段の昇圧動作から一点鎖線で示す3段の昇圧動作に自己整合的に切り替わる。出力電圧がVを超えると、一点鎖線で示す3段の昇圧動作から二点鎖線で示す4段の昇圧動作に自己整合的に切り替わる。出力電圧がVを超えると、二点鎖線で示す4段の昇圧動作から点線で示す5段の昇圧動作に自己整合的に切り替わる。これにより、段階的に電流効率の低下が抑制され、より高い最高電圧5Vccが発生可能となる。なお、Vは、3Vccと4Vccとの間の値である。
また、チャージポンプ回路401は、図13に示すように、閾値キャンセル型で構成されていてもよい。図13は、実施形態の第4の変形例におけるチャージポンプ回路401の構成を示す回路図である。
チャージポンプ回路401は、メインのチャージポンプ回路1aとサブのチャージポンプ回路1iとを有する。メインのチャージポンプ回路1aは、図4に示すチャージポンプ1におけるダイオード接続されたトランジスタTr1,Tr2がダイオード接続されていないトランジスタTr1a,Tr2aに置き換えられて得られる。サブのチャージポンプ回路1iは、図4に示すチャージポンプ1におけるトランジスタTr2が省略されて得られる。メインのチャージポンプ回路1aとサブのチャージポンプ回路1iとで電圧検出回路10が共通化されているが、それぞれ電圧検出回路10が設けられていてもよい。
トランジスタTr1aは、ゲートがドレインに接続されておらず、ゲートにアクティブレベル(例えば、Vcc+Vth)が供給されている。トランジスタTr1は、ゲートがドレインに接続されておらず、ゲートにサブのチャージポンプ回路1iのノードN1が接続されている。すなわち、図4に示すチャージポンプ1におけるトランジスタTr2のドレインに接続されるノードN1とゲートに接続されるN1とを電気的に分離してトランジスタTr2aを構成する。これにより、ノードN1からトランジスタTr2aのドレイン・ソースを経て出力ノードNoutに電荷が転送されてもトランジスタTr2aのゲートにおける電荷が保持されるため、トランジスタTr2aのゲート・ソース間電圧を確保でき、トランジスタTr2aの動作を安定化できる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。上記の実施形態ではメモリセルアレイを有する半導体記憶装置を例に挙げて説明したが、本発明は、チャージポンプを有する半導体装置に対して、適宜に適用することができる。例えば、上記の実施形態は、チャージポンプとしての機能を専門的に提供するディスクリートの(単機能の)半導体装置に対して適用されてもよい。また、上記の実施形態に係る電子回路は、半導体基板上に実装されなくてもよく、電子機器に実装されてもよい。
1,101,201,301 チャージポンプ回路、2,3,103,104,204,205,305,306 充放電回路、10,120,230,340 電圧検出回路、100 半導体記憶装置(半導体装置、電子回路)、150 周辺回路、C1〜C5 容量素子。

Claims (8)

  1. チャージポンプ回路を備え、
    前記チャージポンプ回路は、
    ドレインが入力ノードに接続され、ソースが第1のノードに接続された第1のトランジスタと、
    ドレインが前記第1のノードに接続され、ソースが出力ノードに接続された第2のトランジスタと、
    一端が前記第1のノードに接続され、他端が第2のノードに接続された第1の容量素子と、
    クロック信号が供給される入力ノードと第1のラインを介して前記第2のノードに接続可能である出力ノードとを有する第1のインバータと、
    前記第1のラインに電気的に接続された入力ノードを有する第1の電圧検出回路と、
    ソースが第3のノードに接続され、ドレインが前記第2のノードに接続された第3のトランジスタと、
    前記第1の電圧検出回路に電気的に接続された入力ノードと第2のラインを介して第4のノードに接続可能である出力ノードとを有する第2のインバータと、
    一端が前記第4のノードに接続され、他端が前記第3のノードに接続された第2の容量素子と、
    を有する
    電子回路。
  2. 前記チャージポンプ回路は、
    前記第1の電圧検出回路の出力ノードに電気的に接続された第1の入力ノードとクロック信号が供給される第2の入力ノードと前記第2のインバータの入力ノードに接続された出力ノードとを有する第1の論理和ゲートをさらに有する
    請求項1に記載の電子回路。
  3. 前記チャージポンプ回路は、
    前記第2のラインに電気的に接続された入力ノードを有する第2の電圧検出回路と、
    ソースが第5のノードに接続され、ドレインが前記第4のノードに接続された第4のトランジスタと、
    前記第2の電圧検出回路の側に配された入力ノードと第6のノードに接続可能である出力ノードとを有する第3のインバータと、
    一端が前記第6のノードに接続され、他端が前記第5のノードに接続された第3の容量素子と、
    をさらに有する
    請求項1に記載の電子回路。
  4. 前記チャージポンプ回路は、
    前記第2のラインに電気的に接続された入力ノードを有する第2の電圧検出回路と、
    ソースが第5のノードに接続され、ドレインが前記第4のノードに接続された第4のトランジスタと、
    前記第2の電圧検出回路の出力ノードに電気的に接続された第1の入力ノードと前記クロック信号が供給される第2の入力ノードと出力ノードとを有する第2の論理和ゲートと、
    前記第2の論理和ゲートの出力ノードに接続された入力ノードと第6のノードに接続可能である出力ノードとを有する第3のインバータと、
    一端が前記第6のノードに接続され、他端が前記第5のノードに接続された第3の容量素子と、
    をさらに有する
    請求項2に記載の電子回路。
  5. チャージポンプ回路を備え、
    前記チャージポンプ回路は、
    直列に接続された2つのトランジスタの間のノードに一端が接続された第1の容量素子と、
    電源電圧を用いて、前記第1の容量素子の他端を充電する第1の充放電回路と、
    前記第1の容量素子の他端の電圧を検出する第1の電圧検出回路と、
    第1のトランジスタを介して前記第1の容量素子の他端に一端が接続可能である第2の容量素子と、
    前記第1の電圧検出回路の検出結果に応じて、前記第2の容量素子の他端に電荷をチャージ可能である第2の充放電回路と、
    を有する
    電子回路。
  6. チャージポンプ回路を備え、
    前記チャージポンプ回路は、
    前記第2の容量素子の他端の電圧を検出する第2の電圧検出回路と、
    第2のトランジスタを介して前記第2の容量素子の他端に一端が接続可能である第3の容量素子と、
    前記第2の電圧検出回路の検出結果に応じて、前記第3の容量素子の他端に電荷をチャージ可能である第3の充放電回路と、
    をさらに有する
    請求項5に記載の電子回路。
  7. 半導体基板と、
    前記半導体基板上に実装された請求項1から6のいずれか1項に記載の電子回路と、
    を備えた半導体装置。
  8. 前記半導体基板上に実装されたメモリセルアレイを更に有し、
    前記電子回路は、前記半導体基板上において、前記メモリセルアレイの周辺に配された請求項7に記載の半導体装置。
JP2020044333A 2020-03-13 2020-03-13 電子回路及び半導体装置 Pending JP2021145529A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020044333A JP2021145529A (ja) 2020-03-13 2020-03-13 電子回路及び半導体装置
CN202110022351.2A CN113394970B (zh) 2020-03-13 2021-01-08 电子电路及半导体装置
TW110100956A TWI758064B (zh) 2020-03-13 2021-01-11 電子電路及半導體裝置
US17/166,910 US11386935B2 (en) 2020-03-13 2021-02-03 Electronic circuit and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020044333A JP2021145529A (ja) 2020-03-13 2020-03-13 電子回路及び半導体装置

Publications (1)

Publication Number Publication Date
JP2021145529A true JP2021145529A (ja) 2021-09-24

Family

ID=77616671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020044333A Pending JP2021145529A (ja) 2020-03-13 2020-03-13 電子回路及び半導体装置

Country Status (4)

Country Link
US (1) US11386935B2 (ja)
JP (1) JP2021145529A (ja)
CN (1) CN113394970B (ja)
TW (1) TWI758064B (ja)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6404290B1 (en) 2000-11-10 2002-06-11 Marvell International, Ltd. Fast change charge pump having switchable boost function
JP3960513B2 (ja) * 2001-08-01 2007-08-15 シャープ株式会社 半導体チャージポンプ回路および不揮発性半導体記憶装置
JP2003168293A (ja) * 2001-11-29 2003-06-13 Matsushita Electric Ind Co Ltd 半導体記憶装置およびその製造方法
JP3713267B2 (ja) 2003-09-10 2005-11-09 イスロン株式会社 チャージポンプ回路
US7495501B2 (en) * 2005-12-27 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Charge pump circuit and semiconductor device having the same
JP2009148000A (ja) 2007-12-11 2009-07-02 Renesas Technology Corp 電源回路
TW200947838A (en) * 2008-05-14 2009-11-16 Univ Kun Shan A charge pump circuit using multi-staged voltage doubler clock scheme
WO2010018068A1 (en) * 2008-08-13 2010-02-18 Audioasics A/S Temperature compensated voltage pump
KR101745418B1 (ko) * 2010-12-30 2017-06-12 엘지디스플레이 주식회사 전원 공급부 및 이를 포함하는 액정표시장치
JP2013070462A (ja) * 2011-09-21 2013-04-18 Elpida Memory Inc 半導体装置及びこれを備える情報処理装置
CN103095127A (zh) * 2013-01-22 2013-05-08 上海艾为电子技术有限公司 一种电荷泵电路及电子设备
US9024680B2 (en) * 2013-06-24 2015-05-05 Sandisk Technologies Inc. Efficiency for charge pumps with low supply voltages
AU2014334523B2 (en) * 2013-10-28 2016-07-07 Smart Prong Technologies, Inc. Electrical circuit for delivering power to consumer electronic devices
US9502971B2 (en) * 2014-10-30 2016-11-22 Mediatek Singapore Pte. Ltd. Charge pump circuit, integrated circuit, electronic device and method therefor
US9917507B2 (en) * 2015-05-28 2018-03-13 Sandisk Technologies Llc Dynamic clock period modulation scheme for variable charge pump load currents
JP6591315B2 (ja) * 2016-03-09 2019-10-16 ルネサスエレクトロニクス株式会社 半導体装置、チャージポンプ回路、半導体システム、車両及び半導体装置の制御方法
JP7104407B2 (ja) * 2018-07-25 2022-07-21 ザインエレクトロニクス株式会社 電圧制御発振器、pll回路およびcdr装置

Also Published As

Publication number Publication date
US11386935B2 (en) 2022-07-12
TWI758064B (zh) 2022-03-11
TW202135325A (zh) 2021-09-16
US20210287722A1 (en) 2021-09-16
CN113394970B (zh) 2023-08-15
CN113394970A (zh) 2021-09-14

Similar Documents

Publication Publication Date Title
US8493785B2 (en) Page-buffer and non-volatile semiconductor memory including page buffer
US6587375B2 (en) Row decoder for a nonvolatile memory device
US7280407B2 (en) Semiconductor memory device including floating gates and control gates, control method for the same, and memory card including the same
US11056190B2 (en) Methods and apparatus for NAND flash memory
US8717816B2 (en) Semiconductor memory device
JP3425340B2 (ja) 不揮発性半導体記憶装置
US20080285355A1 (en) Flash memory device and method of erasing flash memory device
US6781904B2 (en) Low-voltage semiconductor memory device
TW201801075A (zh) 非揮發性半導體儲存裝置及其字元線的驅動方法
US11114166B2 (en) Semiconductor memory device
US7180789B2 (en) Semiconductor memory device with MOS transistors, each having a floating gate and a control gate, and memory card including the same
KR20130046521A (ko) 전압 선택 회로 및 이를 구비한 집적회로
JP6027665B1 (ja) 不揮発性半導体記憶装置
US10964377B2 (en) Semiconductor storage device
JPH0982097A (ja) 半導体不揮発性記憶装置およびそれを用いたコンピュータシステム
TWI585777B (zh) 非揮發性半導體儲存裝置
US10083755B2 (en) Discharge circuit and semiconductor memory device
US20100232233A1 (en) Nonvolatile semiconductor memory device
KR102194907B1 (ko) 반도체 기억장치 및 독출 방법
US8520465B2 (en) Semiconductor device
CN113394970B (zh) 电子电路及半导体装置
TWI727809B (zh) 半導體存儲裝置及預充電方法
CN113782083B (zh) 半导体存储装置及预充电方法
JP2016054014A (ja) 半導体記憶装置