JP2021118148A - 電池システムおよびリチウムイオン電池の劣化評価方法 - Google Patents

電池システムおよびリチウムイオン電池の劣化評価方法 Download PDF

Info

Publication number
JP2021118148A
JP2021118148A JP2020012450A JP2020012450A JP2021118148A JP 2021118148 A JP2021118148 A JP 2021118148A JP 2020012450 A JP2020012450 A JP 2020012450A JP 2020012450 A JP2020012450 A JP 2020012450A JP 2021118148 A JP2021118148 A JP 2021118148A
Authority
JP
Japan
Prior art keywords
evaluation value
value
lithium ion
ion battery
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020012450A
Other languages
English (en)
Other versions
JP7207343B2 (ja
Inventor
裕喜 永井
Hiroyoshi Nagai
裕喜 永井
広規 田代
Hiroki Tashiro
広規 田代
義宏 内田
Yoshihiro Uchida
義宏 内田
光洋 葛葉
Mitsuhiro Kuzuha
光洋 葛葉
雄基 菅生
Yuki Sugo
雄基 菅生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020012450A priority Critical patent/JP7207343B2/ja
Priority to EP20217357.1A priority patent/EP3859362A1/en
Priority to KR1020210009341A priority patent/KR102637912B1/ko
Priority to US17/158,361 priority patent/US11656290B2/en
Priority to CN202110118191.1A priority patent/CN113193241B/zh
Publication of JP2021118148A publication Critical patent/JP2021118148A/ja
Application granted granted Critical
Publication of JP7207343B2 publication Critical patent/JP7207343B2/ja
Priority to US18/132,550 priority patent/US20230251322A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】ハイレート劣化の進行度合いの評価精度を向上させる。【解決手段】ECU30は、評価値Dおよび面内評価値ηを用いて、リチウムイオン電池のハイレート劣化を評価する。評価値Dは、電極体115の積層方向における塩濃度ムラを評価するための指標である。面内評価値ηは、電極体115の面内方向の塩濃度ムラを評価するための指標である。ECU30は、演算サイクル毎に、現在の評価値Dを算出するとともに、リチウムイオン電池のSOCに基づいて現在の面内評価値ηを算出する。ECU30は、面内評価値ηを積算した面内積算評価値Σηの絶対値が基準値を上回った場合に、不感帯を超えた過去の評価値Dを積算した劣化評価値ΣDと、現在の評価値Dと、現在の面内評価値ηとに基づいて、ハイレート劣化を評価する一方で、上記絶対値が基準値を下回った場合には、劣化評価値ΣDに基づいてハイレート劣化を評価する。【選択図】図8

Description

本開示は、電池システムおよびリチウムイオン電池の劣化評価方法に関し、より特定的には、リチウムイオン電池のハイレート劣化の進行度合いの評価技術に関する。
リチウムイオン電池は、ニッケル水素電池などの他の二次電池と比べてエネルギー密度が高いという特徴を有する。そのため、近年、車両走行用の二次電池としてリチウムイオン電池が採用されるケースが増えている。
リチウムイオン電池において大電流での充放電が継続されると、電極体の内部におけるリチウムイオンの濃度分布が偏ることに起因してリチウムイオン電池の内部抵抗が一時的(可逆的)に上昇し得る。このような状態が継続すると、リチウムイオン電池の劣化を招く。この劣化は「ハイレート劣化」とも呼ばれる。
特開2017−103080号公報(特許文献1)は、評価値D(N)を算出するように構成された電池システムを開示する。評価値D(N)は、リチウムイオン電池の電解液中のイオン濃度の偏りを定量的に評価するために算出される。
特開2017−103080号公報 特許第5772962号 特開2016−143546号公報
リチウムイオン電池のハイレート劣化の進行度合いを高精度に評価する技術に対する要求が常に存在する。したがって、特許文献1に開示された電池システムと比べて、ハイレート劣化の進行度合いの評価精度をさらに向上させることが望ましい。
本開示は、かかる課題を解決するためになされたものであり、本開示の目的は、リチウムイオン電池を含む電池システムにおいて、ハイレート劣化の進行度合いの評価精度を向上させることである。
(1)本開示のある局面に従う電池システムは、リチウムイオン電池と、電流センサと、演算装置とを備える。リチウムイオン電池は、電解液に含浸され、各々面状の正極と負極とが積層された電極体を含む。電流センサは、リチウムイオン電池に充放電される電流を検出する。演算装置は、第1および第2の評価値を用いて、電極体内におけるリチウムイオン濃度分布の偏りである塩濃度ムラの発生に伴ってリチウムイオン電池の内部抵抗が上昇するリチウムイオン電池の劣化を評価する。第1の評価値(後述するD)は、正極および負極の積層方向における塩濃度ムラを評価するための指標である。第2の評価値(後述するη)は、正極および負極の面内方向の塩濃度ムラを評価するための指標である。演算装置は、演算サイクル毎に、電流センサの検出値に基づいて現在の第1の評価値を算出するとともに、リチウムイオン電池のSOC(State Of Charge)に基づいて現在の第2の評価値を算出する。演算装置は、第2の評価値を積算した第2の積算値(Ση)の絶対値が基準値を上回った場合に、所定の範囲を超えた過去の第1の評価値を積算した第1の積算値(ΣD)と、現在の第1の評価値(D)と、現在の第2の評価値(η)とに基づいて、リチウムイオン電池の劣化を評価する一方で、上記絶対値が基準値を下回った場合には、第1の積算値(ΣD)に基づいてリチウムイオン電池の劣化を評価する。
(2)演算装置は、絶対値が基準値を上回った場合に、時間経過に伴う塩濃度ムラの緩和を表す補正係数により補正した第1の積算値に、現在の第1の評価値と現在の第2の評価値との積を加算することによって、リチウムイオン電池の劣化を評価する一方で、絶対値が基準値を下回った場合には、補正係数により補正した第1の積算値に基づいて、リチウムイオン電池の劣化を評価する。
上記(1),(2)の構成によれば、第1の評価値に加えて第2の面内評価値が算出される。詳細は後述するが、第2の評価値を導入して、積算方向の塩濃度ムラと面内方向の塩濃度ムラとの発生順序、および、面内方向の塩濃度ムラの発生しやすさのSOC依存性を考慮することで、電極体の内部における塩濃度ムラの進行度合いを、より正確に定量化できる。よって、リチウムイオン電池のハイレート劣化の進行度合いの評価精度を向上させることができる。
(3)演算装置は、放電過多の状態にあるリチウムイオン電池への充電電荷量が第1の判定値を超えた場合、または、充電過多の状態にあるリチウムイオン電池からの放電電荷量が第2の判定値を超えた場合には、第2の積算値をリセットする。
上記(3)の構成においては、放電過多の状態にあるリチウムイオン電池への充電電荷量が第1の判定値を超えた場合、または、充電過多の状態にあるリチウムイオン電池からの放電電荷量が第2の判定値を超えた場合、すなわち充放電方向が切り替えられた場合には、第2の積算値をリセットする(リセット方式)。上記(3)の構成によれば、簡易な演算により、塩濃度ムラの解消を表現できる。
(4)演算装置は、放電過多の状態にあるリチウムイオン電池への充電時、または、充電過多の状態にあるリチウムイオン電池からの放電時には、演算サイクル毎に、第2の積算値から現在の第2の評価値を減算する。
上記(4)の構成においては、減算方式は、リチウムイオン電池の充放電方向の切り替え後に面内方向の塩濃度ムラの解消量を逐次減算していく(減算方式)。この方式は塩濃度ムラの緩和の実体に、より即しているので、上記(4)の構成によれば、塩濃度ムラの解消をより正確に表現できる。
(5)電池システムは、リチウムイオン電池の温度を検出する温度センサをさらに備える。演算装置は、リチウムイオン電池のSOCおよび温度に基づいて第2の評価値を算出する。
上記(5)の構成によれば、SOC依存性に加えて温度依存性を考慮することで、第2の評価値をより高精度に算出できる。
(6)本開示の他の局面に従うリチウムイオン電池の劣化評価方法において、リチウムイオン電池は、電解液に含浸され、各々面状の正極と負極とが積層された電極体を含む。リチウムイオン電池の劣化は、電極体内におけるリチウムイオン濃度分布の偏りである塩濃度ムラの発生に伴ってリチウムイオン電池の内部抵抗が上昇する劣化であって第1および第2の評価値を用いて評価される。第1の評価値は、正極および負極の積層方向における塩濃度ムラを評価するための指標である。第2の評価値は、正極および負極の面内方向の塩濃度ムラを評価するための指標である。劣化評価方法は、第1〜第3のステップを含む。第1のステップは、演算サイクル毎に、リチウムイオン電池に充放電される電流に基づいて現在の第1の評価値を算出するとともに、リチウムイオン電池のSOCに基づいて現在の第2の評価値を算出するステップである。第2のステップは、第2の評価値を積算した第2の積算値の絶対値が基準値を上回った場合に、所定の範囲を超えた過去の第1の評価値を積算した第1の積算値と、現在の第1の評価値と、現在の第2の評価値とに基づいて、リチウムイオン電池の劣化を評価するステップである。第3のステップは、絶対値が基準値を下回った場合には、第1の積算値に基づいてリチウムイオン電池の劣化を評価するステップである。
上記(6)の方法によれば、上記(1)の構成と同様に、リチウムイオン電池の内部抵抗の算出精度を向上させることができる。
本開示によれば、リチウムイオン電池の内部抵抗の算出精度を向上させることができる。
実施の形態1に係る電池システムが搭載された車両の全体構成を概略的に示す図である。 各セルの構成をより詳細に示す図である。 電極体の構成をより詳細に説明するための図である。 実施の形態1におけるハイレート劣化を抑制するための制御を示すフローチャートである。 実施の形態1におけるハイレート劣化を抑制するための制御の一例を示すタイムチャートである。 電極体の内部にて生じるリチウムイオンの濃度分布の偏りを説明するための概念図である。 電極体の面内方向の塩濃度ムラの生じやすさのSOC(State Of Charge)依存性を説明するための概念図である。 リセット方式の劣化評価値算出処理の処理手順を示すフローチャート(第1図)である。 リセット方式の劣化評価値算出処理の処理手順を示すフローチャート(第2図)である。 不感帯係数の算出手法の一例を示す図である。 履歴変数の算出手法の一例を示す図である。 減算方式の劣化評価値算出処理の処理手順を示すフローチャートである。
以下、本実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付して、その説明は繰り返さない。
以下に示す実施の形態では、本開示に係る電池システムが車両に搭載される構成について説明する。しかし、本開示に係る電池システムの用途は車両用に限定されるものではなく、たとえば定置用であってもよい。
[実施の形態1]
<電池システムの全体構成>
図1は、実施の形態1に係る電池システムが搭載された車両の全体構成を概略的に示す図である。図1を参照して、車両1は、代表的にはハイブリッド車両(HV:Hybrid Vehicle)である。しかし、本開示に係る電池システムは、HVに限らず、バッテリが搭載される車両全般に適用可能である。そのため、車両1は、プラグインハイブリッド車(PHV:Plug-in Hybrid Vehicle)、電気自動車(EV:Electric Vehicle)または燃料電池自動車(FCV:Fuel Cell Vehicle)などであってもよい。
車両1は電池システム2を備える。電池システム2は、バッテリ10と、監視ユニット20と、電子制御装置(ECU:Electronic Control Unit)30とを備える。電池システム2は、バッテリ10の状態を監視したりバッテリ10の状態を診断したりする。車両1は、電池システム2に加えて、電力制御装置(PCU:Power Control Unit)40と、モータジェネレータ51,52と、エンジン60と、動力分割装置70と、駆動軸80と、駆動輪90とを備える。
バッテリ10は、複数のセル11を含む組電池である。各セル11は、非水電解液を含む二次電池であり、具体的にはリチウムイオン電池である。セル11の構成については図2および図3にて、より詳細に説明する。バッテリ10は、モータジェネレータ51,52を駆動するための電力を蓄え、PCU40を通じてモータジェネレータ51,52へ電力を供給する。また、バッテリ10は、モータジェネレータ51,52の発電時にPCU40を通じて発電電力を受けて充電される。
監視ユニット20は、電圧センサ21と、電流センサ22と、温度センサ23とを含む。電圧センサ21は、複数のセル11の各々の電圧Vを検出する。電流センサ22は、バッテリ10に充放電される電流Iを検出する。温度センサ23は、複数のセル11からなるブロック(モジュールとも呼ばれる)毎の温度Tを検出する。各センサは、その検出結果をECU30に出力する。
なお、各センサの監視単位は特に限定されず、セル単位であってもよいし、隣接する複数のセル単位であってもよいし、ブロック単位であってもよいし、バッテリ10全体であってもよい。以下ではバッテリ10の内部構成を特に区別せず、単にバッテリ10と記載する場合がある。
また、バッテリ10に充放電される電流Iの符号に関して、バッテリ10への放電方向を正とし、バッテリ10への充電方向を負とする。バッテリ10に充放電にされる電力の符号についても同様である。
ECU30は、CPU(Central Processing Unit)などのプロセッサ31と、(ROM(Read Only Memory)およびRAM(Random Access Memory)などのメモリ32と、各種信号を入出力するための入出力ポート(図示せず)とを含む。ECU30は、各センサから受ける信号ならびにメモリ32に記憶されたプログラムおよびマップに基づいて、車両1を所望の状態に制御するための各種処理を実行する。より具体的には、ECU30は、エンジン60およびPCU40を制御することにより、バッテリ10の充放電を制御する。また、ECU30は、バッテリ10の異常の有無を診断したりバッテリ10の劣化状態を評価したりする。劣化状態の評価については後に詳細に説明する。
なお、ECU30は、機能毎に複数のECUに分割されていてもよい。たとえば、ECU30を、バッテリ10の監視・診断・評価に特化したECU(電池ECU)と、エンジン60を制御するECU(エンジンECU)と、車両1の全体を制御するECU(HVECU)とに分割できる。
PCU40は、ECU30からの制御信号に従って、バッテリ10とモータジェネレータ51,52との間で双方向の電力変換を実行する。PCU40は、モータジェネレータ51,52の状態を別々に制御可能に構成されていてもよい。この場合、PCU40は、たとえば、モータジェネレータ51,52にそれぞれ対応して設けられる2つのインバータと、各インバータに供給される直流電圧をバッテリ10の出力電圧以上に昇圧するコンバータ(いずれも図示せず)とを含む。
モータジェネレータ51,52の各々は、交流回転電機であり、たとえばロータに永久磁石(図示せず)が埋設された三相交流同期電動機である。モータジェネレータ51は、主として、動力分割装置70を経由してエンジン60により駆動される発電機として用いられる。モータジェネレータ51が発電した電力は、PCU40を介してモータジェネレータ52またはバッテリ10に供給される。モータジェネレータ52は、主として電動機として動作する。モータジェネレータ52は、バッテリ10からの電力およびモータジェネレータ51の発電電力の少なくとも一方を受けて駆動され、モータジェネレータ52の駆動力は駆動軸80に伝達される。一方、車両の制動時または下り斜面での加速度低減時には、モータジェネレータ52は、発電機として動作して回生発電を行う。モータジェネレータ52が発電した電力は、PCU40を介してバッテリ10に供給される。
エンジン60は、ガソリンエンジンまたはディーゼルエンジン等の内燃機関である。エンジン60は、空気と燃料との混合気を燃焼させたときに生じる燃焼エネルギーを運動子(ピストンおよびロータなど)の運動エネルギーに変換することによって動力を出力する。
動力分割装置70は、たとえば、サンギヤ、キャリア、リングギヤの3つの回転軸を有する遊星歯車機構(図示せず)を含む。動力分割装置70は、エンジン60から出力される動力を、モータジェネレータ51を駆動する動力と、駆動輪90を駆動する動力とに分割する。
<セル構成>
図2は、各セル11の構成をより詳細に示す図である。図2におけるセル11は、その内部を透視して図示されている。
図2を参照して、セル11は、たとえば角型(略直方体形状)の電池ケース111を有する。電池ケース111の上面は蓋体112によって封止されている。正極端子113および負極端子114の各々の一方端は、蓋体112から外部に突出している。正極端子113および負極端子114の他方端は、電池ケース111の内部において内部正極端子および内部負極端子(いずれも図示せず)にそれぞれ接続されている。電池ケース111の内部には電極体15が収容されている。電極体15は、正極116と負極117とがセパレータ118を介して積層され、その積層体が捲回されることにより形成されている。
図中x方向は、正極116、負極117およびセパレータ118の各層の面に沿った方向である。以下、この方向を「面内方向」と呼ぶ。y方向は、上記各層が積層された方向である。以下、この方向を「積層方向」と呼ぶ。
図3は、電極体15の構成をより詳細に説明するための図である。図3では簡単のため、正極116、負極117およびセパレータ118が1層ずつ示されている。
正極116は、正極集電箔116Aと、正極集電箔116Aの表面に形成された正極活物質層116B(正極活物質、導電材およびバインダを含む層)とを含む。同様に、負極117は、負極集電箔117Aと、負極集電箔117Aの表面に形成された負極活物質層117B(負極活物質、導電材およびバインダを含む層)とを含む。セパレータ118は、正極活物質層116Bおよび負極活物質層117Bの両方に接するように設けられている。正極活物質層116B、負極活物質層117Bおよびセパレータ118は、電解液に含浸されている。
正極活物質層116B、負極活物質層117B、セパレータ118および電解液には、リチウムイオン電池の正極活物質、負極活物質、セパレータおよび電解液として従来公知の材料をそれぞれ用いることができる。一例として、正極活物質層116Bには、コバルト酸リチウムの一部がニッケルおよび/またはマンガンにより置換された三元系の材料を用いることができる。負極活物質層117Bには、たとえば黒鉛を用いることができる。セパレータ118には、ポリオレフィン(たとえばポリエチレンまたはポリプロピレン)を用いることができる。電解液は、有機溶媒(たとえばDMC(dimethyl carbonate)とEMC(ethyl methyl carbonate)とEC(ethylene carbonate)との混合溶媒)と、リチウム塩(たとえばLiPF)と、添加剤(たとえばLiBOB(lithium bis(oxalate)borate)またはLi[PF(C])等を含む。
なお、セル11の上記構成は例示に過ぎない。たとえば、セル11は、電極体が捲回構造ではなく積層構造を有するものであってもよい。また、角型の電池ケースに限らず、円筒型またはラミネート型の電池ケースも採用可能である。
<ハイレート劣化>
以上のように構成されたバッテリ10においては、大きな電流(ハイレート電流)での充放電が継続的に行われた場合に「ハイレート劣化」が生じ得る。ハイレート劣化とは、電極体15の内部におけるリチウムイオンの濃度分布が偏ることを1つの要因としてバッテリ10の内部抵抗が上昇する劣化現象である。以下では、リチウムイオンの濃度分布を「塩濃度分布」とも呼び、リチウムイオンの濃度分布の偏りを「塩濃度ムラ」とも呼ぶ。ECU30は、バッテリ10のハイレート劣化の進行度合いを塩濃度ムラに基づいて評価する「劣化評価値ΣD」を算出する。そして、ECU30は、算出した劣化評価値ΣDに応じて、バッテリ10のハイレート劣化を抑制するための制御(ハイレート劣化抑制制御)を実行する。
図4は、実施の形態1におけるハイレート劣化抑制制御を示すフローチャートである。図4を参照して、このフローチャートは、予め定められた演算サイクルΔt毎に繰り返し実行される。各ステップは、ECU30によるソフトウェア処理により実現されるが、ECU30内に作製されたハードウェア(電気回路)により実現されてもよい。以下、ステップをSと略す。
S1において、ECU30は、監視ユニット20に含まれる各センサの検出値を読み込む。これにより、バッテリ10の電圧V、電流Iおよび温度Tが取得される。
S2において、ECU30は、たとえばS1で取得された電流Iに基づいて、バッテリ10のSOCを算出する。なお、SOCの算出方法としては、電流積算(クーロンカウント)による手法、開放電圧(OCV:Open Circuit Voltage)の推定による手法などの公知の手法を適宜採用できる。
S3において、ECU30は、バッテリ10の充放電に伴う塩濃度ムラの増大および減少の両方を考慮して、劣化評価値ΣDを算出するための評価値Dを算出する。N回目(今回)の演算サイクルで算出される評価値をD(N)と表し、(N−1)回目(前回)の演算サイクルで算出された評価値をD(N−1)と表す。Nは自然数である。評価値D(N)は、漸化式である下記式(1)に従って算出される。評価値の初期値D(0)は、たとえば0に設定される。
D(N)=D(N−1)−D(−)+D(+) ・・・(1)
式(1)において、評価値の減少量D(−)は、前回の評価値算出時から今回の評価値算出時までの間(演算サイクルΔtの間)にリチウムイオンが拡散することによる塩濃度ムラの減少量を表す。減少量D(−)は、下記式(2)のように忘却係数αを用いて算出できる。なお、0<α×Δt<1である。
D(−)=α×Δt×D(N−1) ・・・(2)
忘却係数αは、電解液中のリチウムイオンの拡散速度に対応する係数であり、バッテリ10の温度TおよびSOCに依存する。そのため、忘却係数αと、温度TおよびSOCとの相関関係が実験またはシミュレーションにより予め取得され、マップまたは変換式としてECU30のメモリ32に格納されている。このマップまたは変換式を参照することにより、温度TおよびSOCから忘却係数αを算出できる。後述する電流係数β、限界閾値Cについても同様である。忘却係数α、電流係数βおよび限界閾値Cは、いずれも正である。
式(1)に戻り、評価値の増加量D(+)は、前回の評価値算出時から今回の評価値算出時までの間(演算サイクルΔtの間)にバッテリ10が充放電されることによる塩濃度ムラの増大量を表す。増加量D(+)は、下記式(3)に示すように、電流係数β、限界閾値Cおよび電流Iを用いて算出できる。
D(+)=(β/C)×I×Δt ・・・(3)
式(3)において、バッテリ10の放電時には、放電電流I>0であるため、増加量D(+)は正である。放電電流の大きさ|I|が大きいほど、演算サイクルΔtが長いほど、評価値D(N)の正方向への変化量が大きくなる。一方、バッテリ10の充電時には、充電電流I<0であるため、増加量D(+)は負である。充電電流の大きさ|I|が大きいほど、演算サイクルΔtが長いほど、評価値D(N)の負方向への変化量が大きくなる。このことからも、増加量D(+)がバッテリ10の充放電による塩濃度ムラの増大を示していることが理解される。
式(1)における「−D(−)」は、評価値D(N)を0へ向けて変化させる項である。式(2)から分かるように、忘却係数αが大きいほど、演算サイクルΔtが長いほど、評価値D(N)は0に速く近づくように変化する。このことから、減少量D(−)がリチウムイオンの拡散に伴う塩濃度ムラの減少(回復)を示していることが理解される。
S4において、ECU30は、S3にて算出した評価値D(N)に基づいて劣化評価値ΣD(N)を算出する(劣化評価値算出処理)。劣化評価値ΣD(N)については、バッテリ10の放電過多の状態を評価するための値と、バッテリ10の充電過多の状態を評価するための値とを別々に算出してもよい(たとえば特許文献1参照)。図4に示す例では、説明の複雑化を避けて本開示の特徴の理解を容易にするため、充電過多の状態の評価に劣化評価値ΣDを用いる例について説明する。
ECU30は、劣化評価値ΣD(N)が所定の閾値THを超えた場合にバッテリ10への充電電力の制御上限値(充電電力上限値Win)の絶対値を小さくすることによってバッテリ10の充電を抑制する。充電電力上限値Winは、Win≦0の範囲内に設定され、Win=0のときはバッテリ10への充電が禁止される。このような充電制限により、ハイレート充電によるバッテリ10のさらなる劣化を抑制できる。
具体的には、S5において、ECU30は、劣化評価値ΣD(N)を閾値TH(TH<0)と比較する。ECU30は、ΣD(N)≧THの場合、すなわち、劣化評価値ΣD(N)が閾値THに達していない場合(S5においてNO)には、充電電力上限値WinをW0(Win=W0<0)に設定する(S7)。W0は、デフォルト値であり、たとえば、バッテリ10の定格出力電力に基づいて定められる。W0は、バッテリ10の温度TまたはSOCに応じて可変に設定されてもよい。
これに対し、ΣD(N)<THの場合、すなわち、劣化評価値ΣD(N)が閾値THを超えた場合(S5においてYES)は、ECU30は、充電電力上限値Winをデフォルト値W0よりも小さな値に設定する(Win<W0<0)に設定する(S6)。このように、劣化評価値ΣD(N)が閾値THを超過してからは、劣化評価値ΣD(N)が閾値THに達する前と比べて、充電電力上限値Winの大きさを小さくすることにより、ハイレート充電によるバッテリ10のさらなる劣化を抑制できる。なお、充電電力上限値Winの大きさの制限を強めることをWin介入とも呼ぶ。
<不感帯>
図5は、実施の形態1におけるハイレート劣化抑制制御の一例を示すタイムチャートである。図5において、横軸は経過時間を表す。縦軸は、上から順に、評価値D(N)、劣化評価値ΣD(N)および充電電力上限値Winを表す。
図5を参照して、初期時刻t0では評価値D(N)の初期値は0であり、この状態では塩濃度ムラは発生していない状況を想定する。その後、前述のように、バッテリ10が放電されると、評価値D(N)は正方向に増加する一方で、バッテリ10が充電されると、評価値D(N)は負方向に増加する(式(1)〜(3)参照)。
本実施の形態では、充電側の評価値D(N)に関し、2つの閾値Dtr+,Dtr−が設定されている。これらの閾値に挟まれた範囲を「不感帯」と呼ぶ。不感帯は、本開示に係る「所定の範囲」に相当する。
評価値D(N)が不感帯を超えた期間、すなわち、D(N)>Dtr+またはD(N)<Dtr−である期間には、その時点での評価値D(N)がそれまでの劣化評価値ΣD(N−1)に加算される。これに対し、評価値D(N)が不感帯を超えていない期間、すなわち、Dtr−≦D(N)≦Dtr+である期間には、評価値D(N)は劣化評価値ΣD(N−1)に加算されない。
図5に示す例では、初期時刻t0から時刻taまでの期間、評価値D(N)が不感帯外であるため、劣化評価値ΣD(N)は0に維持される。D(N)>Dtr+となる時刻taから時刻tbまでの期間には、評価値D(N)が劣化評価値ΣD(N)に加算されることで、劣化評価値ΣD(N)は正方向に増加する。評価値D(N)が再び不感帯外となる時刻tbから時刻tcまでの期間には、評価値D(N)は加算されないが、後述する減衰係数γの影響により、劣化評価値ΣD(N)の絶対値は減少して徐々に0に近付く。D(N)<Dtr−となる時刻tc以降には、劣化評価値ΣD(N)は負方向に増加する。
時刻tdにおいて、劣化評価値ΣD(N)が閾値THに達すると、バッテリ10の充電電力上限値Winの絶対値がW0未満に抑制される(Win介入)。たとえば車両1の走行中には、モータジェネレータ52の回生制動による発電電力が充電電力上限値Winに従って抑制される。これにより、評価値D(N)および劣化評価値ΣD(N)が0へ近付くように変化することで、充電側への塩濃度ムラのさらなる増大を回避できる。
<塩濃度ムラ>
前述のように、大電流(ハイレート)での充放電が行われると、電極体15の内部に塩濃度ムラが生じ得る。本発明者らは、塩濃度ムラが2種類に区別できる点に着目した。
図6は、電極体15の内部にて生じるリチウムイオンの濃度分布の偏り(塩濃度ムラ)を説明するための概念図である。図6には、理解を助けるため、図3にて説明した電極体15の構成を再度図示している。
塩濃度ムラは、電極体15における正極116および負極117等の各層の積層方向(y方向)に加えて面内方向(x方向)にも生じ得る。図6には、積層方向の塩濃度ムラの一例を示すとともに、面内方向の塩濃度ムラの一例を示している。
2種類の塩濃度ムラは順に発生する。たとえばハイレート充電時には、まず、積層方向に塩濃度ムラが生じる。その後もハイレート充電が継続した場合、負極117が膨張することで、電極体15(負極117)に保持された電解液が電極体15から押し出される。電解液の流出に伴い、面内方向にも塩濃度ムラが生じる。ハイレート放電時も同様に、積層方向に塩濃度ムラが発生した後に面内方向に塩濃度ムラが発生する。
なお、ここで説明したように、面内方向の塩濃度ムラは、電極体15の体積変化(膨張・収縮)に由来する。したがって、面内方向の塩濃度ムラの発生の有無(塩濃度分布)に関しては電池ケース111に加わる荷重変動から推定できる。
面内方向の塩濃度ムラは、積層方向の塩濃度ムラの発生後に直ちに発生するものではない。積層方向の塩濃度ムラが発生してからバッテリ10の充放電をさらに継続しない限り、面内方向の塩濃度ムラは発生しない。また、面内方向の塩濃度ムラの生じやすさ(面内方向の塩濃度ムラが進む速さ)はSOCに依存する。
図7は、電極体15における面内方向の塩濃度ムラの生じやすさのSOC依存性を説明するための概念図である。図7において、横軸は、バッテリ10のSOCを表す。縦軸は、電極体15からの電解液の押し出し量を表す。前述のメカニズムに従い、縦軸を面内方向の塩濃度ムラの生じやすさと読み替えてもよい。
図7に示す例では、SOCが0%からScまでの低SOC領域では、SOCがSc以上である中SOC領域または高SOC領域と比べて、電極体15からの電解液の押し出しが相対的に起こりにくい。よって、低SOC領域では面内方向の塩濃度ムラが相対的に生じにくい。
ここで説明したような塩濃度ムラの発生順序と面内方向の塩濃度ムラのSOC依存性とを考慮しない場合、バッテリ10のハイレート劣化の進行度合いを適切に評価できない可能性がある。
たとえば、EVでは、バッテリのSOCが高SOC状態から低SOC状態に向けて次第に減少していく。これに対し、HVでは、予め定められたSOC領域内でバッテリの充放電が繰り返されることが多い。したがって、HVである車両1では、EVと比べて、バッテリ10のSOC変動が小さい。図7に示す例では、バッテリ10のSOC変動が低SOC領域内に留まる状況であっても電極体15の面内方向の塩濃度ムラが生じにくいことを考慮せずに評価値D(N)を積算し続けた場合、劣化評価値ΣD(N)が過大な値となってしまう可能性がある。言い換えると、バッテリ10のハイレート劣化の進行度合いを過大に評価してしまう可能性がある。その結果、たとえば、本来は不要であるにも拘わらずWin介入を実行し、回生電力をバッテリ10に回収し切れずに車両1の燃費が悪化してしまう可能性がある。
そこで、本実施の形態においては、面内方向の塩濃度ムラを評価するための評価値を導入する。この評価値を「面内評価値η」と記載する。また、面内評価値ηの積算値を「面内面内積算評価値Ση」と記載する。劣化評価値算出処理に面内評価値ηを導入することで、塩濃度ムラの発生順序と面内方向の塩濃度ムラのSOC依存性とを考慮に入れ、バッテリ10のハイレート劣化の進行度合いを実体に合わせて評価することが可能になる。実施の形態1では「リセット方式」の劣化評価値算出処理について説明する。
<リセット方式の処理フロー>
図8および図9は、リセット方式の劣化評価値算出処理(図4のS4の処理)の処理手順を示すフローチャートである。この例では、充電側における面内評価値ηと、放電側における面内評価値ηとが別々に算出される。
図8を参照して、S101において、ECU30は、バッテリ10のSOCに基づいてSOC係数を算出する。SOC係数とは、面内方向の塩濃度ムラの生じやすさを表現するためのパラメータであり、バッテリ10のSOCによって異なり得る。バッテリ10の充電側と放電側とで別のSOC係数を定めることができる。充電側におけるSOC係数をKと記載し、放電側におけるSOC係数をKと記載する。
図10は、SOC係数Kの算出手法の一例を示す図である。図10において、横軸はバッテリ10のSOCを表し、縦軸はSOC係数Kを表す。電極体15の面内方向の塩濃度ムラが生じやすいほど、SOC係数Kは大きくなる。図7に例示したように低SOC領域では塩濃度ムラが生じにくく、SOCが高くなるに従って塩濃度ムラが生じやすくなる場合には、SOCが高いほどSOC係数Kも大きい。
図10に示すような、バッテリ10のSOCとSOC係数Kとの間の関係を事前に求め、マップまたは変換式としてECU30のメモリ32に格納させておく。これにより、ECU30は、バッテリ10のSOCからSOC係数Kを算出できる。
SOC係数KにはSOC依存性に加えて温度依存性を持たせてもよい。この場合には、バッテリ10のSOCと温度TとSOC係数Kとの間の関係を、たとえば3次元マップとして予め求めておくことができる。SOC係数Kは、バッテリ10のSOCが高くなるに従って大きくなるとともに、バッテリ10の温度Tが高くなるに従って大きくなる。
図8を再び参照して、S102において、ECU30は、放電側のSOC係数Kについても充電側のSOC係数Kと同様にして算出する。
S103において、ECU30は、バッテリ10の充放電履歴を表す履歴変数Hを算出する。一般に、バッテリの充放電履歴は、バッテリに充放電される電流の向きと大きさとによって表される。よって、履歴変数Hは、電流Iに依存するパラメータであり、少なくとも電流Iに基づいて算出される。
図11は、履歴変数Hの算出手法の一例を示す図である。図11において、横軸はバッテリ10に充放電される電流Iを表し、縦軸は履歴変数Hを表す。履歴変数Hは正負の値を取り得る。図11に示す例では、履歴変数Hと電流Iとは等符号である。また、電流Iの絶対値が大きいほど履歴変数Hの絶対値も大きくなる。
履歴変数HについてもSOC係数K(またはK)と同様に、バッテリ10の電流Iと履歴変数Hとの間の関係をマップ等として事前に規定しておくことで、バッテリ10の電流Iから履歴変数Hを算出できる。なお、演算サイクルの序数を記載していないが、SOC係数K,Kおよび履歴変数HもN回目の演算サイクルにて算出された値である。
図8に戻り、S104において、ECU30は、充電側のSOC係数Kと履歴変数Hとの積により、N回目の演算サイクルにおける充電側の面内評価値η(N)を算出する(下記式(4)参照)。
η(N)=K×H ・・・(4)
S105において、ECU30は、S104にて算出した面内評価値η(N)を用いて、N回目の演算サイクルまでの充電側の面内積算評価値Ση(N)を算出する。面内積算評価値Ση(N)は、下記式(5)に示すように、(N−1)回目の演算サイクルまでの面内積算評価値Ση(N−1)にN回目の面内評価値η(N)を加算することで算出される。
Ση(N)=Ση(N−1)+η(N) ・・・(5)
放電側についても充電側と同様に、ECU30は、放電側のSOC係数Kと履歴変数Hとの積により、N回目の演算サイクルにおける放電側の面内評価値η(N)を算出する(下記式(6)参照)(S106)。また、ECU30は、放電側の面内評価値η(N)を積算することで放電側の面内積算評価値Ση(N)を算出する(下記式(7)参照)(S107)。
η(N)=K×H ・・・(6)
Ση(N)=Ση(N−1)+η(N) ・・・(7)
バッテリ10の充電と放電とが断続的に繰り返された場合であっても、バッテリ10への充電電荷量[単位:Ah]の方がバッテリ10からの放電電荷量よりも有意に大きいと、バッテリ10は充電過多の状態になり、充電側の塩濃度ムラが発生し得る。充電過多の状態にあるバッテリ10においても、ある程度の放電が行われると、充電側の塩濃度ムラが解消され得る。逆に、放電電荷量の方が充電電荷量よりも有意に大きいと、バッテリ10が放電過多の状態となり、放電側の塩濃度ムラが発生し得る。放電過多の状態にあるバッテリ10に対してある程度の充電が行われた場合にも、放電側の塩濃度ムラが解消され得る。
図9を参照して、S108において、ECU30は、バッテリ10が充電過多の状態にあって、かつ、バッテリ10が充電過多の状態になってから現在までのバッテリ10からの放電電荷量Qの絶対値が所定の判定値Q2以上であるかどうかを判定する。放電電荷量Qは、バッテリ10からの放電電流Iと経過時間とから算出できる。放電電荷量Qに代えて、バッテリ10から放電された電力量[単位:Wh]を用いてもよい。
判定値Q2は以下のように定めることができる。電極体15の面内方向に関し、充電側の塩濃度ムラが発生したセルを準備する。そして、そのセルを放電し、充電側の塩濃度ムラが解消するまでにセルから放電された電荷量を測定する。また、そのときの電池ケース111の荷重の変動挙動を測定する。これにより、面内方向の塩濃度ムラが解消したと荷重変動に基づき判定できるまでの放電電荷量Qを判定値Q2として設定できる。
放電電荷量Qの絶対値が判定値Q2以上である場合(S108においてYES)、充電過多の状態にあるバッテリ10からの放電により、充電側の塩濃度ムラの解消が進んだ可能性がある。この場合、ECU30は、処理をS110に進め、それまで算出した充電側の面内積算評価値Ση(N)をリセットする。すなわち、ECU30は、Ση(N)=0に設定する。その後、ECU30は処理をS112に進める。
一方、S108にて放電電荷量Qの絶対値が判定値Q2未満である場合(S108においてNO)、ECU30は、バッテリ10が放電過多の状態にあって、かつ、放電過多の状態になってから現在までのバッテリ10への充電電荷量Qの絶対値が所定の判定値Q1以上であるかどうかを判定する(S109)。
充電電荷量Qの絶対値が判定値Q1以上である場合には、放電過多の状態にあるバッテリ10に対して行われた充電により、放電側の塩濃度ムラの解消が進んだ可能性がある。したがって、S109にてYESと判定されると、ECU30は、放電側の面内積算評価値Ση(N)をリセットする(S111)。その後、ECU30は処理をS112に進める。なお、判定値Q1についても判定値Q2と同様に、面内方向の塩濃度ムラが解消するまでの充電電荷量Qを事前に測定することで設定できる。
放電電荷量Qの絶対値が判定値Q2未満であり、かつ、充電電荷量Qの絶対値が判定値Q1未満である場合(S108においてNOかつS109においてNO)には、ECU30は、S110,S111の処理をスキップして処理をS112に進める。この場合には、面内評価値η,ηの積算が継続される。
S112において、ECU30は、S3にて算出した評価値D(N)(図4参照)が2つの閾値Dtr+,Dtr−により定義される不感帯を超えたかどうかを判定する。評価値D(N)が不感帯を超えた場合、すなわち、評価値D(N)が閾値Dtr+よりも大きいか閾値Dtr−よりも小さい場合(S112においてYES)、ECU30は処理をS113に進める。
S113において、ECU30は、充電側の面内積算評価値Ση(N)の絶対値が所定の第1基準値REF1以上であるかどうかを判定する。第1基準値REF1の大きさは、充電側の塩濃度ムラが発生しやすい走行パターンで車両1が走行した場合に充電側の面内積算評価値Ση(N)の絶対値が瞬間的に取り得る最大値以上に設定される。
充電側の面内積算評価値Ση(N)が第1基準値REF1以上である場合(S113においてYES)、つまり、充電側の面内積算評価値Ση(N)がリセットされることなく面内評価値ηの積算が十分に進んだ場合には、電極体15の積層方向に加えて面内方向についても充電側の塩濃度ムラが発生している可能性がある。この場合、ECU30は、積層方向および面内方向の両方の塩濃度ムラを考慮に入れるべく、下記式(8)に従って劣化評価値ΣDを算出する(S115)。
ΣD(N)=γΣD(N−1)+η(N)×D(N) ・・・(8)
電極体15の内部では、まず積層方向の塩濃度ムラが発生してからでないと、面内方向の塩濃度ムラも発生しない。そのため、式(8)では、積層方向を前提として発生する面内方向の塩濃度ムラを評価するために、面内評価値η(N)に評価値D(N)が乗算されている。積層方向の塩濃度ムラが発生していない場合にはD(N)=0であるため、ηc(N)×D(N)も0となる。
なお、式(8)において、γは減衰係数である。時間経過に伴い、リチウムイオンの拡散によって塩濃度ムラが緩和されるので、今回の演算サイクルの積算評価値ΣD(N)は、前回の演算サイクルでの積算評価値ΣD(N−1)よりも小さくなっている。この点を反映させるべく、減衰係数γは1よりも小さい値(たとえばγ=0.9997)に設定される。減衰係数γとしては、予め定められ、メモリ32に記憶された値が用いられる。
S113にて充電側の面内積算評価値Ση(N)が第1基準値REF1未満である場合(S113においてNO)、ECU30は、放電側の面内積算評価値Ση(N)が所定の第2基準値REF2以下であるかどうかを判定する(S114)。放電側の面内積算評価値Ση(N)は負であるので、S114では放電側の面内積算評価値Ση(N)の絶対値が第2基準値REF2の大きさ以上であるかどうかが判定されている。第2基準値REF2の大きさは、放電側の塩濃度ムラが発生しやすい走行パターンで車両1が走行した場合に放電側の面内積算評価値Ση(N)の絶対値が瞬間的に取り得る最大値以上に設定される。第1基準値REF1の大きさと第2基準値REF2の大きさとは互いに異なってもよい。
放電側の面内積算評価値Ση(N)が第2基準値REF2以下である場合(S114においてYES)、つまり、放電側の面内積算評価値Ση(N)がリセットされることなく放電側の面内評価値ηの積算が十分に進んだ場合、ECU30は、積層方向および面内方向の両方の塩濃度ムラを考慮に入れるべく、下記式(9)に従って劣化評価値ΣDを算出する(S115)。
ΣD(N)=γΣD(N−1)+η(N)×D(N) ・・・(9)
S112にて評価値D(N)が不感帯の内部に位置する場合、すなわち、評価値D(N)が不感帯を超えていない場合(S112においてNO)には、評価値D(N)を積算しなくてよいので、ECU30は処理をS117に進める。また、充電側の面内積算評価値Ση(N)が第1基準値REF1未満であり、かつ、放電側の面内積算評価値Ση(N)が第2基準値REF2超である場合(S113においてNOかつS114においてNO)には、面内積算評価値Ση(N)(またはΣη(N))がリセットされてから面内評価値η(またはη)の積算が十分には進んでいないと考えられる。したがって、ECU30は、塩濃度ムラの新たな発生を考慮に入れる必要ないとして処理をS117に進める。
S117において、ECU30は、下記式(10)に従って劣化評価値ΣDを算出する。
ΣD(N)=γΣD(N−1) ・・・(10)
S115〜S117のいずれかの処理の実行後には処理がメインルーチンに戻される。これにより、所定の演算サイクル毎に劣化評価値ΣDが更新される。
以上のように、実施の形態1においては、評価値Dに加えて面内評価値η,ηが算出される。面内評価値η,ηを算出する際には、積算方向の塩濃度ムラと面内方向の塩濃度ムラとの発生順序、および、面内方向の塩濃度ムラの発生しやすさのSOC依存性(SOC係数K,K)が考慮される。このように面内方向の塩濃度ムラの発生メカニズムを劣化評価値ΣDに反映させることによって、電極体15の内部における塩濃度ムラの進行度合いを、より正確に定量化できる。よって、実施の形態1によれば、バッテリ10のハイレート劣化の進行度合いの評価精度を向上させることができる。
なお、評価値Dは、本開示に係る「第1の評価値」に相当する。面内評価値η,ηは、本開示に係る「第2の評価値」に相当する。劣化評価値ΣDは、本開示に係る「第1の積算値」に相当する。面内積算評価値Ση,Σηは、本開示に係る「第2の積算値」に相当する。
[実施の形態2]
実施の形態1ではリセット方式の劣化評価値算出処理について説明したが、劣化評価値算出処理の具体的な処理手順はこれに限定されるものではない。実施の形態2においては、「減算方式」の劣化評価値算出処理について説明する。なお、実施の形態2における電池システム、車両構成およびセル構成は実施の形態1における構成(図1〜図3参照)と同様である。
<減算方式の処理フロー>
図12は、減算方式の劣化評価値算出処理の処理手順を示すフローチャートである。図12を参照して、減算方式の劣化評価値算出処理に含まれる一連の処理のうちの前半の処理は、実施の形態1にて説明したリセット方式の劣化評価値算出処理の前半の処理(図8のS101〜S107)と同様であるため、図示を省略している。減算方式の劣化評価値算出処理は、S108〜S111の処理に代えてS208〜S211の処理を含む点において、リセット方式の劣化評価値算出処理と異なる。
S208において、ECU30は、充電過多の状態にあるバッテリ10が放電されているかどうかを判定する。充電過多の状態にあるバッテリ10の放電中である場合(S208においてYES)、ECU30は、下記式(11)に従って、前回の演算サイクルでの充電側の面内積算評価値Ση(N−1)から充電側の面内方向の塩濃度ムラの解消量を減算する(S210)。
Ση(N)=Ση(N−1)−L×I ・・・(11)
式(11)に示すように、放電側についての面内方向の塩濃度ムラの解消量は、バッテリ10への充電電流Iに所定の係数Lを乗算することで算出される。係数Lは、バッテリ10からの放電電流Iと電池ケース111の荷重変動との間の関係から定めることができる。係数Lは、バッテリ10のSOCに応じて定められていてもよい。
バッテリ10が充電過多の状態にある場合、充電側の面内方向評価値Ση(N−1)は正である。放電電流Iは正であり、係数Lは正であるので、(−L×I)は負である。したがって、今回の演算サイクルでの面内積算評価値Ση(N)の絶対値は、前回の演算サイクルでの面内積算評価値Ση(N−1)の絶対値よりも(−L×I)だけ小さくなる。
充電過多の状態にあるバッテリ10の放電中でない場合(S208においてNO)、ECU30は、処理をS209に進め、放電過多の状態にあるバッテリ10の充電中であるかどうかを判定する。放電過多の状態にあるバッテリ10の充電中である場合(S209においてYES)、ECU30は、下記式(12)に従って、前回の演算サイクルでの放電側の面内積算評価値Ση(N−1)から充電側についての面内方向の塩濃度ムラの解消量を減算する(S211)。
Ση(N)=Ση(N−1)−L×I ・・・(12)
式(12)においても式(11)と同様に、充電側についての面内方向の塩濃度ムラの解消量は、バッテリ10への充電電流Iに所定の係数Lを乗算することで算出される。係数Lも係数Lと同様に電池ケース111の荷重変動から定められ、SOC依存性を有し得る。なお、簡略化のため、係数Lと係数Lとを共通の値としてもよい。
バッテリ10が放電過多の状態にある場合、放電側の面内方向評価値Σηd(N−1)は負である。充電電流Iは負であり、係数Lは正であるので、(−L×I)は正である。したがって、今回の演算サイクルでの面内積算評価値Ση(N)の絶対値は、前回の演算サイクルでの面内積算評価値Ση(N−1)の絶対値よりも(−L×I)だけ小さくなる。
バッテリ10が充電過多の状態にあって放電中でもなく、放電過多の状態にあって充電中でもない場合(S208においてNOかつS209においてNO)には、S210およびS211の処理がスキップされ、処理がS212に進められる。S212〜S217の処理はリセット方式でのS112〜S117の処理(図9参照)と同等であるため、詳細な説明は繰り返さない。
以上のように、実施の形態2においてはリセット方式に代えて減算方式の劣化評価値算出処理が実行される。実施の形態2によれば、リセット方式は、バッテリ10の充放電方向の切り替え後の電荷量の蓄積を条件に面内積算評価値Ση,Σηを0に戻すことで濃度ムラの解消を表現する方式であり、簡易な演算方式である。これに対し、減算方式は、バッテリ10の充放電方向の切り替え後に面内方向の塩濃度ムラの解消量を逐次減算していく方式であり、塩濃度ムラの緩和の実体に、より即していると言える。減算方式は、リセット方式と比べて、演算負荷が相対的に重いものの、電極体15の内部における塩濃度ムラの進行度合い(塩濃度ムラの緩和の進行具合い)を、一層正確に定量化できる。よって、実施の形態2によれば、バッテリ10のハイレート劣化の進行度合いの評価精度をさらに向上させることができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、2 電池システム、10 バッテリ、11 セル、15 電極体、20 監視ユニット、21 電圧センサ、22 電流センサ、23 温度センサ、30 ECU、31 プロセッサ、32 メモリ、40 PCU、51,52 モータジェネレータ、60,ECU エンジン、70 動力分割装置、80 駆動軸、90 駆動輪、111 電池ケース、112 蓋体、113 正極端子、114 負極端子、116 正極、116A 正極集電箔、116B 正極活物質層、117 負極、117A 負極集電箔、117B 負極活物質層、118 セパレータ。

Claims (6)

  1. 電解液に含浸され、各々面状の正極と負極とが積層された電極体を含むリチウムイオン電池と、
    前記リチウムイオン電池に充放電される電流を検出する電流センサと、
    第1および第2の評価値を用いて、前記電極体内におけるリチウムイオン濃度分布の偏りである塩濃度ムラの発生に伴って前記リチウムイオン電池の内部抵抗が上昇する前記リチウムイオン電池の劣化を評価する演算装置とを備え、
    前記第1の評価値は、前記正極および前記負極の積層方向における塩濃度ムラを評価するための指標であり、
    前記第2の評価値は、前記正極および前記負極の面内方向の塩濃度ムラを評価するための指標であり、
    前記演算装置は、
    演算サイクル毎に、前記電流センサの検出値に基づいて現在の前記第1の評価値を算出するとともに、前記リチウムイオン電池のSOCに基づいて現在の前記第2の評価値を算出し、
    前記第2の評価値を積算した第2の積算値の絶対値が基準値を上回った場合に、所定の範囲を超えた過去の前記第1の評価値を積算した第1の積算値と、現在の前記第1の評価値と、現在の前記第2の評価値とに基づいて、前記リチウムイオン電池の劣化を評価する一方で、
    前記絶対値が前記基準値を下回った場合には、前記第1の積算値に基づいて前記リチウムイオン電池の劣化を評価する、電池システム。
  2. 前記演算装置は、
    前記絶対値が前記基準値を上回った場合に、時間経過に伴う前記塩濃度ムラの緩和を表す補正係数により補正した前記第1の積算値に、現在の前記第1の評価値と現在の前記第2の評価値との積を加算することによって、前記リチウムイオン電池の劣化を評価する一方で、
    前記絶対値が前記基準値を下回った場合には、前記補正係数により補正した前記第1の積算値に基づいて、前記リチウムイオン電池の劣化を評価する、請求項1に記載の電池システム。
  3. 前記演算装置は、放電過多の状態にある前記リチウムイオン電池への充電電荷量が第1の判定値を超えた場合、または、充電過多の状態にある前記リチウムイオン電池からの放電電荷量が第2の判定値を超えた場合には、前記第2の積算値をリセットする、請求項1または2に記載の電池システム。
  4. 前記演算装置は、放電過多の状態にある前記リチウムイオン電池への充電時、または、充電過多の状態にある前記リチウムイオン電池からの放電時には、前記演算サイクル毎に、前記第2の積算値から現在の前記第2の評価値を減算する、請求項1または2に記載の電池システム。
  5. 前記リチウムイオン電池の温度を検出する温度センサをさらに備え、
    前記演算装置は、前記リチウムイオン電池のSOCおよび温度に基づいて前記第2の評価値を算出する、請求項1〜4のいずれか1項に記載の電池システム。
  6. 電解液に含浸され、各々面状の正極と負極とが積層された電極体を含むリチウムイオン電池の劣化を評価する、リチウムイオン電池の劣化評価方法であって、
    前記リチウムイオン電池の劣化は、前記電極体内におけるリチウムイオン濃度分布の偏りである塩濃度ムラの発生に伴って前記リチウムイオン電池の内部抵抗が上昇する劣化であって第1および第2の評価値を用いて評価され、
    前記第1の評価値は、前記正極および前記負極の積層方向における塩濃度ムラを評価するための指標であり、
    前記第2の評価値は、前記正極および前記負極の面内方向の塩濃度ムラを評価するための指標であり、
    前記劣化評価方法は、
    演算サイクル毎に、前記リチウムイオン電池に充放電される電流に基づいて現在の前記第1の評価値を算出するとともに、前記リチウムイオン電池のSOCに基づいて現在の前記第2の評価値を算出するステップと、
    前記第2の評価値を積算した第2の積算値の絶対値が基準値を上回った場合に、所定の範囲を超えた過去の前記第1の評価値を積算した第1の積算値と、現在の前記第1の評価値と、現在の前記第2の評価値とに基づいて、前記リチウムイオン電池の劣化を評価するステップと、
    前記絶対値が前記基準値を下回った場合には、前記第1の積算値に基づいて前記リチウムイオン電池の劣化を評価するステップとを含む、リチウムイオン電池の劣化評価方法。
JP2020012450A 2020-01-29 2020-01-29 電池システムおよびリチウムイオン電池の劣化評価方法 Active JP7207343B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020012450A JP7207343B2 (ja) 2020-01-29 2020-01-29 電池システムおよびリチウムイオン電池の劣化評価方法
EP20217357.1A EP3859362A1 (en) 2020-01-29 2020-12-28 Battery system and method for evaluating lithium-ion battery degradation
KR1020210009341A KR102637912B1 (ko) 2020-01-29 2021-01-22 전지 시스템 및 리튬 이온 전지의 열화 평가 방법
US17/158,361 US11656290B2 (en) 2020-01-29 2021-01-26 Battery system and method for evaluating lithium-ion battery degradation
CN202110118191.1A CN113193241B (zh) 2020-01-29 2021-01-28 电池系统及锂离子电池的劣化评价方法
US18/132,550 US20230251322A1 (en) 2020-01-29 2023-04-10 Battery System and Method for Evaluating Lithium-Ion Battery Degradation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012450A JP7207343B2 (ja) 2020-01-29 2020-01-29 電池システムおよびリチウムイオン電池の劣化評価方法

Publications (2)

Publication Number Publication Date
JP2021118148A true JP2021118148A (ja) 2021-08-10
JP7207343B2 JP7207343B2 (ja) 2023-01-18

Family

ID=73943246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012450A Active JP7207343B2 (ja) 2020-01-29 2020-01-29 電池システムおよびリチウムイオン電池の劣化評価方法

Country Status (5)

Country Link
US (2) US11656290B2 (ja)
EP (1) EP3859362A1 (ja)
JP (1) JP7207343B2 (ja)
KR (1) KR102637912B1 (ja)
CN (1) CN113193241B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286875A1 (ja) 2021-07-16 2023-01-19 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11621573B2 (en) * 2020-10-30 2023-04-04 GM Global Technology Operations LLC Drooping cell detection and state of cell health monitoring
US20230152388A1 (en) * 2020-11-27 2023-05-18 Lg Energy Solution, Ltd. Battery Diagnosis Apparatus, Battery Diagnosis Method, Battery Pack, and Vehicle
US11443569B1 (en) * 2021-10-30 2022-09-13 Beta Air, Llc Systems and methods for battery management for a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160372800A1 (en) * 2015-06-19 2016-12-22 Toyota Jidosha Kabushiki Kaisha Controller for lithium ion secondary battery, and vehicle
JP2017033802A (ja) * 2015-08-03 2017-02-09 トヨタ自動車株式会社 再利用可能な非水電解液二次電池の選別方法
JP2017103080A (ja) * 2015-12-01 2017-06-08 トヨタ自動車株式会社 電動車両の電池システム
JP2017152305A (ja) * 2016-02-26 2017-08-31 トヨタ自動車株式会社 二次電池システム
JP2018081807A (ja) * 2016-11-16 2018-05-24 トヨタ自動車株式会社 車両の電池システム及びその制御方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263909B2 (en) 2011-09-28 2016-02-16 Toyota Jidosha Kabushiki Kaisha Control device and control method for nonaqueous secondary battery
JP2016143546A (ja) 2015-02-02 2016-08-08 トヨタ自動車株式会社 リチウムイオン二次電池の充放電制御システム
JP7159667B2 (ja) 2018-07-20 2022-10-25 スズキ株式会社 車両用内燃機関

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160372800A1 (en) * 2015-06-19 2016-12-22 Toyota Jidosha Kabushiki Kaisha Controller for lithium ion secondary battery, and vehicle
JP2017033802A (ja) * 2015-08-03 2017-02-09 トヨタ自動車株式会社 再利用可能な非水電解液二次電池の選別方法
JP2017103080A (ja) * 2015-12-01 2017-06-08 トヨタ自動車株式会社 電動車両の電池システム
JP2017152305A (ja) * 2016-02-26 2017-08-31 トヨタ自動車株式会社 二次電池システム
JP2018081807A (ja) * 2016-11-16 2018-05-24 トヨタ自動車株式会社 車両の電池システム及びその制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023286875A1 (ja) 2021-07-16 2023-01-19 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Also Published As

Publication number Publication date
US20210231745A1 (en) 2021-07-29
CN113193241B (zh) 2024-04-30
KR20210097031A (ko) 2021-08-06
KR102637912B1 (ko) 2024-02-20
US20230251322A1 (en) 2023-08-10
EP3859362A1 (en) 2021-08-04
US11656290B2 (en) 2023-05-23
CN113193241A (zh) 2021-07-30
JP7207343B2 (ja) 2023-01-18

Similar Documents

Publication Publication Date Title
JP7207343B2 (ja) 電池システムおよびリチウムイオン電池の劣化評価方法
CN110873844B (zh) 二次电池的劣化状态推定方法以及二次电池系统
US20220069370A1 (en) Secondary battery system and method for controlling secondary battery
US10859632B2 (en) Secondary battery system and SOC estimation method for secondary battery
JP6863258B2 (ja) 二次電池システムおよび二次電池の活物質の応力推定方法
CN108819731B (zh) 充电率推定方法及车载的电池系统
US11183706B2 (en) Lithium-ion second battery controller for reducing charging loss while preventing deterioration from lithium deposition
US20210152010A1 (en) Method for charging battery and charging system
US10862174B2 (en) Secondary battery system and method of estimating deterioration state of secondary battery system
JP7317692B2 (ja) 電池システム
JP7131002B2 (ja) 二次電池の劣化推定装置
JP2017037734A (ja) 二次電池システム
JP2019050094A (ja) 二次電池の充放電制御装置
JP6809399B2 (ja) 二次電池システム
JP7120938B2 (ja) 電池システムおよび二次電池の制御方法
JP7040408B2 (ja) 二次電池システム
JP2020134355A (ja) 電池システム
JP2022117384A (ja) 電池システム
JP7095664B2 (ja) 二次電池システム
JP6897362B2 (ja) 二次電池システム
JP2022029656A (ja) バッテリ冷却システム
JP2019220260A (ja) 電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R151 Written notification of patent or utility model registration

Ref document number: 7207343

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151