以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
図1は、本実施形態に係る検査装置1の構成図である。検査装置1は、サンプルS(対象物)を検査する装置である。サンプルSは、例えば、基板上に複数の発光素子が形成された半導体デバイスである。発光素子は、例えばLED、ミニLED、μLED、SLD素子、レーザ素子、垂直型レーザ素子(VCSEL)等である。なお、本実施形態においてサンプルSの基板とは、シリコン又はサファイア等の層だけでなく、当該層の上にエピタキシャル成長によって形成されたGaN等の層も含むものである。検査装置1は、サンプルSにおいて形成されている複数の発光素子について、フォトルミネッセンス(具体的には蛍光等の発光)を観察することにより、各発光素子の良否判定を行う。発光素子の良否判定は、例えばプロービングによって(すなわち電気的特性に基づいて)行うことが考えられる。しかしながら、例えばμLED等の微細なLEDについては、針をあてて計測を行うプロービングが物理的に困難である。この点、本実施形態に係るフォトルミネッセンスに基づく発光素子の良否判定方法は、蛍光画像を取得することによって良否判定を行うことができるので、物理的な制約にとらわれることなく、大量の発光素子を効率的に良否判定することができる。
図1に示されるように、検査装置1は、チャック11と、XYステージ12と、光源部20と、複数の波長分離素子40(第1の波長分離素子)と、対物レンズ51と、Zステージ52と、複数の波長分離素子60(第2の波長分離素子)と、結像レンズ71,72と、カメラ81(光検出部,第1の光検出器),82(光検出部,第2の光検出器)と、暗箱90と、制御装置100(制御部)と、モニタ110と、キーボード120(入力部)と、それぞれ複数のバンドパスフィルタ202,203(第2のバンドパスフィルタ)と、を備えている。暗箱90は、上述した構成のうち制御装置100、モニタ110、及びキーボード120以外の構成を収容しており、収容した各構成に外部の光の影響が及ぼされることを回避するために設けられている。なお、暗箱90に収容される各構成は、カメラ81,82において撮像される画像の質の向上(画質の向上及び画像の位置ずれ防止)を図るべく除振台の上に搭載されていてもよい。
チャック11は、サンプルSを保持する保持部材である。チャック11は、例えばサンプルSの基板を真空吸着することにより、サンプルSを保持する。XYステージ12は、サンプルSを保持しているチャック11をXY方向(前後・左右方向)、すなわちチャック11におけるサンプルSの載置面に沿った方向に移動させるステージである。XYステージ12は、制御装置100の制御に応じて、複数の発光素子のそれぞれが順次、励起光の照射領域とされるように、チャック11をXY方向に移動させる。なお、検査装置1は、更に回転ステージ(Θステージ。不図示)を備えていてもよい。このような回転ステージは、例えばXYステージ12の上且つチャック11の下に設けられていてもよいし、XYステージ12と一体的に設けられていてもよい。回転ステージは、サンプルSの縦横の位置を精度よく合わせるためのものである。回転ステージが設けられることによって、位置合わせ等の時間を短縮し、データ処理のトータル時間を短縮することができる。
光源部20は、発光素子に照射される励起光を生成する。光源部20は、1つの励起光源21と、光学系22とを有する。励起光源21は、サンプルSに照射される励起光を生成し、該励起光をサンプルSに照射する光源である。励起光源21は、例えばサンプルSの発光素子を励起させる波長を含む光を生成可能な白色光源であればよい。白色光源は、例えばLED、レーザ、ハロゲンランプ、水銀ランプ、D2ランプ、プラズマ光源等である。なお、検査装置1は、励起光源21から出射される励起光の輝度を一定に保つべく、照明輝度をモニタするセンサをさらに備えていてもよい。
光学系22は、光ファイバケーブル22aと、導光レンズ22bと、複数のバンドパスフィルタ22c(第1のバンドパスフィルタ)と、を含んで構成されている。光ファイバケーブル22aは、励起光源21に接続された導光用の光ファイバケーブルである。光ファイバケーブル22aとしては、例えば、偏波保存ファイバ又はシングルモードファイバ等を用いることができる。導光レンズ22bは、例えば単独又は複合の凸レンズであり、光ファイバケーブル22aを介して到達した励起光を波長分離素子40方向に導く。
複数のバンドパスフィルタ22cは、互いに異なる波長帯の励起光を透過するフィルタである。すなわち、複数のバンドパスフィルタ22cは、フィルタリングする波長帯の領域が互いに異なっている。複数のバンドパスフィルタ22cは、後述する制御装置100によって1つのみ選択され、切り替えて設定される。バンドパスフィルタ22cは、励起光源21から出射される励起光の波長が経時的に変化することを防ぐ用途で導光レンズ22bと波長分離素子40との間に設けられる。
複数の波長分離素子40は、互いに異なる波長を第1の分離波長として該第1の分離波長により励起光と発光とを分離する。すなわち、複数の波長分離素子40は、励起光と発光とを分離する基準となる分離波長が互いに異なっている。複数の波長分離素子40は、後述する制御装置100によって1つのみ選択され、切り替えて設定される。波長分離素子40は、誘電体多層膜等の光学素材を用いて作成されたダイクロイックミラーであり、特定の波長の光を反射すると共に、その他の波長の光を透過する。具体的には、波長分離素子40は、励起光を対物レンズ51方向に反射すると共に、励起光とは異なる波長帯の光である発光素子からのフォトルミネッセンス(詳細には蛍光等の発光)を波長分離素子60方向に透過するように構成されている。
対物レンズ51は、サンプルSを観察するための構成であり、波長分離素子40によって導かれた励起光をサンプルSに集光する。Zステージ52は、対物レンズ51をZ方向(上下方向)、すなわちチャック11におけるサンプルSの載置面に交差する方向に移動させてフォーカス調整を行う。
複数の波長分離素子60は、互いに異なる波長を第2の分離波長として該第2の分離波長により、第2の分離波長よりも長い波長の発光と第2の分離波長よりも短い波長の発光とを分離する。すなわち、複数の波長分離素子60は、長波長側の発光と低波長側の発光とを分離する基準となる分離波長が互いに異なっている。複数の波長分離素子60は、後述する制御装置100によって1つのみ選択され、切り替えて設定される。波長分離素子60は、誘電体多層膜等の光学素材を用いて作成されたダイクロイックミラーであり、特定の波長の光を反射すると共に、その他の波長の光を透過する。このダイクロイックミラーは、波長に対する透過率(反射率)変化が急峻な特性のものだけでなく、波長に対する透過率(反射率)が約100nm程度の幅をもって緩やかに変化するような特性のものでもよい。波長分離素子60は、第2の分離波長よりも短い波長の発光を透過せずに(反射し)、第2の分離波長よりも長い波長の蛍光を透過するように構成されている。波長分離素子60が反射する短い波長の発光は、例えば、正常発光スペクトルに含まれる波長の発光(本来発光波長の発光)であり、波長分離素子60が透過する長い波長の蛍光は正常発光スペクトルに含まれない波長の発光(長波長側の発光)である。なお、本来発光波長は、例えば予め発光素子の仕様から既知である波長であってもよく、発光素子からの蛍光を分光器により実測した強度のピークとなる波長であってもよい。なお、詳細には、波長分離素子60は、第2の分離波長よりも短い波長の発光の一部を透過し、また、第2の分離波長よりも長い波長の発光の一部を反射すると考えられるが、概ね、第2の分離波長よりも短い波長の発光を反射すると共に第2の分離波長よりも長い波長の発光を透過することから、以下では単に、「波長分離素子60は第2の分離波長よりも短い波長の発光を反射し、第2の分離波長よりも長い波長の発光を透過する」として説明する。第2の分離波長よりも長い波長の発光(長波長側の発光)は、波長分離素子60を経て結像レンズ71に達する。第2の分離波長よりも短い波長の発光(本来発光波長の発光)は、波長分離素子60を経て結像レンズ72に達する。なお、波長分離素子60は、必ずしもダイクロイックミラーでなくともよく、例えばハーフミラーとバンドパスフィルタ202,203との組み合わせによって実現されてもよい。
複数のバンドパスフィルタ202は、互いに異なる波長帯の発光を透過するフィルタである。すなわち、複数のバンドパスフィルタ202は、フィルタリングする波長帯の領域が互いに異なっている。複数のバンドパスフィルタ202は、後述する制御装置100によって1つのみ選択され、切り替えて設定される。バンドパスフィルタ202は、長波長側の余計な発光を防ぐために、波長分離素子60とカメラ81との間に設けられる。複数のバンドパスフィルタ203は、互いに異なる波長帯の発光を透過するフィルタである。すなわち、複数のバンドパスフィルタ203は、フィルタリングする波長帯の領域が互いに異なっている。複数のバンドパスフィルタ203は、後述する制御装置100によって1つのみ選択され、切り替えて設定される。バンドパスフィルタ203は、短波長側の発光の計測において波長分離素子60の表面反射に伴う長波長側の発光の混入を防ぐために、波長分離素子60とカメラ82との間に設けられる。
結像レンズ71は、長波長側の発光を結像させ、該発光をカメラ81に導くレンズである。カメラ81は、サンプルSからの発光を撮像する撮像部である。より詳細には、カメラ81は、発光素子からの発光のうち上述した第2の分離波長よりも長い波長の発光(長波長側の発光)を撮像して検出する。カメラ81は、撮像結果である長波長側の発光画像を制御装置100に出力する。カメラ81は、例えばCCDやMOS等のエリアイメージセンサである。また、カメラ81は、ラインセンサやTDI(Time Delay Integration)センサによって構成されていてもよい。
結像レンズ72は、本来発光波長の発光を結像させ、該発光をカメラ82に導くレンズである。カメラ82は、サンプルSからの発光を撮像する撮像部である。より詳細には、カメラ82は、発光素子からの発光のうち上述した第2の分離波長よりも短い波長の発光であって発光素子の正常発光スペクトルESに含まれる波長の発光(本来発光波長の発光)を撮像して検出する。カメラ82は、撮像結果である本来発光波長の発光画像を制御装置100に出力する。カメラ82は、例えばCCDやMOS等のエリアイメージセンサである。また、カメラ82は、ラインセンサやTDIセンサによって構成されていてもよい。
制御装置100は、コンピュータであって、物理的には、RAM、ROM等のメモリ、CPU等のプロセッサ(演算回路)、通信インターフェイス、ハードディスク等の格納部を備えて構成されている。かかる制御装置100としては、例えばパーソナルコンピュータ、クラウドサーバ、スマートデバイス(スマートフォン、タブレット端末など)などが挙げられる。制御装置100は、メモリに格納されるプログラムをコンピュータシステムのCPUで実行することにより機能する。制御装置100は、XYステージ12、励起光源21、Zステージ52、及びカメラ81,82を制御する。具体的には、制御装置100は、XYステージ12を制御することにより励起光の照射領域(サンプルSにおける照射領域)を調整する。制御装置100は、Zステージ52を制御することにより励起光に係るフォーカス調整を行う。制御装置100は、励起光源21を制御することにより励起光の出射調整並びに励起光の波長及び振幅等の調整を行う。制御装置100は、カメラ81,82を制御することにより発光画像の取得に係る調整を行う。
また、制御装置100は、カメラ81,82によって撮像された発光画像に基づいて、サンプルSの発光素子の良否判定を行う。制御装置100は、カメラ81によって取得された長波長側の発光画像、及び、カメラ82によって取得された本来発光波長の発光画像に基づいて、発光素子の良否を判定する。制御装置100は、例えば、カメラ82によって取得された本来発光波長の発光画像に基づいて発光素子の良否を判定すると共に、該判定の後に、該判定において良と判定された発光素子について、カメラ81によって取得された長波長側の発光画像に基づいて良否を判定する。
制御装置100は、まず、発光画像に基づいて発光素子の位置を特定し、各発光素子の発光エリアを特定する。発光素子の位置の特定は、例えば発光画像内の位置とXYステージ12の位置の換算によって行われる。なお、制御装置100は、予めサンプルS全体のパターン像を取得しておき、パターン像ないし発光画像から、発光素子の位置を認識(特定)してもよい。そして、制御装置100は、本来発光波長の発光画像に基づいて各発光素子の発光エリア内の平均輝度を導出し、各発光素子についてアドレス位置と輝度(発光エリア内の平均輝度)とを紐づける。制御装置100は、各アドレス(各発光素子)について、絶対輝度と相対輝度とから評価指数を導出する。相対輝度とは、導出対象の発光素子と該発光素子の周辺の発光素子とを含む発光素子群の平均輝度に対する導出対象の発光素子の輝度比率である。制御装置100は、例えば、絶対輝度と相対輝度との積から評価指数を導出する。或いは、制御装置100は、絶対輝度と相対輝度のn乗(nは自然数。例えば2)との積から評価指数を導出する。制御装置100は、同一の発光画像に含まれる各発光素子それぞれについて上述した評価指数の導出を行う。また、制御装置100は、照射領域を変更することにより新たな発光画像(本来発光波長の発光画像)を取得し、該発光画像に含まれる各発光素子それぞれについて評価指数の導出を行う。制御装置100は、全ての発光素子について評価指数を導出すると、該評価指数の高い順に発光素子のソート(並び替え)を行う。ソートを行うと、評価指数は、ある点(変化点)を境に急激に小さくなっていることがわかる。制御装置100は、例えばこのような変化点を閾値として、評価指数が該閾値以上である発光素子を良品(良ピクセル)、該閾値よりも小さい発光素子を不良品(不良ピクセル)と判定してもよい。なお、閾値は、例えば、事前に閾値決定用の参照半導体デバイスを用いて、蛍光(フォトルミネッセンス)に基づく発光素子の良否判定結果と、プロービングに基づく良否判定結果(電気的特性に基づく良否判定結果)とを比較して決定されていてもよい。
また、制御装置100は、長波長側の発光画像に基づいて各発光素子の発光エリア内における輝点(発光スポット)を検出し、各発光素子についてアドレス位置と輝点数とを紐づける。このような、正常発光スペクトルよりも長波長側の輝点(発光スポット)は、異常発光箇所である。そして、制御装置100は、上述した本来発光波長の発光画像に基づく良否判定において良品であると判定された発光素子について、長波長側の発光画像に一定数以上の輝点が含まれているか否かを判定し、一定数以上の輝点が含まれていない発光素子を良品(良ピクセル)、一定数以上の輝点が含まれている発光素子を不良品(不良ピクセル)と判定する。このような例では、本来発光波長の発光画像に基づいて良品であると判定された発光素子であっても、長波長側の蛍光画像に基づいて不良品であると判定される場合がある。
なお、制御装置100は、カメラ82によって取得された本来発光波長の発光画像に基づいて発光素子の良品判定を行った後に、該判定において不良と判定された発光素子について、カメラ81によって取得された長波長側の発光画像に基づいて良否を判定してもよい。また、制御装置100は、全ての発光素子について、長波長側の発光画像に基づく良否判定を行ってもよい。このように、制御装置100は、本来発光波長の発光画像に基づいて良と判定された発光素子についてのみ長波長側の発光画像に基づいて良否判定を行ってもよいし、本来発光波長の発光画像に基づいて不良と判定された発光素子についてのみ長波長側の発光画像に基づいて良否判定を行ってもよいし、本来発光波長の発光画像に基づく良否判定結果によらずに全ての発光素子について長波長側の発光画像に基づく良否判定を行ってもよい。
制御装置100は、各発光素子の良否判定結果を出力する。当該良否判定結果は、例えばモニタ110に表示される。また、制御装置100は、発光素子内における不良個所(例えば長波長側の輝点の箇所)を特定し、該不良個所の位置を出力(モニタ110に表示されるように出力)してもよい。
制御装置100は、上述した良否判定をより高精度に行うべく、発光素子の発光色に関する情報に応じた所定の制御を行っている。発光素子の発光色に関する情報については、例えばユーザによるキーボード120の入力によって受付けられ、制御装置100に入力される。
制御装置100は、キーボード120によって受付けられた発光色に関する情報に基づいて、励起光の波長を決定する。具体的には、制御装置100は、サンプルSの基板の吸収端波長よりも長く、且つ、発光色に関する情報から特定される発光素子の発光スペクトルのピーク波長よりも短い波長を、励起光の波長に決定する。基板の吸収端波長とは、基板において光吸収が起こる最も長い波長である。基板の吸収端波長は、母材のバンドギャップにより決まる。基板の吸収端波長よりも長い波長の光は、基板を透過する。上述したように、サンプルSの基板とは、シリコン又はサファイア等の層だけでなく、当該層の上にエピタキシャル成長によって形成されたGaN等の層も含むものである。励起光の波長が基板の吸収端波長よりも長くされることにより、励起光によって基板が励起されること(基板からの発光が生じること)が抑制される。また、励起光の波長が発行スペクトルのピーク波長よりも短い波長とされることにより、発光素子を適切に励起させて発光素子からの発光を適切に取得することができる。制御装置100は、より詳細には、発光素子の発光スペクトルのピーク波長から、該発光スペクトルの半値全幅を引いた(半値全幅の差をとった)波長よりも短い波長を、励起光の波長に決定する。
図2は、各条件の発光スペクトルを説明する図である。図2において、横軸は波長を、縦軸は輝度(A.U.)を示している。また、図2において、細い破線は励起光の波長を370nmとした場合のサンプルSの発光スペクトルを、太い破線は励起光の波長を355nmとした場合のサンプルSの発光スペクトルを、実線は電気を流した場合のサンプルSの発光スペクトルを、それぞれ示している。サンプルSが製品化されて利用されるシーンにおいては、発光素子に電気が流されて利用される。そのため、励起光の照射によって発光素子の良否判定を行う場合においても、その発光スペクトルが、発光素子に電気を流した場合の発光スペクトルに近似することが好ましい。なお、励起光により発光素子を励起した場合と電気を流した場合とでは、実際には発光の輝度のレベルは異なるが、ここでは、発光スペクトルの形状が重要であるため、輝度のレベルの違いは適宜調整して図示している。
いま、観察対象のサンプルSの発光素子が青色のLEDである(発光色が青色である)とする。この場合、発光素子の発光波長幅は、例えば420nm〜480nmである。また、サンプルSのGan基板の吸収端波長が365nmであるとする。このような条件において、図2に示されるように、励起光の波長が355nmとされた場合、すなわち励起光の波長が基板の吸収端波長よりも短くされた場合には、発光スペクトル(図2の「PL(355)」)が、発光素子に電気を流した場合の発光スペクトル(図2の「EL」)と大きく異なっている。これは、励起光の波長が基板の吸収端波長よりも短くされることによって基板からの発光の影響を受けたためと考えられる。一方で、図2に示されるように、励起光の波長が370nmとされた場合、すなわち励起光の波長が基板の吸収端波長よりも長くされた場合には、発光スペクトル(図2の「PL(370)」)が、発光素子に電気を流した場合の発光スペクトル(図2の「EL」)に近似している。このように、励起光の波長がサンプルSの基板の吸収端波長よりも長くされることにより、基板からの発光の影響を受けずに適切な発光スペクトルを得ることができる。上記の例の場合、励起光の波長は、基板の吸収端波長である365nm〜420nmの範囲とされることが好ましい。なお、励起光の波長は、上記範囲内で極力長くされたほうが、量子井戸の中間領域を励起せず発光の強度のコントラストが大きくなるため好ましい。なお、例えば発光素子が緑色のLEDである(発光色が緑色である)場合においては、発光素子の発光波長幅は、例えば490nm〜550nmである。この場合には、励起光の波長は、基板の吸収端波長である365nm〜490nmの範囲とされることが好ましい。
制御装置100は、決定した波長の励起光が生成されるように、光源部20を制御する。具体的には、制御装置100は、決定した波長の励起光が光源部20から出射されて発光素子に照射されるように、決定した波長の励起光を透過するバンドパスフィルタ22cを選択し、該バンドパスフィルタ22cを、光源部20から波長分離素子40に至る光路に設置する。このように、制御装置100は、決定した励起光の波長に応じてバンドパスフィルタ22cを切り替える。なお、検査装置1は、互いに異なる波長の励起光を生成する複数の励起光源21を有していてもよい。この場合、励起光源21は互いに異なる単色の光を生成可能な複数の光源から構成されていてもよく、複数の光源は例えばLED、SLD、レーザ等である。この場合には、制御装置100は、決定した波長の励起光を生成可能な励起光源21を選択して励起光を生成させることにより、上述した、バンドパスフィルタ22cを切り替えて設定する態様と同様に、所望の波長の励起光を生成することができる。すなわち、制御装置100は、決定した励起光の波長に応じて複数の励起光源21を切り替えてもよい。
制御装置100は、決定した励起光の波長に応じて、発光素子からカメラ81に至る光路に設置されるバンドパスフィルタ202を切り替えてもよい。この場合、制御装置100は、例えば励起光の波長の決定に係る発光素子の発光色を考慮して、長波長側の余計な発光を防ぐことができるバンドパスフィルタ202を選択する。また、制御装置100は、決定した励起光の波長に応じて、発光素子からカメラ82に至る光路に設置されるバンドパスフィルタ203を切り替えてもよい。この場合、制御装置100は、例えば励起光の波長の決定に係る発光素子の発光色を考慮して、長波長側の発光が短波長側の発光の計測において混入することを防ぐことができるバンドパスフィルタ203を選択する。
制御装置100は、決定した励起光の波長に応じて、光源部20から発光素子に至る光路且つ発光素子からカメラ81,82に至る光路に設置される波長分離素子40を切り替えてもよい。この場合、制御装置100は、例えば発光素子の発光色及び励起光の波長を考慮して、励起光を対物レンズ51方向に反射すると共に、発光を波長分離素子60方向に透過することができる波長分離素子40を選択する。
制御装置100は、決定した励起光の波長に応じて、発光素子からカメラ81及びカメラ82に至る光路に設置される波長分離素子60を切り替えてもよい。この場合、制御装置100は、例えば発光素子の発光色を考慮して、本来発光波長の発光と長波長側の発光とを適切に分離することができる(第2の分離波長が適切である)波長分離素子60を選択する。
なお、制御装置100は、決定した励起光の波長に応じて、バンドパスフィルタ22c、バンドパスフィルタ202,203、波長分離素子40、及び波長分離素子60を一体的に切り替えてもよい。すなわち、制御装置100は、励起光の波長の決定に連動して、上述したバンドパスフィルタ22c、バンドパスフィルタ202,203、波長分離素子40、及び波長分離素子60の切り替えを同時に行ってもよい。
次に、図3を参照して、検査方法について説明する。図3は、検査装置1を用いて行う検査方法のフローチャートである。当該検査方法は、基板上に複数の発光素子が形成されたサンプルSを検査する検査方法である。
図3に示されるように、最初に発光素子の発光色に関する情報をキーボード120から入力する(ステップS1,入力するステップ)。検査装置1は、当該発光色に関する情報の入力を受け付ける。
つづいて、検査装置1は、発光色に関する情報に基づいて励起光の波長を決定する(ステップS2)。具体的には、検査装置1は、発光色に関する情報に基づいて、サンプルSの基板の吸収端波長、及び、発光素子の発光スペクトルのピーク波長を導出する(導出するステップ)。
つづいて、検査装置1は、決定した励起光の波長となるように、光源部20のバンドパスフィルタ22cを設定する(ステップS3)。すなわち、検査装置1は、励起光の波長が基板の吸収端波長よりも長く、且つ、発光スペクトルのピーク波長よりも短くなるように、光源部20を制御する(制御するステップ)。
つづいて、検査装置1は、決定した励起光の波長に応じて、バンドパスフィルタ22c、バンドパスフィルタ202,203、波長分離素子40、及び波長分離素子60を一体的に設定する(ステップS4)。
つづいて、検査装置1は、発光素子に励起光を照射し、発光素子からの発光(蛍光)を検出する(ステップS5)。そして、検査装置1は、当該発光素子からの発光に基づいて、発光素子の良否判定を行う(ステップS6)。
次に、本実施形態に係る検査装置1の作用効果について説明する。
検査装置1は、基板上に複数の発光素子が形成されたサンプルSを検査する検査装置であって、発光素子に照射される励起光を生成する光源部20と、励起光が照射された発光素子の発光を検出するカメラ81,82と、発光素子の発光色に関する情報の入力を受け付けるキーボード120と、キーボード120によって受付けられた発光色に関する情報に基づいて励起光の波長を決定し、該波長の励起光が生成されるように光源部20を制御する制御装置100と、を備え、制御装置100は、サンプルSの基板の吸収端波長よりも長く、且つ、発光色に関する情報から特定される発光素子の発光スペクトルのピーク波長よりも短い波長を、励起光の波長に決定する。
このような検査装置1では、発光素子の発光色に関する情報の入力が受け付けられ、励起光の波長が、発光素子の発光スペクトルのピーク波長よりも短い波長とされている。このように、発光素子の発光色に応じて励起光の波長が決定され、励起光の波長が発光素子の発光スペクトルのピーク波長よりも短くされることにより、発光素子の発光を適切に検出することができる。また、本発明の一態様に係る検査装置では、励起光の波長が、サンプルSの基板の吸収端波長よりも長い波長とされている。このことにより、基板に光が吸収されて励起光が発光素子に届きにくくなることが抑制される。また、励起光によって基板が励起されることが抑制され、発光素子の発光以外の光が検出されることを抑制することができる。以上のように、検査装置1によれば、測定対象である発光素子の発光を適切に取得し、該発光に基づき、発光素子の良否判定を高精度に行うことができる。
制御装置100は、発光素子の発光スペクトルのピーク波長から、該発光スペクトルの半値全幅を引いた波長よりも短い波長を、励起光の波長に決定してもよい。これにより、発光スペクトルに含まれるほとんどの波長帯よりも励起光の波長を短くすることができ、発光素子の発光を適切に検出することができる。
光源部20は、励起光の白色光源と、互いに異なる波長帯の励起光を透過する複数のバンドパスフィルタ22cとを有し、制御装置100は、決定した励起光の波長に応じてバンドパスフィルタ22cを切り替えてもよい。このように、バンドパスフィルタ22cの切り替えにより励起光の波長を変化させることによって、波長を変化させるために励起光源21を複数設ける必要がなく、検査装置1を小型化することができる。
光源部20は、互いに異なる波長の励起光を生成する複数の励起光源21を有し、制御装置100は、決定した励起光の波長に応じて複数の励起光源21を切り替えてもよい。このような構成によれば、バンドパスフィルタ22cを複数設けることなく、シンプルな装置構成で励起光の波長を変化させることができる。
検査装置1は、互いに異なる波長帯の発光を透過する複数のバンドパスフィルタ202,203を更に備え、制御装置100は、決定した励起光の波長に応じて、発光素子からカメラ81に至る光路に設置されるバンドパスフィルタ202、及び、発光素子からカメラ82に至る光路に設置されるバンドパスフィルタ203を切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、適切なバンドパスフィルタ202,203を設定することができる。このことで、発光を検出する上で適切なバンドパスフィルタ202,203を、スムーズに設定することができる。
検査装置1は、互いに異なる波長を第1の分離波長として該第1の分離波長により励起光と発光とを分離する複数の波長分離素子40を更に備え、制御装置100は、決定した励起光の波長に応じて、光源部20から発光素子に至る光路且つ発光素子からカメラ81,82に至る光路に設置される波長分離素子40を切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、適切な波長分離素子40を設定することができる。このことで、発光を検出する上で適切な波長分離素子40を、スムーズに設定することができる。
検査装置1は、互いに異なる波長を第2の分離波長として該第2の分離波長により第2の分離波長よりも長い波長の発光と第2の分離波長よりも短い波長の発光とを分離する複数の波長分離素子60を更に備え、発光のうち第2の分離波長よりも長い波長の発光を検出するカメラ81と、発光のうち第2の分離波長よりも短い波長の発光を検出するカメラ82と、を有し、制御装置100は、決定した励起光の波長に応じて、発光素子からカメラ81及びカメラ82に至る光路に設置される波長分離素子60を切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、適切な波長分離素子60を設定することができる。このことで、長波長側の発光及び短波長側の発光を2つの光検出器により検出する構成において、発光を検出する上で適切な波長分離素子60を、スムーズに設定することができる。
制御装置100は、決定した励起光の波長に応じて、バンドパスフィルタ22c、バンドパスフィルタ202,203、波長分離素子40、及び波長分離素子60を一体的に切り替えてもよい。これにより、発光素子の発光色に応じた励起光の波長の決定に連動して、よりスムーズに、発光を検出するのに適した各構成を設定することができる。