JP2021108344A - 半導体素子の製造方法 - Google Patents

半導体素子の製造方法 Download PDF

Info

Publication number
JP2021108344A
JP2021108344A JP2019239484A JP2019239484A JP2021108344A JP 2021108344 A JP2021108344 A JP 2021108344A JP 2019239484 A JP2019239484 A JP 2019239484A JP 2019239484 A JP2019239484 A JP 2019239484A JP 2021108344 A JP2021108344 A JP 2021108344A
Authority
JP
Japan
Prior art keywords
substrate
line
main surface
processed
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019239484A
Other languages
English (en)
Other versions
JP7277782B2 (ja
Inventor
広昭 爲本
Hiroaki Tamemoto
広昭 爲本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2019239484A priority Critical patent/JP7277782B2/ja
Publication of JP2021108344A publication Critical patent/JP2021108344A/ja
Application granted granted Critical
Publication of JP7277782B2 publication Critical patent/JP7277782B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Dicing (AREA)
  • Led Devices (AREA)

Abstract

【課題】基板上に窒化物半導体層が積層された基板を、極めて高い歩留りで意図するように、正確にチップ化することができる半導体発光素子の製造方法を提供することを目的とする。【解決手段】第1主面と、前記第1主面と反対側の第2主面とを有する基板に、前記第1主面に近い一定の深さにレーザ光照射により第1加工変質部で第1破断線を形成し、得られた基板に、前記第2主面に近い一定の深さであって、平面視において、前記第1破断線に対して線対称の位置にレーザ光照射により第2及び第3加工変質部で第2及び第3破断線をそれぞれ形成し、得られた基板に外力を加えて、前記基板内の、前記第1破断線から前記第2又は第3破断線に向かう傾斜方向に沿って基板を分割して、分割面を傾斜面とする半導体素子の製造方法。【選択図】図1D

Description

本発明は半導体素子の製造方法に関する。
従来から、半導体層が積層されたウェハは、ダイサー、スクライバー、レーザースクライバー等によってチップ化されている。
さらに窒化物半導体層及び/又はサファイア基板表面に割り溝を形成し、レーザをサファイア基板内部に照射するなどによって、半導体層が積層されたウェハをチップ化する方法が提案されている(例えば、特許文献1)。
特開2006−245043号公報
基板上に窒化物半導体層が積層された基板を、極めて高い歩留りで意図するように、正確にチップ化することができる半導体発光素子の製造方法を提供することを目的とする。
本開示は、以下の一実施形態を含む。
第1主面と、前記第1主面と反対側の第2主面とを有する基板に、前記第1主面に近い一定の深さにレーザ光を集光させて第1加工変質部を、平面視において、線状に配置した第1線を形成し、
該第1加工変質部の前記第1線が形成された前記基板に、前記第2主面に近い一定の深さであって、平面視において、前記第1線に対して線対称の位置にレーザ光を集光させて第2加工変質部及び第3加工変質部を、平面視において、それぞれ破断線状に配置した第2線及び第3線をそれぞれ形成し、
得られた基板に外力を加えて、前記基板内の、前記第1線から前記第2線に向かう傾斜方向と、前記第1線から前記第3線に向かう傾斜方向とに沿って前記基板を分割して、該分割された基板の一側面を傾斜させた面とすることを特徴とする半導体素子の製造方法。
本発明の一実施形態に係る半導体発光素子の製造方法によれば、基板上に窒化物半導体層が積層された基板を、高い歩留りで意図するように正確にチップ化することができる半導体発光素子の製造方法を提供することができる。
本発明の一実施形態の半導体素子の製造方法を説明するための概略断面図である。 本発明の一実施形態の半導体素子の製造方法を説明するための概略断面図である。 本発明の一実施形態の半導体素子の製造方法を説明するための概略断面図である。 本発明の一実施形態の半導体素子の製造方法を説明するための概略断面図である。 図1Cの要部の拡大概略断面図である。 図1Dに表されている基板の全体を示す概略平面図である。 図1Dに表されている別の基板の全体を示す概略平面図である。 本発明の一実施形態の半導体素子の製造方法で得られた半導体素子を示す概略平面図である。 図4AのI−I’線概略断面図である。 本発明の他の実施形態の半導体素子の製造方法を説明するための概略断面図である。 本発明の他の実施形態の半導体素子の製造方法を説明するための概略断面図である。 本発明の他の実施形態の半導体素子の製造方法を説明するための概略断面図である。 本発明の他の実施形態の半導体素子の製造方法を説明するための概略断面図である。 図5Cの要部の拡大概略断面図である。 本発明の他の実施形態の半導体素子の製造方法で得られた半導体素子を示す概略平面図である。 図7AのII−II’線概略断面図である。
以下、本願の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する実施形態は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明は以下のものに限定されない。各図面が示す部材の大きさ及び位置関係等は、説明を明確にするため、誇張していることがある。以下の説明において、同一又は同質の部材は同一の名称、符号で示しており、詳細説明を適宜省略する。
実施の形態においては、基板の厚み方向をZ方向、基板の主面に平行であってかつZ方向に垂直な方向をX方向、基板の主面に平行であってかつZ方向及びX方向に垂直な方向をY方向と記載することがある。また、図1B、1C、1D及び図2においては、第1加工変質部、第2加工変質部及び第3加工変質部が一断面に表されているが、これは説明の便宜のためであって、必ずしも、これら第1加工変質部、第2加工変質部及び第3加工変質部は、基板をZ方向に切断した1つの二次元の面(断面)に配置していなくてもよい。
従来の半導体発光素子の製造方法では、窒化物半導体層は、通常、サファイア基板からなるウェハ上に積層され、サファイア基板はオリエンテーションフラット(多くはA面、M面である。またオリフラやOFと称することがある)に対する平行方向で劈開性を有していないことから、サファイア基板は膜厚方向に斜めに、つまり、傾斜するように割れが入り、素子として機能する半導体層の一部にまで割れが入り、不良品となることがあった。
また、このような割れを回避するため、窒化物半導体層及び/又はサファイア基板表面に割り溝を形成し、レーザをサファイア基板内部に照射するなどによって、半導体層が積層されたウェハをチップ化する方法が提案されている。
しかし、意図するようにサファイア基板が劈開せず、斜め方向への割れが依然として出現するという課題がある。また、サファイア基板の厚み方向のほぼ全体にわたる多段かつ断続的なレーザ照射による変質部に起因して、得られた半導体素子は発光効率の低下を招くという課題もある。
これに対して、本願の実施形態の半導体発光素子の製造方法では、第1主面上に窒化物半導体層が積層された基板に対して、所定位置に第1線を形成し、第1線に対して所定の位置に第2線及び第3線をそれぞれ形成し、得られた基板に外力を加えて、基板内の、前記第1線から前記第2線に向かう傾斜方向と、前記第1線から前記第3線に向かう傾斜方向とに沿って基板を分割する。これによって、分割された基板の側面を傾斜させた面とする。
このような製造方法によって、窒化物半導体層が積層された基板を、容易に、高精度に、側面を傾斜面として分割することができる。その結果、光取り出し効率を向上させた半導体素子を効率的に製造することができる。
〔半導体発光素子の製造方法1〕
本願の一実施形態の半導体発光素子の製造方法では、
第1主面と、前記第1主面と反対側の第2主面とを有する基板に、前記第1主面に近い一定の深さにレーザ光を集光させて第1加工変質部を、平面視において、線状に配置した第1線を形成し、
該第1加工変質部の前記第1線が形成された前記基板に、前記第2主面に近い一定の深さであって、平面視において、前記第1線に対して線対称の位置にレーザ光を集光させて第2加工変質部及び第3加工変質部を、平面視において、それぞれ線状に配置した第2線及び第3線をそれぞれ形成し、
得られた基板に外力を加えて、前記基板内の、前記第1線から前記第2線に向かう傾斜方向と、前記第1線から前記第3線に向かう傾斜方向とに沿って前記基板を分割して、該分割された基板の一側面を傾斜させた面とすることを特徴とする。
なお、線状に第1線、第2線、第3線を形成するとは、第1加工変質部、第2加工変質部、第3加工変質部をそれぞれ形成する際、例えば第1加工変質部を形成する際に、ある方向に、第1加工変質部を複数形成するが、その際に、隣り合った第1加工変質部同士が亀裂により繋がることで第1線が形成されることになる。またこの亀裂は、第1主面と第2主面のうち、第1加工変質部に近い側の表面まで現れることがある。第2線、第3線についても同様である。また、亀裂により繋がる線であることから、線状とはつながっている状態を指すものであり、直線に限られるものではない。
(第1破断線の形成)
第1破断線を形成するために、まず、図1Aに示すように、第1主面101上に窒化物半導体層14が積層された基板10を準備する。
基板10は、第1主面101と、第1主面101の反対側の第2主面102を有する。第1主面101と第2主面102とは互いに平行であることが好ましい。第1主面及び/又は第2主面が平坦であってもよいし、凸部を有していてもよい。ここでの凸部の形状、大きさ等は特に限定されず、例えば、特開2003−318441号公報に記載されているようなものが挙げられる。
基板10は、絶縁基板、半導体基板等、種々の基板が挙げられるが、顕著な劈開性を有していない基板が好ましい。顕著な劈開性がある基板では、軽微な外力によって、容易に劈開するが、意図する部位での高精度の分割ができないことがあるからである。つまり、本願における基板の分割は、劈開性を利用するものではなく、基板内に形成した加工変質部及び破断線ならびにそこから伸展する亀裂の繋がりを利用するものである。基板としては、例えば、サファイア基板又はシリコン基板であることが好ましい。このような基板を用いることにより、第1主面上に、窒化物半導体層を良好な結晶性で成長させることができる。また、劈開性が弱いために、後述する工程によって、意図する部位での高精度の基板の分割を実現することができる。
サファイア基板及びシリコン基板等の基板10は、図3Aに示すように、通常、ウェハとして、略円盤状でオリフラを有している。サファイア基板は、例えば、六方晶のAl23からなり、C面、A面、R面、M面のいずれか、またはこれらの面に対して1°〜5°のオフ角を有した面のいずれかを第1主面、第2主面としてもよい。なかでもC面およびC面に対して1°〜5°のオフ角を有した面を第1主面、第2主面とすることが好ましい。オリフラ面は、A面又はM面としてもよく、A面であることが好ましい。
基板の厚みは、例えば、20μmから2mmが挙げられ、50μmから500μmが好ましく、80μmから160μmがより好ましい。また、直径が50mmから150mmのウェハ状のものが挙げられる。
窒化物半導体層14としては、例えば、InxAlyGa1-x-yN(0≦x≦1、0≦y≦1、0≦x+y≦1)で表されるものが挙げられる。窒化物半導体層は、基板側から、第1半導体層、発光層、第2半導体層がこの順に積層されている。窒化物半導体層14の厚みは、任意に設定することができる。第1半導体層には第1電極が電気的に接続され、第2半導体層には第2電極が電気的に接続されている。
次いで、図1Bに示すように、基板10内の第1主面101に近い側であって、一定の深さに、第1加工変質部11を形成する。第1主面101に近い側とは、基板10の総厚みの中央よりも第1主面101側を指す。
第1加工変質部11は、例えば、レーザによって形成することができる。つまり、レーザ光を、基板10内の一定の深さに対して集光させて、第1加工変質部11を形成する。そして、基板10の第1主面101の所定方向、例えば、X方向に、レーザ光を走査する。第1破断線111を形成するためのレーザ光は、多光子吸収を生じさせて基板を加工し得るパルスレーザ又は連続波レーザ等を用いることができる。なかでも、高いピーク出力を有し、多光子吸収を容易に発生できるフェムト秒レーザ、ピコ秒レーザ、ナノ秒レーザ等のパルスレーザを発生させるものが好ましい。
これによって、任意の方向、例えば、X方向に、第1加工変質部11を複数形成することができる。そして、この第1加工変質部11が、平面視において、図3Aに示すように、破断線状に配置して、第1破断線111を形成する。第1破断線111は、レーザ光の1段の照射、つまり一走査によって形成することが好ましい。
ここで形成された第1加工変質部11は、用いるレーザ光によって、図2に示すように、その幅w1は、例えば、1μmから5μmとすることができ、その長さL1は、例えば、3μmから50μmとすることができる。
ここで形成された第1加工変質部11によって、基板10の第1主面101側に、第1加工変質部11の一部がボイドとなるとともに、第1加工変質部11から伸展する亀裂が形成される。また、基板10の第1主面101に平行又は略平行な面内において、第1加工変質部11から隣接する第1加工変質部11に伸展する亀裂が形成される。
なお、X方向は、例えば、オリフラ面に平行又は垂直な方向とすることができる。
第1破断線111を形成するためのレーザ光の波長は、例えば、Nd:YAGレーザ、Nd:YVO4レーザ、Nd:YLFレーザ、チタンサファイアレーザ等による種々のものを利用することができる。レーザ光の出力は、例えば、0.5〜5W程度とすることができる。レーザ光の周波数は、例えば、5〜200kHzとすることができる。レーザ光のパルス幅は、例えば、100fsから50000fs(フェムト秒)とすることができる。具体的には、中心波長を1030nmとするフェムト秒レーザを用いることが挙げられる。レーザ光の波長は、250nmから1100nmとすることができる。レーザ光の照射走査速度は20mm/secから2000mm/secとすることができる。
レーザ光は、第1主面101及び第2主面102のいずれから照射してもよく、例えば、第2主面102側から照射することができる。ここでの一定の深さとは、図1Bに示すように、基板10の第1主面101から深さd1の位置とする。深さd1は、基板10の厚みによって適宜調整することができ、レーザ光を照射する側の基板10の表面、例えば、第1主面101から、基板10の厚みの2%から49%の位置が挙げられ、3%から20%の及び位置が好ましい。具体的には、基板10の厚みが50μmから500μmの場合、15μmから245μmの深さd1が挙げられ、30μmから150μmの深さd1とすることができる。
レーザ光の走査は、当該分野で公知のレーザ光の照射装置を利用することによって行うことができる。この場合、レーザ光の照射装置は、ウェハを載置したステージを移動させるもの、レーザ光源を移動させるもの、ステージとレーザ光源との双方を移動させるもののいずれを用いてもよい。
レーザ光の走査は、X方向に1本のみ第1破断線111を形成するために1回のみ行なってもよいが、得ようとする半導体素子の平面形状によって、その方向、数、間隔等適宜調整することができる。例えば、X方向のほか、Y方向、つまり、オリフラ面に垂直な方向又は平行な方向にレーザ光を照射して、Y方向に第1破断線を形成してもよい。また、得ようとする半導体素子の平面形状が四角形の場合、X方向及びY方向の双方に第1破断線を形成することが好ましい。ここでの、Y方向の第1破断線の形成は、X方向の第1破断線の形成の前後のいずれに行なってもよいし、後述する第2破断線及び又は第3破断線の形成の前後のいずれに行ってもよい。
図3A及び3Bに示すように、第1破断線111を複数本形成する場合、そのピッチP1は、得ようとする半導体素子の大きさによって適宜設定することができる。例えば、80μmから2000μmが挙げられる。
(第2破断線及び第3破断線の形成)
続いて、図1Cに示すように、第1加工変質部11の第1破断線111が形成された基板10に、第2破断線112及び第3破断線113をそれぞれ形成する。つまり、第2主面102に近い一定の深さであって、平面視において、第2加工変質部12及び第3加工変質部13を距離P3離間して、第1破断線111に対して線対称の位置にレーザ光を集光させて第2加工変質部12及び第3加工変質部13を形成する。これによって、平面視において、第2加工変質部12及び第3加工変質部がそれぞれ破断線状に配置した第2破断線112及び第3破断線113をそれぞれ形成することができる。なお、第2破断線112及び第3破断線113は、それぞれレーザ光の1段の照射、つまり一走査によって形成することが好ましい。
第2加工変質部12及び第3加工変質部13は、第1加工変質部の形成方法と同様の方法で形成することができる。第2加工変質部12及び第3加工変質部13は、基板10の第1主面101側及び第2主面102側のいずれからレーザ光を照射して形成してもよく、例えば、第2主面102側からレーザ光を照射して形成することができる。特に、第2加工変質部12及び第3加工変質部13を形成するためのレーザ光の照射は、第1加工変質部11を形成するためのレーザ光の照射と同じ側から行うことが好ましい。
一定の深さとは、図1Cに示すように、第2加工変質部12及び第3加工変質部13において、異なる深さでもよいが、同じ深さとすることが好ましい。そして、基板10の第2主面102から深さd2の位置とする。深さd2は、基板10の厚みによって適宜調整することができ、レーザ光を照射する側の基板10の表面、例えば、第2主面102から、基板10の厚みの2%から45%の位置が挙げられ、3%から20%の及び位置が好ましい。具体的には、基板10の厚みが50μmから500μmの場合、15μmから245μmの深さd2が挙げられ、30μmから150μmの深さd2とすることができる。
第2破断線112及び第3破断線113は、平面視において、第1破断線111に対して線対称の位置に形成することが好ましい。言い換えると、平面視において、第1破断線111及び第2破断線112間の距離と、第1破断線111及び第3破断線113間の距離とが同じとなる位置に、第2破断線112及び第3破断線113を形成することが好ましい。このように設定することにより、製造後の半導体発光素子の側面を同じ傾斜角度とすることができ、発光面及びその周辺における光の取り出し効率の均一性を図ることができる。これらの距離P2(図3A参照)は、用いる基板10の厚み等によって適宜調整することができ、例えば、半導体素子の一辺が80μmから2000μmの場合、10μmから500μmとすることができる。また、別の観点から、例えば、図2に示すように、第1加工変質部11と第2加工変質部12とを結ぶ線S又は第1加工変質部11と第3加工変質部13とを結ぶ線Qが、第1加工変質部11を通る基板の第1主面に垂線Rに対して、それぞれα度とすることができる。α度は、例えば、10°から30°が挙げられ、8°±5°程度が好ましい。なお、線Sと垂線Rとによる角度及び線Qと垂線Rとによる角度は同じであることが好ましいが、異なることを排除するものではない。
このように、第1加工変質部11による第1破断線111、第2加工変質部12による第2破断線112、第3加工変質部13による第3破断線113を形成することにより、図1Dに示すように、第1加工変質部11から基板の厚み方向、特に、第2主面102側に伸展する亀裂が、第2加工変質部12から基板の厚み方向に伸展する亀裂と繋がり、第1加工変質部11から基板の厚み方向、特に、第2主面102側に伸展する亀裂が、第3加工変質部13から基板の厚み方向に伸展する亀裂と繋がる。さらに、第1加工変質部11から基板の面内方向に伸展する亀裂が、隣接する第1加工変質部11から基板の面内方向に伸展する亀裂と繋がり、第2加工変質部12から基板の面内方向に伸展する亀裂が、隣接する第2加工変質部12から基板の面内方向に伸展する亀裂と繋がり、第3加工変質部13から基板の面内方向に伸展する亀裂が、隣接する第3加工変質部13から基板の面内方向に伸展する亀裂と繋がる。このような亀裂は、例えば、レーザ光の出力等の条件を適宜調整することにより、効果的に繋がらせることができる。これにより、後述する基板の分割を、意図する部位で、高精度に行なうことができる。
上述したように、第1破断線111を複数形成する場合には、第2破断線112及び第3破断線113も、同様に、複数形成することが好ましい。その場合、それらは互いに平行であってもよいし、平行でなくてもよい。また、その一部において、線Sと垂線Rとによる角度及び線Qと垂線Rとによる角度が互いに異なっていてもよい。
(基板の分割)
得られた基板を分割する。分割は、基板10に外力を加えることにより、基板の劈開性を利用することなく、行なうことができる。つまり、図1Dに示した、第1加工変質部11から第2加工変質部12間の亀裂、第1加工変質部11から第3加工変質部13間の亀裂、第2加工変質部12と隣接する第2加工変質部12間の亀裂、第3加工変質部13と隣接する第3加工変質部13間の亀裂、さらに、上述した、第1加工変質部11から第2主面側に伸展した亀裂、第1加工変質部11から隣接する第1加工変質部11に伸展する亀裂が形成されても、なお割断されていない基板に対して、それらの亀裂において互いに分断されるように、外力を加えて基板を分割する。このような外力は、ナイフ、ブレード、ローラー、ノッチ等を使用したチップブレーカー等を利用して、基板の厚み方向に加える。また、基板を、例えば、伸縮性シートに貼着し、伸縮性シートを伸張することにより、基板に外力を加えることができる。これによって、意図した部位で、基板を分断することができる。
分割された基板の側面は、第1加工変質部11から第2加工変質部12間の亀裂の方向に沿った傾斜面とすることができる。あるいは、第1加工変質部11から第3加工変質部13間の亀裂の方向に沿った傾斜面とすることができる。言い換えると、図2に示すように、第1加工変質部11と第2加工変質部12とを結ぶ線Sに沿った傾斜面とすることができる。あるいは、第1加工変質部11と第3加工変質部13とを結ぶ線Qに沿った傾斜面とすることができる。さらに言い換えると、第1破断線111から第2破断線112に向かう傾斜方向に沿った傾斜面とすることができる。あるいは第1破断線111から第3破断線113に向かう傾斜方向に沿った傾斜面とすることができる。
図3Aに示すように、第1破断線111、第2破断線112及び第3破断線113を、それぞれ、X方向に複数本形成する場合、分割された基板は、向かいあった二側面において傾斜面とすることができる。また、図3Bに示すように、第1破断線111、第2破断線112及び第3破断線113を、それぞれ、X方向及びY方向に複数本形成する場合、分割された基板は、向かいあった2対の二側面において傾斜面とすることができる。そして、図4A及び4Bに示すように、平面形状が四角形の半導体素子を得ることができる。
なお、得ようとする半導体素子の平面形状(例えば、三角形、ひし形、台形、六角形等の多角形又は略多角形等)に応じて、第1破断線111、第2破断線112及び第3破断線113の形成方向及び数等を任意に設定することができる。例えば、オリエンテーションフラットに対して、平行又は垂直のみならず、60°、120°等の角度で配置することにより、半導体素子の平面形状を三角形、ひし形、台形、六角形等に設定することができる。
本実施形態においては、レーザ光の照射の前後、基板の分割の前等の任意の段階で、基板の第2主面側を研削及び/又は研磨してもよい。研削及び/又は研磨後の最終厚さが薄いほどウェハの割断時の半導体積層体等の損傷を低減することができ、発光素子を効率的に製造することができる。ウェハの研削及び研磨は、当該分野で公知の方法のいかなる方法を利用してもよい。なかでも、ダイヤモンド等の砥粒を用いた研削及び研磨が好ましい。
このようにして製造された半導体素子は、平面形状が四角形の場合、例えば、図4A及び4Bに示すように、基板の向かいあった2対の二側面が、同じ傾斜角度を有する側面とすることができる。ただし、全ての側面の傾斜角度が必ずしも同じでなくてもよい。このように、基板の側面を傾斜面とすることにより、特に、基板の全側面を傾斜面とすることにより、基板が凸レンズ様の形状となる。よって、窒化物半導体層によって出射された光が、基板側面において臨界角反射し、半導体素子内部に再反射して、迷光化して消失又は損失することを低減することができる。つまり、窒化物半導体層によって出射された光が、基板の側面で反射されて内部に戻る場合においても、再度基板の側面に入射する光は、異なる方向に反射されるために、基板外部への取り出し効率を増大させることができる。その結果、光取り出し率を向上させることができる。
〔半導体発光素子の製造方法2〕
他の実施の形態の半導体発光素子の製造方法は、
第1主面上に窒化物半導体層が積層された基板に、前記第1主面と反対側の第2主面に近い一定の深さにレーザ光を集光させて第1加工変質部を、平面視において、破断線状に配置した第1破断線を形成し、
該第1加工変質部の破断線が形成された前記基板に、前記第1主面に近い一定の深さであって、平面視において、前記第1破断線に対して線対称の位置にレーザ光を集光させて第2加工変質部及び第3加工変質部を、平面視において、それぞれ破断線状に配置した第2破断線及び第3破断線をそれぞれ形成し、
得られた基板に外力を加えて、前記基板内の、前記第1破断線から前記第2破断線に向かう傾斜方向と、前記第1破断線から前記第3破断線に向かう傾斜方向とに沿って前記基板を分割して、該分割された基板の一側面を傾斜させた面とすることを特徴とする。
(第1破断線の形成)
第1破断線を形成するために、まず、図5Aに示すように、第1主面101上に窒化物半導体層14が積層された基板10を準備する。
次いで、図5Bに示すように、基板10内の第2主面102に近い側であって、一定の深さd1に、第1加工変質部11を形成する。第2主面102に近い側とは、基板10の総厚みの中央よりも第2主面102側を指す。深さd1は、上述した範囲から適宜設定することができる。
(第2破断線及び第3破断線の形成)
続いて、図5Cに示すように、第1加工変質部11の第1破断線111が形成された基板10に、第2破断線112及び第3破断線113をそれぞれ形成する。つまり、第1主面101に近い一定の深さであって、平面視において、第2加工変質部12及び第3加工変質部13を距離P3離間して、第1破断線111に対して線対称の位置にレーザ光を集光させて第2加工変質部12及び第3加工変質部13を形成する。これによって、平面視において、第2加工変質部12及び第3加工変質部がそれぞれ破断線状に配置した第2破断線112及び第3破断線113をそれぞれ形成することができる。なお、第2破断線112及び第3破断線113は、それぞれレーザ光の1段の照射、つまり一走査によって形成することが好ましい。
第2加工変質部12及び第3加工変質部13は、第1加工変質部の形成方法と同様の方法で形成することができる。第2加工変質部12及び第3加工変質部13は、基板10の第1主面101側及び第2主面102側のいずれからレーザ光を照射して形成してもよく、例えば、第1主面101側からレーザ光を照射して形成することができる。特に、第2加工変質部12及び第3加工変質部13を形成するためのレーザ光の照射は、第1加工変質部11を形成するためのレーザ光の照射と同じ側から行うことが好ましい。
一定の深さとは、図5Cに示すように、第2加工変質部12及び第3加工変質部13において、異なる深さでもよいが、同じ深さとすることが好ましい。そして、基板10の第1主面101から深さd2の位置とする。深さd2は、基板10の厚みによって適宜調整することができ、レーザ光を照射する側の基板10の表面、例えば、第1主面101から、基板10の厚みの2%から45%の位置が挙げられ、3%から20%の及び位置が好ましい。具体的には、基板10の厚みが50μmから500μmの場合、15μmから245μmの深さd2が挙げられ、30μmから150μmの深さd2とすることができる。
第2破断線112及び第3破断線113は、平面視において、第1破断線111に対して線対称の位置に形成することが好ましい。言い換えると、平面視において、第1破断線111及び第2破断線112間の距離と、第1破断線111及び第3破断線113間の距離とが同じとなる位置に、第2破断線112及び第3破断線113を形成することが好ましい。このように設定することにより、製造後の半導体発光素子の側面を同じ傾斜角度とすることができ、発光面及びその周辺における光の取り出し効率の均一性を図ることができる。これらの距離P2(図3A参照)は、用いる基板10の厚み等によって適宜調整することができ、例えば、半導体素子の一辺が80μmから2000μmの場合、10μmから500μmとすることができる。また、別の観点から、例えば、図6に示すように、第1加工変質部11と第2加工変質部12とを結ぶ線S又は第1加工変質部11と第3加工変質部13とを結ぶ線Qが、第1加工変質部11を通る基板の第1主面に垂線Rに対して、それぞれα度とすることができる。α度は、例えば、10°から30°が挙げられ、8°±5°程度が好ましい。なお、線Sと垂線Rとによる角度及び線Qと垂線Rとによる角度は同じであることが好ましいが、異なることを排除するものではない。
このように、第1加工変質部11による第1破断線111、第2加工変質部12による第2破断線112、第3加工変質部13による第3破断線113を形成することにより、図5Dに示すように、第1加工変質部11から基板の厚み方向、特に、第1主面101側に伸展する亀裂が、第2加工変質部12から基板の厚み方向に伸展する亀裂と繋がり、第1加工変質部11から基板の厚み方向、特に、第1主面101側に伸展する亀裂が、第3加工変質部13から基板の厚み方向に伸展する亀裂と繋がる。さらに、第1加工変質部11から基板の面内方向に伸展する亀裂が、隣接する第1加工変質部11から基板の面内方向に伸展する亀裂と繋がり、第2加工変質部12から基板の面内方向に伸展する亀裂が、隣接する第2加工変質部12から基板の面内方向に伸展する亀裂と繋がり、第3加工変質部13から基板の面内方向に伸展する亀裂が、隣接する第3加工変質部13から基板の面内方向に伸展する亀裂と繋がる。このような亀裂は、例えば、レーザ光の出力等の条件を適宜調整することにより、効果的に繋がらせることができる。これにより、後述する基板の分割を、意図する部位で、高精度に行なうことができる。
上述したように、第1破断線111を複数形成する場合には、第2破断線112及び第3破断線113も、同様に、複数形成することが好ましい。その場合、それらは互いに平行であってもよいし、平行でなくてもよい。また、その一部において、線Sと垂線Rとによる角度及び線Qと垂線Rとによる角度が互いに異なっていてもよい。
(基板の分割)
得られた基板を分割する。基板の分割は、一実施の形態と同様である。
このようにして製造された半導体素子は、平面形状が四角形の場合、例えば、図7A及び図7Bに示すように、基板の向かいあった2対の二側面が、同じ傾斜角度を有する側面とすることができる。ただし、全ての側面の傾斜角度が必ずしも同じでなくてもよい。このように、基板の側面を傾斜面とすることにより、特に、基板の全側面を傾斜面とすることにより、基板が凸レンズ様の形状となる。よって、窒化物半導体層によって出射された光が、基板側面において臨界角反射し、半導体素子内部に再反射して、迷光化して消失又は損失することを低減することができる。つまり、窒化物半導体層によって出射された光が、基板の側面で反射されて内部に戻る場合においても、再度基板の側面に入射する光は、異なる方向に反射されるために、基板外部への取り出し効率を増大させることができる。その結果、光取り出し率を向上させることができる
本発明の他の実施形態に係る半導体発光素子の製造方法によれば、本発明の一の実施形態と同様に、基板上に窒化物半導体層が積層された基板を、極めて高い歩留りで意図するように正確にチップ化することができる半導体発光素子の製造方法を提供することができる。
最後に、本願の一実施形態によれば、以下の(1)〜(9)のうち、少なくともいずれか1つの半導体素子の製造方法が含まれる。
(1)第1主面と、前記第1主面と反対側の第2主面とを有する基板に、前記第1主面に近い一定の深さにレーザ光を集光させて第1加工変質部を、平面視において、破断線状に配置した第1破断線を形成し、
該第1加工変質部の破断線が形成された前記基板に、前記第2主面に近い一定の深さであって、平面視において、前記第1破断線に対して線対称の位置にレーザ光を集光させて第2加工変質部及び第3加工変質部を、平面視において、それぞれ破断線状に配置した第2破断線及び第3破断線をそれぞれ形成し、
得られた基板に外力を加えて、前記基板内の、前記第1破断線から前記第2破断線に向かう傾斜方向と、前記第1破断線から前記第3破断線に向かう傾斜方向とに沿って前記基板を分割して、該分割された基板の一側面を傾斜させた面とすることを特徴とする。
(2)(1)であって、前記基板の前記第1主面上に窒化物半導体層が積層されてなる請求項1に記載の半導体素子の製造方法。
(3)(1)または(2)であって、前記基板がサファイア基板又はシリコン基板である。
(4)(1)から(3)のいずれかであって、前記第1破断線を、前記基板の前記第2主面から15μmから245μmの範囲の一定の深さに形成し、
前記第2破断線及び前記第3破断線を、前記基板の前記第1主面から15μmから245μmの範囲の一定の深さにそれぞれ形成する。
(5)(1)から(4)のいずれかであって、前記分割された基板の一側面を10°から30°傾斜させた面とする。
(6)(1)から(5)のいずれかであって、前記基板はオリエンテーションフラットを有するウェハであり、前記第1破断線、第2破断線及び第3破断線を、前記オリエンテーションフラットに対して平行又は垂直に形成する。
(7)(1)から(6)のいずれかであって、前記第1破断線、第2破断線及び第3破断線をそれぞれ複数本、前記基板へのパルスレーザの複数回の走査により、それぞれ形成する。
(8)(7)であって、前記半導体素子の平面形状が四角形であり、
前記基板の分割を、向かいあった二側面又は向かいあった2対の二側面に対して行い、それぞれを傾斜させた面とする。
(9)(7)または(8)であって、前記分割された前記基板の複数の側面を10°から30°傾斜させた面とする。
10 基板
101 第1主面
102 第2主面
11 第1加工変質部
111 第1破断線
12 第2加工変質部
112 第2破断線
13 第3加工変質部
113 第3破断線
14 窒化物半導体層

Claims (9)

  1. 第1主面と、前記第1主面と反対側の第2主面とを有する基板に、前記第1主面に近い一定の深さにレーザ光を集光させて第1加工変質部を、平面視において、線状に配置した第1線を形成し、
    該第1加工変質部の前記第1線が形成された前記基板に、前記第2主面に近い一定の深さであって、平面視において、前記第1線に対して線対称の位置にレーザ光を集光させて第2加工変質部及び第3加工変質部を、平面視において、それぞれ破断線状に配置した第2線及び第3線をそれぞれ形成し、
    得られた基板に外力を加えて、前記基板内の、前記第1線から前記第2線に向かう傾斜方向と、前記第1線から前記第3線に向かう傾斜方向とに沿って前記基板を分割して、該分割された基板の一側面を傾斜させた面とすることを特徴とする半導体素子の製造方法。
  2. 前記基板の前記第1主面上に窒化物半導体層が積層されてなる請求項1に記載の半導体素子の製造方法。
  3. 前記基板がサファイア基板又はシリコン基板である請求項1又は2に記載の半導体素子の製造方法。
  4. 前記第1線を、前記基板の前記第1主面から15μmから245μmの範囲の一定の深さに形成し、
    前記第2線及び前記第3線を、前記基板の前記第2主面から15μmから245μmの範囲の一定の深さにそれぞれ形成する請求項1から3のいずれかに記載の半導体素子の製造方法。
  5. 前記分割された基板の一側面を10°から30°傾斜させた面とする請求項1から4のいずれかに記載の半導体素子の製造方法。
  6. 前記基板はオリエンテーションフラットを有するウェハであり、前記第1線、第2線及び第3線を、前記オリエンテーションフラットに対して平行又は垂直に形成する請求項1から5のいずれかに記載の半導体素子の製造方法。
  7. 前記第1線、第2線及び第3線をそれぞれ複数本、前記基板へのパルスレーザの複数回の走査により、それぞれ形成する請求項1から6のいずれかに記載の半導体素子の製造方法。
  8. 前記半導体素子の平面形状が四角形であり、
    前記基板の分割を、向かいあった二側面又は向かいあった2対の二側面に対して行い、それぞれを傾斜させた面とする請求項7に記載の半導体素子の製造方法。
  9. 前記分割された基板の複数の側面を10°から30°傾斜させた面とする請求項7又は8に記載の半導体素子の製造方法。
JP2019239484A 2019-12-27 2019-12-27 半導体素子の製造方法 Active JP7277782B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019239484A JP7277782B2 (ja) 2019-12-27 2019-12-27 半導体素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019239484A JP7277782B2 (ja) 2019-12-27 2019-12-27 半導体素子の製造方法

Publications (2)

Publication Number Publication Date
JP2021108344A true JP2021108344A (ja) 2021-07-29
JP7277782B2 JP7277782B2 (ja) 2023-05-19

Family

ID=76968259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019239484A Active JP7277782B2 (ja) 2019-12-27 2019-12-27 半導体素子の製造方法

Country Status (1)

Country Link
JP (1) JP7277782B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276883A1 (ja) 2021-06-30 2023-01-05 Mcppイノベーション合同会社 エアバッグ収納カバー及びその製造方法、熱可塑性エラストマー組成物、成形体、並びに複合成形体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245043A (ja) * 2005-02-28 2006-09-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子の製造方法及び発光素子
US20130260490A1 (en) * 2012-03-28 2013-10-03 Sensor Electronic Technology, Inc. Light Emitting Device Substrate with Inclined Sidewalls
JP2014017433A (ja) * 2012-07-11 2014-01-30 Disco Abrasive Syst Ltd 光デバイス及び光デバイスの加工方法
JP2015130470A (ja) * 2013-12-05 2015-07-16 豊田合成株式会社 Iii族窒化物半導体発光素子およびその製造方法
CN106328778A (zh) * 2016-09-14 2017-01-11 中国科学院半导体研究所 隐形切割制备正、倒和倒梯形台状衬底的led芯片的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245043A (ja) * 2005-02-28 2006-09-14 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体素子の製造方法及び発光素子
US20130260490A1 (en) * 2012-03-28 2013-10-03 Sensor Electronic Technology, Inc. Light Emitting Device Substrate with Inclined Sidewalls
JP2014017433A (ja) * 2012-07-11 2014-01-30 Disco Abrasive Syst Ltd 光デバイス及び光デバイスの加工方法
JP2015130470A (ja) * 2013-12-05 2015-07-16 豊田合成株式会社 Iii族窒化物半導体発光素子およびその製造方法
CN106328778A (zh) * 2016-09-14 2017-01-11 中国科学院半导体研究所 隐形切割制备正、倒和倒梯形台状衬底的led芯片的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276883A1 (ja) 2021-06-30 2023-01-05 Mcppイノベーション合同会社 エアバッグ収納カバー及びその製造方法、熱可塑性エラストマー組成物、成形体、並びに複合成形体

Also Published As

Publication number Publication date
JP7277782B2 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
KR102065829B1 (ko) 기판 프로세싱 방법
US9478696B2 (en) Workpiece cutting method
US8389384B2 (en) Laser beam machining method and semiconductor chip
US8143141B2 (en) Laser beam machining method and semiconductor chip
JP6260601B2 (ja) 半導体素子の製造方法
TWI447964B (zh) LED wafer manufacturing method
US10639747B2 (en) Method of manufacturing light emitting element
US20150217400A1 (en) Method for cutting object to be processed
US20090081851A1 (en) Laser processing method
JP6345742B2 (ja) 基板処理方法
WO2013176089A1 (ja) 加工対象物切断方法、加工対象物、及び、半導体素子
JP5747743B2 (ja) 発光素子の製造方法
WO2006013763A1 (ja) レーザ加工方法及び半導体装置
US20150217399A1 (en) Workpiece cutting method
WO2008004394A1 (fr) Procédé de travail par laser
US20150174698A1 (en) Workpiece cutting method
JP2016134427A (ja) 半導体ウエハおよびその製造方法
JP7277782B2 (ja) 半導体素子の製造方法
TW201436017A (zh) Led元件之製造方法、led元件製造用晶圓基材、及led元件之製造裝置
KR102529797B1 (ko) 발광소자의 제조 방법
JP2015144180A (ja) Led素子製造用ウェハとその作製方法、およびled素子
JP6819897B2 (ja) 発光素子の製造方法
JP6982264B2 (ja) 発光素子の製造方法
JP2011159827A (ja) 透明基板の改質領域形成方法
CN117334569A (zh) 芯片的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R151 Written notification of patent or utility model registration

Ref document number: 7277782

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151