JP2021094667A - 研削盤用研削液濾過装置 - Google Patents

研削盤用研削液濾過装置 Download PDF

Info

Publication number
JP2021094667A
JP2021094667A JP2019228685A JP2019228685A JP2021094667A JP 2021094667 A JP2021094667 A JP 2021094667A JP 2019228685 A JP2019228685 A JP 2019228685A JP 2019228685 A JP2019228685 A JP 2019228685A JP 2021094667 A JP2021094667 A JP 2021094667A
Authority
JP
Japan
Prior art keywords
grinding
grinding machine
liquid
tank
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019228685A
Other languages
English (en)
Other versions
JP6754487B1 (ja
Inventor
隆幸 平田
Takayuki Hirata
隆幸 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2019228685A priority Critical patent/JP6754487B1/ja
Application granted granted Critical
Publication of JP6754487B1 publication Critical patent/JP6754487B1/ja
Priority to CN202011508841.5A priority patent/CN113001412B/zh
Publication of JP2021094667A publication Critical patent/JP2021094667A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/88Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices
    • B01D29/92Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor having feed or discharge devices for discharging filtrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/04Controlling the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B55/00Safety devices for grinding or polishing machines; Accessories fitted to grinding or polishing machines for keeping tools or parts of the machine in good working condition
    • B24B55/02Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant
    • B24B55/03Equipment for cooling the grinding surfaces, e.g. devices for feeding coolant designed as a complete equipment for feeding or clarifying coolant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

【課題】サイクロンから出力された研削液を研削盤等へ送るためのポンプを必要としない研削盤用研削液濾過装置を提供する。【解決手段】研削盤送液ポンプP2は、精密研削盤14から排出された研削液Fから切粉の除去を連続的に行なうマグネチックセパレータ40により切粉の除去が行なわれた研削液Fを、配管中に接続されたインラインサイクロン32へ供給すると同時に、インラインサイクロン32に接続された精密研削盤14へも供給する。これにより、出力解放型の通常のサイクロンから出力された研削液Fをポンプを用いて精密研削盤等へ送る場合に比較して、そのポンプが不要となる。【選択図】図3

Description

本発明は、研削盤から回収された研削液を濾過して前記研削盤へ再循環させる研削盤用研削液濾過装置に関し、特に、研削盤用研削液濾過装置においてクリーンタンク内の研削液を1つのポンプでサイクロンへ供給するとともに研削装置にも供給する技術に関するものである。
研削盤から排出された研削液を濾過することにより浄化して、再び研削盤へ供給する研削盤用研削液濾過装置が提案されている。たとえば、特許文献1に記載された研削盤用研削液濾過装置がそれである。
この研削盤用研削液濾過装置では、前記研削盤から排出された研削液は、濾過機として機能するマグネチックセパレータに供給され、そのマグネチックセパレータにおいて磁気的に切粉が除去された研削液は、環状の中間タンクへ供給されてそこで一旦貯留されるようになっている。そして、中間タンク内の研削液は、濾過ポンプによってクリーンタンクへ圧送される過程で出力解放型のサイクロンにより浄化された後、クリーンタンクに貯留され、クリーンタンクに設けられたクーラによって所定温度に冷却された研削液が中圧ポンプによって研削盤へ供給されるようになっている。
この研削盤用研削液濾過装置によれば、研削盤から排出された研削液を受ける回収タンク、およびその回収タンクからマグネチックセパレータへ研削液を送るポンプが不要となり、その分、研削液濾過装置が小型化される利点がある。
特開2019−181612号公報
ところで、上記研削盤用研削液濾過装置において、研削液の浄化のために用いられるサイクロンは、出力側が大気圧とされる出力解放型であるため、サイクロンへ研削液を送るためのポンプに加えて、サイクロンから出力された研削液を研削盤等へ送るためのポンプがさらに必要となるという問題があった。
本発明は以上の事情を背景としてなされたものであり、その目的とするところは、サイクロンから出力された研削液を研削盤等へ送るためのポンプが必要とされない研削盤用研削液濾過装置を提供することにある。
本発明者等は、上記の事情を背景として種々検討を重ねた結果、サイクロンの出力側を配管に接続し、サイクロンの出力側を研削盤への研削液供給配管に接続し、このように出力接続型としたサイクロンの入力側と出力側との間で所定の圧力差を形成させつつ、サイクロンの入力側からポンプを用いて研削液を供給することで、サイクロンの浄化機能を確保しつつ、サイクロンの出力側にポンプを用いることなく、研削盤へ研削液を供給できるという事実を見いだした。本発明は係る知見に基づいて為されたものである。
すなわち、本発明の要旨とするところは、(a)研削盤から排出された研削液を浄化して前記研削盤へ再供給する研削盤用研削液濾過装置であって、(b)研削盤から排出された研削液から切粉の除去を連続的に行なうマグネチックセパレータと、(c)前記マグネチックセパレータにより切粉の除去が行なわれた研削液を、出力接続型であるインラインサイクロンを通して前記研削盤へ供給する研削盤送液ポンプとを、含むことにある。
本発明の研削盤用研削液濾過装置によれば、(a)研削盤から排出された研削液を浄化して前記研削盤へ再供給する研削盤用研削液濾過装置であって、(b)研削盤から排出された研削液から切粉の除去を連続的に行なうマグネチックセパレータと、(c)前記マグネチックセパレータにより切粉の除去が行なわれた研削液を、研削盤送液ポンプが出力接続型であるインラインサイクロンへ供給すると同時にそのインラインサイクロンを通して前記研削盤へも供給するので、通常の出力解放型のサイクロンから出力された研削液をポンプを用いて研削盤等へ送る場合に比較して、出力解放型のサイクロンから出力された研削液を研削盤等へ送るためのポンプが不要となる。
ここで、好適には、(a)前記研削盤は、前記インラインサイクロンを通過した研削液を受け入れる受入管と、前記研削盤の作動に連動して前記受入管を開閉する研削盤側電磁開閉弁とを備え、(b)前記インラインサイクロンから研削液を前記受入管へ送る送液管には、前記研削盤側電磁開閉弁と連動して前記送液管を開閉する濾過装置側電磁開閉弁が備えられている。これにより、研削盤の休止に連動して研削盤送液ポンプからインラインサイクロンを通して研削盤へ送出される研削液が停止させられるので、インラインサイクロンがその差圧で決まる浄化条件から外れた状態で作動させられて、精度(浄化度)の低い研削液を出力し続ける場合に比較して、研削盤への供給開始時には、精度(浄化度)の高い研削液を直ちに研削盤へ供給することができる。このような構成は、精密研削盤に対して顕著な効果が得られる。
また、好適には、(a)前記研削盤から排出された研削液を受入れるダーティタンクと、(b)前記ダーティタンク内の研削液を前記マグネチックセパレータへ送るダーティ液ポンプとを、備える。これにより、研削盤からの流量が不安定な研削液をマグネチックセパレータで受ける場合に比較して、研削盤からの研削液の戻り流量の減少に拘わらず、マグネチックセパレータの本来の切粉除去能力を発揮できるようにダーティ液ポンプから研削液を送ることで、濾過能力の低下を抑制することができる。
また、好適には、(a)前記ダーティタンクは、前記ダーティタンク内の研削液を攪拌するために回転駆動させられる攪拌羽根を有する攪拌機を、備える。これにより、たとえば、ダーティタンクから研削液を送出するダーティ液ポンプから出力される噴流を用いて攪拌する場合に比較して、研削液の発熱が少なく、消エネとなるとともに、後述のクーラも小型となる。
また、好適には、(a)クーラにより冷却された研削液を貯留するとともに前記ダーティタンクへ供給するクーラタンクを備え、(b)前記研削盤送液ポンプは、前記マグネチックセパレータにより切粉の除去が行なわれた研削液の一部を、連続的に前記クーラタンクへ供給し、(c)前記クーラタンク内の研削液は重力により前記ダーティタンク内へ還流させられる。これにより、研削盤送液ポンプからインラインサイクロンを通して研削盤へ送出される研削液が、たとえば研削盤の休止によって停止しても、インラインサイクロンはたとえばその差圧で決まる浄化条件内に維持されるので、研削盤への供給開始時には、精度(浄化度)の高い研削液を直ちに研削盤へ供給することができる。このような構成は、精密研削盤に対して顕著な効果が得られる。
また、好適には、(a)前記研削盤から排出された研削液を受入れるダーティタンクと、(b)クーラにより冷却された研削液を貯留するとともに前記ダーティタンクへ供給するクーラタンクと、(c)前記インラインサイクロンから出力された研削液を前記研削盤へ送液する送液管と、(d)前記送液管から分岐して、前記インラインサイクロンから出力された研削液の一部を前記クーラタンクへ導く第1還流管と、(e)前記研削盤送液ポンプから送出される研削液の一部を前記クーラタンクへ導く第2還流管とを、備える。これにより、インラインサイクロン、および、第1還流管と並行したバイパス流路として機能する第2還流管が形成されるので、その第2還流管の流量を調整することで、研削盤送液ポンプから送出される研削液の流量に拘わらず、ダーティタンクの液面が予め設定された範囲内に維持される。
本発明の一実施例の研削盤用研削液濾過装置の構成を説明する正面図である。 図1の研削盤用研削液濾過装置の平面図である。 図1の研削盤用研削液濾過装置の研削液の流れを説明する配管回路図である。 図1の研削盤用研削液濾過装置において、研削盤から排出される研削液を研削盤用研削液濾過装置へ導くトラフの構造および作用を説明する図である。 従来の、研削盤から排出される研削液を研削盤用研削液濾過装置へ導くトラフの構造を説明する図である。 図1の研削盤用研削液濾過装置のうち、インラインサイクロンおよびリジェクトポットの配管接続状態を示す図である。 図1の研削盤用研削液濾過装置のうち、磁気式濾過装置の要部を示す図である。
以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において、図は説明のために適宜簡略化或いは変形されており、各部の寸法比及び形状等は必ずしも正確に描かれていない。
図1および図2は、本発明の一実施例である研削盤用研削液濾過装置(以下、濾過装置という)10を示す正面図および平面図を示し、図3は、濾過装置10における研削液の流れを説明する配管回路図を示している。図1から図3において、濾過装置10で浄化された研削液Fは、研削液供給管路として機能する出力管12を介して、たとえば連続創成式歯車研削盤等の精密研削盤14に供給される。供給された研削液Fは、精密研削盤14の研削作動に連動して研削加工時には開かれ且つ非加工時には閉じられる研削盤側電磁開閉弁15を有する受入管(研削液受入管路)17および図示しないノズルを通して、図示しない研削砥石と被削材との間の研削点に供給されるようになっている。研削加工に用いられた研削液Fは、ベッド16の傾斜受面16a上に受けられるようになっている。研削液Fには、研削加工により被削材から削除された切粉(磁性粉)や、研削砥石に含まれていた砥粒およびビトリファイドボンドなどの無機粉などの異物が含まれている。
濾過装置10の受入タンクとして機能するダーティタンク18は、水平方向に配置された接続トラフ20を介してベッド16に接続され、ベッド16の傾斜受面16a上に受けられた汚れた研削液Fは縦長矩形の流通断面を有する接続トラフ20内を通してダーティタンク18内に還流させられるようになっている。ベッド16およびダーティタンク18には、縦長矩形の排出口22および受入口24が設けられており、それら排出口22および受入口24には、接続トラフ20の縦長矩形の両端面がそれぞれ液密に締結されている。
図4は、本実施例において、濾過装置10のダーティタンク18と精密研削盤14のベッド16とを接続トラフ20で接続した構成を示す模式図である。図4に示すように、ダーティタンク18の受入口24の下辺24dの床面FLからの高さAL1および排出口22の下辺22dの床面FLからの高さBL1は、ダーティタンク18内の研削液Fの液面(最大時)の床面FLからの高さLLよりも充分に低い。また、受入口24の上辺24uの床面FLからの高さAH1および排出口22の上辺22uの床面FLからの高さBH1は、ダーティタンク18内の研削液Fの液面(最大時)の高さLLよりもそれぞれ高く形成されている。これにより、接続トラフ20内の液面はダーティタンク18内の液面と同じとなるので、研削液F液面に浮遊する切粉が容易にダーティタンク18内へ移動させられるようになっている。また、精密研削盤14のベッド16の高さがダーティタンク18内の研削液Fの液面より低くても、切粉の滞留や堆積を発生させることなく、設置が可能となり、精密研削盤14の設置に制約が解消される。
接続トラフ20の底壁20aのうちの排出口22側の端部には、垂直壁部20vと垂直壁部20vの上端から排出口22へ向かって水平方向に曲げられた水平壁部20hから構成された段部26が形成され、垂直壁部20vには、ダーティタンク18の受入口24に向かって研削液を底壁20aに沿って噴射して接続トラフ20内において切粉の滞留や堆積を抑制するフラッシングノズル28が設けられている。フラッシングノズル28には、たとえばダーティ液ポンプとして機能する第1ポンプP1から出力されるダーティタンク18内の研削液F、或いは研削盤送液ポンプとして機能する第2ポンプP2から出力されるクリーンタンク42内の研削液Fが、図示しない配管を介して連続的に圧送されている。
排出口22の下辺22dの高さBL1は、受入口24の下辺24dの高さAL1よりも高く、接続トラフ20の底壁20aに形成された段部26の水平壁部20hとは、同等の高さである。また、接続トラフ20の底壁20aのうち段部26よりも排出口22側の部分である水平壁部20hは水平であり、接続トラフ20の底壁20aのうち段部26よりも受入口24側の部分は、受入口24の下辺24dと同等の高さであって水平である。
従来では、図5に示すように、ダーティタンク118の受入口124の下辺124dは、ダーティタンク118内の研削液Fの液面(最大時)の高さLL以上の高さAL2とされており、接続トラフ120の底壁面120aに切粉の滞留や堆積を抑制する傾斜を形成するように、ベッド116の排出口122の下辺122dの高さBL2は、高さAL2よりも充分に大きく、すなわちBL2>AL2とすることが必要とされていた。このため、そのような精密研削盤14の排出口122の高さ位置が必要であるため、濾過装置110と接続する精密研削盤14の構造について制約があった。
図1から図3に戻って、濾過装置10は、精密研削盤14のベッド16から排出されたたとえば水溶性の研削液Fを受入れるダーティタンク18と、ダーティタンク18の上にフレーム(骨枠)11を介して重ねた状態で配置され、研削液F内の切粉を磁気的に吸着して除去する磁気式濾過装置30と、ダーティタンク18の上に立設され、研削液Fの流入時に発生させる旋回流の遠心力により異物を除去するインラインサイクロン32と、インラインサイクロン32からの異物を多く含む汚れた研削液Fを受けるリジェクトポット34と、貯留した研削液Fを冷却するクーラ36を備えたクーラタンク38とを、備えている。図3に示すように、クーラタンク38内には、仕切板38aが固設されており、仕切板38aを超えた研削液Fが流出口38bからダーティタンク18へ流出させられるようになっている。また、インラインサイクロン32およびリジェクトポット34は、それらの周辺の管路を同一平面上に展開した図6に示すように、配管されている。
図7に詳しく示すように、磁気式濾過装置30は、マグネチックセパレータ40およびクリーンタンク42を一体的に備えている。マグネチックセパレータ40は、貯留槽44、貯留槽44内に回転可能に支持されモータ45によって回転駆動される磁気ドラム46、磁気ドラム46の円筒状の外周面48と案内板50との間の狭い空間S1に研削液Fを導く案内板50、貯留槽44に設けられた流入口52、貯留槽44に設けられた流出口54、磁気ドラム46の外周面48に磁気ドラム46の内部に設置された永久磁石によって付着された磁性粉体を磁気ドラム46の外周面48から掻取るための掻取板56等から構成されている。掻取板56によって掻取られた磁性粉体は、図3に示す受け箱58に集められる。
マグネチックセパレータ40の貯留槽44の直下に一体的に設置されているクリーンタンク42には、クリーンタンク42内に貯留されている研削液Fの液面であるオーバーフロー面60を設定する仕切板62が固設されており、オーバーフロー面60は、貯留槽44の流出口54より高く設定されている。これにより、クリーンタンク42内に貯留されている研削液Fの液面には、切粉に付着してそれを浮遊させる泡の発生が抑制されている。
第1ポンプP1によってダーティタンク18からマグネチックセパレータ40の貯留槽44に供給された研削液Fは、マグネチックセパレータ40の磁気ドラム46の外周面48と案内板50との間の狭い空間S1を通過する過程で磁粉が除去された後、流出口54を通ってクリーンタンク42内に貯留される。このクリーンタンク42内に貯留された研削液Fは、図3に示すように第2ポンプP2によって、第1調整弁64および第1圧力計66を有し、基端が第2ポンプP2に接続され且つ先端がインラインサイクロン32の入力側に接続された第1送液管68と、インラインサイクロン32と、第2圧力計70、濾過装置側電磁開閉弁72、第2調整弁74を直列に有し、基端がインラインサイクロン32の出力側に接続され且つ先端が出力管12に接続された第2送液管75と、第2送液管75の先端に接続された出力管12とを通して、精密研削盤14へ送られる。第1調整弁64は、精密研削盤14で必要とされる流量を充分に上回る流量がインラインサイクロン32へ送出されるように手動調節される。
第2送液管75の濾過装置側電磁開閉弁72および第2調整弁74の間とクーラタンク38との間には、第3調整弁76を有する第1還流管78が設けられている。濾過装置側電磁開閉弁72が開けられたときにインラインサイクロン32の入力側と出力側との差圧を最適差圧たとえば0.1〜0.2MPaに維持してインラインサイクロン32の濾過精度を維持できる流量となるように、第2調整弁74および第3調整弁76が手動調節され、インラインサイクロン32から出力された研削液Fの一部または全部が、第1還流管78を通してクーラタンク38へ還流させられる。
第2ポンプP2とクーラタンク38との間には、第4調整弁80を有する第2還流管82が設けられている。第2ポンプP2から出力された研削液Fのうちのインラインサイクロン32へ入力させる流量が第1調整弁64および第4調整弁80によって手動調節され、第2ポンプP2から出力された研削液Fの一部が、第2還流管82を通してクーラタンク38へバイパスされるようになっている。
磁気式濾過装置30のクリーンタンク42において、仕切板62を超えてオーバーフローした研削液Fは、オーバーフロー流出口84およびそれに連結された第3還流管86を介してダーティタンク18へ重力に従って還流させられる。これにより、精密研削盤14の研削中断期間において精密研削盤14に対する研削液Fの出力が中断したとしても、第2ポンプP2により精密研削盤14へ送られない研削液Fはダーティタンク18へ戻されるので、第1ポンプP1からマグネチックセパレータ40へ供給される研削液Fの流量は影響を受けず、マグネチックセパレータ40による濾過作動は、フル稼働状態で常時継続させられる。
ダーティタンク18には、攪拌羽根90と、攪拌羽根90を回転駆動する電動機92とを備えた攪拌機94が設けられている。これにより、精密研削盤14から還流した研削液Fに浮遊する切粉が研削液F内に混入させられる。また、精密研削盤14から還流した研削液Fに含まれている切粉、研削加工により被削材から削除された切粉(磁性粉)や研削砥石からの破砕された砥粒およびビトリファイドボンドなどの無機粉などの異物が、ダーティタンク18内に沈殿や堆積することが抑制されている。なお、第1調整弁64および第4調整弁80によって手動調節を容易とするために、ダーティタンク18内の研削液Fの液面を検知して表示する液面計96がダーティタンク18に設けられている。また、図1に示すように、クーラタンク38の上には、スイッチ、リレー、コントローラ等の制御部品を収容する制御箱88が配置されている。
以上のように構成された濾過装置10において、精密研削盤14から排出された研削液Fは、ダーティタンク18に還流させられた後、第1ポンプP1によってマグネチックセパレータ40の流入口52に圧送される。マグネチックセパレータ40において、研削液Fは、磁気ドラム46の円筒状の外周面48と案内板50との隙間である空間S1を通過させられ過程で磁性粉体が除去された後、貯留槽44の流出口54からクリーンタンク42へ流出する。クリーンタンク42内の研削液Fは、第2ポンプP2によって、第1送液管68、インラインサイクロン32、第2送液管75、出力管12を通過させられ、インラインサイクロン32により浄化された研削液Fが精密研削盤14へ圧送される。
第1ポンプP1によって圧送される研削液Fの量は、第2ポンプP2から圧送される研削液Fの量よりも多くなるように、ポンプ容量や第1調整弁64および第4調整弁80等が設定されており、これによって精密研削盤14に研削液Fが供給されている場合においても、ダーティタンク18の液面は、所定幅内に維持される。ダーティタンク18の液面は、精密研削盤14における研削液Fの供給量に応じて所定幅内で変化させられる。
上述のように、本実施例の濾過装置10は、精密研削盤14から排出された研削液Fを浄化して精密研削盤へ再供給する研削盤用研削液濾過装置10であって、精密研削盤14から排出された研削液Fを受入れるダーティタンク18と、第1ポンプP1によりダーティタンク18内から送られた研削液Fから切粉の除去を連続的に行なうマグネチックセパレータ40を含む磁気式濾過装置30と、マグネチックセパレータ40により切粉の除去が行なわれた研削液Fを精密研削盤14へ供給する第2ポンプP2とを、含む。これにより、精密研削盤14からの研削液Fの戻り流量の減少に拘わらず、マグネチックセパレータ40の本来の切粉除去能力を発揮できるように第1ポンプP1からダーティタンク18内の研削液Fを充分に供給してマグネチックセパレータ40の濾過能力の低下を抑制することができる。また、2つの第1ポンプP1および第2ポンプP2を用いて研削液Fを浄化して精密研削盤14へ供給できるので、濾過装置10が小型となる。
また、本実施例では、精密研削盤14は、マグネチックセパレータ40により切粉の除去が行なわれた研削液Fを連続的に浄化する出力接続型のインラインサイクロン32と、インラインサイクロン32を通過した研削液を受け入れる受入管17と、精密研削盤14の作動に連動して受入管17を開閉する研削盤側電磁開閉弁15とを備え、インラインサイクロン32から研削液Fを受入管17へ送る第2送液管75には、研削盤側電磁開閉弁15と連動して第2送液管75を開閉する濾過装置側電磁開閉弁72が備えられている。このことから、精密研削盤14の作動休止時に閉弁する研削盤側電磁開閉弁15と連動して濾過装置側電磁開閉弁72が閉弁させられてインラインサイクロン32の出力側の管路が閉じられるので、インラインサイクロン32の入力側と出力側との差圧が濾過精度を維持するための規定値からくずれることで発生する、濾過処理が不充分な研削液Fが、研削再開時に精密研削盤14へ送られることが抑制される。
また、本実施例の濾過装置10によれば、ダーティタンク18は、ダーティタンク18内の研削液Fを攪拌するために回転駆動させられる攪拌羽根90を有する攪拌機94を、備える。これにより、たとえば、ダーティタンク18から研削液Fを送出するポンプから出力される噴流を用いてダーティタンク内を攪拌する場合に比較して、研削液の発熱が少なく、消エネとなるとともに、クーラ36も小型となる。
また、本実施例の濾過装置10によれば、クーラ36により冷却された研削液Fを貯留するとともにダーティタンク18へ供給するクーラタンク38を備え、第2ポンプP2は、マグネチックセパレータ40により切粉の除去が行なわれた研削液Fを、連続的に、クーラタンク38へ供給することから、クーラタンク38およびダーティタンク18内の研削液が所定温度以下とされ、精密研削盤14に送られる研削液Fの温度が一定以下とされる。これにより、高精度の研削加工が要請される精密研削盤14において、研削加工および濾過の稼働に伴う研削液の温度上昇が抑制されるので、高精度研削が可能となる。
また、本実施例の濾過装置10によれば、クーラ36により冷却された研削液Fを貯留するとともにダーティタンク18へ供給するクーラタンク38と、インラインサイクロン32から出力された研削液Fを精密研削盤14へ送液する第2送液管75と、第2送液管75から分岐して、インラインサイクロン32から出力された研削液Fの一部をクーラタンク38へ導く第1還流管78と、第2ポンプP2から送出される研削液Fの一部をクーラタンク38へ導く第2還流管82とを、備える。このため、インラインサイクロン32、濾過装置側電磁開閉弁72を有する第2送液管75、および、第1還流管78と並行したバイパス流路として機能する第2還流管82が設けられている。これにより、精密研削盤14へ送出される研削液Fの流量に拘わらず、濾過装置10内においてクーラタンク38を通過した研削液Fの循環が行なわれるので、第2還流管82の流量を調整することで、精密研削盤14から還流させられる研削液Fの流量に拘わらず、ダーティタンク18の液面が予め設定された範囲内に維持される。
また、本実施例の濾過装置10は、受入タンクとして機能するダーティタンク18における接続トラフ20の一端部が接続される受入口24は、ダーティタンク18の液面LLよりも低い下辺、およびダーティタンク18の液面LLよりも高い上辺を有し、ベッド16における接続トラフ20の他端部が接続される排出口22は、ダーティタンク18の液面LLよりも低い下辺、およびダーティタンク18の液面LLよりも高い上辺を有し、接続トラフ20には、接続トラフ20の底壁20aに沿って研削液Fを噴射するフラッシングノズル28が設けられている。このため、ダーティタンク18の液面LLよりも低い下辺を有する排出口22が形成されたベッド16を備える精密研削盤14を接続トラフ20を介して濾過装置10に接続しても、接続トラフ20内に沈殿や浮遊による切粉の滞留を抑制することができる。
また、本実施例の濾過装置10によれば、接続トラフ20の排出口側端部には、垂直壁部20vと垂直壁部20vの上端から排出口22へ向かって曲げられた水平壁部20hとから構成された段部26が底壁20aに形成され、垂直壁部20vには、ダーティタンク18側に向かって研削液Fを噴射するフラッシングノズル28が設けられている。これにより、接続トラフ20の底壁20a下においてフラッシングノズル28の設置スペースが確保されるとともに、接続トラフ内に沈殿する切粉は、フラッシングノズル28から噴射された研削液Fによりダーティタンク18内へ容易に移動させられる。
また、本実施例の濾過装置10によれば、排出口22の下辺22dは受入口24の下辺24dよりも高く、接続トラフ20の底壁20aに形成された段部26と同等の高さである。これにより、精密研削盤14のベッド16の傾斜受面16a上の切粉は、接続トラフ20の底壁20aに形成された段部26へ容易に移動させられる。
また、本実施例の濾過装置10によれば、接続トラフ20の底壁20aのうち段部26よりも受入口24側の部分は、受入口24の下辺24dと同等の高さであって水平であることにある。これにより、接続トラフ内に沈殿する切粉は段部26から、フラッシングノズル28から噴射された研削液Fによりダーティタンク18内へ容易に移動させられる。
また、本実施例の濾過装置10によれば、接続トラフ20の底壁20aのうち段部26よりも排出口22側の部分は、受入口24の下辺24dと同等の高さであって水平である。段部26は接続トラフ20の排出口22側端部に形成されているので、底壁20aのうちの段部26よりも排出口22側の部分は段部26よりも受入口24側の部分よりも短く、且つ水平であるので、接続トラフ内に沈殿する切粉は排出口22から容易に段部26へ到達でき、次いでフラッシングノズル28から噴射された研削液Fによりダーティタンク18側に向かって容易に移動させられる。
また、本実施例の濾過装置10によれば、精密研削盤14から排出された研削液Fから切粉の除去を連続的に行なうマグネチックセパレータ40により切粉の除去が行なわれた研削液Fを、配管中に接続された出力接続型であるインラインサイクロン32を通して、第2ポンプ(研削盤送液ポンプ)P2が精密研削盤14へ供給するので、出力解放型の通常のサイクロンから出力された研削液Fをポンプを用いて精密研削盤14等へ送る場合に比較して、そのポンプが不要となる。
また、本実施例の濾過装置10によれば、精密研削盤14は、インラインサイクロン32を通過した研削液Fを受け入れる受入管17と、受入管17を開閉する研削盤側電磁開閉弁15とを備え、インラインサイクロン32から研削液Fを受入管17へ送る第2送液管75には、研削盤側電磁開閉弁15と連動して第2送液管75を開閉する濾過装置側電磁開閉弁72が備えられている。これにより、精密研削盤14の研削加工の休止に連動して第2ポンプ(研削盤送液ポンプ)P2からインラインサイクロン32を通して精密研削盤14へ送出される研削液Fが停止させられるので、インラインサイクロン32がその差圧で決まる浄化条件から外れた状態で作動させられて、精度(浄化度)の低い研削液を出力し続ける場合に比較して、精密研削盤14への供給開始時には、精度(浄化度)の高い研削液Fを直ちに精密研削盤14へ供給することができる。このような構成は、精密研削盤14の精密研削に対して顕著な効果が得られる。
また、本実施例の濾過装置10によれば、精密研削盤14から排出された研削液Fを受入れるダーティタンク18と、ダーティタンク18内の研削液Fをマグネチックセパレータへ送る第1ポンプ(ダーティ液ポンプ)P1とを、備える。これにより、精密研削盤14からの流量が不安定な研削液Fをマグネチックセパレータ40で受ける場合に比較して、精密研削盤14からの研削液Fの戻り流量の減少に拘わらず、マグネチックセパレータ40の本来の切粉除去能力を発揮できるように第1ポンプP1から研削液Fを充分に送ることで、精密研削盤14の稼働状態に拘わらずマグネチックセパレータ40の濾過能力の低下を抑制することができる。
また、本実施例の濾過装置10によれば、ダーティタンク18は、ダーティタンク18内の研削液Fを攪拌するために回転駆動させられる攪拌羽根90を有する攪拌機94を、備える。これにより、たとえば、ダーティタンク18から研削液Fを送出する攪拌ポンプから出力される噴流を用いて攪拌する場合に比較して、攪拌ポンプが不要となり、研削液の発熱が少なく、消エネとなるとともに、後述のクーラも小型となる。
また、本実施例の濾過装置10によれば、クーラ36により冷却された研削液Fを貯留するとともに、ダーティタンク18へ供給するクーラタンク38を備え、第2ポンプ(研削盤送液ポンプ)P2は、マグネチックセパレータ40により切粉の除去が行なわれた研削液Fの一部を、連続的に、クーラタンク38へ供給し、クーラタンク38内の研削液Fは重力によりダーティタンク18内へ還流させられる。これにより、第2ポンプP2からインラインサイクロン32を通して精密研削盤14へ送出される研削液Fが、たとえば精密研削盤14の休止によって停止しても、インラインサイクロン32はたとえばその差圧で決まる浄化条件内に維持されるので、精密研削盤14への供給開始時には、精度(浄化度)の高い研削液Fを直ちに精密研削盤14へ供給することができる。
また、本実施例の濾過装置10によれば、精密研削盤14から排出された研削液Fを受入れるダーティタンク18と、クーラ36により冷却された研削液Fを貯留するとともにダーティタンク18へ供給するクーラタンク38と、インラインサイクロン32から出力された研削液Fを精密研削盤14へ送液する第2送液管75と、第2送液管75から分岐して、インラインサイクロン32から出力された研削液Fの一部をクーラタンク38へ導く第1還流管78と、第2ポンプP2から送出される研削液Fの一部をクーラタンク38へ導く第2還流管82とを、備える。これにより、インラインサイクロン32、および、第1還流管78と並行したバイパス流路として機能する第2還流管82が形成されるので、第2還流管82の流量を調整することで、精密研削盤14から送出される研削液Fの流量に拘わらず、ダーティタンク18の液面が予め設定された範囲内に維持される。
以上、本発明の一実施例を図面を参照して詳細に説明したが、本発明はこの実施例に限定されるものではなく、別の態様でも実施され得る。
たとえば、前述の実施例において、フラッシングノズル28は、段部26のうちの垂直壁部20vに設けられていたが、段部26が無い場合は、接続トラフ20の排出口22と接続された垂直壁に設けられてもよいし、底壁20a上に固定されていてもよい。要するに、フラッシングノズル28は、接続トラフ20の底壁20aに沿って研削液Fを噴射するように設けられていればよい。
また、前述の実施例において、第1還流管78および第2還流管82による研削液Fの還流先は、共にクーラタンク38であったが、第1還流管78および第2還流管82の一方がダーティタンク18へ還流させるものであってもよい。
また、前述の実施例において、クリーンタンク42においてオーバーフローした研削液Fはダーティタンク18へ還流させられていたが、クリーンタンク42をクーラタンク38の上側に配置することで、クリーンタンク42からオーバーフローした研削液Fはクーラタンク38へ還流させられてもよい。
また、前述の実施例において、クーラタンク38においてオーバーフローした研削液Fはダーティタンク18へ還流させられていたが、クーラタンク38をクリーンタンク42の上側に配置することで、クーラタンク38からオーバーフローした研削液Fはクリーンタンク42へ還流させられてもよい。
また、前述の実施例では、第1送液管68と第2送液管75との間に接続されたインラインサイクロン32は1本であったが、必要に応じて複数本が並列に或いは直列に配置されていてもよい。たとえば、濾過精度を高める場合は直列に、濾過容量を多くする場合には並列に配置される。
また、前述の実施例では、濾過装置10が研削液Fを濾過して供給する先は、たとえば連続創成式歯車研削盤のような精密研削盤14であったが、平面研削盤などの他の研削方式の研削盤であってもよい。
なお、上述したのはあくまでも一実施形態であり、その他一々例示はしないが、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づいて種々変更、改良を加えた態様で実施することができる。
10:濾過装置(研削盤用研削液濾過装置)
12:出力管
14:精密研削盤(研削盤)
15:研削盤側電磁開閉弁
17:受入管
18:ダーティタンク(受入タンク)
20:接続トラフ
20a:底壁
20h:水平壁部
20v:垂直壁部
22:排出口
24:受入口
26:段部
28:フラッシングノズル
30:磁気式濾過装置
32:インラインサイクロン
36:クーラ
38:クーラタンク
40:マグネチックセパレータ
90:攪拌羽根
94:攪拌機
72:濾過装置側電磁開閉弁
75:第2送液管(送液管)
78:第1還流管
82:第2還流管
P1:第1ポンプ
P2:第2ポンプ
すなわち、第1発明の要旨とするところは、(a)研削盤から排出された研削液を浄化して前記研削盤へ再供給する研削盤用研削液濾過装置であって、(b)研削盤から排出された研削液から切粉の除去を連続的に行なうマグネチックセパレータと、(c)前記マグネチックセパレータにより切粉の除去が行なわれた研削液を、出力接続型であるインラインサイクロンを通して前記研削盤へ供給する研削盤送液ポンプと、(d)前記研削盤から排出された研削液を受入れるダーティタンクと、(e)前記ダーティタンク内の研削液を前記マグネチックセパレータへ送るダーティ液ポンプと、(f)クーラにより冷却された研削液を貯留するとともに前記ダーティタンクへ供給するクーラタンクと、を備え、(g)前記研削盤送液ポンプは、前記マグネチックセパレータにより切粉の除去が行なわれた研削液の一部を、連続的に前記クーラタンクへ供給し、(h)前記クーラタンク内の研削液は重力により前記ダーティタンク内へ還流させられることにある。
また、第2発明の要旨とするところは、(a)研削盤から排出された研削液を浄化して前記研削盤へ再供給する研削盤用研削液濾過装置であって、(b)研削盤から排出された研削液から切粉の除去を連続的に行なうマグネチックセパレータと、(c)前記マグネチックセパレータにより切粉の除去が行なわれた研削液を、出力接続型であるインラインサイクロンを通して前記研削盤へ供給する研削盤送液ポンプと、(d)前記研削盤から排出された研削液を受入れるダーティタンクと、(e)クーラにより冷却された研削液を貯留するとともに前記ダーティタンクへ供給するクーラタンクと、(f)前記インラインサイクロンから出力された研削液を前記研削盤へ送液する送液管と、(g)前記送液管から分岐して、前記インラインサイクロンから出力された研削液の一部を前記クーラタンクへ導く第1還流管と、(h)前記研削盤送液ポンプから送出される研削液の一部を前記クーラタンクへ導く第2還流管とを、備えることにある。
第1発明の研削盤用研削液濾過装置によれば、(a)研削盤から排出された研削液を浄化して前記研削盤へ再供給する研削盤用研削液濾過装置であって、(b)研削盤から排出された研削液から切粉の除去を連続的に行なうマグネチックセパレータと、(c)前記マグネチックセパレータにより切粉の除去が行なわれた研削液を、研削盤送液ポンプが出力接続型であるインラインサイクロンへ供給すると同時にそのインラインサイクロンを通して前記研削盤へも供給するので、通常の出力解放型のサイクロンから出力された研削液をポンプを用いて研削盤等へ送る場合に比較して、出力解放型のサイクロンから出力された研削液を研削盤等へ送るためのポンプが不要となる。また、(d)前記研削盤から排出された研削液を受入れるダーティタンクと、(e)前記ダーティタンク内の研削液を前記マグネチックセパレータへ送るダーティ液ポンプとを、備える。これにより、研削盤からの流量が不安定な研削液をマグネチックセパレータで受ける場合に比較して、研削盤からの研削液の戻り流量の減少に拘わらず、マグネチックセパレータの本来の切粉除去能力を発揮できるようにダーティ液ポンプから研削液を送ることで、濾過能力の低下を抑制することができる。また、(f)クーラにより冷却された研削液を貯留するとともに前記ダーティタンクへ供給するクーラタンクを備え、(g)前記研削盤送液ポンプは、前記マグネチックセパレータにより切粉の除去が行なわれた研削液の一部を、連続的に前記クーラタンクへ供給し、(h)前記クーラタンク内の研削液は重力により前記ダーティタンク内へ還流させられる。これにより、研削盤送液ポンプからインラインサイクロンを通して研削盤へ送出される研削液が、たとえば研削盤の休止によって停止しても、インラインサイクロンはたとえばその差圧で決まる浄化条件内に維持されるので、研削盤への供給開始時には、精度(浄化度)の高い研削液を直ちに研削盤へ供給することができる。このような構成は、精密研削盤に対して顕著な効果が得られる。
また、第2発明の研削盤用研削液濾過装置によれば、(a)研削盤から排出された研削液を浄化して前記研削盤へ再供給する研削盤用研削液濾過装置であって、(b)研削盤から排出された研削液から切粉の除去を連続的に行なうマグネチックセパレータと、(c)前記マグネチックセパレータにより切粉の除去が行なわれた研削液を、研削盤送液ポンプが出力接続型であるインラインサイクロンへ供給すると同時にそのインラインサイクロンを通して前記研削盤へも供給するので、通常の出力解放型のサイクロンから出力された研削液をポンプを用いて研削盤等へ送る場合に比較して、出力解放型のサイクロンから出力された研削液を研削盤等へ送るためのポンプが不要となる。また、(d)前記研削盤から排出された研削液を受入れるダーティタンクと、(e)クーラにより冷却された研削液を貯留するとともに前記ダーティタンクへ供給するクーラタンクと、(f)前記インラインサイクロンから出力された研削液を前記研削盤へ送液する送液管と、(g)前記送液管から分岐して、前記インラインサイクロンから出力された研削液の一部を前記クーラタンクへ導く第1還流管と、(h)前記研削盤送液ポンプから送出される研削液の一部を前記クーラタンクへ導く第2還流管とを、備える。これにより、インラインサイクロン、および、第1還流管と並行したバイパス流路として機能する第2還流管が形成されるので、その第2還流管の流量を調整することで、研削盤送液ポンプから送出される研削液の流量に拘わらず、ダーティタンクの液面が予め設定された範囲内に維持される。

Claims (6)

  1. 研削盤から排出された研削液を浄化して前記研削盤へ再供給する研削盤用研削液濾過装置であって、
    前記研削盤から排出された研削液から切粉の除去を連続的に行なうマグネチックセパレータと、
    前記マグネチックセパレータにより切粉の除去が行なわれた研削液を、出力接続型であるインラインサイクロンを通して前記研削盤へ供給する研削盤送液ポンプとを、含む
    ことを特徴とする研削盤用研削液濾過装置。
  2. 前記研削盤は、前記インラインサイクロンを通過した研削液を受け入れる受入管と、前記研削盤の作動に連動して前記受入管を開閉する研削盤側電磁開閉弁とを備え、
    前記インラインサイクロンから研削液を前記受入管へ送る送液管には、前記研削盤側電磁開閉弁と連動して前記送液管を開閉する濾過装置側電磁開閉弁が備えられている
    ことを特徴とする請求項1の研削盤用研削液濾過装置。
  3. 前記研削盤から排出された研削液を受入れるダーティタンクと、
    前記ダーティタンク内の研削液を前記マグネチックセパレータへ送るダーティ液ポンプとを、備える
    ことを特徴とする請求項1または2の研削盤用研削液濾過装置。
  4. 前記ダーティタンクは、前記ダーティタンク内の研削液を攪拌するために回転駆動させられる攪拌羽根を有する攪拌機を、備える
    ことを特徴とする請求項3の研削盤用研削液濾過装置。
  5. クーラにより冷却された研削液を貯留するとともに前記ダーティタンクへ供給するクーラタンクを備え、
    前記研削盤送液ポンプは、前記マグネチックセパレータにより切粉の除去が行なわれた研削液の一部を、連続的に前記クーラタンクへ供給し、
    前記クーラタンク内の研削液は重力により前記ダーティタンク内へ還流させられる
    ことを特徴とする請求項3または4の研削盤用研削液濾過装置。
  6. 前記研削盤から排出された研削液を受入れるダーティタンクと、
    クーラにより冷却された研削液を貯留するとともに前記ダーティタンクへ供給するクーラタンクと、
    前記インラインサイクロンから出力された研削液を前記研削盤へ送液する送液管と、
    前記送液管から分岐して、前記インラインサイクロンから出力された研削液の一部を前記クーラタンクへ導く第1還流管と、
    前記研削盤送液ポンプから送出される研削液の一部を前記クーラタンクへ導く第2還流管とを、備える
    ことを特徴とする請求項1の研削盤用研削液濾過装置。
JP2019228685A 2019-12-18 2019-12-18 研削盤用研削液濾過装置 Active JP6754487B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019228685A JP6754487B1 (ja) 2019-12-18 2019-12-18 研削盤用研削液濾過装置
CN202011508841.5A CN113001412B (zh) 2019-12-18 2020-12-18 磨床用磨削液过滤装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019228685A JP6754487B1 (ja) 2019-12-18 2019-12-18 研削盤用研削液濾過装置

Publications (2)

Publication Number Publication Date
JP6754487B1 JP6754487B1 (ja) 2020-09-09
JP2021094667A true JP2021094667A (ja) 2021-06-24

Family

ID=72333581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019228685A Active JP6754487B1 (ja) 2019-12-18 2019-12-18 研削盤用研削液濾過装置

Country Status (2)

Country Link
JP (1) JP6754487B1 (ja)
CN (1) CN113001412B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4364887A4 (en) 2021-07-01 2024-08-14 Dmg Mori Co Ltd MACHINE TOOL, CONTROL METHOD AND CONTROL PROGRAM

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007196308A (ja) * 2006-01-25 2007-08-09 Ogusu Kinzoku Kogyosho:Kk 渦流循環型クーラント浄化装置
CN201832469U (zh) * 2010-10-12 2011-05-18 天津四通汇恒科技有限公司 一种切削液温控过滤装置
KR101826988B1 (ko) * 2011-01-14 2018-02-08 트제르-후앙 구오 단결정 실리콘 커팅 폐액처리 회수 방법
CN202528006U (zh) * 2012-02-22 2012-11-14 北京福田康明斯发动机有限公司 用于机械加工设备的冷却液循环系统
CN202700649U (zh) * 2012-06-11 2013-01-30 苏州永添设备有限公司 多功能齿轮磨床油冷却过滤设备
CN203804797U (zh) * 2013-12-30 2014-09-03 天津市津机磨床有限公司 一种数控磨床水循环系统
CN107900861B (zh) * 2017-11-15 2019-07-30 广东利迅达机器人系统股份有限公司 一种整合水循环系统的打磨拉丝设备
CN207915226U (zh) * 2017-12-29 2018-09-28 郑州大地机械制造有限公司 珩磨机冷却水降温过滤装置

Also Published As

Publication number Publication date
CN113001412A (zh) 2021-06-22
CN113001412B (zh) 2023-05-09
JP6754487B1 (ja) 2020-09-09

Similar Documents

Publication Publication Date Title
US11872670B2 (en) Recirculation of wet abrasive material in abrasive waterjet systems and related technology
JP4518001B2 (ja) 分離方法および分離装置
US20220111477A1 (en) Sludge treatment device and sludge treatment system
JP7094133B2 (ja) 研削盤用水溶性クーラント再循環装置
JP6754487B1 (ja) 研削盤用研削液濾過装置
JP6754486B1 (ja) 研削盤用研削液濾過装置
CN111069970A (zh) 工作机械的切削液箱
JP2008073670A (ja) ベルト型濃縮機
JP6715382B1 (ja) 研削盤用研削液濾過装置
JP5470658B2 (ja) 処理液浄化装置
JP2008012603A (ja) クーラント浄化装置
JP6399639B2 (ja) 加工液浄化システム
JPH077855U (ja) クーラント供給装置
CN103237628A (zh) 线锯的浆料管理装置
JP3178632U (ja) 高速沈殿濾過装置
JP5470657B2 (ja) 処理液浄化装置
CN105269703B (zh) 一种硅片切割机用切削液循环装置
JP6159495B2 (ja) 浮上式分離装置
JP2003117826A (ja) 切削液の浄化装置
JP2003236305A (ja) 油水分離装置及び油水分離方法
KR101475805B1 (ko) 퇴적 방지형 냉각유 탱크 장치
KR101512567B1 (ko) ? 블라스팅 장치
JP2023060193A (ja) 軟水化システムおよび軟水化装置
JPH1148086A (ja) 切削液の浄化装置
JP2007000714A (ja) 分離装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200121

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200213

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200728

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200821

R150 Certificate of patent or registration of utility model

Ref document number: 6754487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350