JP2021044032A - 半導体記憶装置 - Google Patents

半導体記憶装置 Download PDF

Info

Publication number
JP2021044032A
JP2021044032A JP2019163385A JP2019163385A JP2021044032A JP 2021044032 A JP2021044032 A JP 2021044032A JP 2019163385 A JP2019163385 A JP 2019163385A JP 2019163385 A JP2019163385 A JP 2019163385A JP 2021044032 A JP2021044032 A JP 2021044032A
Authority
JP
Japan
Prior art keywords
memory cell
data
voltage
word line
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019163385A
Other languages
English (en)
Inventor
賢朗 菊池
Kenro Kikuchi
賢朗 菊池
安広 志村
Yasuhiro Shimura
安広 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kioxia Corp
Original Assignee
Kioxia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kioxia Corp filed Critical Kioxia Corp
Priority to JP2019163385A priority Critical patent/JP2021044032A/ja
Priority to US17/004,272 priority patent/US11600327B2/en
Publication of JP2021044032A publication Critical patent/JP2021044032A/ja
Priority to US18/106,520 priority patent/US11948642B2/en
Priority to US18/591,563 priority patent/US20240203498A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5642Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/24Bit-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/30Power supply circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/32Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/56Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
    • G11C11/5621Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency using charge storage in a floating gate
    • G11C11/5628Programming or writing circuits; Data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Read Only Memory (AREA)

Abstract

【課題】データの高速な書き込みを可能とする半導体記憶装置を提供する。【解決手段】実施形態の半導体記憶装置は、複数のNANDストリングNSを含み、複数のNANDストリングの各々は、直列接続された複数のメモリセルトランジスタMTを含む、メモリセルアレイ20と、複数のメモリストリングNSに共通接続され、複数のメモリセルトランジスタMTにそれぞれ接続された複数のワード線と、選択されたワード線に対してのデータを書き込むためのプログラム動作の終了後に、複数のワード線WLの各々に、接地電圧VSSよりも高い所定の電圧Vsを供給するロウデコーダ26と、を有する。【選択図】図8

Description

本発明の実施形態は、半導体記憶装置に関する。
半導体記憶装置の一種として、NAND型フラッシュメモリが知られている。半導体記憶装置には、データの高速な書き込みが要求されている。
特開2019−57342号公報
そこで、実施形態は、データの高速な書き込みを可能とする半導体記憶装置を提供することを目的とする。
実施形態によれば、複数のメモリストリングを含み、前記複数のメモリストリングの各々は、直列接続された複数のメモリセルトランジスタを含む、メモリセルアレイと、前記複数のメモリストリングに共通接続され、前記複数のメモリセルトランジスタにそれぞれ接続された複数のワード線と、選択されたワード線に対してのデータを書き込むためのプログラム動作の終了後に、前記複数のワード線の各々に、接地電圧よりも高い所定の電圧を供給するロウデコーダと、を有する半導体記憶装置が提供される。
第1実施形態に係るメモリシステムのブロック図である。 第1実施形態に係るNAND型フラッシュメモリのブロック図である。 第1実施形態に係る、メモリセルアレイに含まれる1つのブロックの回路図である。 第1実施形態に係るブロックの一部領域の断面図である。 第1実施形態に係る、メモリセルトランジスタの閾値電圧の分布の一例を示す模式図である。 第1実施形態に係る、センスアンプユニット及びデータレジスタのブロック図である。 第1実施形態に係る、ワード線クリープアップを説明する図である。 第1実施形態に係る、ある一つの選択ワード線に対するプログラム動作が行われるときの、各信号の変化を示す波形図である。 第1実施形態の変形例に係る、複数のワード線の一部の制御ゲートの電圧を、他のワード線の制御ゲートの電圧と異ならせた場合の、各信号の変化を示す波形図である。 第2実施形態の変形例に係る、ある一つの選択ワード線に対するプログラム動作が行われるときの、各信号の変化を示す波形図である。
以下、図面を参照して実施形態を説明する。
(第1実施形態)
(構成)
[1]メモリシステムの構成
図1は、第1実施形態に係るメモリシステム1のブロック図である。メモリシステム1は、NAND型フラッシュメモリ(半導体記憶装置)2、及びメモリコントローラ3を備える。
メモリシステム1は、ホスト装置4が搭載されたマザーボード上に、メモリシステム1を構成する複数のチップを実装して構成してもよいし、メモリシステム1を1つのモジュールで実現するシステムLSI(Large−Scale Integrated Circuit)又はSoC(System−on−a−Chip) として構成してもよい。メモリシステム1の例としては、SDカードのようなメモリカード、SSD(Solid−State−Drive)、及びeMMC(embedded−Multi−Media−Card)などが挙げられる。
NAND型フラッシュメモリ2は、複数のメモリセルを備え、データを不揮発に記憶する。NAND型フラッシュメモリ2の具体的な構成については後述する。
メモリコントローラ3は、例えばホスト装置4からの命令に応答して、NAND型フラッシュメモリ2に対して書き込み(プログラムともいう)、読み出し、及び消去などを命令する。また、メモリコントローラ3は、NAND型フラッシュメモリ2のメモリ空間を管理する。メモリコントローラ3は、ホストインターフェース回路(ホストI/F)10、プロセッサ11、RAM(Random Access Memory)12、バッファメモリ13、NANDインターフェース回路(NANDI/F)14 、及びECC(Error Checking and Correcting)回路15などを備える。
ホストインターフェース回路10は、ホストバスを介してホスト装置4に接続され、ホスト装置4との間でインターフェース処理を行う。また、ホストインターフェース回路10は、ホスト装置4との間で、命令、アドレス、及びデータの送受信を行う。
プロセッサ11は、例えばCPU(中央処理装置)から構成される。プロセッサ11は、メモリコントローラ3全体の動作を制御する。例えば、プロセッサ11は、ホスト装置4から書き込み命令を受けた場合に、NANDインターフェース回路14を介して、その書き込み命令に応じた書き込み命令をNAND型フラッシュメモリ2に発行する。読み出し及び消去の場合も同様である。また、プロセッサ11は、ウェアレベリングなど、NAND型フラッシュメモリ2を管理するための様々な処理を実行する。
RAM12は、プロセッサ11の作業領域として使用され、NAND型フラッシュメモリ2からロードされたファームウェアデータ、及びプロセッサ11が作成した各種テーブルなどを格納する。RAM12は、例えばDRAMまたはSRAMから構成される。
バッファメモリ13は、ホスト装置4から送信されたデータを一時的に保持するとともに、NAND型フラッシュメモリ2から送信されたデータを一時的に保持する。
NANDインターフェース回路14は、NANDバスを介してNAND型フラッシュメモリ2に接続され、NAND型フラッシュメモリ2との間でインターフェース処理を行う。また、NANDインターフェース回路14は、NAND型フラッシュメモリ2との間で命令、アドレス、及びデータの送受信を行う。
ECC回路15は、データの書き込み時には、書き込みデータに対してエラー訂正符号を生成し、このエラー訂正符号を書き込みデータに付加してNANDインターフェース回路14に送る。また、ECC回路15は、データの読み出し時には、読み出しデータに対して、読み出しデータに含まれるエラー訂正符号を用いてエラー検出及び/又はエラー訂正を行う。なお、ECC回路15は、NANDインターフェース回路14内に設けるようにしてもよい。
[2]NAND型フラッシュメモリの構成
図2は、図1に示したNAND型フラッシュメモリ2のブロック図である。NAND型フラッシュメモリ2は、メモリセルアレイ20、入出力回路21、ロジック制御回路22、レジスタ23、制御回路24、電圧生成回路25、ロウデコーダ26、カラムデコーダ27、センスアンプユニット28、及びデータレジスタ(データキャッシュ)29を備える。
メモリセルアレイ20は、j個のブロックBLK0〜BLK(j−1)を備える。jは、1以上の整数である。複数のブロックBLKの各々は、複数のメモリセルトランジスタを備える。メモリセルトランジスタは、電気的に書き換え可能なメモリセルを構成する。メモリセルアレイ20には、メモリセルトランジスタに印加する電圧を制御するために、複数のビット線BL、複数のワード線WL、及びソース線SLなどが配設される。ブロックBLKの具体的な構成については後述する。
入出力回路21及びロジック制御回路22は、NANDバスを介して、メモリコントローラ3に接続される。入出力回路21は、メモリコントローラ3との間でNANDバスを介して、信号DQ(例えばDQ0〜DQ7)を送受信する。
ロジック制御回路22は、メモリコントローラ3からNANDバスを介して、外部制御信号(例えば、チップイネーブル信号CEn、コマンドラッチイネーブル信号CLE、アドレスラッチイネーブル信号ALE、書き込みイネーブル信号WEn、読み出しイネーブル信号REn、及びライトプロテクト信号WPn) を受信する。信号名に付記されたnは、アクティブ・ローを示す。また、ロジック制御回路22は、NANDバスを介して、メモリコントローラ3にレディー/ビジー信号R/Bnを送信する。
信号CEnは、NAND型フラッシュメモリ2の選択を可能にする。信号CLEは、信号DQとして送信されるコマンドをコマンドレジスタにラッチすることを可能にする。信号ALEは、信号DQとして送信されるアドレスをアドレスレジスタにラッチすることを可能にする。信号WEnは、書き込みを可能にする。信号REnは、読み出しを可能にする。信号WPnは、書き込み及び消去を禁止する。信号R/Bnは、NAND型フラッシュメモリ2がレディー状態(外部からの命令を受け付けることが可能である状態)であるか、ビジー状態(外部からの命令を受け付けることができない状態)であるかを示す。メモリコントローラ3は、信号R/Bnを受けることで、NAND型フラッシュメモリ2の状態を知ることができる。
レジスタ23は、コマンドレジスタ、アドレスレジスタ、及びステータスレジスタなどを備える。コマンドレジスタは、コマンドを一時的に保持する。アドレスレジスタは、アドレスを一時的に保持する。ステータスレジスタは、NAND型フラッシュメモリ2の動作に必要なデータを一時的に保持する。レジスタ23は、例えばSRAMから構成される。
制御回路24は、レジスタ23からコマンドを受け、このコマンドに基づくシーケンスに従ってNAND型フラッシュメモリ2を統括的に制御する。
電圧生成回路25は、NAND型フラッシュメモリ2の外部から電源電圧を受け、この電源電圧を用いて、書き込み動作、読み出し動作、及び消去動作に必要な複数の電圧を生成する。電圧生成回路25は、生成した複数の電圧を、メモリセルアレイ20、ロウデコーダ26、及びセンスアンプユニット28などに供給する。例えば、電圧生成回路25はロウデコーダ26にCG線25Aを介して電圧を供給する。
ロウデコーダ26は、レジスタ23からロウアドレスを受け、このロウアドレスをデコードする。ロウデコーダ26は、デコードされたロウアドレスに基づいて、ワード線の選択動作を行う。そして、ロウデコーダ26は、選択されたブロックに、書き込み動作、読み出し動作、及び消去動作に必要な複数の電圧を転送する。特に、ロウデコーダ26は、後述するように、各ワード線WL及び後述する選択トランジスタSTに与える電圧を調整することができる。
カラムデコーダ27は、レジスタ23からカラムアドレスを受け、このカラムアドレスをデコードする。カラムデコーダ27は、デコードされたカラムアドレスに基づいて、各ビット線BLに所定の電圧を供給する。
センスアンプユニット28は、データの読み出し時には、メモリセルトランジスタからビット線に読み出されたデータを検知及び増幅する。また、センスアンプユニット28は、データの書き込み時には、書き込みデータをビット線BLに供給する。
データレジスタ29は、データの読み出し時には、センスアンプユニット28から転送されたデータを一時的に保持し、これをシリアルに入出力回路21へ転送する。また、データレジスタ29は、データの書き込み時には、入出力回路21からシリアルに転送されたデータを一時的に保持し、これをセンスアンプユニット28へ転送する。データレジスタ29は、SRAMなどで構成される。
[3]ブロックBLKの構成
図3は、メモリセルアレイ20に含まれる1つのブロックBLKの回路図である。複数のブロックBLKの各々は、複数のストリングユニットSUを備える。図3には、4つのストリングユニットSU0〜SU3を例示している。
複数のストリングユニットSUの各々は、複数のNANDストリング(メモリストリング)NSを備える。
複数のNANDストリングNSの各々は、複数のメモリセルトランジスタMT、及び2個の選択トランジスタST1、ST2を備える。複数のメモリセルトランジスタMTは、選択トランジスタST1のソースと選択トランジスタST2のドレインとの間に直列接続される。本明細書では、メモリセルトランジスタMTをメモリセル又はセルと呼ぶ場合もある。図3は、NANDストリングNSが8個のメモリセルトランジスタMT(MT0〜MT7) を備える構成例を示しているが、NANDストリングNSが備えるメモリセルトランジスタMTの数は、例えば、32個、64個あるいは96個でもよい。メモリセルトランジスタMTは、制御ゲート電極(以下、単に制御ゲートという)と電荷蓄積層とを備え、データを不揮発に記憶する。メモリセルトランジスタMTは、複数レベル(ここでは、8レベル)のデータを記憶することが可能である。以上のように、メモリセルアレイ20は、複数のNANDストリングNSを含み、複数のNANDストリングの各々は、直列接続された複数のメモリセルトランジスタMTを含む。
ストリングユニットSU0に含まれる複数の選択トランジスタST1のゲートは、選択ゲート線SGD0に共通接続され、同様に、ストリングユニットSU1〜SU3にはそれぞれ、選択ゲート線SGD1〜SGD3が接続される。ストリングユニットSU0に含まれる複数の選択トランジスタST2のゲートは、選択ゲート線SGS0に共通接続され、同様に、ストリングユニットSU1〜SU3の複数の選択トランジスタST2のゲートにはそれぞれ、選択ゲート線SGS1〜SGS3が共通接続される。各ブロックBLK内にある複数の選択トランジスタST2のゲートは、共通の選択ゲート線SGSに接続されていてもよい。また、各ブロックBLK内にあるメモリセルトランジスタMT0〜MT7のワード線WL0〜WL7にロウデコーダ26を介してCG線25Aが接続される。複数のワード線WLは、複数のメモリストリングNSに共通接続され、複数のメモリセルトランジスタMTの複数の制御ゲートにそれぞれ接続されている。
複数のビット線BLは、複数のNANDストリングNSにそれぞれ接続されている。各ブロックBLK内でマトリクス状に配置されたNANDストリングNSのうち、同一列にある複数のNANDストリングNSの選択トランジスタST1のドレインは、ビット線BL0〜BL(m−1)のいずれかに共通接続される。mは1以上の整数である。
さらに、各ビット線BLは、複数のブロックBLK間で各ストリングユニットSU内にある1つのNANDストリングNSを共通接続する。各ブロックBLKに含まれる複数の選択トランジスタST2のソースは、ソース線SLに共通接続される。ソース線SLは、例えば複数のブロック間で複数のNANDストリングNSを共通接続する。
各ブロックBLK内にある複数のメモリセルトランジスタMTのデータは、例えば一括して消去される。データの読み出し及び書き込みは、1つのストリングユニットSUに配設された1本のワード線WLに共通接続された複数のメモリセルトランジスタMTに対して、一括して行われる。このような、1つのストリングユニットSU内でワード線WLを共有するメモリセルトランジスタMTの組を、セルユニットCUと呼ぶ。セルユニットCUに対する書き込み動作及び読み出し動作は、ページを単位として実行される。例えば、各セルが、3ビット(8値)のデータを保持可能なTLC(Triple Level Cell)である場合、1つのセルユニットCUが、3ページ分のデータを保持することができる。各メモリセルトランジスタMTが保持することができる3ビットは、それぞれこの3ページに対応する。
[4]ブロックBLKの積層構造
図4は、ブロックBLKの一部領域の断面図である。X方向は、選択ゲート線が延びる方向であり、X方向と水平面内で交差するY方向は、ビット線が延びる方向であり、Z方向は、積層方向である。
p型ウェル領域(p−well)30上に、複数のNANDストリングNSが設けられる。すなわち、ウェル領域30上には、選択ゲート線SGSとして機能する配線層31、ワード線WL0〜WL7として機能する8層の配線層32、及び選択ゲート線SGDとして機能する配線層33が、順次積層される。積層された配線層間には、図示しない絶縁層が設けられる。
メモリホール34は、配線層31、32、33を貫通してウェル領域30に達する。メモリホール34内には、ピラー状の半導体層(半導体ピラー)35が設けられる。半導体層35の側面には、ゲート絶縁膜36、電荷蓄積層(絶縁膜)37、及びブロック絶縁膜38が順に設けられる。これらによってメモリセルトランジスタMT、及び選択トランジスタST1、ST2が構成される。半導体層35は、NANDストリングNSの電流経路として機能し、各トランジスタのチャネルが形成される領域となる。半導体層35の上端は、コンタクトプラグ39を介して、ビット線BLとして機能する金属配線層40に接続される。よって、各NANDストリングNSは、選択トランジスタST1とST2の間に設けられたチャネル領域CHを有する。チャネル領域CHは、各メモリストリングNSの電流経路として機能する、各メモリストリングNSに含まれる2以上のメモリセルトランジスタMTのチャネル領域である。そして、各チャネル領域CHは、選択トランジスタST1を介して複数のビット線BLの1つと接続され、選択トランジスタST2を介して基板としてのウェル領域30と接続されている。各チャネル領域CHは、基板の上方に設けられ、ピラー形状を有する。
ウェル領域30の表面領域内には、高濃度のn型不純物が導入されたn+型拡散層41が設けられる。拡散層41上にはコンタクトプラグ42が設けられ、コンタクトプラグ42は、ソース線SLとして機能する金属配線層43に接続される。さらに、ウェル領域30の表面領域内には、高濃度のp型不純物が導入されたp+型拡散層44が設けられる。拡散層44上にはコンタクトプラグ45が設けられ、コンタクトプラグ45は、ウェル配線CPWELLとして機能する金属配線層46に接続される。ウェル配線CPWELLは、ウェル領域30を介して半導体層35に電圧を印加するための配線である。
以上の構成が、図4の紙面の奥行き方向(X方向)に複数配列されており、奥行き方向に並ぶ複数のNANDストリングNSの集合によってストリングユニットSUが構成される。
[5]メモリセルトランジスタの閾値分布
次に、メモリセルトランジスタMTの取り得る閾値電圧の分布について説明する。図5は、メモリセルトランジスタMTの閾値電圧の分布の一例を示す模式図である。メモリセルトランジスタMTは、2ビット以上のデータを記憶することが可能である。本実施形態では、メモリセルトランジスタMTが3ビットのデータを記憶する場合、いわゆるTLC( Triple Level Cell)方式を例に説明する。
3ビットのデータは、上位(Upper)ビット、中位(Middle)ビット、及び下位(Lower)ビットにより規定される。メモリセルトランジスタMTが3ビットを記憶する場合、メモリセルトランジスタMTは、8つの閾値電圧のうちのいずれかを有する。8つの閾値電圧を、低い方から順に、Er、A、B、C、D、E、F、及びGレベルと呼ぶ。Er、A、B、C、D、E、F及びGレベルの各々に属する複数のメモリセルトランジスタMTの閾値は、複数の分布を形成する。
Er、A、B、C、D、E、F、及びGレベルの閾値分布にはそれぞれ、例えば、111データ、110データ、100データ、000データ、010データ、011データ、001データ、及び101データが割り当てられる。閾値分布とデータとの割り当ては、任意に設定可能である。
読み出し対象のメモリセルトランジスタMTに記憶されたデータの判別のために、当該メモリセルトランジスタMTの閾値電圧が属するレベルが判定される。レベルの判定のために、読み出し電圧VA、VB、VC、VD、VE、VF、及びVGが用いられる。
Erレベルは、例えば、データの消去状態に相当する。そして、Erレベルに含まれるメモリセルトランジスタMTの閾値電圧は、電圧VAより小さく、例えば負の値を有する。
Aレベル〜Gレベルは、電荷蓄積層に電荷が注入されてメモリセルトランジスタMTにデータが書き込まれた状態に相当し、各分布に含まれるメモリセルトランジスタMTの閾値電圧は、例えば正の値を有する。Aレベルに含まれる閾値電圧は、読み出し電圧VAより大きく、かつ読み出し電圧VB以下である。Bレベルに含まれる閾値電圧は、読み出し電圧VBより大きく、かつ読み出し電圧VC以下である。Cレベルに含まれる閾値電圧は、読み出し電圧VCより大きく、かつ読み出し電圧VD以下である。Dレベルに含まれる閾値電圧は、読み出し電圧VDより大きく、かつ読み出し電圧VE以下である。Eレベルに含まれる閾値電圧は、読み出し電圧VEより大きく、かつ読み出し電圧VF以下である。Fレベルに含まれる閾値電圧は、読み出し電圧VFより大きく、かつ読み出し電圧VG以下である。Gレベルに含まれる閾値電圧は、読み出し電圧VGより大きく、電圧VREAD以下である。電圧VREADは、非読み出し対象のセルユニットCUのメモリセルトランジスタMTに接続されたワード線WLに印加される電圧であり、いずれのレベルにあるメモリセルトランジスタMTの閾値電圧よりも高い。つまり、CG線25Aに電圧VREADが印加されたメモリセルトランジスタMTは、保持するデータに関わらずオン状態になる。
以上のように、各メモリセルトランジスタMTは、8個の閾値電圧の分布のいずれかに属する閾値電圧を有することで、8種類の状態を取ることができる。また、データの書き込み及び読み出しは、1つのセルユニットCU内のページ単位で行われる。メモリセルトランジスタMTが3ビットデータを記憶している場合、1つのセルユニットCU内の3つのページにそれぞれ、下位ビット、中位ビット、及び上位ビットが割当てられる。以下の説明では、下位ビット、中位ビット、及び上位ビットについて一括して書き込み又は読み出されるページはそれぞれ、下位(Lower)ページ、中位(Middle)ページ、及び上位(Upper)ページと呼ばれる。
[6]センスアンプユニット及びデータレジスタの構成
図6は、図2に示したセンスアンプユニット28及びデータレジスタ29のブロック図である。
センスアンプユニット28は、ビット線BL0〜BL(m−1)に対応したセンスアンプユニットSAU0〜SAU(m−1)を備える。各センスアンプユニットSAUは、センスアンプSA、及びデータラッチ回路SDL、ADL、BDL、CDLを備える。センスアンプSA、及びデータラッチ回路SDL、ADL、BDL、CDLは、互いにデータを転送可能なように接続される。
データラッチ回路SDL、ADL、BDL、CDLは、データを一時的に保持する。書き込み動作時には、センスアンプSAは、データラッチ回路SDLが保持するデータに応じて、ビット線BLの電圧を制御する。データラッチ回路ADL、BDL、CDLは、メモリセルトランジスタMTが2 ビット以上のデータを保持する多値動作用に使用される。すなわち、データラッチ回路ADLは、下位ページを保持するために使用される。データラッチ回路BDLは、中位ページを保持するために使用される。データラッチ回路CDLは、上位ページを保持するために使用される。センスアンプユニットSAUが備えるデータラッチ回路の数は、1つのメモリセルトランジスタMTが保持するビット数に応じて決定される。
センスアンプSAは、読み出し動作時には、対応するビット線BLに読み出されたデータを検知し、データが0データであるか1データであるかを判定する。また、センスアンプSAは、書き込み動作時には、書き込みデータに基づいてビット線BLに電圧を印加する。
データレジスタ29は、センスアンプユニットSAU0〜SAU(m−1)に対応した数のデータラッチ回路XDLを備える。データラッチ回路XDLは、入出力回路21に接続される。データラッチ回路XDLは、入出力回路21から送られた書き込みデータを一時的に保持し、また、センスアンプユニットSAUから送られた読み出しデータを一時的に保持する。より具体的には、入出力回路21とセンスアンプユニット28との間のデータ転送は、1ページ分のデータラッチ回路XDLを介して行われる。入出力回路21が受信した書き込みデータは、データラッチ回路XDLを介して、データラッチ回路ADL、BDL、CDLのいずれかに転送される。センスアンプSAによって読み出された読み出しデータは、データラッチ回路XDLを介して、入出力回路21に転送される。
(動作)
次に、上記のように構成されたメモリシステム1の動作について説明する。メモリシステム1では、ホスト装置4からの命令に応じて、データの書き込み、データの読み出し又はデータの消去の各動作が行われる。
書き込み動作には、プログラム動作と、ベリファイ動作とが含まれる。また、書き込み動作では、プログラム動作とベリファイ動作とからなるプログラムループが複数回繰り返される。
プログラム動作では、選択ワード線WLにプログラム電圧VPGMを印加し、選択ワード線WL以外の他の複数の非選択ワード線WLにはプログラム電圧VPGMより低い所定の電圧VPASSを印加して、メモリセルトランジスタMTの電荷蓄積層に電荷(電子)を注入することで、メモリセルトランジスタMTの閾値電圧を上昇させる、又は、電荷蓄積層への電子の注入を禁止することで、メモリセルトランジスタMTの閾値電圧を維持させる。閾値電圧を上昇させる動作を「0書き込み」と呼び、閾値電圧を維持させる動作を「1書き込み」又は「書き込み禁止」と呼ぶ。より具体的には、0書き込みと1書き込みでは、ビット線BLに印加される電圧が異なる。例えば、0書き込みに対応するビット線BLには、例えば接地電圧VSSが印加される。1書き込みに対応するビット線BLには、例えば電源電圧VDD(>VSS)が印加される。
ベリファイ動作は、プログラム動作の後、メモリセルトランジスタMTのデータを読み出し、メモリセルトランジスタMTの閾値電圧がターゲットレベルに達したか否かを判定する動作である。メモリセルトランジスタMTの閾値電圧がターゲットレベルに達している場合を、「ベリファイをパスした」と呼び、ターゲットレベルに達していない場合を、「ベリファイをフェイルした」と呼ぶ。
また、読み出し動作では、選択ワード線WLに読み出し電圧VA、VB等を印加し、選択ワード線WL以外の他の複数の非選択ワード線WLには所定の電圧VPASSを印加して、選択ワード線WLの各メモリセルトランジスタMTの閾値電圧が判定される。
書き込み動作及び読み出し動作においてワード線WLに所定の電圧が印加された後は、一旦、ワード線WL、及び選択ゲート線SGD、SGSは、接地電圧VSSにされる。
ここで、WL(ワード線)クリープアップについて説明する。
三次元構造のメモリセルアレイ20では、メモリセルトランジスタMTのチャネル領域は、基板(すなわちp型ウェル領域30)に直接接続されておらず、選択トランジスタST1、ST2を介してそれぞれビット線BL及び基板に接続される。このため、選択トランジスタST1とST2がカットオフしていると、チャネル領域の電荷は、ビット線BL及び基板に簡単に移動できず、選択トランジスタST1、ST2のリーク電流としてゆっくり抜けていく。
本実施形態では、メモリセルトランジスタMTのチャネル領域(又はNANDストリングNSのチャネル領域)とワード線WLとの容量結合により、ワード線WLの電圧が上昇する現象をWLクリープアップと呼ぶ。図7は、ワード線(WL)クリープアップを説明する図である。
例えば、データの読み出し動作中のある時刻において、例えばチャネル領域CHが接地電圧VSS(0V)、ワード線WLが電圧VREAD、選択ゲート線SGD、SGSが電圧VSGであるものとする。時刻t0において、その読み出し動作が終了し、ワード線WL、及び選択ゲート線SGD、SGSが接地電圧VSSに低下する。
このとき、ワード線WLと、NANDストリングNSのチャネル領域CHとの容量結合により、チャネル領域CHの電位は負に低下する(時刻t1)。その後、チャネル領域CHの電荷がリーク電流により基板及び/又はビット線BLへと徐々に抜けていき、チャネル領域CHの電位が接地電圧VSSへと戻る。チャネル領域CHの電位が接地電圧VSSへ戻るとき、チャネル領域CHと容量結合しているワード線WLがクリープアップ電圧VCREEPUP(例えば4V)まで上昇する。クリープアップしたワード線WLの電圧は、その後、ワード線WLを駆動するトランジスタのリーク電流によって徐々に低下する。
ワード線WLがクリープアップしていないときのメモリセルトランジスタMTの状態を1stリード状態(又は1stアクセス状態)と呼び、ワード線WLがクリープアップしているときのメモリセルトランジスタMTの状態を2ndリード状態(2ndアクセス状態)と呼ぶ。
このWLクリープアップは、データの書き込み時においても、同様に発生する。通常、ベリファイ動作は、ワード線WLがクリープアップしている2ndリード状態で行われるので、2ndリード状態が長く継続することが望ましい。しかし、その後の時間経過により、ワード線WLは、2ndリード状態から、1stリード状態に徐々になっていく。ワード線WLの電位がクリープアップ電圧VCREEPUPから低下し、接地電圧VSSとの差が無くなってくると、そのワード線WLの各メモリセルMTの閾値電圧が変動してしまう。すなわち、書き込み時にベリファイ動作でパスしたにも拘わらず、読み出し時にエラーとなってしまう状態が生じる。
プログラム動作が行われたメモリセルMTは、プログラム動作の直後(プログラム終了から例えば100μs〜10ms未満)では、2ndリード状態であり、例えば100μs〜10ms後に、1stリード状態になり、例えば数分〜数10分後も、1stリード状態である。
言い換えれば、1stリード状態のメモリセルトランジスタMTと、2ndリード状態のメモリセルトランジスタMTとでは、同じメモリセルトランジスタMTでも閾値分布が異なってしまう。すなわち、1stリード状態のメモリセルトランジスタMTに対して読み出しを行った場合と、2ndリード状態のメモリセルトランジスタMTに対して読み出しを行った場合とでは、読み出し結果が異なる場合がある。実験によれば、ワード線WLが1stリード状態から2ndリード状態に遷移すると、メモリセルトランジスタMTの閾値分布の下位のレベルは、アップシフトし、メモリセルトランジスタMTの閾値分布の上位のレベルは、ダウンシフトする。閾値分布のシフトは、書き込んだレベルが読み出し動作においてフェイルと判断されるビット数の増加に繋がる。
よって、プログラム動作後、メモリセルトランジスタMTが、1stリード状態に直ぐになるのは好ましくなく、プログラム動作直後の2ndリード状態が長く継続することが望ましい。
しかし、データの書き込み動作後、各ワード線WL及び各チャネル領域CH中の電荷を完全にあるいは十分に放電させるために、選択トランジスタST1,ST2をオフに、すなわち選択ゲート線SGD,SGSに掛かる電圧をVSSにすると共に、各ワード線WLの電位を接地電圧VSSに落とすことが行われる場合がある。具体的には、各ワード線WL及び各チャネル領域CH中の電荷を完全にあるいは十分に放電させるリカバリ動作をするためにクロック信号を発生させる。このリカバリ動作が実行されると、書き込み各ワード線WLのメモリセルトランジスタMTは、1stリード状態に直ぐにしてしまう。
そこで、そのリカバリ動作後に、各メモリセルトランジスタMTを2ndリード状態にするために、ダミーのリード動作を行う方法を採用することも考えられるが、リカバリ動作とダミーのリード動作を実行させると、データの書き込み動作時間が全体として長くなってしまい、半導体記憶装置に対するデータの高速な書き込みの要求に反してしまう。
そこで、本実施形態では、データのプログラム動作後、ワード線WLを接地電位VSSに落とさず、接地電位VSSよりも高い所定の電圧に維持する。すなわち、ロウデコーダ26は、例えば、選択されたワード線WLに対してのGレベルのデータの書き込み動作の終了直後に、複数のワード線WLの各々に、接地電圧VSSよりも高い所定の電圧Vsを供給する。
図8は、本実施形態における、ある一つの選択ワード線WLに対するプログラム動作が行われるときの、各信号の変化を示す波形図である。本実施形態では、プログラム動作後、選択トランジスタ及び非選択トランジスタST1と,選択トラジスタST2をオフにする、すなわち選択ゲート線SGD、SGSに係る電圧をVSSにすると共に、ワード線WLの電圧をリカバリ動作用の接地電圧VSSにしないで、所定の電圧(例えば5V)に保持する。所定の電圧(例えば5V)は、ロウデコーダ26により生成されて出力される。所定の電圧は、制御回路24において予め設定され、設定変更が可能である。
図8では、選択ストリングユニットSUの選択トランジスタST1の選択ゲート線SGD_SEL、非選択ストリングユニットSUの選択トランジスタST1の選択ゲート線SGD_USEL、選択ワード線WLのCG線25A、非選択ワード線WLの未書き込みワード線WLのCG線25A(D−side:Er)、非選択ワード線WLの書き込み済ワード線WLのCG線25A(S−side:Data)、及び選択トランジスタST2の選択ゲート線SGSの各電圧の変化が示されている。ここでは、ワード線WL0からWL7へ順番にデータの書き込みが行われる場合が示されている。
図8において、時刻t11においてプログラム動作のために、選択ゲート線SGD、SGSに所定の高い電圧が印加されて、選択トランジスタST1,ST2がオンされ、選択ワード線WLに対する所定のプログラム動作が実行される。
上述したように、時刻t12後、選択トランジスタST1、ST2をオフにし、各CG線25Aの電圧を接地電圧VSSにすると、各メモリセルトランジスタMTは、1stリード状態にすぐに変わってしまう。
しかし、本実施形態では、時刻t12においてプログラム動作の実行が終了すると、選択トランジスタST1,ST2をオフにする、すなわち選択ゲート線SGD、SGSに係る電圧を接地電圧VSSにすると共に、ワード線WLの電圧を接地電圧VSSにしないで、所定の電圧(例えば5V)に保持する。すなわち、ロウデコーダ26は、制御回路24からの制御信号に基づいて、選択されたワード線WLに対してのデータを書き込むためのプログラム動作の終了後に、複数のワード線WLの各々に、接地電圧VSSよりも高い所定の電圧Vsを供給する。図8の場合、ロウデコーダ26は、プログラム動作の終了後に、選択トランジスタST1,ST2を時刻t11でオンした後に時刻t12でカットオフ状態とし、かつ複数のワード線WLの各々に、時刻t12以降は、所定の電圧Vsを供給している。
その結果、データの書き込み後、各CG線25Aの電圧を、二点鎖線で示すようなVSSへ低下させるのではなく、実線で示すように、所定の電圧Vsにすることで、ワード線WLの2ndリード状態を長く維持できる。その後、選択ワード線WL及び非選択ワード線WLへのロウデコーダ26からの電圧供給は、停止される。1つのワード線WLへのプログラム動作が終了すると、他のワード線WLへのプログラム動作あるいは読み出し動作が実行される。なお、読み出し動作の終了後にはワード線WLを接地電圧にしなくてもよいし、ワード線WLに所定の電圧を印加する等の終了動作を行わなくてもよい。この場合は、ワード線WLには電圧が残ったままになるので、クリープアップが生じにくい。つまり、読み出し動作の終了後と、プログラム動作の終了後とでは異なった終了動作となる。読み出し動作で選択/非選択ワード線WLに加わる電圧はプログラム動作で選択ワード線WLに加わる電圧よりも低い。そのため、読み出し動作の後にワード線WLに残留した電圧を接地電圧VSSにして放電させなくとも回路動作への影響がないからである。
なお、図8では、選択ワード線WLのCG線25A、非選択ワード線WLの未書き込みワード線WLのCG線25A(D−side:Er)及び非選択ワード線WLの書き込み済ワード線WLのCG線25A(S−side:Data)を、全て同じ所定の電圧Vsにしているが、本実施形態の変形例として、非選択ワード線WLの未書き込みワード線WLのCG線25A(D−side:Er)は、所定の電圧Vsよりも低い所定の電圧Vscにしてもよい。
図9は、複数のワード線WLの一部のCG線25Aの電圧を、他のワード線WLの制御ゲートCGの電圧と異ならせた場合の、各信号の変化を示す波形図である。
図9では、非選択ワード線WLの未書き込みワード線WLのCG線25A(D−side:Er)の電圧は、時刻t2以降、所定の電圧Vsよりも低い電圧Vsc(例えば3V)に設定されている。すなわち、本変形例では、ロウデコーダ326から供給される所定の電圧Vsは、複数のワード線WLの一部において異なっている。具体的には、データのプログラム動作が行われていないワード線WLに供給される所定の電圧Vscは、データのプログラム動作が行われたワード線WLに供給される所定の電圧Vsよりも低い。
データのプログラム動作が終了していない側のメモリセルトランジスタMTは、閾値電圧が最も低いレベルErであるので、チャネルの電位が上がり易い。そのため、選択ワード線WLのCG線25Aとドレイン側のCG線25A間のチャネルのポテンシャル差が大きくなると、ホットキャリアインジェクションが発生する場合がある。そこで、上述したように、非選択ワード線WLの未書き込みワード線WLのCG線25A(D−side:Er)の電圧は、時刻t2以降、所定の電圧Vsよりも低い電圧Vscに設定して、ホットキャリアインジェクションの発生を防止している。
以上のように、上述した実施形態によれば、データの高速な書き込みを可能とする半導体記憶装置を提供することができる。
(第2実施形態)
第1の実施形態では、プログラム動作後、選択トランジスタST1,ST2を一旦オン状態にしてからオフ状態にしているが、第2の実施形態では、選択トランジスタST1,ST2は、プログラム動作後、オン状態にしないでオフ状態を継続する。
本実施形態の構成は、第1実施形態の半導体装置の構成と略同じであるので、同じ構成要素についての同じ符号を用いて説明は省略し、異なる構成及び動作についてのみ説明する。
図10は、本実施形態における、ある一つの選択ワード線WLに対するプログラム動作が行われるときの、各信号の変化を示す波形図である。本実施形態では、選択ワード線WLについてのプログラム動作後、選択トランジスタ、非選択トランジスタST1及び選択トラジスタST2は、オフ状態を継続する、すなわち選択ゲート線SGD、SGSに係る電圧は、接地電圧VSSのままにすると共に、ワード線WLの電圧をリカバリ動作用の電圧(接地電圧VSS)にしないで、所定の電圧(例えば5V)に保持する。所定の電圧Vs(例えば5V)は、ロウデコーダ26により生成されて出力される。本実施形態の場合、ロウデコーダ26は、プログラム動作の終了後に、選択トランジスタST1,ST2をカットオフ状態とした状態で、複数のワード線WLの各々に、所定の電圧Vsを供給している。
本実施形態では、選択ゲート線SGD,SGSの電圧を接地電圧VSSの状態のままにして、プログラム動作時の電荷をチャネル領域CHに残した状態にしているので、プログラム動作の行われたメモリセルトランジスタMTは、よりクリープアップ電圧が低下しにくい。
よって、本実施形態では、プログラム動作後、選択ゲート線SGD,SGSをオン状態にすることがないので、メモリセルトランジスタMTを2ndリード状態に維持しやすい。
なお、本実施形態においても、上述した第1実施形態の変形例は適用可能である。
以上のように、上述した各実施形態によれば、データの高速な書き込みを可能とする半導体記憶装置を提供することができる。
特に、プログラム動作後に2ndリード状態を長く保ちつつ、データの高速な書き込みを可能とする半導体記憶装置を提供することができる。
なお、書き込み動作の途中で読み出し動作の命令実行がされ、書き込み動作が一時中断(サスペンド)される場合がある。サスペンド状態に移行するときにも、上述した各実施形態は、適用可能である。例えば、書き込み動作中にサスペンドの発生があると、制御回路24からの命令に基づいてロウデコーダ26は、CG線25Aに、所定の電圧Vs(例えば5V)を供給してから、書き込み動作を一時中断する。その後、読み出し動作の命令が実行される。
その読み出し動作の実行後、書き込み動作が再開(レジューム)されるが、各メモリセルトランジスタMTは、2ndリード状態にされているため、書き込み動作は適切に再開される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として例示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
1 メモリシステム、2 NAND型フラッシュメモリ、3 メモリコントローラ、4 ホスト装置、10 ホストインターフェース回路、11 プロセッサ、12 RAM、13 バッファメモリ、14 インターフェース回路、15 ECC回路、20 メモリセルアレイ、21 入出力回路、22 ロジック制御回路、23 レジスタ、24 制御回路、25 電圧生成回路、26 ロウデコーダ、27 カラムデコーダ、28 センスアンプユニット、29 データレジスタ、30 ウェル領域、31、32、33 配線層、34 メモリホール、35 半導体層、36 ゲート絶縁膜、37 電荷蓄積層、38 ブロック絶縁膜、39 コンタクトプラグ、40 金属配線層、41 拡散層、42 コンタクトプラグ、43 金属配線層、44 拡散層、45 コンタクトプラグ、46 金属配線層、ADL データラッチ回路、BDL データラッチ回路、BL ビット線、BLK ブロック、CDL データラッチ回路、CH チャネル領域、CU セルユニット、MT メモリセルトランジスタ、NS ストリング、SA センスアンプ、SAU センスアンプユニット、SDL データラッチ回路。

Claims (7)

  1. 複数のメモリストリングを含み、前記複数のメモリストリングの各々は、直列接続された複数のメモリセルトランジスタを含む、メモリセルアレイと、
    前記複数のメモリストリングに共通接続され、前記複数のメモリセルトランジスタにそれぞれ接続された複数のワード線と、
    選択されたワード線に対してのデータを書き込むためのプログラム動作の終了後に、前記複数のワード線の各々に、接地電圧よりも高い所定の電圧を供給するロウデコーダと、
    を有する半導体記憶装置。
  2. 各メモリストリングは、第1及び第2の選択トランジスタと、前記第1及び前記第2の選択トランジスタの間に設けられ、前記各メモリストリングの電流経路として機能する、前記各メモリストリングに含まれる2以上のメモリセルトランジスタのチャネル領域と、を有し、
    前記ロウデコーダは、前記プログラム動作の終了後に、前記第1及び前記第2の選択トランジスタをオンした後にカットオフ状態とし、かつ前記複数のワード線の各々に、前記所定の電圧を供給する、請求項1に記載の半導体記憶装置。
  3. 各メモリストリングは、第1及び第2の選択トランジスタと、前記第1及び前記第2の選択トランジスタの間に設けられ、前記各メモリストリングの電流経路として機能する、前記各メモリストリングに含まれる2以上のメモリセルトランジスタのチャネル領域と、を有し、
    前記ロウデコーダは、前記プログラム動作の終了後に、前記第1及び前記第2の選択トランジスタをカットオフ状態とした状態で、前記複数のワード線の各々に、前記所定の電圧を供給する、請求項1に記載の半導体記憶装置。
  4. 前記複数のメモリストリングにそれぞれ接続された複数のビット線を有し、
    前記チャネル領域は、前記第1選択トランジスタを介して前記複数のビット線の1つと接続され、前記第2選択トランジスタを介して基板と接続されている、請求項2又は3に記載の半導体記憶装置。
  5. 前記チャネル領域は、ピラー形状を有する、請求項4に記載の半導体記憶装置。
  6. 前記所定の電圧は、前記複数のワード線の一部において異なる、請求項1又は2に記載の半導体記憶装置。
  7. 前記データのプログラム動作が行われていないワード線に供給される前記所定の電圧は、前記データのプログラム動作が行われたワード線に供給される前記所定の電圧よりも低い、請求項6に記載の半導体記憶装置。
JP2019163385A 2019-09-06 2019-09-06 半導体記憶装置 Pending JP2021044032A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019163385A JP2021044032A (ja) 2019-09-06 2019-09-06 半導体記憶装置
US17/004,272 US11600327B2 (en) 2019-09-06 2020-08-27 Semiconductor flash memory device with voltage control on completion of a program operation and subsequent to completion of the program operation
US18/106,520 US11948642B2 (en) 2019-09-06 2023-02-07 Semiconductor flash memory device with voltage control on completion of a program operation and subsequent to completion of the program operation
US18/591,563 US20240203498A1 (en) 2019-09-06 2024-02-29 Semiconductor flash memory device with voltage control on completion of a program operation and subsequent to completion of the program operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019163385A JP2021044032A (ja) 2019-09-06 2019-09-06 半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2021044032A true JP2021044032A (ja) 2021-03-18

Family

ID=74851362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019163385A Pending JP2021044032A (ja) 2019-09-06 2019-09-06 半導体記憶装置

Country Status (2)

Country Link
US (3) US11600327B2 (ja)
JP (1) JP2021044032A (ja)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10320989A (ja) * 1997-05-16 1998-12-04 Toshiba Microelectron Corp 不揮発性半導体メモリ
JP4271168B2 (ja) 2004-08-13 2009-06-03 株式会社東芝 半導体記憶装置
US7466562B2 (en) 2006-07-20 2008-12-16 International Business Machines Corporation Toolless method for alignment, retention, connection, termination and test on printed circuit boards
KR102069864B1 (ko) * 2012-11-05 2020-01-23 에스케이하이닉스 주식회사 반도체 메모리 장치 및 이의 동작 방법
WO2015037159A1 (ja) 2013-09-13 2015-03-19 株式会社 東芝 半導体記憶装置及びメモリシステム
US10720215B2 (en) * 2014-09-06 2020-07-21 Fu-Chang Hsu Methods and apparatus for writing nonvolatile 3D NAND flash memory using multiple-page programming
JP6199838B2 (ja) 2014-09-12 2017-09-20 東芝メモリ株式会社 半導体記憶装置
JP6538496B2 (ja) * 2015-09-11 2019-07-03 東芝メモリ株式会社 メモリシステム
US10157680B2 (en) * 2015-12-22 2018-12-18 Sandisk Technologies Llp Sub-block mode for non-volatile memory
JP2017157255A (ja) * 2016-02-29 2017-09-07 東芝メモリ株式会社 半導体記憶装置
JP2017216025A (ja) 2016-05-31 2017-12-07 東芝メモリ株式会社 半導体記憶装置
US10049758B2 (en) * 2016-07-07 2018-08-14 Sandisk Technologies Llc Word line dependent pass voltages in non-volatile memory
JP2018121243A (ja) 2017-01-26 2018-08-02 東芝メモリ株式会社 放電回路及び半導体記憶装置
US10008271B1 (en) * 2017-09-01 2018-06-26 Sandisk Technologies Llc Programming of dummy memory cell to reduce charge loss in select gate transistor
JP2019057342A (ja) 2017-09-20 2019-04-11 東芝メモリ株式会社 半導体記憶装置
JP2019067342A (ja) 2017-10-05 2019-04-25 株式会社ジャパンディスプレイ タッチセンサ、及び表示装置
US10482985B2 (en) * 2018-02-05 2019-11-19 Sandisk Technologies Llc Dynamic erase loop dependent bias voltage
US10643721B2 (en) * 2018-06-21 2020-05-05 Sandisk Technologies Llc Interleaved program and verify in non-volatile memory
US10957402B2 (en) * 2019-01-28 2021-03-23 Micron Technology, Inc. High-voltage shifter with degradation compensation
US11081185B2 (en) * 2019-06-18 2021-08-03 Sandisk Technologies Llc Non-volatile memory array driven from both sides for performance improvement

Also Published As

Publication number Publication date
US20210074359A1 (en) 2021-03-11
US20240203498A1 (en) 2024-06-20
US11948642B2 (en) 2024-04-02
US11600327B2 (en) 2023-03-07
US20230186991A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
US10573394B2 (en) Memory system
TWI687934B (zh) 半導體記憶裝置
US10255979B1 (en) Semiconductor memory device
US11139007B2 (en) Semiconductor storage device and memory system
US20150332775A1 (en) Semiconductor memory device storing management data redundantly in different pages
JP2019036374A (ja) 半導体記憶装置
TWI696181B (zh) 半導體記憶裝置
US10580501B2 (en) Semiconductor memory device
TWI715937B (zh) 半導體記憶裝置
JP2019169207A (ja) 半導体記憶装置
TW202025458A (zh) 半導體記憶裝置
US20230092551A1 (en) Semiconductor storage device
JP2021093230A (ja) 半導体記憶装置
JP2012123856A (ja) 不揮発性半導体記憶装置
TWI717702B (zh) 半導體記憶裝置
US11600327B2 (en) Semiconductor flash memory device with voltage control on completion of a program operation and subsequent to completion of the program operation
JP2017152066A (ja) 不揮発性半導体記憶装置及びメモリシステム
US20240105272A1 (en) Semiconductor memory device
KR20130008274A (ko) 반도체 메모리 장치 및 그 동작 방법
JP2020144966A (ja) 半導体記憶装置