JP2021036195A - 相変化材料を使用する蓄熱式熱交換器構造 - Google Patents

相変化材料を使用する蓄熱式熱交換器構造 Download PDF

Info

Publication number
JP2021036195A
JP2021036195A JP2020200689A JP2020200689A JP2021036195A JP 2021036195 A JP2021036195 A JP 2021036195A JP 2020200689 A JP2020200689 A JP 2020200689A JP 2020200689 A JP2020200689 A JP 2020200689A JP 2021036195 A JP2021036195 A JP 2021036195A
Authority
JP
Japan
Prior art keywords
chamber
working fluid
pcm
heat exchanger
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020200689A
Other languages
English (en)
Other versions
JP7206245B2 (ja
Inventor
アルトマン,デイヴィッド
Altman David
イアン マニスカルド,ニコラス
Ian Maniscalco Nicholas
イアン マニスカルド,ニコラス
バルドゥッチ,ジョンサン
Balducci Jonathan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of JP2021036195A publication Critical patent/JP2021036195A/ja
Application granted granted Critical
Publication of JP7206245B2 publication Critical patent/JP7206245B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/086Heat exchange elements made from metals or metal alloys from titanium or titanium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F23/00Features relating to the use of intermediate heat-exchange materials, e.g. selection of compositions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D2020/0004Particular heat storage apparatus
    • F28D2020/0013Particular heat storage apparatus the heat storage material being enclosed in elements attached to or integral with heat exchange conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/02Flexible elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/14Safety or protection arrangements; Arrangements for preventing malfunction for preventing damage by freezing, e.g. for accommodating volume expansion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】 凍結時に膨張する相変化材料(PCM)を使用する熱交換器を提供する。【解決手段】 熱交換器(120、200)は、作動流体を収容するように構成されたハウジング(202)を含む。当該熱交換器はまた、ハウジング内に置かれた複数のチャンバ(122、204)を含み、該複数のチャンバは、作動流体がハウジング内にあるときに作動流体によって取り囲まれるように配置され、各チャンバが、凍結時に膨張するPCMを収容するように構成される。各チャンバの壁が、作動流体と各チャンバ内のPCMとの間での熱エネルギーの伝達を可能にする高熱伝導率材料で形成される。各チャンバの壁は、PCMが凍結時に膨張するにつれて変形してチャンバの内部容積を増大させるように構成された伸張可能なベローズ(302)を含む。【選択図】 図2

Description

本開示は、概して蓄熱式熱交換器に向けられる。より具体的には、本開示は、相変化材料として氷/水を使用する蓄熱式熱交換器構造に関する。
熱交換器は、1つの箇所から別の箇所に熱エネルギー(しばしば、単に“熱”と呼ばれる)を移動させなければならないシステムにおいて多種多様な用途を有する。同様に、過剰な熱エネルギーを一時的に貯蔵し、後にそのエネルギーを放出するために、熱エネルギー貯蔵式(thermal energy storage;TES)熱交換器が広く使用されている。これは、熱的な“負荷平準化”(負荷サイクル平均化)という利益を有し、消散されなければならない熱負荷を低減させる。多くのTES熱交換器では、例えばパラフィンなどの相変化材料(phase change material;PCM)が、その安定性及び高い蓄熱能力のために、熱交換器内の蓄熱材料として使用されている。
本開示は、例えば氷/水などの凍結時に膨張する相変化材料(PCM)を使用する蓄熱式熱交換器構造を用いたシステム及び方法を提供する。
第1の実施形態において、熱交換器は、作動流体を収容するように構成されたハウジングを含む。当該熱交換器はまた、ハウジング内に置かれた複数のチャンバを含み、該複数のチャンバは、作動流体がハウジング内にあるときに作動流体によって取り囲まれるように配置され、各チャンバが、凍結時に膨張するPCMを収容するように構成される。各チャンバの壁が、作動流体と各チャンバ内のPCMとの間での熱エネルギーの輸送を可能にする高熱伝導率材料で形成される。各チャンバの壁は、PCMが凍結時に膨張するにつれて変形してチャンバの内部容積を増大させるように構成された伸張可能なベローズを含む。
第2の実施形態において、システムは、少なくとも1つの熱源と、少なくとも1つのヒートシンクと、上記少なくとも1つの熱源から熱エネルギーを受け取って上記少なくとも1つのヒートシンクに熱エネルギーを与えるように構成された熱交換器とを含む。熱交換器は、作動流体を収容するように構成されたハウジングを含む。当該熱交換器はまた、ハウジング内に置かれた複数のチャンバを含み、該複数のチャンバは、作動流体がハウジング内にあるときに作動流体によって取り囲まれるように配置され、各チャンバが、凍結時に膨張するPCMを収容するように構成される。各チャンバの壁が、作動流体と各チャンバ内のPCMとの間での熱エネルギーの輸送を可能にする高熱伝導率材料で形成される。各チャンバの壁は、PCMが凍結時に膨張するにつれて変形してチャンバの内部容積を増大させるように構成された伸張可能なベローズを含む。
第3の実施形態において、方法は、熱交換器のハウジングを通して作動流体を移動させることを含み、ハウジングは複数のチャンバを収容しており、各チャンバは、凍結時に膨張するPCMを収容している。当該方法はまた、作動流体が上記複数のチャンバの各々の周りを移動するときに、PCMから作動流体に熱エネルギーを伝達させることを含む。各チャンバの壁が、作動流体と各チャンバ内のPCMとの間での熱エネルギーの輸送を可能にする高熱伝導率材料で形成されている。各チャンバの壁は、PCMが凍結時に膨張するにつれて変形してチャンバの内部容積を増大させるように構成された伸張可能なベローズを含む。
その他の技術的特徴が、以下の図面、説明、及び請求項から、当業者には容易に明らかになる。
より完全なる本開示の理解のため、ここでは、以下の図を含む添付図面とともに以下の説明を参照する。
本開示に従った相変化材料(PCM)熱交換器が使用され得る熱マネジメントシステムの一例を示している。 本開示に従ったPCM熱交換器を例示している。 図2のPCM熱交換器の拡大図を例示している。 本開示に従ったPCM熱交換器を使用する方法の一例を示している。
以下に説明される図1−4、及び本特許文献にて本開示の原理を説明するために使用される様々な実施形態は、単に例示によるものであり、本開示の範囲を限定するように解釈されるべきでない。当業者が理解するように、本開示の原理は、あらゆる種類の好適に構成された装置又はシステムにて実装され得る。
既存の蓄熱式熱交換器は、一般的に、潜熱貯蔵材料として様々なパラフィンを使用している。パラフィンワックスは、安定であり、化学的に無害であり、そして、反復可能な溶融及び凝固挙動を示すが、それらの熱伝導率は、PCMへの及びからの熱伝達を可能にするためにPCM熱交換器内に大量の熱拡散構造を必要とする。パラフィンはまた、比較的低い密度を有し、故に、他の既知の有機PCM及び無機PCMよりも大きい体積の材料を必要とする。一般に、パラフィン系PCM熱交換器は、約50−70kJ/kgの比エネルギー密度、及び50−70MJ/mの体積エネルギー密度に制限される。これらの数値は、例えば新たに出現している指向性エネルギー用途といった、重量及び体積の割り当てが制約される特定の用途にとって、許容できないほど低いものである。
パラフィンの熱的限界に対処するため、一部の熱交換器システムは、PCMとして氷/水の使用を提案している。PCMとして氷/水を使用することの利益は、その好ましい熱物理的特性(例えば、高い融解潜熱、密度、及び熱伝導率)から生じる。氷/水はまた、冷蔵を必要とする又は非常に低温のヒートシンク環境へのアクセスを有するシステムにとって特に有利である。しかしながら、氷/水はまた、水が凍結時に膨張するという点で(他の殆どの既知のPCMに対して)独特である。氷/水PCM熱交換器は、熱交換器を包囲する熱拡散構造との密接な接触を通じた効果的な熱伝達を維持しながら、この膨張を受け入れるように設計されなければならない。一般的なPCM(例えばパラフィンなど)で効果的な典型的なプレート/フィンPCM熱交換器設計は、硬いエンクロージャを特徴としており、エンクロージャの壁が凍結によって破裂することになるため、氷/水PCMには適していない。
氷/水をPCMとして使用する一部の設計が、(熱交換器ではなく)ヒートシンク用途における可能性を示してきた。しかしながら、それらの設計は、多くの軍事的な指向性エネルギー用途でそうであるように液体の作動流体からの/への高い熱伝達率(例えば、何百キロワット)が必要とされるTES PCM熱交換器には適していない。これは、設計された構造、システム構成、及び氷/水PCMに及びから熱を伝達することに伴う比較的高い伝導的な熱抵抗に起因する。同様に、他の氷/水PCM熱交換器構造設計は、氷/水PCMに対して熱を出入りさせることに伴う高い対流的及び伝導的な熱抵抗を特徴とする。それらの設計は、低速伝達(何十kW)、比較的低エネルギー(例えば、5MJ)用途では適したものとなり得るが、そのような設計は、指向性エネルギー用途において必要とされ得るものである高速(例えば>100kW)、高エネルギー(例えば、〜25MJ)では許容可能でない。
これら又はその他の問題に対処するために、本開示の実施形態は、相変化材料(PCM)として氷/水を使用しながら、それが凍るときの氷の体積膨張による破裂を被らない熱エネルギー貯蔵式(TES)熱交換器を提供する。開示される実施形態は、PCM TES熱交換器の比エネルギー密度及び体積エネルギー密度を有意に改善し、それにより、熱エネルギー貯蔵による負荷平準化を採用する熱マネジメントシステム(thermal management system;TMS)の大きさ及び重量を減少させる。
理解されることには、本開示の実施形態は、ここに記載される特徴のうちのいずれか1つ、2つ以上、又は全てを含み得る。また、本開示の実施形態は、追加的又は代替的に、ここには挙げられない他の特徴を含み得る。
図1は、本開示に従った相変化材料(PCM)熱交換器が使用され得る熱マネジメントシステム100の一例を示している。図1に示すシステム100の実施形態は、単に例示のためのものである。本開示の範囲から逸脱することなく、システム100の他の実施形態も使用され得る。当業者が認識することには、単純さ及び明瞭さのために、その他の図に関連して示されるものを含めて、一部の機構及びコンポーネントについては全ての図では明示していない。他の図に示されるものを含め、そのような機構は、システム100に等しく適用可能であることが理解されることになる。理解されることには、図に示される機構は全て、記載される実施形態のいずれで使用されてもよい。或る機構又はコンポーネントの特定の図からの省略は、単純さ及び明瞭さの目的でのことであり、その機構又はコンポーネントがその図に関連して説明される実施形態では使用されることができないといったことを意味する意図はない。
図1に示すように、システム100は、熱源コンポーネント110と、熱交換器120と、及びヒートシンクコンポーネント130とを含んでいる。熱源コンポーネント110は、熱源112及び導管114を収容する。熱源112は使用中に、連続的に又は一気に(短いバーストにて)のいずれかで高レベルの熱エネルギーを発生する。熱源112は、以下に限られないが電子部品、レーザ、及びこれらに類するものを含め、多様な熱発生源のうちのいずれであってもよい。熱源112は非常に様々とし得るので、熱源112の詳細を図示して説明することはしない。同様に、熱源112を収容する熱源コンポーネント110も非常に様々であり、熱源112が置かれる任意の好適構造を表し得る。一部の実施形態において、熱源コンポーネント110は、陸上、海上、空中、又は宇宙の乗り物の一区画を表し得る。図1は単純さのために1つの熱源コンポーネント110及び1つの熱源112を示しているが、一部の実施形態において、複数の熱源コンポーネント110及び/又は複数の熱源112が存在することができる。
導管114は、熱源112の近傍で熱源コンポーネント110を通って作動流体を搬送する。システム100の動作中、導管114を通り抜ける作動流体が、対流及び伝導を介して熱源112と熱エネルギーを交換する。作動流体は、熱マネジメントシステムでの使用に適した如何なる流体ともし得る。一部の実施形態において、作動流体はエチレングリコールと水との混合物である。図1には単一の導管114が示されているが、導管114は実際には、並列に、網目状に、又は任意の他の好適構成にて作動流体を搬送する複数の導管を表し得る。動作の特定の一状況において、熱源112が、熱エネルギーの短いバーストを発生し、導管114内の作動流体が、熱源112から導管114に伝達された熱エネルギーを吸収することによって、熱源112を冷却する。動作の別の一状況において、熱源112は、アイドルモード又は別の非発熱モードにあることができ、導管114内の作動流体は、導管114を介して熱源112に熱エネルギーを伝え戻すことができる。
(1つ以上の)ヒートシンクコンポーネント130は、ヒートシンク132及び導管134を含んでいる。ヒートシンク132は、システム100からの最終的な熱エネルギーの伝達のためのヒートシンクを表すことができる。一部の実施形態において、ヒートシンク132は、大気、大量の水、又は他の好適なヒートシンク媒体(これは、気体、液体、又は二相流体とし得る)とし得る。ヒートシンク132は非常に様々とし得るので、ヒートシンク132の詳細を図示して説明することはしない。同様に、ヒートシンク132を含むヒートシンクコンポーネント130も非常に様々であり、ヒートシンク132が置かれる任意の好適な場所又は構造を表し得る。図1は単純さのために1つのヒートシンクコンポーネント130及び1つのヒートシンク132を示しているが、一部の実施形態において、複数のヒートシンクコンポーネント130及び/又は複数のヒートシンク132が存在することができる。
導管134は、ヒートシンク132の近傍でヒートシンクコンポーネント130を通って作動流体を搬送する。システム100の動作中、導管134を通り抜ける作動流体が、対流及び伝導を介してヒートシンク132に熱エネルギーを伝達する。作動流体は、熱マネジメントシステムでの使用に適した如何なる流体ともし得る。一部の実施形態において、作動流体はエチレングリコールと水との混合物である。図1には単一の導管134が示されているが、導管134は実際には、並列に、網目状に、又は任意の他の好適構成にて作動流体を搬送する複数の導管を表し得る。
熱交換器120は、熱エネルギー貯蔵材料として相変化材料(PCM)(例えば氷/水など)を使用する熱エネルギー貯蔵式(TES)PCM熱交換器である。熱交換器120は、PCMチャンバ122及び導管124を含んでいる。熱交換器120は、導管114、124、134を含む作動流体ループ140を介して、熱源コンポーネント110及びヒートシンクコンポーネント130と熱的に結合される。すなわち、ループ140を通り抜ける作動流体によって、熱源コンポーネント110と、熱交換器120と、ヒートシンクコンポーネント130との間で、熱エネルギーを輸送することができる。
PCMチャンバ122はPCMを保持する。導管124は、PCMチャンバ122の近傍で熱交換器120を通って作動流体を搬送する。システム100の動作中、導管124を通り抜ける作動流体が、対流及び伝導を介してPCMチャンバ122と熱エネルギーを交換する。図1には単一のPCMチャンバ122が示されているが、大抵のPCM熱交換器は複数のPCMチャンバを含んでおり、PCMチャンバ122は、熱交換器120内の任意の好適数のPCMチャンバを表し得る。同様に、導管124は実際には、並列に、網目状に、又は任意の他の好適構成にて作動流体を搬送する複数の導管を表し得る。
動作の一態様において、熱源112によって発生された熱エネルギーが、導管114内の作動流体に伝達される。作動流体が、その熱エネルギーを、ループ140を通じて、熱交換器120内の導管124まで搬送する。熱交換器120内で、その熱エネルギーの少なくとも一部が、導管124内の作動流体から対流及び伝導を介してPCMチャンバ122内のPCMに伝達される。熱交換器120内のPCMは、その熱エネルギーを、反対方向への熱エネルギーの伝達によってそれが導管124内の作動流体に戻るように放出されることができるまで貯蔵することができる。そのようなときに、PCMチャンバ122内のPCMから導管124内の作動流体に熱エネルギーが伝達される。作動流体は、その熱エネルギーを、ループ140を通じて、ヒートシンクコンポーネント130内の導管134まで運ぶ。ヒートシンクコンポーネント130内で、その熱エネルギーの少なくとも一部が、導管134内の作動流体からヒートシンク132に伝達される。
本開示によれば、熱交換器120内のPCMは氷/水である。導管124からPCMチャンバ122に熱エネルギーが伝達されるとき、PCMが熱エネルギーを吸収するにつれて、PCMは氷から水に変化する。同様に、PCMチャンバ122から導管124に熱エネルギーが伝え戻されるとき、PCMは水から氷に変化して熱エネルギーを放出する。熱交換器120は、更に詳細に後述するように、凍るときの氷の体積膨張を受け入れるための幾つかの有利な機構を含んでいる。
図1は、PCM熱交換器が使用され得る熱マネジメントシステム100の一例を示しているが、図1には様々な変更が為され得る。例えば、熱源コンポーネント110、熱交換器120、及びヒートシンクコンポーネント130は、別個であるように示されているが、これは単に図示の明瞭さのためである。一部の実施形態では、コンポーネント110、120、130のうちの2つ以上が互いに接触していてもよく、あるいは、コンポーネント110、120、130のうちの2つ以上が同一構造物の一部であってもよい。また、システム100の構成及び配置は単に例示のためのものである。他の構成では、具体的なニーズに従って、コンポーネントが追加、省略、結合、又は設置され得る。
図2は、本開示に従ったPCM熱交換器200を例示している。PCM熱交換器200は、図1の熱交換器120を表し得る(あるいは、それによって表され得る)。図2に示すPCM熱交換器200の実施形態は単に例示のためのものである。本開示の範囲から逸脱することなく、PCM熱交換器200の他の実施形態も使用され得る。
PCM熱交換器200は、熱エネルギー貯蔵式(TES)熱交換器であり、シェルアンドチューブ式(shell and tube)PCM熱交換器アーキテクチャに見られるものと同様の一部機構を含んでいる。典型的なシェルアンドチューブ式熱交換器は、複数のチューブを包囲した、例えば圧力容器などの“シェル”又はハウジングを含んでいる。チューブの各々の内部に一方の流体があり、第2の流体が、チューブの周り及び間でシェル内を流れる。破裂せずには氷/水をPCMとして使用することができないものである既存のシェルアンドチューブ式PCM熱交換器とは異なり、PCM熱交換器200は、PCM蓄熱材料としての氷/水の使用を可能にする機構を含んでいる。
図2は、熱交換器200の2つの視図210−220を示している。視図210は、視図220中の直線A−Aに沿ったとられた熱交換器200の断面図である。熱交換器200は、複数の可撓性の伸張可能なPCMチャンバ204を取り囲むハウジング202を含んでいる。熱交換器200はまた、注入口206及び排出口208を含んでいる。一実施形態において、ハウジング202は、およそ1フィート×1フィート×2フィートの寸法を持つ概して直方体の構造である。ハウジング202は、注入口206及び排出口208を除いて、気密性且つ水密性であるように閉じられて密封され得る。ハウジング202の壁は、壁を通じての熱エネルギーの伝達を最小限にするために周囲環境から断熱され得る。
熱交換器200の注入口206は、それを通って作動流体が熱交換器200に入るハウジング202の開口部である。同様に、排出口208は、それを通って作動流体が熱交換器200を出て行くハウジング202の開口部である。注入口206及び排出口208は、例えば図1のループ140などの熱マネジメント作動流体ループに結合される。作動流体は、注入口206にて熱交換器200に入り、隣接するPCMチャンバ204間の隙間を通ってハウジング202の内部キャビティを通り抜け、そして、排出口208にて熱交換器200を出て行き、そこで作動流体はループの更なる部分へと移動する。これは、図2に示す大きい矢印によって表されている。故に、ハウジング202の内部キャビティそれ自体が、図1の導管124と同様の作動流体用の導管として作用する。作動流体は、熱マネジメントシステムでの使用に適した如何なる流体ともし得る。一部の実施形態において、作動流体はエチレングリコールと水との混合物である。
ハウジング202の内部において、PCMチャンバ204は、実質的に相等しく、例えば図2に示したもののようにスタガード格子状に配列され、あるいは、他の規則的な配置で配列される。PCMチャンバ204は、隣接するPCMチャンバ204間に隙間又は空間が存在するように互いに離間される。一部の実施形態において、隣接するPCMチャンバ204の間隔は、PCMチャンバ204の直径のおよそ5%とし得る。PCMチャンバ204は、PCM熱交換器200用のPCM材料である氷/水で満たされる閉じた容器(リザーバ)である。各PCMチャンバ204内の水は、一般に、添加剤なしの濾過水である。一部の実施形態において、この水は脱塩水とし得るが、水が完全に純粋である必要はない。各PCMチャンバ204の壁は、例えばステンレス鋼、アルミニウム、チタン、銅、インコネル(登録商標)、又は有利な熱伝達特性(例えば、高い熱伝導率)を有する他の好適材料などの金属とすることができる。
一部の実施形態において、各PCMチャンバ204は細長く、長さでおよそ1フィート、その最大の断面における直径でおよそ2インチである。図3は、1つのPCMチャンバ204の拡大図を例示している。各PCMチャンバ204の壁が、PCMの膨張に対する機械的コンプライアンス(追随性)を提供する一列の複数のフレキシブル波形金属ベローズ302として形成されている。ベローズ302は、拡大された表面を持つPCM充填フィンとして機能し、PCMチャンバ204が真っ直ぐな壁を持つ単純な円筒形であるとした場合よりもかなり大きい表面積をPCMチャンバ204に提供する。表面積の増加は、対流熱伝達面積の増加をもたらし、熱エネルギーをPCMに出入りさせることに関連する伝導長を短縮する。
ベローズ302はまた、PCMが凍結するときのPCMの膨張を受け入れる。図3に示すように、寸法Aは、PCMが液体状態(例えば、水)にあるときの各ベローズ302の厚さを表している。PCMが凍結して膨張するとき、ベローズ302のうちの1つ以上が厚さにおいて寸法A’まで膨張する。すなわち、ベローズ302の波形の壁が変形し、膨張したPCMを収容するためのより大きい寸法A’をもたらす。一部の実施形態において、寸法Aはおよそ0.20インチであり、A’はおよそ0.22インチである。当然ながら、これは単なる一例である。他の実施形態において、寸法A及びA’は、具体的なニーズに従ってもっと大きくてもよいし小さくてもよい。各PCMチャンバ204の構造が、フレキシブルベローズ302を有利に利用して同時に膨張を受け入れ、氷/水への伝導長を短縮し、また、ベローズ302のひだによって提供される拡大された表面の追加を通じて対流熱伝達を高める。ベローズ302の形状は、その形状がPCMの膨張を受け入れるのに適切である限り、実施形態ごとに異なり得る。
動作の一態様において、PCMチャンバ204内のPCM材料は液体の水の状態にある。PCMチャンバ204からの熱エネルギーが、PCMチャンバ204の壁を通じて、対流及び伝導を介して作動流体に伝達される。熱エネルギーがPCMから輸送されるとき、水が氷へと凍結し、そうするにつれて膨張する。氷が形成して膨張するにつれて、ベローズ302が、図3に示すように膨張して、膨張する氷のための追加の容積を各PCMチャンバ204の内部に提供し、それにより、PCMチャンバ壁の破裂を回避する。後に、作動流体から各PCMチャンバ204内のPCMに熱エネルギーが伝達されるとき、氷が水へと溶けて収縮し、ベローズ302が、PCMチャンバの内側と外側との間の圧力差によってその静的形状へと戻る。ベローズ302の特定の構成はまた、PCMチャンバ204の各々内での氷の方向性ある凍結を促進し、それが、各ベローズ302の近傍のPCMチャンバ204内での氷の形成を促すことによって、PCMチャンバ204の動作を向上させる。
図2及び3はPCM熱交換器200の一例を示しているが、図2及び3には様々な変更が為され得る。例えば、その全長に沿ってベローズ302を有するように示されているが、PCMチャンバ204のうちの1つ以上が、その長さの一部に沿って1つ以上の平坦な、波形でないセクションをしていてもよい。また、一例として特定の寸法が与えられているが、そのような寸法は具体的なニーズに従ってもっと大きくてもようし小さくてもよい。また、PCM熱交換器200の構成及び配置は単に例示のためのものである。他の構成では、具体的なニーズに従って、コンポーネントが追加、省略、結合、又は設置され得る。例えば、ハウジング202が実質的にPCMチャンバ204で充たされているように示されているが、これは単なる一例である。他の実施形態において、ハウジング202の一部がもっと少ない又は多いPCMチャンバ204を含んでいてもよく、あるいは、PCMチャンバ204は部分的にもっと大きく離間されてもよい。
図4は、本開示に従ったPCM熱交換器を使用する方法400の一例を示している。方法400は、図1の熱マネジメントシステム100において図2のPCM熱交換器200を用いて実行され得る。しかしながら、方法400は、何らかの他の好適システムと共に使用されてもよい。
ステップ401にて、作動流体が熱交換器のハウジングを通って移動する。例えば、熱マネジメントシステム内のポンプが、ハウジングを通して作動流体を送り得る。ハウジングは複数のチャンバを収容しており、各チャンバは、例えば氷/水などの、凍結時に膨張するPCMを収容している。これは、例えば、エチレングリコールと水などの作動熱伝達流体がハウジング202を通って移動することを含み得る。
ステップ403にて、作動流体が複数のチャンバの各々の周りを移動するときに、PCMから作動流体に熱エネルギーが伝達される。これは、例えば、作動流体がハウジング202内の各PCMチャンバ204の周りを移動するときに、PCMチャンバ204の各々内のPCMから作動流体に熱エネルギーが伝達することを含み得る。この熱エネルギーの少なくとも一部は、例えばヒートシンク132などのヒートシンクに輸送されることができる過剰な熱エネルギーを表し得る。
各チャンバの壁は、作動流体と各チャンバ内のPCMとの間での熱エネルギーの伝達を可能にする高熱伝導率材料で形成されている。また、各チャンバの壁は、PCMが凍結時に膨張するにつれて変形してチャンバの容積を増大させるように構成された伸張可能なベローズを含んでいる。例えば、各PCMチャンバ204は、各チャンバの内部の全容積を拡大させるように変形することができる複数のベローズ302を含んでいる。PCMから作動流体に熱エネルギーが移動するにつれて、PCMが凍結して膨張する。PCMが膨張するにつれて、ベローズ302が変形してPCMチャンバ204の容積を増大させる。
ステップ405にて、作動流体からPCMに熱エネルギーが伝達される。これは、例えば、作動流体から各PCMチャンバ204内のPCMに熱エネルギーが伝達することを含み得る。この熱エネルギーの少なくとも一部は、例えば熱源112などの熱源で発生された熱エネルギーを表し得る。作動流体からPCMに熱エネルギーが伝わるにつれて、PCMが溶けて収縮する。PCMが収縮するにつれて、各PCMチャンバ204のベローズ302がその静的状態へと戻り、それにより、各PCMチャンバ204の容積を減少させる。
一部の実施形態において、作動流体は熱マネジメントシステムの作動流体ループ内にあり、ステップ401−405は熱マネジメントシステム内で一回以上繰り返されることができる。
図4は、PCM熱交換器を使用する方法400の一例を示している、図4には様々な変更が為され得る。例えば、一連のステップとして示されているが、図4に示す様々なステップは、重複してもよいし、並列に行われてもよいし、異なる順序で行われてもよいし、あるいは複数回行われてもよい。さらに、具体的なニーズに従って、一部のステップが組み合わされたり除去されたりしてもよいし、更なるステップが付加されてもよい。
本特許文献の全体を通して使用される特定の単語及びフレーズの定義を説明しておくことが有益であるかもしれない。用語“含む”及び“有する”、並びにこれらの派生語は、限定なしでの包含を意味する。用語“又は”は、及び/又はを意味する包括的なものである。“〜と関連付けられる”なる言い回し、及びその派生語は、〜を含む、〜の中に含まれる、〜と相互接続される、〜を含有する、〜内に含有される、〜に又は〜と接続する、〜に又は〜と結合する、〜と通信可能である、〜と協働する、〜と交互である、〜隣り合う、〜に近接した、〜に又は〜と結合される、〜を有する、〜の特性を有する、〜に又は〜と関係を有する、又はこれらに類するものを意味する。“〜のうちの少なくとも1つ”なる言い回しは、アイテムのリストとともに使用されるとき、リストアップされたアイテムのうちの1つ以上の様々な組み合わせが使用され得ることを意味し、リスト内の1つのアイテムのみが必要とされることもある。例えば、“A、B、及びCのうちの少なくとも1つ”は、以下の組み合わせ:A、B、C、AとB、AとC、BとC、及びAとBとC、のうちの何れをも含む。
本出願における記載は、特定の要素、ステップ、又は機能がクレーム範囲に含まれていなければならない必須又は重要な要素であることを意味するものとして読まれるべきでない。特許される事項の範囲は、許可されたクレームによってのみ定められる。また、クレームは何れも、その特定のクレーム中で“する手段”又は“するステップ”なるそのままの語が、機能を特定する特定の言い回しに続かれて、明示的に使用されない限り、添付のクレーム又はクレーム要素に関して35USC第112節(f)を行使することを意図していない。クレーム内での、例えば(以下に限られないが)“機構”、“モジュール”、“デバイス”、“ユニット”、“コンポーネント”、“要素”、“部材”、“装置”、“機械”、又は“システム”などの用語の使用は、クレームの特徴自体によって更に改良又は強化されるような、当業者に知られた構造を指すものと理解及び意図されるものであり、35USC第112節(f)を行使することを意図するものではない。
本開示は、特定の実施形態及び概して関連する方法を述べてきたが、これらの実施形態及び方法の改変及び並べ替えが当業者に明らかになる。従って、以上の実施形態例の説明は、本開示を定めたり制約したりするものではない。以下の請求項によって規定される本開示の精神及び範囲を逸脱することなく、その他の変形、代用、及び改変も可能である。

Claims (20)

  1. 作動流体を収容するように構成されたハウジングと、
    前記ハウジング内に置かれ、前記作動流体が前記ハウジング内にあるときに前記作動流体によって取り囲まれるように配置された複数のチャンバであり、各チャンバが、凍結時に膨張する相変化材料(PCM)を収容するように構成されている、複数のチャンバと
    を有し、
    各チャンバの壁が、前記作動流体と各チャンバ内の前記PCMとの間での熱エネルギーの輸送を可能にする高熱伝導率材料で形成され、
    各チャンバの前記壁は、前記PCMが凍結時に膨張するにつれて変形して該チャンバの内部容積を増大させるように構成された複数の伸張可能なベローズを含み、前記複数のベローズは、前記複数のベローズを接続する前記チャンバの中心部分から半径方向外側に延在し、前記複数のベローズの各々が、前記中心部分から半径方向外側に延在し且つ該ベローズの外端で湾曲した端壁部分によって接続された、第1及び第2の平面壁部分を有し、
    前記複数のベローズを接続する前記チャンバの前記中心部分の中心軸が、前記作動流体の移動方向に対して実質的に垂直な平面内を延在し、該平面内に、前記複数のチャンバのうちの少なくとも一部が、隣接するチャンバ間に空間を有して並列に配置されている、
    熱交換器。
  2. 複数の前記空間が接続されて、前記作動流体が前記ハウジングの全体及び各チャンバの周りを流れることを可能にし、
    前記複数のチャンバは、各チャンバの前記中心部分の前記中心軸に垂直な断面で見て、スタガード格子状に配列されている、
    請求項1に記載の熱交換器。
  3. 前記複数のベローズは、各チャンバの波形の壁を形成するように一列に配置されている、請求項1に記載の熱交換器。
  4. 前記PCMは氷/水を有する、請求項1に記載の熱交換器。
  5. 各チャンバの前記壁は、ステンレス鋼、アルミニウム、チタン、銅、又はインコネルのうちの少なくとも1つで形成されている、請求項1に記載の熱交換器。
  6. 前記作動流体は、エチレングリコールと水との混合物を有する、請求項1に記載の熱交換器。
  7. 当該熱交換器は更に、
    前記ハウジングの第1の壁内の注入口であり、前記作動流体を当該熱交換器内に受け入れるように構成された注入口と、
    前記ハウジングの第2の壁内の排出口であり、前記作動流体が当該熱交換器から出て行くことを可能にするように構成された排出口と
    を有し、
    前記注入口及び前記排出口は、熱エネルギーマネジメントシステム内の作動流体ループに結合される、
    請求項1に記載の熱交換器。
  8. 少なくとも1つの熱源と、
    少なくとも1つのヒートシンクと、
    前記少なくとも1つの熱源から熱エネルギーを受け取って前記少なくとも1つのヒートシンクに前記熱エネルギーを与えるように構成された熱交換器と
    を有し、
    前記熱交換器は、
    作動流体を収容するように構成されたハウジングと、
    前記ハウジング内に置かれ、前記作動流体が前記ハウジング内にあるときに前記作動流体によって取り囲まれるように配置された複数のチャンバであり、各チャンバが、凍結時に膨張する相変化材料(PCM)を収容するように構成されている、複数のチャンバと
    を有し、
    各チャンバの壁が、前記作動流体と各チャンバ内の前記PCMとの間での熱エネルギーの輸送を可能にする高熱伝導率材料で形成され、且つ
    各チャンバの前記壁は、前記PCMが凍結時に膨張するにつれて変形して該チャンバの内部容積を増大させるように構成された複数の伸張可能なベローズを含み、前記複数のベローズは、前記複数のベローズを接続する前記チャンバの中心部分から半径方向外側に延在し、前記ベローズの各々が、前記中心部分から半径方向外側に延在し且つ該ベローズの外端で湾曲した端壁部分によって接続された、第1及び第2の平面壁部分を有し、
    前記複数のベローズを接続する前記チャンバの前記中心部分の中心軸が、前記作動流体の移動方向に対して実質的に垂直な平面内を延在し、該平面内に、前記複数のチャンバのうちの少なくとも一部が、隣接するチャンバ間に空間を有して並列に配置されている、
    システム。
  9. 複数の前記空間が接続されて、前記作動流体が前記ハウジングの全体及び各チャンバの周りを流れることを可能にし、
    前記複数のチャンバは、各チャンバの前記中心部分の前記中心軸に垂直な断面で見て、スタガード格子状に配列されている、
    請求項8に記載のシステム。
  10. 前記複数のベローズは、各チャンバの波形の壁を形成するように一列に配置されている、請求項8に記載のシステム。
  11. 前記PCMは氷/水を有する、請求項8に記載のシステム。
  12. 各チャンバの前記壁は、ステンレス鋼、アルミニウム、チタン、銅、又はインコネルのうちの少なくとも1つで形成されている、請求項8に記載のシステム。
  13. 前記作動流体は、エチレングリコールと水との混合物を有する、請求項8に記載のシステム。
  14. 前記熱交換器は更に、
    前記ハウジングの第1の壁内の注入口であり、前記作動流体を前記熱交換器内に受け入れるように構成された注入口と、
    前記ハウジングの第2の壁内の排出口であり、前記作動流体が前記熱交換器から出て行くことを可能にするように構成された排出口と
    を有し、
    前記注入口及び前記排出口は、当該システムの前記少なくとも1つの熱源に結合された作動流体ループに結合される、
    請求項8に記載のシステム。
  15. 当該システムは、陸上、海上、空中、又は宇宙の乗り物内に配置される、請求項8に記載のシステム。
  16. 熱交換器のハウジングを通して作動流体を移動させることであり、前記ハウジングは複数のチャンバを収容しており、各チャンバは、凍結時に膨張する相変化材料(PCM)を収容している、移動させることと、
    前記作動流体が前記複数のチャンバの各々の周りを移動するときに、前記PCMと前記作動流体との間で熱エネルギーを伝達させることと
    を有し、
    各チャンバの壁が、前記作動流体と各チャンバ内の前記PCMとの間での熱エネルギーの輸送を可能にする高熱伝導率材料で形成され、
    各チャンバの前記壁は、前記PCMが凍結時に膨張するにつれて変形して該チャンバの内部容積を増大させるように構成された複数の伸張可能なベローズを含み、前記複数のベローズは、前記複数のベローズを接続する前記チャンバの中心部分から半径方向外側に延在し、前記複数のベローズの各々が、前記中心部分から半径方向外側に延在し且つ該ベローズの外端で湾曲した端壁部分によって接続された、第1及び第2の平面壁部分を有し、
    前記複数のベローズを接続する前記チャンバの前記中心部分の中心軸が、前記作動流体の移動方向に対して実質的に垂直な平面内を延在し、該平面内に、前記複数のチャンバのうちの少なくとも一部が、隣接するチャンバ間に空間を有して並列に配置されている、
    方法。
  17. 複数の前記空間が接続されて、前記作動流体が前記ハウジングの全体及び各チャンバの周りを流れることを可能にし、
    前記複数のチャンバは、各チャンバの前記中心部分の前記中心軸に垂直な断面で見て、スタガード格子状に配列されている、
    請求項16に記載の方法。
  18. 前記複数のベローズは、各チャンバの波形の壁を形成するように一列に配置されている、請求項16に記載の方法。
  19. 前記PCMは氷/水を有する、請求項16に記載の方法。
  20. 各チャンバの前記壁は、ステンレス鋼、アルミニウム、チタン、銅、又はインコネルのうちの少なくとも1つで形成されている、請求項16に記載の方法。
JP2020200689A 2016-08-01 2020-12-03 相変化材料を使用する蓄熱式熱交換器構造 Active JP7206245B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/225,582 2016-08-01
US15/225,582 US10436522B2 (en) 2016-08-01 2016-08-01 Thermal storage heat exchanger structures employing phase change materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019505261A Division JP2019525119A (ja) 2016-08-01 2017-07-28 相変化材料を使用する蓄熱式熱交換器構造

Publications (2)

Publication Number Publication Date
JP2021036195A true JP2021036195A (ja) 2021-03-04
JP7206245B2 JP7206245B2 (ja) 2023-01-17

Family

ID=61009530

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019505261A Pending JP2019525119A (ja) 2016-08-01 2017-07-28 相変化材料を使用する蓄熱式熱交換器構造
JP2020200689A Active JP7206245B2 (ja) 2016-08-01 2020-12-03 相変化材料を使用する蓄熱式熱交換器構造

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019505261A Pending JP2019525119A (ja) 2016-08-01 2017-07-28 相変化材料を使用する蓄熱式熱交換器構造

Country Status (6)

Country Link
US (1) US10436522B2 (ja)
EP (1) EP3491322A1 (ja)
JP (2) JP2019525119A (ja)
KR (1) KR102167189B1 (ja)
CN (1) CN109791027B (ja)
WO (1) WO2018026660A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8648481B2 (en) * 2006-06-10 2014-02-11 Star Sailor Energy, Inc. Wind generator with energy enhancer element for providing energy at no wind and low wind conditions
US11644010B1 (en) 2006-06-10 2023-05-09 Star Sailor Energy, Inc. Energy storage system
GB2567206A (en) * 2017-10-06 2019-04-10 Bae Systems Plc System comprising an energy supply and a heat exchanger
US20190143783A1 (en) 2017-11-16 2019-05-16 Ford Global Technologies, Llc Multifunction reservoir for a secondary loop, climate control system and a secondary loop climate control system incorporating that multifunction reservoir
ES2938477T3 (es) * 2018-08-17 2023-04-11 Biofreshtec S L Acumulador térmico que contiene un PCM
EP3948095B1 (en) 2019-04-04 2024-05-22 Stash Energy Inc. Heating and cooling systems and apparatuses with phase change materials
KR102418692B1 (ko) * 2020-07-02 2022-07-08 대영채비(주) 히트파이프를 이용한 수냉식 급속 충전용 케이블
EP4015968A1 (en) * 2020-12-18 2022-06-22 Nokia Technologies Oy Cooling systems and heat exchangers
EP4170271A1 (en) * 2021-10-20 2023-04-26 Energy Innovation Systems Limited Systems and method for heating and/or cooling at least one medium
US11970652B1 (en) 2023-02-16 2024-04-30 Microera Power Inc. Thermal energy storage with actively tunable phase change materials

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS45788Y1 (ja) * 1967-10-03 1970-01-13
JPS5869395A (ja) * 1981-10-21 1983-04-25 Hitachi Ltd 蓄熱装置
WO1995016175A1 (en) * 1993-12-10 1995-06-15 Store Heat And Produce Energy, Inc. Thermal storage apparatus
JPH10510351A (ja) * 1994-12-09 1998-10-06 デー エル デー アンテルナシオナル エネルギーを蓄積するため又は散逸させるための不均質構造物、そのような構造物を使用する方法、及び付随する装置
JP2002130746A (ja) * 2000-04-10 2002-05-09 Nkk Corp 蓄熱装置およびそのリニューアル方法
US20100300654A1 (en) * 2009-05-29 2010-12-02 Darvin Renne Edwards Modified heat pipe for phase change cooling of electronic devices
JP2011080719A (ja) * 2009-10-09 2011-04-21 Mirapuro:Kk 断熱二重管
WO2012112055A1 (en) * 2011-02-14 2012-08-23 Viking Heat Engines As Bellows heat exchanger for a heating machine, heat pump, expander or compressor
WO2015110159A1 (en) * 2014-01-23 2015-07-30 Abb Technology Ag Bellows arrangement

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2551911A1 (de) * 1975-11-19 1977-06-02 Daimler Benz Ag Heizvorrichtung
US4294078A (en) * 1977-04-26 1981-10-13 Calmac Manufacturing Corporation Method and system for the compact storage of heat and coolness by phase change materials
JPS58164955A (ja) 1982-03-25 1983-09-29 Sohei Suzuki 固液相変換利用太陽蓄熱装置
JPS59104092A (ja) * 1982-12-03 1984-06-15 Sanden Corp 蓄熱容器
JPH0569541U (ja) * 1992-02-28 1993-09-21 千代田化工建設株式会社 蓄冷体束
US5497629A (en) * 1993-03-23 1996-03-12 Store Heat And Produce Energy, Inc. Heating and cooling systems incorporating thermal storage
US5944089A (en) 1994-05-26 1999-08-31 Roland; Russel Anthony Thermal storage systems for buildings
US6780505B1 (en) 1997-09-02 2004-08-24 Ut-Battelle, Llc Pitch-based carbon foam heat sink with phase change material
US6247522B1 (en) * 1998-11-04 2001-06-19 Baltimore Aircoil Company, Inc. Heat exchange members for thermal storage apparatus
US6202739B1 (en) 1998-11-25 2001-03-20 Motorola, Inc. Apparatus including a heat-dissipating apparatus, and method for forming same
SE516196C2 (sv) 2000-05-31 2001-12-03 Pallet Coller Kb Sätt att framställa avgränsning av kylförvaringsutrymmen och liknande avsedd vägg- eller panelanordnig och anordning utförd enligt sättet
US6988304B2 (en) 2001-06-14 2006-01-24 Aircraft Braking Systems Corporation Method of containing a phase change material in a porous carbon material and articles produced thereby
US7882888B1 (en) 2005-02-23 2011-02-08 Swales & Associates, Inc. Two-phase heat transfer system including a thermal capacitance device
US8418484B2 (en) 2008-01-30 2013-04-16 The Trustees Of Dartmouth College Compact helical heat exchanger with stretch to maintain airflow
US20090211732A1 (en) * 2008-02-21 2009-08-27 Lakhi Nandlal Goenka Thermal energy exchanger for a heating, ventilating, and air conditioning system
US7980293B2 (en) 2008-03-21 2011-07-19 Honeywell International Inc. Two fluid thermal storage device to allow for independent heating and cooling
US7859845B2 (en) 2008-12-18 2010-12-28 The Boeing Company Phase change material cooling system
JP2010186821A (ja) * 2009-02-10 2010-08-26 Frontiers Co Ltd 保冷材付き液体循環式冷却モジュール
US7969075B2 (en) * 2009-02-10 2011-06-28 Lumenetix, Inc. Thermal storage system using encapsulated phase change materials in LED lamps
FR2945859B1 (fr) 2009-05-19 2011-06-17 Valeo Systemes Thermiques Dispositif d'echange thermique contenant un materiau de stockage thermique
US8342454B1 (en) 2009-06-29 2013-01-01 Paragon Space Development Corporation Cooling systems
GB0919934D0 (en) 2009-11-16 2009-12-30 Sunamp Ltd Energy storage systems
EP2689200B1 (en) 2011-03-23 2018-03-14 Cool Lab, LLC Phase change thermal-sink apparatus
US9945620B2 (en) 2011-08-01 2018-04-17 Thomas Middleton Semmes Freeze damage resistant window perimeter radiator
US20140284020A1 (en) 2012-01-24 2014-09-25 The Boeing Company Energy storage and thermal management using phase change materials in conjunction with heat pipes and foils, foams or other porous media
GB201300885D0 (en) 2013-01-17 2013-03-06 True Energy Ltd Cooling Apparatus
KR101173842B1 (ko) * 2012-05-21 2012-08-16 주식회사 한국번디 엘형 턴핀 튜브 및 이를 이용한 턴핀형 열교환기
EP2877795B1 (en) 2012-07-26 2017-01-18 Roche Diagnostics GmbH Directional freezing
TW201510459A (zh) 2013-09-05 2015-03-16 Univ Nat Central 固液相變冷卻裝置
JP5740443B2 (ja) * 2013-09-11 2015-06-24 株式会社東芝 送信システム
US20150113975A1 (en) * 2013-10-31 2015-04-30 Woodward, Inc. Thermal actuator
US9366483B2 (en) 2013-11-27 2016-06-14 Tokitac LLC Temperature-controlled container systems for use within a refrigeration device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS45788Y1 (ja) * 1967-10-03 1970-01-13
JPS5869395A (ja) * 1981-10-21 1983-04-25 Hitachi Ltd 蓄熱装置
WO1995016175A1 (en) * 1993-12-10 1995-06-15 Store Heat And Produce Energy, Inc. Thermal storage apparatus
JPH10510351A (ja) * 1994-12-09 1998-10-06 デー エル デー アンテルナシオナル エネルギーを蓄積するため又は散逸させるための不均質構造物、そのような構造物を使用する方法、及び付随する装置
JP2002130746A (ja) * 2000-04-10 2002-05-09 Nkk Corp 蓄熱装置およびそのリニューアル方法
US20100300654A1 (en) * 2009-05-29 2010-12-02 Darvin Renne Edwards Modified heat pipe for phase change cooling of electronic devices
JP2011080719A (ja) * 2009-10-09 2011-04-21 Mirapuro:Kk 断熱二重管
WO2012112055A1 (en) * 2011-02-14 2012-08-23 Viking Heat Engines As Bellows heat exchanger for a heating machine, heat pump, expander or compressor
WO2015110159A1 (en) * 2014-01-23 2015-07-30 Abb Technology Ag Bellows arrangement

Also Published As

Publication number Publication date
CN109791027A (zh) 2019-05-21
KR102167189B1 (ko) 2020-10-19
US10436522B2 (en) 2019-10-08
EP3491322A1 (en) 2019-06-05
JP2019525119A (ja) 2019-09-05
CN109791027B (zh) 2021-10-01
KR20190029712A (ko) 2019-03-20
US20180031333A1 (en) 2018-02-01
WO2018026660A1 (en) 2018-02-08
JP7206245B2 (ja) 2023-01-17

Similar Documents

Publication Publication Date Title
JP2021036195A (ja) 相変化材料を使用する蓄熱式熱交換器構造
JP6750093B2 (ja) 相変化材料を使用する蓄熱式熱交換器構造
Liu et al. A parametric study of a hybrid battery thermal management system that couples PCM/copper foam composite with helical liquid channel cooling
Blet et al. Heats pipes for temperature homogenization: A literature review
Marengo et al. Pulsating heat pipes: experimental analysis, design and applications
US20180080685A1 (en) Microelectronics cooling system
CN103033078B (zh) 回路热管和电子设备
JP2006521690A (ja) 液体循環系におけるクラッキングを防止するクラッキング防止方法
US20120097369A1 (en) Heat exchanger
US20100326627A1 (en) Microelectronics cooling system
JP2017075773A (ja) 蓄熱ユニット
US20220136780A1 (en) Microelectronics cooling system
Agostini et al. Flexible two-phase thermosyphon for power electronic cooling
WO2017208558A1 (ja) 熱交換器
Fourgeaud et al. Experimental investigations of a Multi-Source Loop Heat Pipe for electronics cooling
JP7398428B2 (ja) 放熱システム
JP2011144695A (ja) 蓄熱装置、ならびにこれを備えた空気調和機
Hoang et al. Multiple-evaporator loop heat pipe
US10352623B2 (en) Diphasic cooling loop with satellite evaporators
JP3526801B2 (ja) 気泡循環熱交換装置
US20230110020A1 (en) Heatsinks
JP2016138722A (ja) 蓄熱タンク及び蓄熱タンクを備えた熱交換システム
JP2005337691A (ja) 細孔トンネル型ヒートパイプ
Kariya et al. Modeling a Loop Heat Pipe With a Capillary Wick in the Condenser
Kiseev et al. Investigation of vapor generation into capillary structures of miniature loop heat pipes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230104

R150 Certificate of patent or registration of utility model

Ref document number: 7206245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150