JP2020522542A - At2r受容体拮抗剤としてのカルボン酸誘導体 - Google Patents

At2r受容体拮抗剤としてのカルボン酸誘導体 Download PDF

Info

Publication number
JP2020522542A
JP2020522542A JP2019567596A JP2019567596A JP2020522542A JP 2020522542 A JP2020522542 A JP 2020522542A JP 2019567596 A JP2019567596 A JP 2019567596A JP 2019567596 A JP2019567596 A JP 2019567596A JP 2020522542 A JP2020522542 A JP 2020522542A
Authority
JP
Japan
Prior art keywords
group
compound
pharmaceutically acceptable
acceptable salt
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019567596A
Other languages
English (en)
Other versions
JP6873284B2 (ja
Inventor
張楊
伍文▲たお▼
李志祥
勝明星
楊広文
李▲じえ▼
黎健
陳曙輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Danhong Pharmaceutical Co Ltd
Original Assignee
Shandong Danhong Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Danhong Pharmaceutical Co Ltd filed Critical Shandong Danhong Pharmaceutical Co Ltd
Publication of JP2020522542A publication Critical patent/JP2020522542A/ja
Application granted granted Critical
Publication of JP6873284B2 publication Critical patent/JP6873284B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/22Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the nitrogen-containing ring
    • C07D217/26Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

式(II)に示される化合物又はその薬学的に許容可能な塩に関し、アンジオテンシンII受容体2(AT2R)関連疾患の治療薬の調製における、これらの応用に関する。【化90】

Description

関連出願の相互参照
本願は、2017年06月09日に中華人民共和国の国家知識産権局に提出された中国特許発明出願第201710434262.2号の利益を要求し、その全内容が援用により全体として本明細書に組み込まれる。
本発明は、式(II)に示される化合物又はその薬学的に許容可能な塩に関し、さらに
、アンジオテンシンII受容体2(AT2R)関連疾患の治療薬の調製における、これらの応用に関する。
アンジオテンシンII(AngII)は、アンジオテンシンIがアンジオテンシン変換酵素の作用下で加水分解して生成するオクタペプチド物質であり、血圧、体液バランスや疼痛知覚などを調整する役割を果たす。アンジオテンシン受容体は、アンジオテンシンをリガンドとしたGタンパク質結合受容体であり、レニン−アンジオテンシン系の重要な構成部分である。AngIIは、アンジオテンシンII受容体1(AT1R)及びアンジオテンシンII受容体2(AT2R)を活性化できる。その中でも、AT2Rは、神経系において疼痛のメカニズムに関連し、主に後根神経節及び三叉神経節で発現されている。正常な神経に比べて、損傷した神経及び痛む神経腫にはAT2R発現レベルが高い。活性化後のAT2Rは、Gタンパク質結合受容体により活性化されたセカンドメッセンジャー経路を介して、ニューロンにおけるイオンチャネルを感作することができる。感作作用によりイオンチャネルが活性化されてニューロンを興奮させる。動物実験(Pain.Medicine.2013,14,1557−1568;Pain.Medicine.2013,14,692−705))の臨床実験(Lancet.2014,383,1637−1647)によって、AT2R拮抗剤が疼痛の緩和に有用であることが認められた。関連する総合的な報道について、Expert Opin.Investig.Drugs.2014,23,1−12;Expert.Opin.Ther.Targets.2015,19,25−35.などに記載されている。
WO 2011088504には、化合物EMA−401が開示されている。
Figure 2020522542
本発明は、式(I)に示される化合物及びその薬学的に許容可能な塩を提供する。
Figure 2020522542
(式中、
Lは、−O−、−S−、−N(R)−、−N(R)C(=O)−、−C(=O)O−から選ばれ、
1は、単結合、−CH2−、−CH2CH2−から選ばれ、
1は、1、2又は3個のRにより置換されてもよい、C1-6アルキル基、C1-6ヘテロアルキル基、C3-7シクロアルキル基、3〜7員ヘテロシクロアルキル基、6〜10員アリール基、5〜6員ヘテロアリール基から選ばれ、
2は、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のRにより置換されてもよい、C1-6アルキル基、C1-6ヘテロアルキル基から選ばれ、
3は、1、2又は3個のRにより置換されてもよい、フェニル基、5〜6員ヘテロアリール基、5〜6員ヘテロシクロアルキル基から選ばれ、
4は、H、又は1、2又は3個のRにより置換されてもよい、C1-3アルキル基から選ばれ、
Rは、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のR’により置換されてもよい、C1-3アルキル基、C1-3ヘテロアルキル基から選ばれ、
R’は、F、Cl、Br、I、OH、CN、NH2から選ばれ、
「*」を付した炭素原子は、キラル炭素原子であり、(R)又は(S)単一エナンチオマーの形態又は1種のエナンチオマーを豊富に含む形態で存在し、
「#」を付した炭素原子は、キラル炭素原子であり、(R)又は(S)単一エナンチオマーの形態又は1種のエナンチオマーを豊富に含む形態で存在し、
前記4〜6員ヘテロシクロアルキル基、5〜6員ヘテロアリール基、C1-6ヘテロアルキル基、C1-3ヘテロアルキル基の「ヘテロ」は、それぞれ独立して−C(=O)NH−、−NH−、N、−O−、−S−、−C(=O)O−、−C(=O)−から選ばれ、
以上のいずれの場合においても、ヘテロ原子又はヘテロ原子団の数が、それぞれ独立して1、2又は3から選ばれる。)
本発明のいくつかの態様では、「*」又は「#」を付した炭素原子は、キラル炭素原子であり、(R)又は(S)単一エナンチオマーの形態又は1種のエナンチオマーを豊富に含む形態で存在し、「1種の異性体を豊富に含む」とは、その1種の異性体の含有量が、100%未満60%以上、好ましくは70%以上、より好ましくは80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上、より好ましくは99.5%以上、より好ましくは99.6%以上、より好ましくは99.7%以上、より好ましくは99.8%以上、より好ましくは99.9%以上であることを意味する。
本発明のいくつかの態様では、上記Rは、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のR’により置換されてもよい、C1-3アルキル基、C1-3アルコキシ基から選ばれる。
Figure 2020522542
本発明のいくつかの態様では、上記Lは、−O−、−S−、−NH−、−N(CH3)−、−NHC(=O)−、−N(CH3)C(=O)−、−C(=O)O−から選ばれる。
本発明のいくつかの態様では、上記R1は、1、2又は3個のRにより置換されてもよい、C1-4アルキル基、C3-7シクロアルキル基、3〜7員ヘテロシクロアルキル基、6〜10員アリール基、5〜6員ヘテロアリール基から選ばれる。
本発明のいくつかの態様では、上記R1は、1、2又は3個のRにより置換されてもよい、C1-4アルキル基、C4-6シクロアルキル基、オキセタニル基、テトラヒドロフラニル基、テトラヒドロピラニル基、フェニル基、ナフチル基、チエニル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、モルホリニル基、ピペラジニル基、ピペリジニル基、ピリジル基、ピラジニル基、ピリミジニル基から選ばれる。
Figure 2020522542
Figure 2020522542
Figure 2020522542
本発明のいくつかの態様では、上記R2は、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のRにより置換されてもよい、C1-3アルキル基、C1-3アルコキシ基、C1-3アルキルチオ基、C1-3アルキルアミノ基から選ばれる。
Figure 2020522542
本発明のいくつかの態様では、上記R3は、1、2又は3個のRにより置換されてもよい、フェニル基、ピリジル基、ピリミジニル基、ピラジニル基、チエニル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、テトラヒドロピラニル基、ピペリジニル基、モルホリニル基から選ばれる。
Figure 2020522542
本発明のいくつかの態様では、上記R3は、
Figure 2020522542
Figure 2020522542
本発明のいくつかの態様では、上記R4は、H、Meから選ばれる。
本発明のいくつかの態様では、上記Rは、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のR’により置換されてもよい、C1-3アルキル基、C1-3アルコキシ基から選ばれ、残りの変数は、上記と同義である。
Figure 2020522542
本発明のいくつかの態様では、上記Lは、−O−、−S−、−NH−、−N(CH3)−、−NHC(=O)−、−N(CH3)C(=O)−、−C(=O)O−から選ばれ、残りの変数は、上記と同義である。
本発明のいくつかの態様では、上記R1は、1、2又は3個のRにより置換されてもよい、C1-4アルキル基、C3-7シクロアルキル基、3〜7員ヘテロシクロアルキル基、6〜10員アリール基、5〜6員ヘテロアリール基から選ばれ、残りの変数は、上記と同義である。
本発明のいくつかの態様では、上記R1は、1、2又は3個のRにより置換されてもよい、C1-4アルキル基、C4-6シクロアルキル基、オキセタニル基、テトラヒドロフラニル基、テトラヒドロピラニル基、フェニル基、ナフチル基、チエニル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、モルホリニル基、ピペラジニル基、ピペリジニル基、ピリジル基、ピラジニル基、ピリミジニル基から選ばれ、残りの変数は、上記と同義である。
本発明のいくつかの態様では、上記R1は、1、2又は3個のRにより置換されてもよい、
Figure 2020522542
本発明のいくつかの態様では、上記R1は、Me、Et、
Figure 2020522542
Figure 2020522542
本発明のいくつかの態様では、上記R2は、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のRにより置換されてもよい、C1-3アルキル基、C1-3アルコキシ基、C1-3アルキルチオ基、C1-3アルキルアミノ基から選ばれ、残りの変数は、上記と同義である。
Figure 2020522542
本発明のいくつかの態様では、上記R3は、1、2又は3個のRにより置換されてもよい、フェニル基、ピリジル基、ピリミジニル基、ピラジニル基、チエニル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、テトラヒドロピラニル基、ピペリジニル基、モルホリニル基から選ばれ、残りの変数は、上記と同義である。
本発明のいくつかの態様では、上記R3は、1、2又は3個のRにより置換されてもよい、
Figure 2020522542
本発明のいくつかの態様では、上記R3は、
Figure 2020522542
Figure 2020522542
本発明のいくつかの態様では、上記R4は、H、Meから選ばれ、残りの変数は、上記と同義である。
本発明のいくつかの態様では、上記化合物及びその薬学的に許容可能な塩は、以下から選ばれる。
Figure 2020522542
(式中、
R、R2、R3、R4、L1、Lは、上記と同義であり、
Tは、N又はCHから選ばれ、
Dは、CH2又はOから選ばれ、
m、pは、それぞれ独立して0、1、2又は3から選ばれ、且つmとpは、同時に0又は3から選ばれてはならず、
nは、0、1、2又は3から選ばれ、
且つ、mが0、Dが0である場合、nは、3ではない。)
本発明は、式(II)に示される化合物及びその薬学的に許容可能な塩を提供する。
Figure 2020522542
(式中、
Lは、−O−、−S−、−N(R)−、−N(R)C(=O)−、−C(=O)O−から選ばれ、
1は、単結合、−CH2−、−CH2CH2−から選ばれ、
1は、1、2又は3個のRにより置換されてもよい、C1-6アルキル基、C1-6ヘテロアルキル基、C3-7シクロアルキル基、3〜7員ヘテロシクロアルキル基、6〜10員アリール基、5〜6員ヘテロアリール基から選ばれ、
2は、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のRにより置換されてもよい、C1-6アルキル基、C1-6ヘテロアルキル基から選ばれ、
3は、1、2又は3個のRにより置換されてもよい、フェニル基、5〜6員ヘテロアリール基、5〜6員ヘテロシクロアルキル基から選ばれ、
4は、H、又は1、2又は3個のRにより置換されてもよい、C1-3アルキル基から選ばれ、
5は、H、F、Cl、Br、I、OHから選ばれ、
6は、H、F、Cl、Br、I、OHから選ばれ、
Rは、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のR’により置換されてもよい、C1-3アルキル基、C1-3ヘテロアルキル基から選ばれ、R’は、F、Cl、Br、I、OH、CN、NH2から選ばれ、
「*」を付した炭素原子は、キラル炭素原子であり、(R)又は(S)単一エナンチオマーの形態又は1種のエナンチオマーを豊富に含む形態で存在し、
「#」を付した炭素原子は、キラル炭素原子であり、(R)又は(S)単一エナンチオマーの形態又は1種のエナンチオマーを豊富に含む形態で存在し、
前記3〜7員ヘテロシクロアルキル基、5〜6員ヘテロアリール基、C1-6ヘテロアルキル基、C1-3ヘテロアルキル基、5〜6員ヘテロシクロアルキル基の「ヘテロ」は、それぞれ独立して−C(=O)NH−、−NH−、N、−O−、−S−、−C(=O)O−、−C(=O)−から選ばれ、
以上のいずれの場合においても、ヘテロ原子又はヘテロ原子団の数が、それぞれ独立して1、2又は3から選ばれる。)
本発明のいくつかの態様では、「*」又は「#」を付した炭素原子は、キラル炭素原子であり、(R)又は(S)単一エナンチオマーの形態又は1種のエナンチオマーを豊富に含む形態で存在し、「1種の異性体を豊富に含む」とは、1種の異性体の含有量が、100%未満且つ60%以上、好ましくは70%以上、より好ましくは80%以上、より好ましくは90%以上、より好ましくは95%以上、より好ましくは96%以上、より好ましくは97%以上、より好ましくは98%以上、より好ましくは99%以上、より好ましくは99.5%以上、より好ましくは99.6%以上、より好ましくは99.7%以上、より好ましくは99.8%以上、より好ましくは99.9%以上であることを意味する。
本発明のいくつかの態様では、上記Rは、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のR’により置換されてもよい、C1-3アルキル基、C1-3アルコキシ基から選ばれ、残りの変数は、本発明と同義である。
Figure 2020522542
本発明のいくつかの態様では、上記Lは、−O−、−S−、−NH−、−N(CH3)−、−NHC(=O)−、−N(CH3)C(=O)−、−C(=O)O−から選ばれ、残りの変数は、本発明と同義である。
本発明のいくつかの態様では、上記R1は、1、2又は3個のRにより置換されてもよい、C1-4アルキル基、C3-7シクロアルキル基、3〜7員ヘテロシクロアルキル基、6〜10員アリール基、5〜6員ヘテロアリール基から選ばれ、残りの変数は、本発明と同義である。
本発明のいくつかの態様では、上記R1は、1、2又は3個のRにより置換されてもよい、C1-4アルキル基、シクロブタニル基、シクロペンタニル基、シクロペンテニル基、ビスシクロ[3.1.0]ペンテニル基、オキセタニル基、テトラヒドロフラニル基、テトラヒドロピラニル基、フェニル基、ナフチル基、チエニル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、モルホリニル基、ピペラジニル基、ピペリジニル基、ピリジル基、ピラジニル基、ピリミジニル基から選ばれ、残りの変数は、本発明と同義である。
本発明のいくつかの態様では、上記R1は、1、2又は3個のRにより置換されてもよい、Me、Et、
Figure 2020522542
本発明のいくつかの態様では、上記R1は、Me、Et、
Figure 2020522542
Figure 2020522542
本発明のいくつかの態様では、上記R2は、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のRにより置換されてもよい、C1-3アルキル基、C1-3アルコキシ基、C1-3アルキルチオ基、C1-3アルキルアミノ基から選ばれ、残りの変数は、本発明と同義である。
Figure 2020522542
本発明のいくつかの態様では、上記R3は、1、2又は3個のRにより置換されてもよい、フェニル基、ピリジル基、ピリミジニル基、ピラジニル基、チエニル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、テトラヒドロピラニル基、ピペリジニル基、モルホリニル基から選ばれ、残りの変数は、本発明と同義である。
本発明のいくつかの態様では、上記R3は、1、2又は3個のRにより置換されてもよい、
Figure 2020522542
本発明のいくつかの態様では、上記R3は、
Figure 2020522542
Figure 2020522542
本発明のいくつかの態様では、上記R4は、H、Meから選ばれる。
本発明のいくつかの態様では、上記R4は、H、Meから選ばれ、残りの変数は、上記と同義である。
本発明のいくつかの態様では、上記化合物及びその薬学的に許容可能な塩は、以下から選ばれる。
Figure 2020522542
(式中、
R、R2、R3、R4、R5、R6、L1、Lは、上記と同義であり、
Tは、N又はCHから選ばれ、
Dは、CH2又はOから選ばれ、
m、pは、それぞれ独立して0、1、2又は3から選ばれ、且つmとpは、同時に0又は3から選ばれてはならず、
nは、0、1、2又は3から選ばれ、
且つmが0、Dが0である場合、nは、3ではない。)
本発明には、上記変数を任意に組み合わせたほかの態様もある。
本発明は、以下から選ばれる下記式に示される化合物を提供する。
Figure 2020522542
Figure 2020522542
Figure 2020522542
本発明のいくつかの態様では、上記化合物は、以下から選ばれる。
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
本発明は、AT2R受容体関連疾患の治療薬の調製における、上記化合物又はその薬学的に許容可能な塩の応用をさらに提供する。
本発明は、慢性疼痛の治療薬の調製における、化合物又はその薬学的に許容可能な塩の応用をさらに提供する。
定義及び説明
特に断らない限り、本明細書に使用されている下記用語及び句は、下記定義を有することを意図する。1つの特定の用語又は句は、特に定義しない場合に、不明確又は不明瞭であるものと理解できず、一般的な定義として理解すべきである。本明細書に商品名が使用される場合、それに対応する商品又はその活性成分を意味する。ここで使用される用語「薬学的に許容可能な」は、信頼できる医学的な判断によれば、過度の毒性、刺激性、アレルギー反応やほかの問題又は合併症を引き起こすことなく、人間や動物の組織に接触して使用することに適しており、合理的な利益リスク比を有する化合物、材料、組成物及び/又は剤形に対するものである。
用語「薬学的に許容可能な塩」とは、本発明の化合物の塩を指し、本発明で発見される特定の置換基を有する化合物と比較的無毒な酸又はアルカリとで調製される。本発明の化合物に相対酸性の官能基を含有する場合、純粋な溶液又は適切な不活性溶媒において十分の量のアルカリを中性形態のこのような化合物と接触することによってアルカリ付加塩を得ることができる。薬学的に許容可能なアルカリ付加塩には、ナトリウム、カリウム、カルシウム、アンモニウム、有機アンモニア又はマグネシウム塩又は類似した塩が含まれる。本発明の化合物に相対アルカリ性の官能基を含有する場合、純粋な溶液又は適切な不活性溶媒において十分の量の酸を中性形態のこのような化合物と接触することによって酸付加塩を得ることができる。薬学的に許容可能な酸付加塩の具体例として、たとえば、塩酸、臭化水素酸、硝酸、炭酸、炭酸水素根、リン酸、リン酸一水素根、リン酸二水素根、硫酸、硫酸水素根、ヨウ化水素酸、亜リン酸などの無機酸の塩;酢酸、プロピオン酸、イソ酪酸、マレイン酸、マロン酸、安息香酸、コハク酸、スベリン酸、フマル酸、乳酸、マンデル酸、フタル酸、ベンゼンスルホン酸、p−トルエンスルホン酸、クエン酸、酒石酸及びメタンスルホン酸などのような酸を含む有機酸の塩;及び、アミノ酸(たとえばアルギニンなど)の塩、及びグルクロン酸などの有機酸の塩(Berge et al., “Pharmaceutical Salts”,Journal of Pharmaceutical Science 66:1−19(1977)参照)を含む。本発明の一部の特定の化合物は、アルカリ性及び酸性の官能基を含有するので、任意のアルカリ又は酸付加塩に変換できる。
好ましくは、一般的な方式で塩とアルカリ又は酸を接触させ、次に、母体化合物を分離することにより、化合物の中性形態を再生する。化合物の各種塩の形態では、その母体形態の物理的性質の一部、たとえば極性溶媒への溶解度が異なる。
本明細書に使用される「薬学的に許容可能な塩」は、本発明の化合物の誘導体であり、酸又はアルカリと塩を形成する方式により前記母体化合物が修飾される。薬学的に許容可能な塩の具体例として、アミンなどの塩基の無機酸又は有機酸塩、カルボン酸などの酸根のアルカリ金属又は有機塩などを含むが、これらに制限されない。薬学的に許容可能な塩は、一般的な無毒塩又は母体化合物の四級アンモニウム塩を含み、たとえば、無毒無機酸又は有機酸で形成される塩である。一般的な無毒塩には、無機酸及び有機酸から誘導される塩を含むが、これらに制限されず、前記無機酸又は有機酸は、2−アセトキシ安息香酸、2−ヒドロキシエタンスルホン酸、酢酸、アスコルビン酸、ベンゼンスルホン酸、安息香酸、炭酸水素根、炭酸、クエン酸、エデト酸、エタンジスルホン酸、エタンスルホン酸、フマル酸、グルコヘプトン酸、グルコン酸、グルタミン酸、グリコール酸、臭化水素酸、塩酸、ヨウ化水素酸塩、ヒドロキシ基、ヒドロキシナフタレン、ヒドロキシエタンスルホン酸、乳酸、乳糖、ドデシルスルホン酸、マレイン酸、リンゴ酸、マンデル酸、メタンスルホン酸、硝酸、シュウ酸、ビスヒドロキシナフトエ酸、パントテン酸、フェニル酢酸、リン酸、ポリガラクツロン酸、プロピオン酸、サリチル酸、ステアリン酸、亜酢酸、コハク酸、スルファミン酸、p−アミノベンゼンスルホン酸、硫酸、タンニン、酒石酸及びp−トルエンスルホン酸から選ばれる。
本発明の薬学的に許容可能な塩は、酸根又は塩基を含有する母体化合物から一般的な化学方法によって合成され得る。一般には、このような塩の調製方法は、水又は有機溶媒又は両方の混合物に、遊離酸又はこれら化合物のアルカリ形態を化学量論的に適量のアルカリ又は酸と反応させることにより調製することである。一般には、エーテル、酢酸エチル、エタノール、イソプロパノール又はアセトニトリルなどの非水性媒体が好ましい。
本発明の化合物の一部は、不斉炭素原子(光学中心)又は二重結合を有してもよい。ラセミ体、ジアステレオマー、幾何異性体及び単一の異性体は、すべて本発明の範囲に含まれる。
Figure 2020522542
本発明の化合物は、特定の幾何又は立体異性体の形態を有してもよい。本発明では、シス及びトランス異性体、(−)−及び(+)−エナンチオマー、(R)−及び(S)−エナンチオマー、ジアステレオマー、(D)−異性体、(L)−異性体、並びにそのラセミ混合物やほかの混合物、たとえばエナンチオマー又はジアステレオマーが富化した混合物を含む、すべてのこのような化合物が考えられ、これら混合物は、すべて本発明の範囲に含まれる。アルキル基などの置換基には、別の不斉炭素原子が存在してもよい。これら異性体及びこれらの混合物は、すべて本発明の範囲に含まれる。
キラル合成、キラル試薬又はほかの一般的な技術によって、光学活性を有する(R)−及び(S)−異性体、並びにD及びL異性体を調製し得る。本発明のある化合物の1種のエナンチオマーを調製しようとする場合、不斉合成又はキラル助剤を用いた誘導化作用によって調製することができ、この場合、得られたジアステレオマー混合物を分離し、且つ基の分割を補助的に行うことで所望の純粋なエナンチオマーを提供する。又は、分子にアルカリ性官能基(たとえばアミノ基)又は酸性官能基(たとえばカルボキシ基)が含まれる場合、光学活性を有する適切な酸又はアルカリとジアステレオマーの塩を形成し、次に、本分野において公知する従来の方法によってジアステレオマー分割を行い、次に、純粋なエナンチオマーを回収する。また、エナンチオマーとジアステレオマーの分離は、通常、クロマトグラフィー法を用いて行われ、前記クロマトグラフィー法は、キラル固定相を用い、且つ化学的誘導法と組み合わせてもよい(たとえば、アミンからカルバミン酸塩を生成する)。
本発明の化合物は、該化合物を構成する1つ以上の原子に不自然な割合の原子同位体を含んでもよい。たとえば、トリチウム(3H)、ヨウ素−125(125I)又はC−14(14C)などの放射性同位体で化合物を標識できる。本発明の化合物のすべての同位体からなる変形は、放射性であるかにかかわらず、本発明の範囲に含まれる。
「してもよい」又は「してもよく」とは、その後に記載のイベント又は状況が発生する可能性があるが、発生しなければならないわけではないことを意味し、且つ、該表現には、前記イベント又は状況が発生した場合及び前記イベント又は状況が発生しない場合が含まれる。
用語「置換される」とは、特定の原子上のいずれかの1つ以上の水素原子が置換基により置換されることを意味し、重水素及び水素のバリエーションを含むことができ、特定の原子の原子価が正常であり且つ置換後の化合物が安定的であればよい。置換基がケト基(即ち=O)であることは、2つの水素原子が置換されることを意味する。ケトン置換は芳香族基に発生しない。用語「置換されてもよい」とは、置換されてもよく、置換されなくてもよく、別に規定がない限り、置換基の種類及び数は、化学的に実現できれば、任意であってもよい。
いずれかの変数(たとえばR)が化合物の組成又は構造において1回以上現れる場合、各場合におけるその定義が独立したものである。このため、たとえば、1つの基が0−2個のRにより置換されると、前記基は、多くとも2つのRにより置換されてもよく、且つ、各場合におけるRは、独立した選択肢を有する。そのほか、置換基及び/又はそのバリエーションの組み合わせは、当該組み合わせにより安定的な化合物を生成できる場合にのみ許容される。
1つの連結基の数が0であり、たとえば、−(CRR)0−の場合は、該連結基が単結合であることを示している。
そのうちの1つの変数が単結合から選ばれる場合、それにより連結される2つの基が直接連結されることを示し、たとえば、A−L−ZにおいてLが単結合を示す場合は、該構造は本質的にはA−Zであることを示す。
1つの置換基が欠如する場合、該置換基が存在しないことを示し、たとえば、A−XにおいてXが欠如する場合、本質的には、該構造はAとなる。1つの置換基が1つの環上の1つ以上の原子に連結できる場合、このような置換基は、係る環上の任意の原子に結合してもよく、たとえば、構造単位
Figure 2020522542
は、置換基Rがシクロヘキシル基又はシクロヘキサジエン上のいずれか1つの位置で置換し得ることを示す。挙げられた置換基についてどの原子を介して被置換基に連結されるかが明記されていない場合、この置換基は、任意の原子を介して結合してもよく、たとえば、ピリジル基は、置換基としてピリジン上の任意の炭素原子を介して被置換基に連結できる。挙げられた連結基についてその連結方向が明記されていない場合、その連結方向は、任意であり、たとえば、
Figure 2020522542
において連結基Lが−M−W−であり、この場合、−M−W−は、左から右への閲覧順番と同様な方向に従って環Aと環Bを連結して
Figure 2020522542
を構成してもよいし、左から右への閲覧順番と反対の方向に従って環Aと環Bを連結して
Figure 2020522542
を構成してもよい。前記連結基、置換基及び/又はそのバリエーションの組み合わせは、当該組み合わせにより安定的な化合物を生成できる場合にのみ許容される。
特に規定がない限り、「環」は、置換又は未置換のシクロアルキル基、ヘテロシクロアルキル基、シクロアルケニル基、ヘテロシクロアルケニル基、シクロアルキニル基、ヘテロシクロアルキニル基、アリール基又はヘテロアリール基を意味する。いわゆる環は、単環、二環、スピロ環、縮合環又は架橋環を含む。環上の原子の数は、通常、環の員数として定義され、たとえば、「5〜7員環」とは、5〜7個の原子が環状に配列されることを意味する。特に規定がない限り、該環は、1〜3個のヘテロ原子を含んでもよい。このため、「5〜7員環」は、たとえばフェニル基、ピリジル基及びピペリジニル基を含み、一方、用語「5〜7員ヘテロシクロアルキル環」は、ピリジル基及びピペリジニル基を含むが、フェニル基を含まない。用語「環」は、少なくとも1つの環を含有する環系をさらに含み、それぞれの「環」は、独立して上記定義に合致する。
特に規定がない限り、用語「複素環」又は「複素環基」とは、ヘテロ原子又はヘテロ原子団を安定的に含む単環、二環又は三環を意味し、飽和のものであってもよく、部分不飽和又は不飽和(芳香族)のものであってもよく、炭素原子及び独立してN、O及びSから選ばれる1、2、3又は4個の環ヘテロ原子を含み、上記任意の複素環は、1つのベンゼン環上に結合されて二環を構成してもよい。窒素及び硫黄ヘテロ原子は、酸化(即ち、NO及びS(O)p、pは1又は2)されてもよい。窒素原子は、置換のものであってもよく、未置換のものであってもよい(即ち、N又はNR、ここで、Rは、H又は本明細書において既に定義されたほかの置換基である)。該複素環は、いずれかのヘテロ原子又は炭素原子の側基に付着して安定的な構造を形成することができる。生成される化合物が安定的であれば、本明細書に記載の複素環は、炭素位又は窒素位で置換され得る。複素環における窒素原子は、四級アンモニウム化されてもよい。一好適形態として、複素環におけるS及びO原子の総数が1を超える場合、これらヘテロ原子は互いに隣接しない。別の好適形態として、複素環におけるS及びO原子の総数が1以下である。本明細書に使用される用語「芳香族複素環基」又は「ヘテロアリール基」とは、安定的な5、6、7員単環又は二環又は7、8、9又は10員二環式複素環基の芳香環を意味し、炭素原子、及び独立してN、O及びSから選ばれる1、2、3又は4個の環ヘテロ原子を含む。窒素原子は、置換のものであってもよく、未置換のものであってもよい(即ち、N又はNR、ここで、Rは、H又は本明細書において既に定義されたほかの置換基である)。窒素及び硫黄ヘテロ原子は、酸化(即ち、NO及びS(O)p、pは1又は2)されてもよい。なお、芳香複素環上のS及びO原子の総数が1以下である。架橋環も複素環の定義に含まれる。1つ以上の原子(即ち、C、O、N又はS)が隣接しない2つの炭素原子又は窒素原子を連結するときに、架橋環が形成される。好ましい架橋環は、1つの炭素原子、2つの炭素原子、1つの窒素原子、2つの窒素原子及び1つの窒素−窒素基を含むが、これらに制限されない。なお、1つのブリッジは、単環を三環に変換する。架橋環において、環上の置換基はブリッジ上に位置してもよい。
複素環化合物の具体例には、アクリジニル基、アゾシニル基、ベンズイミダゾリル基、ベンズフラニル基、ベンズメルカプトフラニル基、ベンズメルカプトフェニル基、ベンズオキサゾリル基、ベンズオキサゾリニル基、ベンズチアゾリル基、ベンズトリアゾリル基、ベンズテトラゾリル基、ベンズイソオキサゾリル基、ベンズイソチアゾリル基、ベンズイミダゾリニル基、カルバゾリル基、4aH−カルバゾリル基、カルボリニル基、ベンズジヒドロピラニル基、クロメン、シンノリニルデカヒドロキノリル基、2H,6H−1,5,2−ジチアジニル基、ジヒドロフロ[2,3−b]テトラヒドロフラニル基、フラニル基、フラザニル基、イミダゾリジニル基、イミダゾリニル基、イミダゾリル基、1H−インダゾリル基、インドールアルケニル基、ジヒドロインドリル基、インドリジニル基、インドリル基、3H−インドリル基、イソベンズフラニル基、イソインドリル基、イソジヒドロインドリル基、イソキノリル基、イソチアゾリル基、イソオキサゾリル基、メチレンジオキシフェニル基、モルホリニル基、ナフチリジニル基、オクタヒドロイソキノリル基、オキサジアゾリル基、1,2,3−オキサジアゾリル基、1,2,4−オキサジアゾリル基、1,2,5−オキサジアゾリル基、1,3,4−オキサジアゾリル基、オキサゾリジニル基、オキサゾリル基、オキシンドリル基、ピリミジニル基、フェナントリジニル基、フェナントロリニル基、フェナジン、フェノチアジン、ベンゾキサンチニル基、フェノールナフスオキサジニル基、フタラジニル基、ピペラジニル基、ピペリジニル基、ピペリジノニル基、4−ピペリジノニル基、ピペロニル基、プテリジニル基、プリン基、ピラニル基、ピラジニル基、ピラゾリジニル基、ピラゾリニル基、ピラゾリル基、ピリダジニル基、ピリドオキサゾール、ピリドイミダゾール、ピリドチアゾール、ピリジル基、ピロリジニル基、ピロリニル基、2H−ピロリル基、ピロリル基、キナゾリニル基、キノリル基、4H−キノリジジニル基、キノキサリニル基、キヌクリジニル基、テトラヒドロフラニル基、テトラヒドロイソキノリル基、テトラヒドロキノリル基、テトラゾリル基、6H−1,2,5−チアジアジニル基、1,2,3−チアジアゾリル、1,2,4−チアジアゾリル、1,2,5−チアジアゾリル、1,3,4−チアジアゾリル、チアントレニル基、チアゾリル基、イソチアゾリルチエニル基、チエノオキサゾリル基、チエノチアゾリル基、チエノイミダゾリル基、チエニル基、トリアジニル基、1,2,3−トリアゾリル基、1,2,4−トリアゾリル基、1,2,5−トリアゾリル基、1,3,4−トリアゾリル基及びキサンテニル基を含むが、これらに制限されない。さらに縮合環及びスピロ環化合物を含む。
特に規定がない限り、用語「アルキル基」は、直鎖又は支鎖の飽和炭化水素を示し、単置換(たとえば−CH2F)又は多置換の(たとえば−CF3)であってもよく、一価(たとえばメチル基)、二価(たとえばメチレン基)又は多価(たとえばメチン基)であってもよい。アルキル基の例として、メチル基(Me)、エチル基(Et)、プロピル基(たとえば、n−プロピル基及びイソプロピル基)、ブチル基(たとえば、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基)、ペンチル基(たとえば、n−ペンチル基、イソペンチル基、ネオペンチル基)などを含む。
いくつかの実施例では、用語「ヘテロアルキル基」単独又は別の用語との組み合わせは、安定的な直鎖状、支鎖状の炭化水素原子団又はこれらの組成物を示し、一定数の炭素原子と少なくとも1つのヘテロ原子とからなる。代表的な一実施例では、ヘテロ原子は、B、O、N及びSから選ばれ、窒素及び硫黄原子は、酸化されてもよく、窒素ヘテロ原子は、四級アンモニウム化されてもよい。ヘテロ原子又はヘテロ原子団は、ヘテロアルキル基のいずれの内部位置に位置してもよく、該アルキル基が分子の残りの位置に位置する場合を含むが、用語「アルコキシ基」、「アルキルアミノ基」及び「アルキルチオ基」(又はチオアルコキシ基)は、慣用的な表現であり、それぞれ1つの酸素原子、アミノ基又は硫黄原子によって分子の残りの部分に連結されるアルキル基である。具体例として、−CH2−CH2−O−CH3、−CH2−CH2−NH−CH3、−CH2−CH2−N(CH3)−CH3、−CH2−S−CH2−CH3、−CH2−CH2、−S(O)−CH3、−CH2−CH2−S(O)2−CH3を含むが、これらに制限されない。多くとも2つのヘテロ原子は、連続することができ、たとえば−CH2−NH−OCH3である。
特に規定がない限り、シクロアルキル基は、あらゆる安定的な環状又は多環炭化水素を含み、いずれの炭素原子も飽和のものであり、単置換又は多置換であってもよく、一価、二価又は多価であってもよい。これらシクロアルキル基の具体例には、シクロプロピル基、ノルボルナン基、[2.2.2]ビシクロオクタン、[4.4.0]ビシクロデカンなどが含まれるが、これらに制限されない。
特に規定がない限り、用語「ハロ」又は「ハロゲン」単独又は別の置換基の一部としての場合は、フッ素、塩素、臭素又はヨウ素原子を示す。そのほか、用語「ハロアルキル基」は、モノハロアルキル基及びポリハロアルキル基を含むことを意図する。たとえば、用語「ハロ(C1−C4)アルキル基」とは、トリフルオロメチル基、2,2,2−トリフルオロエチル基、4−クロロブチル基及び3−ブロモプロピル基などを含むが、これらに制限されないことを意図する。特に規定がない限り、ハロアルキル基の具体例には、トリフルオロメチル基、トリクロロメチル基、ペンタフルオロエチル基、及びペンタクロロエチル基を含むが、これらに制限されない。
「アルコキシ基」は、酸素ブリッジを介して連結され特定数の炭素原子を有する上記アルキル基を示し、特に規定がない限り、C1-6アルコキシ基は、C1、C2、C3、C4、C5及びC6のアルコキシ基を含む。アルコキシ基の例として、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、Sec−ブトキシ基、t−ブトキシ基、n−ペントキシ基及びS−ペントキシ基を含むが、これらに制限されない。
特に規定がない限り、用語「アリール基」は、多不飽和の芳香族炭化水素置換基を示し、単置換又は多置換であってもよく、一価、二価又は多価であってもよく、単環又は多環(たとえば、1〜3個の環、そのうちの少なくとも1つの環は芳香族のものである)であってもよく、これらは、一体に縮合されるか、又は共価結合を介して連結される。用語「ヘテロアリール基」とは、1つ〜4つのヘテロ原子を有するアリール基(又は環)をいう。例示的な具体例において、ヘテロ原子は、B、N、O及びSから選ばれ、その中でも、窒素及び硫黄原子は、酸化されてもよく、窒素原子は、四級アンモニウム化されてもよい。ヘテロアリール基は、ヘテロ原子によって分子の残りの部分に連結できる。アリール基又はヘテロアリール基の非限定的な実施例には、フェニル基、ナフチル基、ビフェニル基、ピロリル基、ピラゾリル基、イミダゾリル基、ピラジニル基、オキサゾリル基、フェニル基−オキサゾリル基、イソオキサゾリル基、チアゾリル基、フラニル基、チエニル基、ピリジル基、ピリミジニル基、ベンズチアゾリル基、プリン基、ベンズイミダゾリル基、インドリル基、イソキノリル基、キノキサリニル基、キノリル基、1−ナフチル基、2−ナフチル基、4−ビフェニル基、1−ピロリル基、2−ピロリル基、3−ピロリル基、3−ピラゾリル基、2−イミダゾリル基、4−イミダゾリル基、ピラジニル基、2−オキサゾリル基、4−オキサゾリル基、2−フェニル基−4−オキサゾリル基、5−オキサゾリル基、3−イソオキサゾリル基、4−イソオキサゾリル基、5−イソオキサゾリル基、2−チアゾリル基、4−チアゾリル基、5−チアゾリル基、2−フラニル基、3−フラニル基、2−チエニル基、3−チエニル基、2−ピリジル基、3−ピリジル基、4−ピリジル基、2−ピリミジニル基、4−ピリミジニル基、5−ベンズチアゾリル基、プリン基、2−ベンズイミダゾリル基、5−インドリル基、1−イソキノリル基、5−イソキノリル基、2−キノキサリニル基、5−キノキサリニル基、3−キノリル基及び6−キノリル基を含むが、これらに制限されない。上記いずれか1つのアリール基及びヘテロアリール環系の置換基は、下記の許容可能な置換基から選ばれる。
特に規定がない限り、ほかの用語(たとえばアリールオキシ基、アリールチオ基、アラルキル基)と組み合わせて使用する場合、アリール基は、以下のように定義されたアリール基及びヘテロアリール環を含む。このため、用語「アラルキル基」は、アリール基がアルキル基に付着された原子団(たとえばベンジル基、フェネチル基、ピリジルメチル基など)を含むことを意図し、炭素原子(たとえばメチレン基)がたとえば酸素原子により置換されたようなアルキル基、たとえばフェノキシメチル基、2−ピリジルオキシメチル3−(1−ナフチルオキシ)プロピル基などを含む。
本発明の化合物は、以下に記載の特定実施形態、ほかの化学合成方法と組み合わせた実施形態、及び当業者が公知する等同置換方式を含む、当業者が公知するさまざまな合成方法によって調製することができ、好ましい実施形態は、本発明の実施例を含むが、これらに制限されない。
本発明に使用される溶媒は、市販品として入手できる。本発明には、下記略語が使用される。Bn:ベンジル基;aq:水;HATU:O−(7−アザベンゾトリアゾール−1−イル)−N,N,N’,N’−テトラメチルウロニウムヘキサフルオロりん酸塩;EDC:N−(3−ジメチルアミノプロピル)−N’−エチルカルボジイミド塩酸塩;m−CPBA:3−クロロペルオキシ安息香酸;eq:当量、等量;CDI:カルボニルジイミダゾール;DCM:ジクロロメタン;PE:石油エーテル;DIAD:アゾジカルボン酸ジイソプロピル;DMF:N,N−ジメチルホルムアミド;DMSO:ジメチルスルホキシド;EtOAc:酢酸エチル;EtOH:エタノール;MeOH:メタノール;CBz:保護基であるベンジルオキシカルボニル;BOC:保護基であるターシャリーブチルカルボニル;HOAc:酢酸;NaCNBH3:シアノ水素化ホウ素ナトリウム;r.t.:室温;O/N:一晩;THF:テトラヒドロフラン;Boc2O:二炭酸ジ−tert−ブチル;TFA:トリフルオロ酢酸;DIPEA:ジイソプロピルエチルアミン;SOCl2:塩化チオニル;CS2:二硫化炭素;TsOH:p−トルエンスルホン酸;NFSI:N−フルオロ−N−(ベンゼンスルホニル)ベンゼンスルホンアミド;NCS:1−クロロピロリジン−2,5−ジオン;n−Bu4NF:フッ化テトラブチルアンモニウム;iPrOH:2−プロパノール;mp:融点;LDA:ジイソプロピルアミノリチウム;EDCI:カルボジイミド;HOBt:1−ヒドロキシベンゾトリアゾール;Pd(dppf)Cl2:[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド。
化合物は、手動又はChemDraw(登録商標)ソフトウェアで命名され、市販化合物の場合は、ベンダーによるディレクトリ名が使用される。
技術的効果
本特許は、簡単な調製方法によって一連の式(I)化合物を合成し、慢性疼痛を治療するための新規なアンジオテンシンII2型受容体(AT2R)の選択的阻害剤を開発する。本発明の化合物は、すべて生体外で優れた生物学的活性を示し、且つ複数の種や属で優れた薬物動態学的性質を示す。
以下、実施例にて本発明を詳細に説明するが、本発明を何ら制限するものではない。本明細書において本発明を詳細に説明したが、この説明において具体的な実施例の形態も開示されており、当業者であれば、本発明の主旨及び範囲から逸脱することなく、本発明の具体的な実施形態についてさまざまな変化及び改良を実施できることが明らかなことである。
参照例1:中間体A1の合成
Figure 2020522542
ステップ1:化合物A1の調製
窒素ガスの保護下、NaH(466.0mg、11.7mmol、純度:60%)を無水テトラヒドロフラン(2.5mL)に懸濁させ、シクロペンタノール(301.0mg、3.5mmol、316.9uL)の無水テトラヒドロフラン(2.5mL)溶液をゆっくり滴下した。15℃で30分間撹拌した後、A1−1(500.0mg、2.3mmol)の無水テトラヒドロフラン(2.5mL)溶液を加えた。添加終了後、反応液を15℃で1.5時間撹拌し続けた。反応液を水(15mL)にゆっくり加えて反応をクエンチさせた後、メチル−t−ブチルエーテル(20mL)で洗浄した。水相を2Nの塩酸でpHを3程度に調整し、次に、メチル−t−ブチルエーテル(20mLx3)で抽出した。併合した有機相を飽和食塩水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、真空下で濃縮させて粗製品を得た。粗製品をシリカゲルクロマトグラフィーカラム(溶出液:50−100%酢酸エチル/石油エーテル)で分離して精製し、産物A1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.46−7.43(m,2H),7.40−7.36(m,3H),4.94(s,1H),4.07−4.05(m,1H),1.83−1.67(m,6H),1.66−1.46(m,2H)。
以下の化合物は、化合物A1と類似した方法によって合成された。
Figure 2020522542
Figure 2020522542
Figure 2020522542
参照例12:中間体S−A12
Figure 2020522542
ステップ1:化合物S−A12の調製
化合物S−マンデル酸(4.6g、30.0mmol)をブチロニトリル(62.0mL)に溶解し、ヨードベンゼン(6.1g、30.0mmol、3.3mL)及び炭酸セシウム(19.6g、60.0mmol)を順次加え、その後、窒素ガスの保護下でヨウ化銅(I)(285.7mg、1.50mmol)を加えて、75−80℃に昇温して、15時間撹拌して反応させ続け、室温に冷却した後、反応液を真空下で濃縮させて有機溶媒を除去した。残留物を水200mLに溶解して、酢酸エチル(150mLx2)で洗浄した。水相を1Nのクエン酸水溶液でpHを4〜5に調整し、次に、酢酸エチル(200mLx3)で抽出し、併合した有機相を飽和食塩水(200mL)で洗浄し、水硫酸ナトリウムで乾燥させて、ろ過し、減圧濃縮させて粗産物を得た。粗産物をカラムクロマトグラフィー(溶出液:酢酸エチル/石油エーテル:0−50%)で分離して精製し、得られた産物を石油エーテル/酢酸エチル(v:v=6:1)20mlで再結晶させて、産物S−A12(41.1%ee)を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.60−7.58(m,2H),7.46−7.37(m,3H),7.33−7.27(m,2H),7.06−6.92(m,3H),5.68(s,1H).
以下の化合物は、化合物S−A12と類似した方法によって合成された。
Figure 2020522542
参照例20:中間体S−A1
Figure 2020522542
ステップ1:化合物S−A1−1の調製
酸化銀(1.5g、6.6mmol)を化合物S−マンデル酸(500.0mg、3.3mmol)とブロモシクロペンタン(49.0g、328.6mmol)の混合液に加え、その後、20−25℃の条件下で撹拌して16時間反応させた。反応液をろ過し、ろ液を真空濃縮させて溶媒を除去し、粗産物を得た。粗産物をシリカゲルクロマトグラフィーカラム(溶出液:酢酸エチル/石油エーテル0−10%)で分離して精製し、産物S−A1−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.49−7.40(m,2H),7.38−7.28(m,3H),5.22−5.19(m,1H),4.88(s,1H),4.03−3.99(m,1H),1.89−1.64(m,10H),1.57−1.45(m,6H).MS m/z:311.1[M+Na]+
以下の化合物は、化合物S−A1−1と類似した方法によって合成された。
Figure 2020522542
ステップ2:化合物S−A1の調製
化合物S−A1−1(340.0mg、1.2mmol)をテトラヒドロフラン(6.0mL)と水(3.0mL)の混合溶媒に加え、水酸化リチウム一水和物(283.0mg、11.8mmol)を加えた後、反応液を20−25℃で48時間撹拌した。反応液を1N塩酸でpH<3に調整した後、酢酸エチル(20mLx3)で抽出した。併合した有機相を飽和食塩水(50mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、真空下で濃縮させて粗産物を得た。粗産物をシリカゲルクロマトグラフィーカラム(溶出液:0−37.5%石油エーテル/酢酸エチル)で分離して精製し、産物S−A1(95.6%ee)を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.45−7.34(m,5H),4.93(s,1H),4.07−4.03(m,1H),1.78−1.69(m,6H),1.62−1.48(m,2H).
以下の化合物は、化合物S−A1と類似した方法によって合成された。
Figure 2020522542
参照例23:中間体A12
Figure 2020522542
ステップ1:化合物A12−2の調製
フェノール(193.9mg、2.1mmol)をN,N−ジメチルホルムアミド(10.0mL)に加え、化合物A12−1(500.0mg、2.1mmol)及び炭酸カリウム(854.1mg、6.2mmol)を順次加えた。反応液を80℃に昇温した後、16時間撹拌し続けた。室温に冷却した後、反応液に水20mLを加え、水相を酢酸エチル(10mLx3)で抽出した。併合した有機相を無水硫酸ナトリウムで乾燥させて、ろ過し、真空下で濃縮させて粗産物を得た。粗産物をシリカゲルクロマトグラフィーカラム(溶出液:9%石油エーテル/酢酸エチル)で分離して精製し、産物A12−2を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.52−7.50(m,2H),7.32−7.30(m,3H),7.23−7.16(m,2H),6.93−6.84(m,3H),5.55(s,1H),4.19−4.04(m,2H),1.14−1.11(t,J=7.2Hz,3H).MS m/z:257.1[M+1]+
ステップ2:化合物A12の調製
A12−2(100.0mg、390.2μmol)をエタノール(2.0mL)と水(0.5mL)の混合溶媒に溶解した。水酸化リチウム一水和物(14.0mg、585.3μmol)を加えた後、反応液を20℃の条件下で16時間撹拌し続けた。反応液に水2mLを加え、1Nの塩酸でpHを3〜4に調整した後、酢酸エチル(10mL)で抽出した。有機相を無水硫酸ナトリウムで乾燥させて、ろ過し、真空下で濃縮させて粗産物A12を得た。該化合物をさらに精製せず、直接次のステップの反応に用いた。1H NMR(400MHz,CHLOROFORM−d):δ7.35−7.26(m,4H),7.02−6.84(m,6H),5.32(s,1H).
参照例24:中間体S−A21
Figure 2020522542
ステップ1:化合物S−A21−2の調製
化合物S−A21−1(831.0mg、5.0mmol)をジクロロメタン(10.0mL)に溶解し、過塩素酸マグネシウム(111.6mg、500.0μmol)及び二炭酸ジ−t−ブチル(2.5g、11.5mmol)を順次加えた。反応液を40℃に加熱した後、撹拌しながら40時間反応させ続けた。室温に冷却した後、反応液を水25mLに加え、ジクロロメタン(10mLx3)で抽出した。併合した有機相を飽和食塩水(50mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、真空下で濃縮させて粗産物を得た。粗産物をシリカゲルクロマトグラフィーカラム(溶出液:0−20%石油エーテル/酢酸エチル)で分離して精製し、粗産物S−A21−2を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.49−7.47(m,2H),7.35−7.31(m,3H),5.10(s,1H),3.71(s,3H),1.27(s,9H).
ステップ2:化合物S−A21の調製
S−A21−2(300.0mg、1.4mmol)をメタノール(11.0mL)に溶解し、その後、酸化カリウム(1.5g、26.7mmol)を加え、反応液を15℃の条件で撹拌しながら16時間反応させた。反応液を1Nの塩酸でpHを5〜6に調整し、ジクロロメタン(50mLx3)で抽出した。併合した有機相を飽和食塩水(80mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、真空下で濃縮させて粗産物を得た。粗産物をシリカゲルクロマトグラフィーカラム(溶出液:0−33%石油エーテル/酢酸エチル)で分離して精製し、産物S−A21(97.9%ee)を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.48−7.45(m,2H),7.41−7.29(m,3H),5.09(s,1H),1.30(s,9H).
参照例25:中間体S−A22
Figure 2020522542
ステップ1:化合物S−A22−2の調製
窒素ガスの保護下、化合物S−A22−1(650.0mg、3.2mmol)の塩酸塩をジクロロメタン(10.0mL)に溶解した。シクロペンタカルボン酸(367.5mg、3.2mmol、350.03uL)、ピリジン(1.0g、12.9mmol、1.0mL)及びHATU(1.6g、4.2mmol)を加えた。反応液を10−15℃の条件で12時間撹拌し続けた後、反応液に飽和炭酸水素ナトリウム30mLを加えて反応をクエンチさせ、水相をジクロロメタン(20mLx3)で抽出した。併合した有機相を飽和食塩水(50mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、真空下で濃縮させて粗産物を得た。粗産物をシリカゲルクロマトグラフィーカラム(溶出液:0−33%石油エーテル/酢酸エチル)で分離して精製し、産物S−A22−2を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.40−7.31(m,5H),5.60−5.58(d,J=7.2Hz,1H),3.74(s,3H),2.65−2.60(m,1H),2.25−2.11(m,1H),1.95−1.69(m,7H).MS m/z:261.9[M+1]+
ステップ2:化合物S−A22の調製
S−A22−2(400.0mg、1.5mmol)をテトラヒドロフラン(10.0mL)に溶解した。水酸化リチウム一水和物(367.0mg、15.3mmol)の水(4.0mL)溶液を加え、反応液を25℃の条件で2時間撹拌した。反応液を1Nの塩酸でpHを5〜6に調整し、酢酸エチル(25mLx3)で抽出した。併合した有機相を無水硫酸ナトリウムで乾燥させて、ろ過し、真空下で濃縮させて粗産物S−A22を得た。該産物を精製せずに、直接次のステップの反応に用いた。1H NMR(400MHz,METHANOL−d4):δ7.45−7.22(m,5H),5.43(s,1H),2.86−2.60(m,1H),1.94−1.59(m,8H).MS m/z:247.9[M+1]+
参照例26:中間体S−A23
Figure 2020522542
ステップ1:化合物S−A23の調製
化合物S−A23−1(500.0mg、3.3mmol)及びシクロペンタノン(835.0mg、9.9mmol)をメタノール(4.5mL)に溶解し、酢酸(150.0uL)及びシアノ水素化ホウ素ナトリウム(624.0mg、9.93mmol)を順次加えた。反応液を10−15℃の条件で12時間撹拌した後、真空下で濃縮させて粗産物を得た。粗産物に水5mLを加え、ろ過し、高速液体クロマトグラフィー法で分取分離し、産物S−A23を得た。1H NMR(400MHz,CHLOROFORM−d)δ:7.56−7.53(m,2H),7.44−7.41(m,3H),4.50(s,1H),3.45−3.35(m,1H),2.11−1.96(m,2H),1.88−1.43(m,6H).MS m/z:219.9[M+1]+.
以下の化合物は、化合物S−A23と類似した方法によって合成された。
Figure 2020522542
参照例28:合成中間体C1、(−)−C1及び(+)−C1
Figure 2020522542
ステップ1:化合物C1−2の調製
窒素ガスの保護下、化合物C1−1(200.0g、1.31mol)を無水エタノール(1.50L)に溶解した。15℃で撹拌しながら無水炭酸カリウム(181.1g、1.31mol)及び臭化ベンジル(268.9g、1.57mol)を加え、次に、反応液を100℃に加熱して15時間撹拌し続けた。反応液を室温に冷却した後、ろ過し、ろ液を真空下で濃縮させて、油状物を得た。酢酸エチル(3.0L)で再溶解した後、2N水酸化ナトリウム水溶液(500mLx2)及び飽和食塩水(600mLx2)で順次洗浄し、無水硫酸マグネシウムで乾燥させて、ろ過し、真空下で濃縮させて粗産物を得た。粗産物を石油エーテルに分散させて1時間撹拌した後、ろ過して化合物C1−2を247.0g得た。1H NMR(400MHz,CHLOROFORM−d):δ10.25(s,1H),7.42−7.34(m,6H),7.21−7.12(m,2H),5.19(s,2H),3.96(s,3H).
ステップ2:化合物C1−3の調製
窒素ガスの保護下、化合物C1−2(220.0g、908.08mmol)、2−ニトロ酢酸エチル(145.0g、1.09mol)及びジエチルアミン塩酸塩(149.3g、1.36mol)の無水トルエン(2.1L)における混合溶液を130℃に加熱して15時間還流させ、反応によって生じた水をDeane−Stark分水器で分離した。反応液を室温に冷却した後、真空下で濃縮させてトルエンを除去した。残留物をジクロロメタン(500mL)に再溶解した後、飽和食塩水(1000mLx2)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、真空下で濃縮させて化合物C1−3を得て、該化合物を精製せずに直接次のステップの反応に用いた。
ステップ3:化合物C1−4の調製
窒素ガスの保護下、上記ステップ2で得られた粗製品化合物C1−3(430.0g、1.2mol)及びイソプロパノール(2.2g、36.0mmol)をクロロホルム(4.5L)に溶解し、混合液を0℃に冷却した後、撹拌しながら100〜200メッシュのシリカゲル(1.8kg)を加え、その後、1.5時間内で水素化ホウ素ナトリウム(201.1g、5.3mol)をバッチ式で加えた。反応液を15℃に昇温した後、撹拌しながら12時間反応させ続けた。酢酸(210mL)をゆっくり加えた後、15分間撹拌し続け、反応液をろ過して、ろ過ケーキをクロロホルム(500mL)で洗浄した。併合後のろ液を真空下で濃縮させて得られた残留物を、シリカゲルクロマトグラフィーカラム(溶出液:6%〜10%石油エーテル/酢酸エチル)で分離して精製し、化合物C1−4を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.48−7.33(m,5H),7.02−6.97(m,1H),6.94−6.90(m,1H),6.64−6.62(dd,J=1.6,7.6Hz,1H),5.33−5.30(dd,J=6.0,9.2Hz,1H),5.19−5.05(m,2H),4.15−4.10(q,J=7.2Hz,2H),3.91(s,3H),3.44−3.31(m,2H),1.16−1.12(t,J=7.2Hz,3H).
ステップ4:化合物C1−5の調製
化合物C1−4(8.2g、22.82mmol)を15℃で酢酸(100mL)に溶解し、亜鉛粉(76.2g、212.04mmol)をゆっくり加えて反応温度を60−65℃に保持し、添加終了後、60℃で撹拌しながら2時間反応させ続けた。反応液を室温に冷却した後、ろ過し、ろ過ケーキを酢酸(300mL)で洗浄した。併合後のろ液を真空下で濃縮させて得られた残留物をジクロロメタン(500mL)に再溶解し、飽和炭酸水素ナトリウム水溶液(200mLx3)及び飽和食塩水(200mLx2)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、真空下で濃縮させて粗産物C1−5を得て、該化合物を精製せずに直接次のステップに用いた。MS m/z:330.1[M+1]+
ステップ5:化合物C1の調製
15℃の窒素ガスの保護下、化合物C1−5(48.9g、149.4mmol)を2N塩酸溶液(500mL)に溶解した後、37%ホルムアルデヒド水溶液(36.4g、448.1mmol)を加えた。25時間撹拌後、ろ過し、ろ過ケーキを水(100mL)で洗浄し、化合物C1の塩酸塩を得た。MS m/z:342.1[M+1]+
ステップ6:化合物(−)−C1及び(+)−C1の調製
化合物C1(40.0g、117.2mmol)をキラルカラムで分離して2つの異性体(−)−C1及び(+)−C1を得た。
(−)−C1:1H NMR(400MHz,CHLOROFORM−d):δ7.40−7.38(m,2H),7.33−7.22(m,3H),6.73−6.71(m,2H),4.93−4.92(m,2H),4.17−4.15(q,J=7.2Hz,2H),4.10−3.93(m,2H),3.79(s,3H),3.62−3.58(m,1H),3.07−3.06(m,1H),2.77−2.65(m,1H),1.21(t,J=7.2Hz,3H).MS m/z:342.1[M+1]+.[α]=−23.4.
(+)−C1:1H NMR(400MHz,CHLOROFORM−d):δ7.43−7.40(m,2H),7.33−7.22(m,3H),6.86(s,2H),5.06−4.95(q,J=11.2Hz,2H),4.54−4.50(m,1H),4.33−4.21(m,3H),4.07−4.05(m,1H),3.88(s,3H),3.34−3.25(m,1H),3.20−3.14(m,1H),1.30−1.26(t,J=7.2Hz,3H).MS m/z:342.1[M+1]+.[α]=+9.8.
参照例29:中間体C2の合成
Figure 2020522542
ステップ1:化合物C2−2の調製
窒素ガスの保護下、化合物C2−1(5.0g、36.2mmol)をN,N−ジメチルホルムアミド(60mL)に溶解し、水素化ナトリウム(1.5g、36.2mmol、60.0%purity)をゆっくり加え、0.5時間後、0℃に冷却して、臭化ベンジル(6.2g、36.2mmol)を反応液に滴下し、反応液を25℃にゆっくり昇温して19.5時間撹拌し続けた。反応液を氷水(50mL)に注入して、酢酸エチル(200mL)を加え、分液して、有機相を水(100mLx3)及び飽和食塩水(50mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:9−25%酢酸エチル/石油エーテル)で分離して精製し、化合物C2−2を得た。1H NMR(400MHz,CHLOROFORM−d):δ10.19(s,1H),7.45−7.36(m,6H),7.24−7.13(m,2H),5.77(s,1H),5.09(s,2H)
ステップ2:化合物C2−3の調製
化合物C2−2(4.0g、17.5mmol)、Boc−α−ホスホノグリシントリメチルエステル(6.3g、21.0mmol)を0℃でテトラヒドロフラン(60mL)に溶解し、テトラメチルグアニジン(4.4g、38.5mmol)を加えて、反応液を25℃で20時間撹拌した。反応液を1Mの塩酸でpHを約6−7に調整し、酢酸エチル(50mLx3)で抽出し、併合した有機相を飽和食塩水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:9−25%酢酸エチル/石油エーテル)で分離して精製し、化合物C2−3を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.42−7.37(m,5H),7.16(brs,1H),7.05−6.98(m,2H),6.94−6.88(m,1H),6.74(brs,1H),5.58(s,1H),4.91(s,2H),3.88(s,3H),1.41(s,9H).
ステップ3:化合物C2−4の調製
化合物C2−3(6.3g、15.8mmol)を0℃でメタノール(60mL)に溶解し、塩化ニッケル六水和物(1.9g、7.9mmol)及び水素化ホウ素ナトリウム(1.8g、47.3mmol)を順次加え、反応液を25℃にゆっくり昇温して20時間撹拌し続けた。反応液に水(50mL)を加えて、メタノールを減圧下で除去し、酢酸エチル(50mLx3)で抽出し、併合した有機相を飽和食塩水(30mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:9−25%酢酸エチル/石油エーテル)で分離して精製し、化合物C2−4を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.40−7.31(m,5H),6.93−6.86(m,1H),6.79−6.77(d,J=7.2Hz,1H),6.62−6.60(d,J=7.2Hz,1H),5.41(s,1H),4.89−4.81(m,2H),4.52−4.47(m,1H),3.57(s,3H),3.06−3.03(m,1H),2.99−2.94(m,1H),1.35(s,9H).MS m/z:423.9[M+Na]+
ステップ4:化合物C2−5の調製
化合物C2−4(1.1g、2.7mmol)をジクロロメタン(20mL)に溶解し、トリフルオロ酢酸(6.2g、54.0mmol)を加えて、反応液を25℃で1時間反応させた。有機溶媒を減圧下で除去し、粗製品化合物C2−5のトリフルオロ酢酸塩を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,CHLOROFORM−d):δ8.15(brs,2H),7.38−7.33(m,5H),6.94−6.89(m,2H),6.62−6.60(d,J=7.6Hz,1H),4.96(s,2H),4.36−4.33(m,1H),3.71(s,3H),3.15−3.10(m,1H),2.93−2.87(m,1H).MS m/z:301.9[M+1]+
ステップ5:化合物C2−6の調製
化合物C2−5のトリフルオロ酢酸塩(1.0g、2.4mmol)を、ホルムアルデヒド水溶液(1.2g、14.4mmol、37%)に加えて、1M希塩酸(20mL)を加え、反応液を60℃に昇温して1時間撹拌し続けた。有機溶媒を減圧下で除去し、粗製品化合物C2−6の塩酸塩を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,METHANOL−d4):δ7.47−7.44(m,2H),7.38−7.36(m,3H),6.90−6.85(m,2H),5.12(s,2H),4.37−4.25(m,3H),3.90(s,3H),3.33−3.30(m,1H),2.89−2.80(m,1H).MS m/z:314.0[M+1]+
ステップ6:化合物C2−7の調製
化合物C2−6の塩酸塩(740.0mg、2.1mmol)をジクロロメタン(7mL)に溶解し、二炭酸ジ−t−ブチル(692.5mg、3.2mmol)及びトリエチルアミン(856.2mg、8.5mmol)を順次加えて、反応液を25℃で3時間撹拌し続けた。有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:9−33%酢酸エチル/石油エーテル)で分離して精製し、化合物C2−7を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.44−7.39(m,5H),6.88−6.80(m,2H),5.34(s,1H),5.21−4.88(m,3H),4.76−4.63(m,1H),4.51−4.38(m,1H),3.67−3.65(d,J=8.8Hz,3H),3.57−3.34(m,1H),3.07−2.99(m,1H),1.48−1.44(d,J=13.6Hz,9H).MS m/z:436.1[M+Na]+
ステップ7:化合物C2−8の調製
化合物C2−7(500.0mg、1.2mmol)をN,N−ジメチルホルムアミド(10mL)に溶解し、N,N−ジイソプロピルエチルアミン(468.9mg、3.6mmol)及びN−フェニルビス(トリフルオロメタンスルホンイミド)(648.0mg、1.8mmol)を加えて、反応液を25℃で16時間撹拌し続けた。反応液に酢酸エチル(100mL)を加えて、水(20mLx3)及び飽和食塩水(20mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:9−25%酢酸エチル/石油エーテル)で分離して精製し、化合物C2−8を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.47−7.41(m,5H),7.17−6.96(m,2H),5.21−4.69(m,4H),4.56−4.41(m,1H),3.66−3.65(d,J=6.0Hz,3H),3.54−3.28(m,1H),2.96−2.84(m,1H),1.55−1.48(d,J=27.6Hz,9H).MS m/z:568.1[M+Na]+
ステップ8:化合物C2−9の調製
窒素ガスの保護下、化合物C2−8(200.0mg、366.6μmol)及びメチルボロン酸(109.7mg、1.8mmol)をジオキサン(3mL)に溶解し、Pd(dppf)Cl2(26.8mg、36.6μmol)及び炭酸カリウム(152.0mg、1.1mmol)を順次加えて、反応液を100℃に昇温して2時間反応させた。有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:9−25%酢酸エチル/石油エーテル)で分離して精製し、化合物C2−9を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.50−7.39(m,5H),7.08−6.84(m,2H),5.18−4.67(m,4H),4.54−4.47(m,1H),3.66−3.64(d,J=9.2Hz,3H),3.59−3.34(m,1H),3.07−2.94(m,1H),2.31(s,3H),1.55−1.48(d,J=28.4Hz,9H).MS m/z:434.1[M+Na]+
ステップ9:化合物C2の調製
化合物C2−9(140.0mg、340.2μmol)をメタノール(1mL)に溶解し、4M塩酸メタノール溶液(2mL)を加えて、反応液を25℃で16時間撹拌し続けた。有機溶媒を減圧下で除去し、粗製品化合物C2の塩酸塩を得た。1H NMR(400MHz,METHANOL−d4):δ7.49−7.40(m,5H),7.23−7.21(d,J=8.0Hz,1H),7.00−6.98(d,J=8.0Hz,1H),4.94(s,2H),4.49−4.39(m,3H),3.91(s,3H),3.47−3.42(m,1H),3.08−3.00(m,1H),2.33(s,3H).MS m/z:312.0[M+1]+
参照例39:中間体C3の合成
Figure 2020522542
ステップ1:化合物C3−1の調製
窒素ガスの保護下、化合物C2−8(190.0mg、348.3μmol)をジオキサン(3mL)に溶解し、塩化カリウム(51.9mg、696.9μmol)、Pd2(dba)3(4.8mg、5.2μmol)、ジ−t−ブチル(2,’4’,6’−トリイソプロピル−3,6−ジメトキシビフェニル−2−イル)ホスフィン(7.6mg、15.7μmol)及びフッ化カリウム(10.1mg、174.1μmol)を順次加えて、反応液を130℃に昇温して20時間撹拌し続けた。有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:5−16%酢酸エチル/石油エーテル)で分離して精製し、化合物C3−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.56−7.37(m,5H),7.26−7.11(m,1H),6.94−6.72(m,1H),5.19−5.04(m,1H),5.03−4.85(m,2H),4.76−4.65(m,1H),4.54−4.39(m,1H),3.65−3.63(d,J=8.0Hz,3H),3.58−3.30(m,1H),2.98−2.82(m,1H),1.54−1.44(m,9H)。MS m/z:331.9[M−100]+
ステップ2:化合物C3の調製
化合物C3−1(110.0mg、254.7μmol)をメタノール(1mL)に溶解し、4M塩化水素メタノール溶液(1mL)を加えて、反応液を25℃で16時間撹拌し続けた。有機溶媒を減圧下で除去し、粗製品化合物C3の塩酸塩を得た。1H NMR(400MHz,METHANOL−d4):δ7.54−7.37(m,6H),7.13−6.91(m,1H),5.20−5.08(m,2H),4.55−4.33(m,3H),3.93−3.90(m,3H),3.54−3.38(m,1H),3.06−2.90(m,1H)。MS m/z:332.0[M+1]+
参照例40:中間体C4の合成
Figure 2020522542
ステップ1:化合物C4−1の調製
窒素ガスの保護下、化合物C2−8(260.0mg、476.6μmol)をジオキサン(6mL)に溶解し、臭化カリウム(113.4mg、953.2μmol)、Pd2(dba)3(13.1mg、14.3μmol)、ジ−t−ブチル(2’,4’,6’−トリイソプロピル−3,6−ジメトキシビフェニル−2−イル)ホスフィン(23.1mg、47.6μmol)及びフッ化カリウム(13.8mg、238.3μmol)を順次加えて、反応液を130℃に昇温して20時間撹拌し続けた。有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:5−10%酢酸エチル/石油エーテル)で分離して精製し、化合物C4−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.59−7.33(m,6H),6.90−6.77(m,1H),5.22−5.06(m,1H),5.03−4.84(m,2H),4.79−4.63(m,1H),4.54−4.37(m,1H),3.65−3.63(d,J=8.0Hz,3H),3.59−3.32(m,1H),3.02−2.85(m,1H),1.54−1.45(m,9H).MS m/z:377.9[M−100]+
ステップ2:化合物C4−2の調製
窒素ガスの保護下、濃硫酸(44.2mg、450.25μmol)をN,N−ジメチルアセトアミド(10.0mL)に加え、反応液を25℃で0.5時間撹拌して、酢酸パラジウム(0.1g、668.12μmol)及びXPhos(0.6g、1.30mmol)を加え、80℃に昇温して0.5時間撹拌し続けた。上記溶液1mLを化合物C4−1(50.0mg、104.9μmol)、シアン化亜鉛(18.5mg、157.4μmol)、亜鉛粉(686.4ug、10.50μmol)及びN,N−ジメチルアセトアミド(2.0mL)の混合溶液に加えて、反応液を90℃に昇温して16時間撹拌し続けた。冷却して反応液に酢酸エチル(30.0mL)を加えて、水(10.0mL)で3回洗浄し、飽和塩化ナトリウム水溶液(20.0mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、ろ液を減圧して有機溶媒を除去し、得られた粗産物をシリカゲル分取プレート(20%酢酸エチル/石油エーテル)で分離して精製し、化合物C4−2を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.55−7.37(m,6H),7.01−6.95(m,1H),5.23−5.12(m,2H),4.88−4.43(m,3H),3.65−3.63(d,J=6.8Hz,3H),3.59−3.35(m,1H),2.93−2.77(m,1H),1.57−1.43(m,9H).MS m/z:323.0[M−100]+
ステップ3:化合物C4の調製
化合物C4−2(76.0mg、179.9μmol)をメタノール(1mL)に溶解し、4M塩化水素メタノール溶液(1mL)を加えて、反応液を25℃で2時間撹拌し続けた。有機溶媒を減圧下で除去し、粗製品化合物C4の塩酸塩を得た。1H NMR(400MHz,METHANOL−d4):δ7.58−7.56(d,J=8.0Hz,1H),7.42−7.28(m,5H),7.10−7.08(d,J=8.0Hz,1H),5.25−5.16(m,2H),4.48−4.26(m,3H),3.80(s,3H),3.32−3.26(m,1H),2.92−2.75(m,1H).MS m/z:323.1[M+1]+
参照例41:中間体C5の合成
Figure 2020522542
ステップ1:化合物C5−1の合成
化合物C1−4(10.0g、27.8mmol)をN,N−ジメチルホルムアミド(30.0mL)に溶解し、氷水浴の条件下で水素化ナトリウム(13.4g、33.5mmol、60%purity)を加えて、30分間撹拌し続け、ヨードメタン(35.3g、248.7mmol)を加えて、反応液を15−20℃にゆっくり昇温して16時間撹拌し続けた。反応液に水(100.0mL)を注入し、酢酸エチル(100.0mL)で3回抽出し、併合した有機相を無水硫酸ナトリウムで乾燥させて、ろ過し、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルカラムクロマトグラフィー(溶出液:0−17%酢酸エチル/石油エーテル)で分離して精製し、粗製品化合物C5−1を得た。1H NMR:(400MHz,CHLOROFORM−d):δ7.45−7.35(m,5H),7.02−6.96(m,1H),6.92−6.86(m,1H),6.62−6.60(m,1H),5.09−5.07(d,J=10.8Hz,1H),4.94−4.92(d,J=10.8Hz,1H),4.28−4.18(m,2H),3.90(s,3H),3.62−3.43(m,2H),1.61(s,3H),1.27−1.23(t,J=7.2Hz,3H).MS m/z:396.0[M+Na]+
ステップ2:化合物C5−2の合成
化合物C5−1(3.7g、9.8mmol)をエタノール(50.0mL)に溶解し、還元鉄粉(5.6g、99.6mmol)及び塩化アンモニウム(7.9g、147.0mmol)を順次加えて、反応液を80℃に昇温して16時間撹拌し続けた。冷却して、珪藻土でろ過し、ろ過ケーキをエタノール(50.0mL)で洗浄し、ろ液を減圧して有機溶媒を除去し、粗製品化合物C5−2を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。MS m/z:344.1[M+H]+
ステップ3:化合物C5の合成
化合物C5−2(3.4g、9.8mmol)をジクロロメタン(50.0mL)とトリフルオロ酢酸(10.0mL)の混合溶液に溶解し、ポリオキシメチレン(3.5g、39.3mmol)を加えて、反応液を20−25℃で16時間撹拌し続けた。有機溶媒を減圧下で除去し、得られた粗製品にジクロロメタン(50.0ml)及び水(50.0ml)を加えて、飽和炭酸ナトリウムでpHを8−9に調整し、分液して、水相をジクロロメタン(80.0mL)で3回抽出し、併合した有機相を飽和食塩水(100.0mL)で洗浄し、有機溶媒を減圧下で除去し、得られた粗製品をシリカゲルカラムクロマトグラフィー(溶出剤:0−10%メタノール/ジクロロメタン)で分離して精製し、次に、高速液体クロマトグラフィー法(カラム:Phenomenex luna C18 250*50mm*10μm;移動相:[水(0.1%TFA)−ACN];B%:15%−40%、23min)で分離して精製し、大部分のアセトニトリルを減圧下で除去して、水相を飽和炭酸ナトリウムでpHを8−9に調整し、ジクロロメタン(150.0mL)で3回抽出し、併合した有機相を飽和食塩水(200.0mL)で洗浄し、有機溶媒を減圧下で除去して、化合物C5を得た。1H NMR:(400MHz,METHANOL−d4):δ7.52−7.51(d,J=7.2Hz,2H),7.44−7.31(m,3H),6.82−6.72(m,2H),5.08−4.88(m,2H),4.16−4.07(m,2H),4.06−3.93(m,2H),3.86(s,3H),3.39−3.35(d,J=16.8Hz,1H),2.62−2.57(d,J=16.8Hz,1H),1.40(s,3H),1.22−1.18(t,J=7.2Hz,3H).MS m/z:356.1[M+H]+
参照例42:中間体(−)−C2の合成
Figure 2020522542
ステップ1:化合物(−)−C2−1の調製
アルゴンガスの保護下、(S、S)−Et−DuPhos(202.9mg、559.8μmol)をメタノール(20mL)に溶解し、Rh(COD)+OTf-(231.9mg、495.2μmol)を加えて、15分間撹拌し続け、この溶液をアルゴンガスの雰囲気で化合物C2−3(86.0g、215.3mmol)のメタノール(1.0L)溶液に加えて、アルゴンガス置換を3回、水素ガス置換を3回行い、反応液を25℃、15Psi水素ガス条件下で16時間撹拌し続けた。有機溶媒を減圧下で除去し、粗産物(−)−C2−1を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,CHLOROFORM−d):δ7.41−7.28(m,5H),6.94−6.86(m,1H),6.80−6.78(d,J=6.4Hz,1H),6.62−6.61(d,J=7.2Hz,1H),5.32(brs,1H),5.16−5.14(m,1H),4.90−4.76(m,2H),4.60−4.42(m,1H),3.58(s,3H),3.15−2.87(m,2H),1.32(s,9H).MS m/z:424.1[M+Na]+.SFC:カラム:Chiralpak AY(150mm*4.6mm,3μm);移動相:[0.05%DEA MeOH];B%:5%−40%5min,40%2.5min,40%2.5min;Rt=3.904min;98.9%ee.
ステップ2:化合物(−)−C2−2の調製
化合物(−)−C2−1(37.0g、92.2mmol)を酢酸エチル(200mL)に溶解した後、塩化水素酢酸エチル溶液(4M、200mL)を加えて、反応液を25℃で1.5時間撹拌し続けた。有機溶媒を減圧下で除去し、粗産物(−)−C2−2の塩酸塩を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,METHANOL−d4):δ7.38−7.32(m,2H),7.30−7.19(m,3H),6.87−6.75(m,2H),6.55−6.50(m,1H),5.10−5.03(m,1H),5.00−4.93(m,1H),4.10−3.94(m,1H),3.60(s,3H),3.07−2.99(m,1H),2.79−2.69(m,1H).MS m/z:302.0[M+1]+
ステップ3:化合物(−)−C2−3の調製
化合物(−)−C2−2(21.0g、62.2mmol)を塩酸(1M、187.3mL)に溶解し、ホルムアルデヒド水溶液(15.1g、186.5mmol、13.9mL、37%)を加えて、反応液を25℃で16時間撹拌し続けた。ろ過して、ろ過ケーキを真空乾燥させ、粗製品化合物(−)−C2−3の塩酸塩を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,METHANOL−d4):δ7.49−7.29(m,5H),6.92−6.82(m,2H),5.12(s,2H),4.40−4.22(m,3H),3.90(s,3H),3.32−3.28(m,1H),2.90−2.79(m,1H).MS m/z:314.0[M+1]+
ステップ4:化合物(−)−C2−4の調製
化合物(−)−C2−3(16.0g、45.7mmol)をテトラヒドロフラン(160.0mL)に溶解し、トリエチルアミン(5.6g、54.9mmol、7.6mL)を加えて撹拌して溶解させ、Boc酸無水物(10.0g、45.7mmol、10.5mL)のテトラヒドロフラン(50mL)溶液を滴下して、反応液を25℃で16時間撹拌し続けた。反応液を水150mLに注入して、酢酸エチル(100mL)で3回抽出した。併合した有機相を飽和食塩水50mLで洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、有機溶媒を減圧下で除去した粗製品を得て、シリカゲルカラムクロマトグラフィー(溶出剤:10−20%酢酸エチル/石油エーテル)で分離して精製し、化合物(−)−C2−4を得た。MS m/z:436.1[M+Na]+
ステップ5:化合物(−)−C2−5の調製
化合物(−)−C2−4(16.6g、40.2mmol)をDMF(200.0mL)に溶解し、ジイソプロピルエチルアミン(15.6g、120.5mmol、20.98mL)及びN−フェニルビス(トリフルオロメタンスルホニル)イミド(18.7g、52.2mmol)を加えて、反応液を25℃で16時間撹拌し続けた。反応液を水200mLに注入して、酢酸エチル(180mL)で3回抽出した。併合した有機相を飽和食塩水150mLでそれぞれ洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、有機溶媒を減圧下で除去し、得られた粗製品をシリカゲルカラムクロマトグラフィー(溶出剤:10−20%酢酸エチル/石油エーテル)で分離して精製し、化合物(−)−C2−5を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.42−7.28(m,5H),7.10−7.04(m,1H),6.94−6.85(m,1H),5.10−5.01(m,0.5H),4.97−4.88(m,1H),4.86−4.78(m,1H),4.72−4.57(m,1.5H),4.51−4.29(m,1H),3.57−3.56(d,J=6.0Hz,3H),3.48−3.15(m,1H),2.87−2.70(m,1H),1.48−1.32(m,9H).MS m/z:446.1[M−100]+
ステップ6:化合物(−)−C2−6の調製
窒素ガスの保護下、化合物(−)−C2−5(6.2g、11.4mmol)及びメチルボロン酸(3.4g、56.8mmol)をジオキサン(70mL)に溶解し、Pd(dppf)Cl2(831.6mg、1.1mmol)及び炭酸カリウム(4.7g、34.1mmol)を順次加えて、反応液を100℃に昇温して10時間反応させた。冷却してろ過し、ろ過ケーキを酢酸エチル50mLで洗浄し、有機相を併合して、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:9−16%酢酸エチル/石油エーテル)で分離して精製し、化合物(−)−C2−6を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.52−7.34(m,5H),7.07−7.05(d,J=7.6Hz,1H),6.91−6.81(m,1H),5.19−4.64(m,4H),4.55−4.41(m,1H),3.65−3.62(d,J=9.2Hz,3H),3.58−3.30(m,1H),3.08−2.89(m,1H),2.30(s,3H),1.56−1.44(m,9H).MS m/z:434.1[M+Na]+
ステップ7:化合物(−)−C2の調製
化合物(−)−C2−6(4.5g、10.9mmol)をジオキサン(20mL)に溶解し、4M塩化水素のジオキサン溶液(30mL)を加えて、反応液を25℃で1.5時間撹拌し続けた。有機溶媒を減圧下で除去し、粗製品化合物(−)−C2の塩酸塩を得た。1H NMR(400MHz,METHANOL−d4):δ7.51−7.36(m,5H),7.24−7.22(d,J=7.6Hz,1H),7.00−6.98(d,J=7.6Hz,1H),4.92(s,2H),4.51−4.35(m,3H),3.91(s,3H),3.49−3.41(m,1H),3.04−2.97(m,1H),2.33(s,3H).MS m/z:312.1[M+1]+
参照例43:中間体(−)−C3の合成
Figure 2020522542
ステップ1:化合物(−)−C3−1の調製
窒素ガスの雰囲気下、化合物(−)−C2−2(1.0g、1.8mmol)を1,4−ジオキサン(15.0mL)に溶解し、塩化カリウム(275.0mg、3.7mmol)、フッ化カリウム(54.0mg、929.5μmol)、Pd2(dba)3(26.0mg、28.4μmol)及びジ−t−ブチル(2’,4’,6’−トリイソプロピル−3,6−ジメトキシビフェニル−2−イル)ホスフィン(40.0mg、82.5μmol)を順次加えて、反応液を130℃に昇温して16時間撹拌し続けた。有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルカラムクロマトグラフィー(溶出液:0−20%メタノール/酢酸エチル)で分離して精製し、化合物(−)−C3−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.54−7.51(m,2H),7.48−7.35(m,3H),7.29−7.23(m,1H),6.92−6.85(m,1H),5.17−5.15(m,0.5H),5.05−4.87(m,2H),4.78−4.61(m,1.5H),4.53−4.34(m,1H),3.65−3.63(d,J=8.0Hz,3H),3.57−3.53(m,0.5H),3.36−3.31(m,0.5H),3.01−2.77(m,1H),1.56−1.46(m,9H).MS m/z:454.1[M+Na]+
ステップ2:化合物(−)−C3の調製
化合物(−)−C3−1(590.0mg、1.4mmol)をジオキサン(2.0mL)に溶解し、塩化水素のジオキサン溶液(4M、3mL)を加えて、反応液を20−25℃で2.5時間撹拌し続けた。有機溶媒を減圧下で除去し、化合物(−)−C3の塩酸塩を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,METHANOL−d4):δ7.50−7.36(m,6H),7.08−7.06(d,J=8.0Hz,1H),5.08(s,2H),4.49−4.33(m,3H),3.89(s,3H),3.41−3.34(m,1H),2.96−2.88(m,1H).MS m/z:331.9[M+1]+
参照例44:中間体(−)−C6の合成
Figure 2020522542
ステップ1:化合物(−)−C6−1の調製
化合物(−)−C2−1(6.0g、14.9mmol)をテトラヒドロフラン(120.0mL)及び水(40.0mL)に溶解し、水酸化リチウム一水和物(1.9g、44.8mmol)を緩慢に加えて、反応液を25℃で5時間撹拌し続けた。反応液を1Mの希塩酸でpHを5−6に調整し、酢酸エチル(40.0mL)で3回抽出し、併合した有機相を飽和塩化ナトリウム水溶液(40.0mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、有機溶媒を減圧下で除去し、化合物(−)−C6−1を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,CHLOROFORM−d):δ7.48−7.30(m,5H),7.00−6.67(m,3H),5.38−5.37(m 1H),5.02−4.89(m,2H),4.58−4.41(m,1H),3.19−3.13(m,1H),3.02−2.96(m,1H),1.42−1.28(m,9H).MS m/z:410.1[M+Na]+
ステップ2:化合物(−)−C6−2の調製
化合物(−)−C6−1(7.0g、18.1mmol)を酢酸エチル(50.0mL)に溶解し、塩化水素の酢酸エチル溶液(4M、50.0mL)を加えて、反応液を25℃で2時間撹拌し続けた。有機溶媒を減圧下で除去し、化合物(−)−C6−2の塩酸塩を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,METHANOL−d4):δ7.51−7.46(m,2H),7.39−7.31(m,3H),6.97−6.89(m,2H),6.69−6.67(m,1H),5.24−5.19(m,1H),5.14−5.09(m,1H),4.19−4.14(m,1H),3.31−3.26(m,1H),2.83−2.77(m,1H).MS m/z:287.9[M+1]+
ステップ3:化合物(−)−C6の調製
化合物(−)−C6−2(5.0g、15.4mmol)を塩酸(1M、83.0mL)に溶解し、ホルムアルデヒド水溶液(7.5g、92.6 mmol、37%)を加えて、反応液を60℃に昇温して1時間撹拌し続け、氷水浴で冷却し、酢酸ナトリウム(10.1g、123.5mmol)の水溶液(40.0mL)を反応系に加えて、0℃で2時間撹拌し続けた。ろ過し、ろ過ケーキを水(50mL)で洗浄し、真空乾燥させて化合物(−)−C6を得た。1H NMR(400MHz,METHANOL−d4):δ7.56−7.47(m,2H),7.42−7.30(m,3H),6.88−6.80(m,2H),5.11−5.03(m,2H),4.32−4.17(m,2H),3.74−3.70(m,1H),3.53−3.48(m,1H),2.92−2.85(m,1H).MS m/z:299.9[M+1]+
参照例45:中間体(−)−C7の合成
Figure 2020522542
ステップ1:化合物(−)−C7−1の調製
化合物(−)−C2−2(4.0g、7.3mmol)をメタノール(100mL)に溶解し、トリエチルアミン(1.5g、14.7mmol、2.0mL)及び湿式パラジウム炭素(0.3g、10%純度)を順次加えて、水素ガス置換を3回行い、反応液を25℃、15Psi水素ガス条件下で16時間撹拌し続けた。反応液をろ過し、有機溶媒を減圧下で除去し、得られた粗製品をシリカゲルカラムクロマトグラフィー(溶出液:10−30%酢酸エチル/石油エーテル)で分離して精製し、化合物(−)−C7−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.00−6.96(t,J=7.6Hz,1H),6.80−6.54(m,2H),5.17−5.11(m,0.5H),4.86(s,1H),4.82−4.76(m,0.5H),4.71−4.60(m,1H),4.51−4.24(m,1H),3.62−3.55(m,3H),3.46−3.11(m,1H),3.08−2.74(m,1H),1.48−1.35(m,9H).MS m/z:207.9[M−100]+
ステップ2:化合物(−)−C7−2の調製
化合物(−)−C7−1(2.0g、6.5mmol)をテトラヒドロフラン(50mL)に溶解し、炭酸セシウム(4.2g、13.0mmol)及び臭化ベンジル(1.7g、9.8mmol、1.2mL)を順次加えて、反応液を60℃に加熱して3時間撹拌し続けた。有機溶媒を減圧下で除去し、得られた粗製品をシリカゲルカラムクロマトグラフィー(溶出液:0−30%酢酸エチル/石油エーテル)で分離して精製し、化合物(−)−C7−2を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.48−7.31(m,5H),7.19−7.12(m,1H),6.84−6.71(m,2H),5.23−5.19(m,0.5H),5.10(s,2H),4.90−4.69(m,1.5H),4.58−4.40(m,1H),3.68−3.63(m,3H),3.61−3.37(m,1H),3.14−2.93(m,1H),1.57−1.44(m,9H).MS m/z:420.0[M+Na]+
ステップ3:化合物(−)−C7の調製
化合物(−)−C7−2(2.4g、6.0mmol)をジオキサン(30mL)に溶解し、塩化水素のジオキサン溶液(4M、8mL)を加えて、反応液を25℃で16時間撹拌し続けた。有機溶媒を減圧下で除去し、化合物(−)−C7の塩酸塩を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,METHANOL−d4):δ7.51−7.26(m,6H),7.06−7.04(d,J=8.4Hz,1H),6.88−6.86(d,J=7.8Hz,1H),5.18(s,2H),4.54−4.41(m,3H),3.93(s,3H),3.54−3.46(m,1H),3.05−2.96(m,1H).MS m/z:298.0[M+1]+
参照例46:中間体(−)−C8の合成
Figure 2020522542
ステップ1:化合物(−)−C8−1及び(−)−C9−1の調製
化合物(−)−C7−1(0.7g、2.3mmol)をアセトニトリル(10mL)に溶解し、Select F(968.2mg、2.7mmol)を加えて、反応液を25℃で16時間撹拌し続けた。反応液にメタノール5mLを加えて、有機溶媒を減圧下で除去し、得られた粗製品をシリカゲルカラムクロマトグラフィー(溶出液:10−25%酢酸エチル/石油エーテル)で分離して精製し、さらに高速液体クロマトグラフィー(カラム:Xtimate C18150*25mm*5μm;移動相:[水(10mM NH4HCO3)−ACN];B%:45%−70%、9.5min)で分離して精製し、化合物(−)−C8−1及び化合物(−)−C9−1を得た。
化合物(−)−C8−1:1H NMR(400MHz,CHLOROFORM−d):δ6.96−6.91(t,J=9.2Hz,1H),6.74−6.60(m,1H),5.76(br s,1H),5.31−4.96(m,0.5H),4.86−4.85(m,0.5H),4.74−4.66(m,1H),4.49−4.38(m,1H),3.69−3.66(m,3H),3.53−3.30(m,1H),3.10−2.94(m,1H),1.61−1.43(m,9H).MS m/z:225.9[M−100]+
化合物(−)−C9−1:1H NMR(400MHz,CHLOROFORM−d):δ6.80−6.75(t,J=9.2Hz,1H),6.63−6.53(m,1H),5.94−5.75(m,1H),5.29−5.01(m,1H),4.85−4.75(m,1H),4.47−4.37(m,1H),3.69−3.66(m,3H),3.56−3.24(m,1H),2.98−2.85(m,1H),1.56−1.51(m,9H).MS m/z:226.0[M−100]+
ステップ2:化合物(−)−C8−2の調製
化合物(−)−C8−1(30.0mg、92.2μmol)をテトラヒドロフラン(5mL)に溶解し、炭酸セシウム(60.1mg、184.4μmol)及び臭化ベンジル(23.7mg、138.3μmol、16.4uL)を加えて、反応液を60℃に昇温して16時間撹拌し続けた。有機溶媒を減圧下で除去し、得られた粗製品をシリカゲルカラムクロマトグラフィー(溶出液:0−30%酢酸エチル/石油エーテル)で分離して精製し、化合物(−)−C8−2を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.43−7.24(m,5H),6.92−6.85(m,1H),6.81−6.67(m,1H),5.11−4.51(m,2.5H),4.64−4.54(m,1.5H),4.42−4.24(m,1H),3.58−3.51(m,3H),3.48−3.15(m,1H),2.93−2.67(m,1H),1.47−1.36(m,9H).MS m/z:438.2[M+Na]+
ステップ3:化合物(−)−C8の調製
化合物(−)−C8−2(35.0mg、77.5μmol)を酢酸エチル(2mL)に溶解し、塩化水素の酢酸エチル溶液(4M、2.4mL)を加えて、反応液を25℃で30分間撹拌し続けた。有機溶媒を減圧下で除去し、化合物(−)−C8の塩酸塩を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.57−7.32(m,5H),7.29−7.14(m,1H),7.12−6.94(m,1H),5.30−5.16(m,2H),4.56−4.30(m,3H),3.94(s,3H),3.73−3.43(m,1H),2.97−2.87(m,1H).MS m/z:316.0[M+1]+
参照例47:中間体(−)−C9の合成
Figure 2020522542
ステップ1:化合物(−)−C9−2の調製
化合物(−)−C9−1(80.0mg、245.9μmol)をテトラヒドロフラン(5.0mL)に溶解し、炭酸セシウム(160.2mg、491.8μmol)及び臭化ベンジル(63.1mg、368.9μmol)を加えて、反応液を60℃に昇温して16時間撹拌し続けた。冷却して、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルカラムクロマトグラフィー(溶出液:0−20%酢酸エチル/石油エーテル)で分離して精製し、化合物(−)−C9−2を得た。1H NMR(400MHz,METHANOL−d4):δ7.46−7.31(m,5H),6.90−6.82(m,1H),6.73−6.70(m,1H),5.35−5.22(m,0.5H),5.07(s,2H),5.01(s,0.5H),4.93−4.70(m,1H),4.53−4.30(m,1H),3.74−3.65(m,3H),3.65−3.45(m,1H),3.06−2.83(m,1H),1.58−1.48(m,9H).MS m/z:438.1[M+Na]+
ステップ2:化合物(−)−C9の調製
化合物(−)−C9−2(82.0mg、197.4μmol)を酢酸エチル(1.0mL)に溶解し、次に、塩化水素の酢酸エチル(4.0M、1.0mL)を加えて、反応液を20−25℃で3時間撹拌し続けた。有機溶媒を減圧下で除去し、化合物(−)−C9の塩酸塩を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,METHANOL−d4):δ7.45−7.29(m,5H),7.10−7.02(m,2H),5.15(s,2H),4.58−4.31(m,3H),3.92(s,3H),3.52−3.46(m,1H),3.03−2.95(m,1H).MS m/z:315.9[M+1]+
参照例48:中間体(−)−C10の合成
Figure 2020522542
ステップ1:化合物(−)−C10−1の調製
化合物(−)−C1(1.0g、2.9mmol)をジクロロメタン(12mL)に溶解し、トリエチルアミン(600.0mg、5.9mmol)及び二炭酸ジ−t−ブチル(770.0mg、3.5mmol)を順次加えて、反応液を15−20℃で5時間撹拌し続けた。有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルカラムクロマトグラフィー(溶出液:10−30%酢酸エチル/石油エーテル)で分離して精製し、化合物(−)−C10−1を得た。1H NMR (400MHz,CHLOROFORM−d):δ7.52−7.44(m,2H),7.43−7.31(m,3H),6.94−6.78(m,2H),5.10−4.99(m,1.5H),4.95−4.89(m,1H),4.67−4.53(m,1.5H),4.49−4.34(m,1H),4.15−4.00(m,2H),3.87(s,3H),3.53−3.49(m,0.5H),3.27−3.22(m,0.5H),2.99−2.75(m,1H),1.55−1.43(m,9H),1.19−1.13(m,3H).MS m/z:464.1[M+Na]+
ステップ2:化合物(−)−C10−2の調製
化合物(−)−C10−1(1.0g、2.3mmol)をメタノール(20.0mL)に溶解し、湿式Pd/C(100.0mg、226.5μmol、5%純度)を加えて、水素ガス置換を3回行い、反応液を15Psi水素雰囲気下、15−20℃で1.5時間撹拌し続けた。反応液を珪藻土でろ過し、有機溶媒を減圧下で除去し、化合物(−)−C10−2を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,CHLOROFORM−d):δ6.79−6.58(m,2H),5.70(brs,1H),5.14−5.12(m,0.5H),4.79−4.59(m,1.5H),4.50−4.34(m,1H),4.16−4.02(m,2H),3.87(s,3H),3.50−3.44(m,0.5H),3.33−3.28(m,0.5H),3.14−2.90(m,1H),1.57−1.42(m,9H),1.20−1.17(m,3H).MS m/z:374.1[M+Na]+
ステップ3:化合物(−)−C10−3の調製
化合物(−)−C10−2(100.0mg、284.6μmol)をテトラヒドロフラン(8.0mL)に溶解し、次に、化合物4−クロロベンジルブロミド(88.0mg、428.3μmol)及び炭酸セシウム(185.0mg、567.8)を順次加えて、反応液を70℃に昇温して16時間撹拌し続けた。冷却して、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルカラムクロマトグラフィー(溶出液:0−30%酢酸エチル/石油エーテル)で分離して精製し、化合物(−)−C10−3を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.47−7.32(m,4H),6.93−6.77(m,2H),5.09−5.07(m,0.5H),5.02−4.82(m,2H),4.68−4.55(m,1.5H),4.48−4.34(m,1H),4.16−3.99(m,2H),3.86(s,3H),3.53−5.48(m,0.5H),3.26−3.21(m,0.5H),2.97−2.77(m,1H),1.54−1.41(m,9H),1.21−1.09(m,3H).MS m/z:498.2[M+Na]+
以下の化合物は、化合物(−)−C10−3と類似した方法によって合成された。
Figure 2020522542
Figure 2020522542
Figure 2020522542
ステップ4:化合物(−)−C10の調製
化合物(−)−C10−3(120.0mg、252.1μmol)を酢酸エチル(1.0mL)に溶解し、次に、塩化水素の酢酸エチル(4.0M、1.0mL)を加えて、反応液を15−20℃で16時間撹拌し続けた。有機溶媒を減圧下で除去し、化合物(−)−C10の塩酸塩を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,METHANOL−d4):δ7.46−7.33(m,4H),7.12−6.95(m,2H),5.12−5.02(m,2H),4.42−4.23(m,5H),3.91(s,3H),3.35−3.31(m,1H),2.88−2.80(m,1H),1.36−1.32(t,J=7.2Hz,3H).MS m/z:376.0[M+1]+
以下の化合物は、化合物(−)−C10と類似した方法によって合成された。
Figure 2020522542
Figure 2020522542
参照例62:中間体(−)−C24の合成
Figure 2020522542
ステップ1:化合物(−)−C24−1の調製
化合物(−)−C10−2(100.0mg、284.6μmol)及びフェニルボロン酸(70.1mg、574.9μmol)をジクロロメタン(10mL)に溶解し、酢酸銅(54.0mg、297.3μmol)、4A分子篩(321mg)、TEMPO(90.0mg、572.3μmol)及びピリジン(226.0mg、2.9mmol)を加えて、反応液を15−20℃で64時間撹拌し続けた。反応液を水(30mL)に注入し、分液して、水相をジクロロメタン(30mL)で3回抽出し、併合した有機相を飽和塩化ナトリウム水溶液(50mL)で洗浄し、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルカラムクロマトグラフィー(溶出液:0−30%酢酸エチル/石油エーテル)で分離して精製し、化合物(−)−C24−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.26−7.21(m,2H),7.06−6.96(m,2H),6.89−6.76(m,3H),5.06−5.05(m,0.5H),4.76−4.63(m,1.5H),4.58−4.46(m,1H),4.12−3.87(m,2H),3.75(s,3H),3.40−3.13(m,1H),2.96−2.75(m,1H),1.56−1.38(m,9H),1.16−1.02(m,3H).MS m/z:450.2[M+Na]+
ステップ2:化合物(−)−C24の調製
化合物(−)−C23−1(125.0mg、292.4μmol)を酢酸エチル(1.0mL)に溶解し、次に、塩化水素の酢酸エチル(4.0M、1.0mL)を加えて、反応液を20−25℃で16時間撹拌し続けた。有機溶媒を減圧下で除去し、化合物(−)−C24の塩酸塩を得て、該化合物をさらに精製せずに直接次のステップの反応に用いた。1H NMR(400MHz,METHANOL−d4):δ7.28−7.24(m,2H),7.21−7.14(m,2H),7.04−6.95(m,1H),6.79−6.76(m,2H),4.53−4.37(m,3H),4.35−4.21(m,2H),3.74(s,3H),3.40−3.32(m,1H),2.97−2.90(m,1H),1.29−1.26(t,J=7.2Hz,3H).MS m/z:325.1[M+1]+
実施例1及び2:化合物1及び2の調製
Figure 2020522542
ステップ1:化合物1−1の調製
化合物(−)−C1(150.0mg、439.4μmol)を無水ジクロロメタン(6.0mL)に溶解し、HATU(200.0mg、527.2μmol)、ピリジン(104.0mg、1.32mmol)及びA2(156.0mg、659.1μmol)を順次加えた。反応液を25℃で16時間撹拌した後、真空下で濃縮させて有機溶媒を除去した。得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:50−100%酢酸エチル/石油エーテル)で分離して精製し、化合物1−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.64−7.31(m,10H),6.93−6.32(m,2H),5.51−5.29(m,1H),5.13−4.81(m,3H),4.27−3.90(m,4H),3.90−3.79(m,2H),3.53−3.35(m,2H),1.87−1.49(m,5H),1.33−1.04(m,3H).MS m/z:560.2[M+1]+
以下の化合物は、化合物1−1と類似した方法によって合成された。
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
ステップ2:化合物1及び2の調製
25℃で、化合物1−1(200.0mg、357.4μmol)をテトラヒドロフラン(3.0mL)及び水(1.5mL)の混合溶液に溶解し、次に、水酸化リチウム一水和物(85.0mg、2.0mmol)を加えた。72時間撹拌後、反応液に1Mの塩酸を加えてpH<4とした。水相を酢酸エチル(15.0mLx3)で抽出した。併合した有機相を飽和食塩水(30.0mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、真空下で濃縮させて粗産物を得た。粗産物をクロマトグラフィーカラム(溶出液:50〜100%酢酸エチル/石油エーテル)で分離して精製し、白色固体(130.0mg)を得た。次にSFC(AD(250mm*30mm、10μm);移動相:[0.1%NH32O EtOH];B%:30%−30%)で分離し、2つのジアステレオマー化合物1(99.4%de)及び化合物2(96.4%de)を得た。
化合物1:1H NMR(400MHz,DMSO−d6):δ7.54−7.21(m,10H),6.99−6.60(m,2H),5.55(s,1H),5.18−4.64(m,4H),4.43−4.24(m,1H),3.88−3.56(m,4H),3.27−3.14(m,2H),2.92−2.64(m,1H),2.37−2.24(m,1H),2.04−1.82(m,2H),1.63−1.41(m,2H).MS m/z:532.1[M+1]+.SFC:カラム:Chiralpak AD−3(150mm*4.6mm,3μm);移動相:[0.05%DEAエタノール];B%:5%−40%5min,40%2.5min,5%2.5min;Rt=4.704min;99.4%de.
化合物2:1H NMR(400MHz,DMSO−d6):δ7.52−7.25(m,10H),6.97−6.72(m,2H),5.56−5.44(m,1H),5.08−4.66(m,4H),4.51−4.25(m,1H),3.88−3.60(m,6H),3.25−3.16(m,2H),2.83−2.63(m,1H),2.20−1.76(m,3H),1.62−1.36(m,2H).MS m/z:532.1[M+1]+.SFC:カラム:Chiralpak AD−3(150mm*4.6mm,3μm);移動相:[0.05%DEAエタノール];B%:5%−40%5min,40%2.5min,5%2.5min;Rt=5.497min;96.4%de.
以下の化合物は、化合物1及び2と類似した方法によって合成された。
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
実施例17及び18:化合物17及び18の調製
Figure 2020522542
ステップ1:化合物17−1の調製
化合物(−)−C1(150.0mg、439.4μmol)をジクロロメタン(5.0mL)に溶解し、HATU(251.0mg、660.1μmol)、ピリジン(70.0mg、885.0μmol)及びS−A18(120.0mg、487.4μmol)を順次加えた。反応液を25℃で16時間撹拌した後、真空下で濃縮させて有機溶媒を除去し、粗産物を得た。粗産物をシリカゲルクロマトグラフィーカラム(溶出液:0−50%石油エーテル/酢酸エチル)で分離して精製し、産物17−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.68−7.57(m,2H),7.50−7.34(m,8H),7.21−6.94(m,4H),6.87−6.79(m,1H),6.73−6.50(m,1H),6.06−5.96(m,1H),5.43−5.11(m,1H),5.08− 4.70(m,4H),4.56−4.30(m,1H),4.08−3.92(m,1H),3.87−3.81(m,3H),3.68−3.41(m,1H),3.27−3.08(m,0.5H),2.98−2.74(m,0.5H),1.08−0.80(m,3H).MS m/z:570.1[M+1]+
以下の化合物は、化合物17−1と類似した方法によって合成された。
Figure 2020522542
Figure 2020522542
Figure 2020522542
ステップ2:化合物17及び18の調製
25℃で、化合物17−1(218.0mg、382.7μmol)をテトラヒドロフラン(5.0mL)に溶解し、次に、水酸化リチウム一水和物(93.0mg、2.2mmol)の水溶液(2.0mL)を加えた。15〜20℃で撹拌しながら40時間反応させた後、水(15.0mL)を加えて希釈し、次に、1Mの塩酸でpH<4に調整した。水相を酢酸エチル(50.0mLx3)で抽出した。併合した有機相を飽和食塩水(50.0mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、真空下で濃縮させて粗産物を得た。粗産物をクロマトグラフィーカラム(溶出液:0−80%石油エーテル/酢酸エチル)で分離して精製し、産物を得て、次に、SFC(カラム:AD(250mm*30mm、5μm);移動相[0.1%NH32O EtOH];B%:35%−35%)で分離し、2つのジアステレオマー、主産物化合物17及び少量の化合物18を得た。
化合物17:1H NMR(400MHz,DMSO−d6)δ7.69−7.30(m,11H),7.25−7.13(m,1H),7.06−6.77(m,4H),6.52−6.23(m,1H),5.11−4.75(m,4H),4.27(d,J=16.0Hz,1H),3.84−3.74(m,3H),2.88−2.64(m,1H),2.43−2.29(m,1H).MS m/z:564.1[M+Na]+.SFC:カラム:Chiralpak AD−3(150mm*4.6mm,3μm);移動相:B:[0.05%DEA Ethanol];B%:5%−40%5.5min,40%3min,5%1.5min;Rt=5.339min;97.5%de.
化合物18:1H NMR(400MHz,DMSO−d6)δ7.63−7.28(m,10H),7.25−6.99(m,3H),6.97−6.73(m,3H),6.47−6.28(m,1H),5.04−4.73(m,4H),4.56−4.27(m,1H),3.82−3.75(m,3H),2.83−2.59(m,1H),2.42−2.22(m,1H).MS m/z:564.1[M+Na]+.SFC:カラム:Chiralpak AD−3(150mm*4.6mm,3μm);移動相:B: [0.05%DEA Ethanol];B%:5%−40%5.5min,40%3min,5%1.5min;Rt=5.745min;94.5%de.
以下の化合物は、化合物17及び18と類似した方法によって合成された。
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
実施例46:化合物46の調製
Figure 2020522542
ステップ1:化合物46−1の調製
化合物(−)−C1(280.0mg、820.2μmol)及びA12(187.2mg、820.2μmol)をN,N−ジメチルホルムアミド(8.0mL)に溶解し、ジイソプロピルエチルアミン(318.0mg、2.5mmol)及びHATU(374.2mg、984.2μmol)を順次加えた。反応液を20℃で5時間撹拌した後、水(5.0mL)を加えて反応をクエンチさせ、水相を酢酸エチル(2.0mLx3)で抽出した。併合した有機相を無水硫酸ナトリウムでろ過し、真空下で濃縮させて粗産物を得た。粗産物をシリカゲルクロマトグラフィーカラム(溶出液:9%−11%石油エーテル/酢酸エチル)で分離して精製し、産物46−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ1.27−1.29(m,3H)2.83(s,3H)3.84−3.86(m,2H)4.12−4.18(m,2H)4.84−5.12(m,2H)5.09−5.11(m,1H)5.97−6.05(m,1H)6.72−6.94(m,2H)6.94−7.15(m,3H)7.29−7.48(m,11H)7.48−7.65(m,2H).
以下の化合物は、化合物46−1と類似した方法によって合成された。
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
Figure 2020522542
ステップ2:化合物46の調製
25℃で、化合物46−1(123.0mg、223.0μmolμmol)をエタノール(2.0mL)に溶解し、次に、水酸化リチウム一水和物(10.7mg、446.0μmol)を加えた。20℃で撹拌しながら4時間反応させた後、水5mLを加えて希釈し、次に、1Mの塩酸でpH<4に調整し、水相を酢酸エチル(5.0mLx3)で抽出した。併合した有機相を無水硫酸ナトリウムで乾燥させて、真空下で濃縮させて粗産物を得た。粗産物をクロマトグラフィーカラム(溶出液:0−80%石油エーテル/酢酸エチル)で分離して精製し、産物46を得た。
化合物46:1H NMR(400MHz,DMSO−d6)δ2.61−3.11(m,2H)3.71−3.91(m,3H)4.05−4.33(m,1H)4.78−5.06(m,4H)5.06−5.24(m,1H)6.30−6.42(m,1H)6.80−6.86(m,1H)6.88−6.98(m,4H)7.25(br t,J=7.47Hz,2H)7.35−7.47(m,8H)7.44−7.48(m,1H)7.53−7.66(m,2H).MS m/z:524.2[M+1]+
以下の化合物は、化合物46と類似した方法によって合成された。
Figure 2020522542
実施例49及び50:化合物49及び50の調製
Figure 2020522542
ステップ1:化合物49−1の調製
化合物C2(60.0mg、172.5μmol)の塩酸塩をジクロロメタン(3.0mL)に分散させ、窒素ガスの保護下、トリエチルアミン(69.8mg、690.0μmol)、化合物S−A1(49.4mg、224.2μmol)及びHATU(98.4mg、258.7μmol)を順次加えて、反応液を25℃で16時間撹拌し続けた。反応液を減圧して有機溶媒を除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:9−25%酢酸エチル/石油エーテル)で分離して精製し、化合物49−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.58−7.30(m,10H),7.10−6.45(m,2H),5.60−4.94(m,3H),4.85−4.47(m,3H),4.34−4.17(m,1H),3.69−3.51(m,3H),3.36−3.20(m,1H),3.08−2.79(m,1H),2.32−2.22(m,3H),1.95−1.61(m,8H).MS m/z:514.1[M+1]+
以下の化合物は、化合物49−1と類似した方法によって合成された。
Figure 2020522542
ステップ2:化合物49及び50の調製
化合物49−1(80.0mg、155.7μmol)をテトラヒドロフラン(3.0mL)及び水(1.0mL)に溶解し、次に、水酸化リチウム一水和物(37.3mg、1.5mmol)を加えて、反応液を25℃で16時間撹拌し続けた。反応液を1.0Mの塩酸でpHを5−6に調整し、酢酸エチル(10mLx3)で抽出し、併合した有機相を飽和食塩水10mLで洗浄し、無水硫酸ナトリウムで乾燥させて、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルクロマトグラフィーカラム(溶出液:50〜100%酢酸エチル/石油エーテル)で分離して精製し、産物を得て、次に、SFC(カラム:AD(250mm*30mm、10μm);移動相[0.1%NH32O MeOH];B%:20%−20%)で分離し、2つのジアステレオマーとして化合物49及び化合物50を得た。
化合物49:1H NMR(400MHz,DMSO−d6):δ7.58−7.21(m,10H),7.02−6.57(m,2H),5.49−5.09(m,1H),4.89−4.47(m,4H),4.41−4.37(d,J=16.8Hz,1H),4.18−4.00(m,1H),3.22−3.18(m,1H),2.38−2.25(m,1H),2.18−2.17(d,J=4.8Hz,3H),1.80−1.42(m,8H).MS m/z:500.2[M+1]+.SFC:カラム:Chiralpak AD−3(100mm*4.6mm,3μm);移動相:B:[0.05%DEA Methanol];B%:5%−40%4.5min,40%2.5min,5%1.0min;Rt=3.207min;97.2%de.
化合物50:1H NMR(400MHz,DMSO−d6):δ7.54−7.23(m,10H),7.05−6.69(m,2H),5.35−5.30(d,J=18.0Hz,1H),5.17−4.80(m,2H),4.79−4.29(m,3H),4.04(s,1H),3.22−3.18(m,1H),2.81−2.65(m,1H),2.19(s,3H),1.81−1.42(m,8H).MS m/z:500.1[M+1]+.SFC:カラム:Chiralpak AD−3(100mm*4.6mm,3μm);移動相:B:[0.05%DEA Methanol];B%:5%−40%4.5min,40%2.5min,5%1.0min;Rt=3.813min;96.4%de.
以下の化合物は、化合物49及び50と類似した方法によって合成された。
Figure 2020522542
Figure 2020522542
Figure 2020522542
実施例117:化合物117の調製
Figure 2020522542
ステップ1:化合物117−1の調製
化合物(−)−C23(110mg、437.76μmol)及びS−A1(115.71mg、525.31μmol)を無水ジクロロメタン(5mL)に溶解し、HATU(166.45mg、437.76μmol)及びジイソプロピルエチルアミン(169.73mg、1.31mmol、228.75uL)を加えて、反応液を25℃で16時間撹拌し続けた。反応液に水10mLを加えて、分液し、水相をジクロロメタン(10mL)で3回抽出し、有機相を併合して、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルカラムクロマトグラフィー(石油エーテル:酢酸エチル=2:1)で分離して精製し、化合物117−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.48−7.22(m,5H),7.07−6.93(m,1H),6.75−6.58(m,1H),5.81−4.06(m,7H),3.85−3.83(d,J=8.4Hz,3H),3.79−3.44(m,1H),3.27−2.83(m,1H),1.89−1.59(m,8H),1.27−0.85(m,3H).MS m/z:454.2[M+1]+
ステップ2:化合物117−2の調製
化合物117−1(45mg、99.22μmol)をテトラヒドロフラン(1mL)と水(2mL)の混合溶媒に溶解し、水酸化リチウム一水和物(83.27mg、1.98mmol)を加えて、反応液を25℃で16時間撹拌し続けた。反応液に水10mLを加えて、酢酸エチル(10mL)で3回抽出し、有機相を併合して、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルカラムクロマトグラフィー(石油エーテル:酢酸エチル=2:1)で分離して精製し、化合物117−2を得た。1H NMR(400MHz,CHLOROFORM−d):δ7.31−7.21(m,5H),7.05−6.98(m,1H),6.69−6.56(m,1H),5.61−5.51(m,1H),5.27−5.10(m,1H),4.93−4.56(m,1H),4.42−4.35(m,1H),4.08−4.03(m,1H),3.78−3.76(d,J=8.8Hz,3H),3.40−3.17(m,1H),3.08−2.73(m,1H),1.74−1.71(m,8H).MS m/z:426.1[M+1]+
ステップ3:化合物117−3の調製
化合物117−2(30mg、70.51μmol)をN,N−ジメチルホルムアミド(1mL)に溶解し、炭酸カリウム(19.49mg、141.02μmol)を加えて、反応液を25℃で30分間撹拌し、2−クロロメチルチオフェン(18.70mg、141.02μmol)を加えて、反応液を70℃に昇温して1時間撹拌し続けた。反応液に水5mLを加えて、酢酸エチル(5ml)で3回抽出し、有機相を併合して、有機溶媒を減圧下で除去し、得られた粗産物をシリカゲルカラムクロマトグラフィー(石油エーテル:酢酸エチル=10:1)で分離して精製し、化合物117−3を得た。MS m/z:618.1[M+1]+
ステップ4:化合物117の調製
化合物117−3(45mg、72.84μmol)をテトラヒドロフラン(2mL)と水(1mL)の混合溶液に溶解し、水酸化リチウム一水和物(30.57mg、728.42μmol)を加えて、反応液を25℃で16時間撹拌し続けた。水5mLを加えて、酢酸エチル(10mL)で3回抽出し、有機相を併合して、有機溶媒を減圧下で除去し、得られた粗産物を分取シリカゲルプレート(石油エーテル:酢酸エチル=5:1)で分離して精製し、化合物177を得た。1H NMR(400MHz,DMSO−d6):δ8.41(br s,2H),7.55−7.51(m,1H),7.36−7.23(m,4H),7.07−7.06(m,1H),7.01−6.98(m,1H),6.85−6.80(m,1H),5.32−5.25(m,1H),5.08−4.90(m,3H),4.82−4.73(m,1H),4.40−4.31(m,1H),4.14−4.02(m,1H),3.78(s,3H),2.73−2.66(m,1H),2.33−2.24(m,1H),2.15−1.99(m,1H),1.73−1.85(m,6H),1.45−1.23(m,1H).MS m/z:522.1[M+1]+.SFC:カラム:Chiralcel OD−3(100mm*4.6mm,3μm);移動相:B:[0.1%DEA EtOH];B%:5%−40%4.5min,40%2.5min,5%1.0min;Rt=3.370min;de=87.16%.
実施例118:化合物118の調製
Figure 2020522542
ステップ1:化合物118−1の調製
化合物S−A1(25.3g、114.9mmol)を無水ジクロロメタン(250.0mL)に溶解し、N,N−ジメチルホルムアミド(0.5mL)を加えて、窒素ガスの雰囲気下、塩化オキサリル(17.5g、137.8mmol、12.07mL)を滴下して、反応液を20−25℃で30分間撹拌し、有機溶媒を減圧下で除去し、得られた粗産物をジクロロメタン(200.0mL)に溶解して溶液を調製した。ピラゾール(8.6g、126.3mmol)及びN−メチルモルホリン(15.1g、149.3mmol、16.4mL)を無水ジクロロメタン(100.0mL)に溶解し、窒素ガスの雰囲気下、上記溶液をゆっくり滴下し、反応液を20−25℃で16時間撹拌し続けた。1.0Mの硫酸溶液(300mL)で2回洗浄して、飽和炭酸水素ナトリウム(300mL)で2回洗浄し、水(300mL)で洗浄し、飽和塩化ナトリウム水溶液(500mL)で洗浄し、無水硫酸ナトリウムで乾燥させて、ろ過し、有機溶媒を減圧下で除去し、得られた粗製品にn−ヘキサン(150mL)を加えて、70℃で30分間撹拌し、0℃にゆっくり冷却し、2時間静置した。ろ過し、ろ過ケーキをn−ヘキサン(80mL)で洗浄し、真空乾燥させて、化合物118−1を得た。1H NMR(400MHz,CHLOROFORM−d):δ8.24−8.23(d,J=2.4Hz,1H),7.73(s,1H),7.60−7.58(d,J=6.8Hz,2H),7.41−7.27(m,3H),6.44−6.43(m,1H),6.36(s,1H),4.21−3.98(m,1H),1.87−1.67(m,6H),1.56−1.42(m,2H).MS m/z:271.0[M+1]+.SFC:カラム:ChiralCel OJ−H(150mm*4.6mm,5μm);移動相:B:[0.05%DEA EtOH];B%:5%−40%−5%;Rt=1.936min;99.4%de.
ステップ2:化合物118の調製
化合物(−)−C6(50.0mg、167.0μmol)をN,N−ジメチルホルムアミド(2.0mL)に溶解し、1,1,3,3−テトラメチルグアニジン(23.1mg、200.4μmol)を加えて、混合液を25℃で1時間撹拌した後、化合物118−1(54.2mg、200.4μmol)を加えて、反応液を25℃で18時間撹拌し続けた。反応液に酢酸エチル(30mL)を加え、水(25mL)で2回洗浄し、飽和塩化ナトリウムの水溶液(20mL)で1回洗浄し、有機相を無水硫酸ナトリウムで乾燥させて、ろ過し、有機溶媒を減圧下で除去し、得られた粗製品をシリカゲル分取プレート(酢酸エチル/石油エーテル=1/1)で分離して精製し、化合物118を得た。1H NMR(400MHz,DMSO−d6):δ7.54−7.23(m,10H),6.74−6.43(m,2H),5.39−5.26(m,1H),5.12−4.55(m,4H),4.51−4.25(m,1H),4.16−3.97(m,1H),3.46−3.42(m,1H),2.21−2.16(m,1H),1.80−1.40(m,8H).MS m/z:502.2[M+1]+.SFC:カラム:ChiralCel OJ−H(150mm*4.6mm,5μm);移動相:B:[0.05%DEA EtOH];B%:5%−40%5.5min,40%3.0min,5%1.5min;Rt=4.009min;96.5%de.
実験例1:生体外評価
hAT2受容体結合実験
溶液及び緩衝液
緩衝液
50mM Tris
100mM NaCl
5mM MgCl2
0.1%BSA
プロテアーゼ阻害剤混合物、エチレンジアミン四酢酸不含−1錠(Roche#11873580001)(50mL1錠添加)
pH 7.4
実験方法及びステップ
化合物の調製
リガンドPD123319及び試験化合物用DMSOを参照して750μMの母液を調製した。化合物ごとに8個の濃度勾配(最高濃度750uM、3倍希釈)を調製し、10ul/ウェルで384ウェルプレートの母板に加えた。
SPA beadsを緩衝液で25mg/mlの母液に調製した。
同位体[125I]−Sar1−Ile8−Angiotensin IIに純水を加えて、50uCi/mlの母液を調製した。
膜の調製
HEK−293細胞のhAT2を過剰発現させた細胞膜を緩衝液で2.5mg/mlに調製した。
実験ステップ
ECHOを用いて母板から化合物200nlを試験384板の各ウェルに吸い取った。ZPEに等体積のDMSOを加えた。(反応中の試験化合物の濃度は250倍希釈)。
10μg/μlの磁気ビーズ、0.05μg/μlのAT2膜を含有する溶液を50ml調製して、シェーカーに入れて均一に混合した(100rpm、30min)。試験板には、最終的に1.25μg/ウェルのhAT2膜、250μg/ウェルの磁気ビーズを含有する。
ウェルあたり25μl加えるように、Multidrop Combiピペットで3.2の膜混合液を化合物試験板に加えた。
50uCi/mlの同位体[125I]−Sar1−Ile8−Angiotensin II母液を緩衝液で0.2nMの溶液に調製し、ウェルあたり25μlの体積を加えるように、Multidrop Combiピペットを用いて0.2nMの125Iを化合物試験板に加えた。125I同位体の最終濃度は、0.1nMであった。
調製済みの試験板をシェーカーに置いて、200rpm、室温で一晩処理した。
試験板を遠心機により1200rpmで1min遠心処理し、遠心処理した試験板についてMicrobetaでリーディングした。
実験結果を表1に示す。
Figure 2020522542
結論
結果から明らかなように、本発明の化合物の活性異性体は、EMA−401に比べて良好な生体外活性を有する。
実験例2:薬物動態学的な溶解度の測定
被測定化合物をDMSOに溶解して、10mmol/Lの原液を調製した。ピペット(Eppendorf Research社製)を用いて980μLの溶出媒体を2mLのスクリューキャップ付きガラス管瓶に加えた。各試験化合物の原液20μL及びQCサンプルをpH7.4の薬物動態学的検出溶液に相当する緩衝溶液に加えた。試験化合物及びDMSO溶液の最終濃度は、それぞれ200μM及び2%であった。瓶に蓋を付けた。最大濃度の理論値は200μMであった。室温下、880回転/分の速度で該混合物を24時間回転して揺動させた。バイアルを13000回転/分で30分間遠心処理した。デジタルピペットで上澄み液200μLを96−ウェルプレートに加えた。高速液体クロマトグラフィー法のスペクトルにより試験化合物の溶解度を測定し、実験結果を表2に示す。
Figure 2020522542
結論
結果から明らかなように、本発明の化合物は、良好な溶解度(pH=7.4)を有する。
具体例3
ヒト肝ミクロソームCYP阻害実験
研究の目的は、各アイソザイムの特異的プローブ基質を用いて被測定化合物によるヒト肝ミクロソームシトクロムP450アイソザイム(CYP1A2、CYP2C9、CYP2C19、CYP2D6及びCYP3A4)への阻害性を評価することである。
混合ヒト肝ミクロソーム(pooled HLM、n≧50)は、Corning Inc.(Steuben、New York、USA)又はその他の認定サプライヤーから購入され、使用時までに−60℃未満の冷蔵庫に保存した。
希釈された一連の濃度の被測定化合物の作動液をヒト肝ミクロソーム、プローブ基質及び循環器系の補助因子を含有するインキュベーションシステムに加え、メタノール含有量は、約最終インキュベーションシステムの1%(v/v)であった。被測定化合物を含有しないが、溶媒を含有する対照を酵素活性対照(100%)とした。サンプルにおける分析物の濃度については、液体クロマトグラフィーータンデム質量分析(LC/MS/MS)方法により測定した。サンプル(空白溶媒、陽性対照阻害剤又は被測定化合物)濃度の平均値を用いて計算した。SigmaPlot(V.11)で被測定化合物の活性平均百分率を用いて濃度について非線形回帰分析を行った。3パラメータ又は4パラメータ変曲対数方程によりIC50値を算出した。実験結果を表3に示す。
Figure 2020522542
結論
本発明の化合物は、5個のCYPアイソザイムに対して阻害作用がなく、又は阻害作用がすべて弱く、それは、人体内で薬物間相互作用が発生する可能性が低いことを示した。
具体例4
CACO−2細胞における化合物の双方向透過性の研究
Caco−2細胞における被測定化合物の双方向透過性を測定し、且つ被測定化合物の排出トランスポートをテストした。
実験方法
ストック液の調製
化合物をジメチルスルホキシド(DMSO)又はほかの適切な溶媒に溶解して、適切な濃度のストック液を調製した。
適切な内部標準(internal standard、IS)をアセトニトリル(acetonitrile、ACN)又はほかの有機溶媒に溶解して停止液とし、具体的な情報については、研究報告において記載されている。
本研究において、ナドロール(nadolol)、メトプロロール(metoprolol)、ジゴキシン(digoxin)、エストロン3−硫酸カリウム(estrone3−sulfate potassium、E3S)及びGF120918をそれぞれ低浸透性対照化合物、高浸透性対照化合物、P−糖タンパク質(P−gp)基質、乳がん耐性タンパク質(BCRP)基質及び排出トランスポータ阻害剤とした。これら化合物のストック液は、DMSOで調製され、≦−30℃に保存し、有効使用期間が6ヵ月であった。
投与液及び受け取り液の調製
本研究では、HBSS(Hanks Balanced Salt Solution)10mM HEPES(2−[4−(2−ヒドロキシエチル)−1−ピペラジン]エタンスルホン酸含有)をトランスポート緩衝液(pH 7.40±0.05)とした。投与液及び受け取り液の調製方法を表4に示した。
Figure 2020522542
細胞培養
37±1℃、5%CO2及び飽和湿度という培養条件で、Caco−2細胞をMEM培地(Minimum Essential Media)で培養した。次に、細胞を1×105細胞/cm2の接種密度でCorning Transwell−96ウェルプレートに1×105細胞/cm2の接種密度でし、その後、細胞を二酸化炭素インキュベータに入れて21−28日間培養した後、トランスポート実験に用い、培養期間において4〜5日おきに培地を交換した。
トランスポート実験
化合物の投与濃度を2、10及び100μMとして、100含有GF120918を含有する又は含有しない条件下で、二方向(A−B及びB−A方向)において投与し、各投与濃度ごとに3つの平行を設置した。Digoxin及びE3Sの試験濃度をそれぞれ10及び5μMとし、10μM GF120918を含有する又は含有しない条件下で、二方向に投与した。nadolol及びmetoprololの試験濃度をともに2μMとし、10μM GF120918不含の条件下で、一方向(A−B方向)に投与し、3個の対照化合物についても3個の平行を設置した。
投与液、受け取り液及びトランスポート緩衝液を37℃で30分間プレインキュベーションした。細胞層をトランスポート緩衝液で2回濡らした。投与液と受け取り液をそれぞれ対応する細胞板のウェル(各頂端と底端のウェルに75及び250μL加える)に加えた。加えた後、細胞板を37±1℃、5%CO2及び飽和湿度のインキュベータに入れて120分間インキュベートした。
サンプルから収集した情報を表5に示した。
Figure 2020522542
すべての化合物をボルテックスで振とうさせた後、3220×g、20℃で20分間遠心処理し、適切な体積の上澄液をサンプル分析板に移し、ブロックした直後に化合物を分析しない場合、2−8℃に保存した。LC/MS/MS方法で分析し、化合物の処理方法の詳細は研究報告に記載された。
細胞膜完全性の試験
ルシファーイエロー検出実験(Lucifer Yellow Rejection Assay)をCaco−2細胞の完全性試験に用いた。細胞板ごとに6個の細胞ウェルをランダムに選択して、それぞれ100μMルシファーイエローを加え、ルシファーイエロー検出実験をトランスポート実験と同時に行った。120分間インキュベート後、ルシファーイエローサンプルについて、425/528nm(励起/放射)スペクトルでサンプルにおけるルシファーイエローの相対蛍光強度(the relative fluorescence unit、RFU)を検出した。
サンプル分析
サンプルにおける被測定化合物、対照化合物nadolol、metoprolol、digoxin及びE3Sの濃度は、すべて液体クロマトグラフィーータンデム質量分析(LC/MS/MS)方法により測定した。分析物及び内部標準の保持時間、クロマトグラムの収集及び色スペクトルの積分は、ソフトウェアAnalyst(AB Sciex、Framingham、Massachusetts、USA)で処理され、実験結果は、表6に示された。
Figure 2020522542
結論
試験結果から明らかなように、EMA−401に対して、本発明の化合物は、浸透性を改善し、化合物の吸収に有利であった。
具体例5
血漿タンパク質結合率(PPB)試験
平衡透析法により0.2、2、10μMの被測定化合物とSprague−Dawleyラット、ビーグル犬及びヒトの血漿の生体外タンパク質との結合率を測定した。
実験方法
実験には、96ウェル平衡透析板(HTDialysis装置製)を用いて、被測定化合物と対照化合物の血漿タンパク質結合率を測定した。
実験開始前、透析膜を取扱説明書に従って前処理し、その後、必要に応じて透析装置を組み立てた。
CD−1マウス、Sprague−Dawleyラット、ビーグル犬、カニクイザル及びヒトの空白血漿(抗凝固剤EDTA−K2、市販品、又は上海薬明康徳新薬開発有限公司の薬製評価部において調製、使用時までに−60℃未満の冷蔵庫に保存)に、一定の体積の被測定化合物又は対照化合物の作動溶液を加えて、濃度0.2、2、10μMの被測定化合物及び濃度2μMの対照化合物の血漿サンプル(n=1)を調製した。有機相の含有量は≦1%であった。まず、一定の体積の被測定化合物と対照化合物を含む血漿サンプルをサンプルの受け取り板に入れて、ゼロ時刻のサンプル(T0サンプル、n=3)とし、次に、被測定化合物と対照化合物を含有する血漿サンプルを透析膜の一方側(血漿側、n=3)に加えて、透析膜の他方側に一定の体積の透析緩衝液(緩衝液側、n=3)を加え、その後、透析板を濡れた5%CO2含有インキュベータに入れて、37±1℃で4時間インキュベートした。
インキュベートが終了した後、一定の体積の透析後の緩衝液サンプル(Fサンプル)及び透析後の血漿サンプル(Tサンプル)をサンプルの受け取り板に移し、すべてのサンプルについてタンパク質沈殿を行った後、LC/MS/MS分析を行い、化合物の遊離率(%Unbound)を下記式により算出した。%Unbound=100*[F]/[T],%Bound=100−%Unbound。式中、%Unboundは、化合物の遊離率であり、%Boundは、化合物の結合率であり、[F]は、透析板の緩衝液側での化合物の濃度であり、[T]は、透析板の血漿側での化合物の濃度である。実験結果を表7に示す。
Figure 2020522542
結果から明らかなように、EMA−401に対して、試験化合物は、血漿タンパク質結合率を改善し、化合物の薬物作用ターゲットへの送達に有利であった。

Claims (21)

  1. 式(II)に示される化合物及びその薬学的に許容可能な塩。
    Figure 2020522542
    (式中、
    Lは、−O−、−S−、−N(R)−、−N(R)C(=O)−、−C(=O)O−から選ばれ、
    1は、単結合、−CH2−、−CH2CH2−から選ばれ、
    1は、1、2又は3個のRにより置換されてもよい、C1-6アルキル基、C1-6ヘテロアルキル基、C3-7シクロアルキル基、3〜7員ヘテロシクロアルキル基、6〜10員アリール基、5〜6員ヘテロアリール基から選ばれ、
    2は、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のRにより置換されてもよい、C1-6アルキル基、C1-6ヘテロアルキル基から選ばれ、
    3は、1、2又は3個のRにより置換されてもよい、フェニル基、5〜6員ヘテロアリール基、5〜6員ヘテロシクロアルキル基から選ばれ、
    4は、H、又は1、2又は3個のRにより置換されてもよい、C1-3アルキル基から選ばれ、
    5は、H、F、Cl、Br、I、OHから選ばれ、
    6は、H、F、Cl、Br、I、OHから選ばれ、
    Rは、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のR’により置換されてもよい、C1-3アルキル基、C1-3ヘテロアルキル基から選ばれ、
    R’は、F、Cl、Br、I、OH、CN、NH2から選ばれ、
    「*」を付した炭素原子は、キラル炭素原子であり、(R)又は(S)単一エナンチオマーの形態又は1種のエナンチオマーを豊富に含む形態で存在し、
    「#」を付した炭素原子は、キラル炭素原子であり、(R)又は(S)単一エナンチオマーの形態又は1種のエナンチオマーを豊富に含む形態で存在し、
    前記3〜7員ヘテロシクロアルキル基、5〜6員ヘテロアリール基、C1-6ヘテロアルキル基、C1-3ヘテロアルキル基、5〜6員ヘテロシクロアルキル基の「ヘテロ」は、それぞれ独立して−C(=O)NH−、−NH−、N、−O−、−S−、−C(=O)O−、−C(=O)−から選ばれ、
    以上のいずれの場合においても、ヘテロ原子又はヘテロ原子団の数が、それぞれ独立して1、2又は3から選ばれる。)
  2. Rは、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のR’により置換されてもよい、C1-3アルキル基、C1-3アルコキシ基から選ばれる請求項1に記載の化合物及びその薬学的に許容可能な塩。
  3. Figure 2020522542
  4. Lは、−O−、−S−、−NH−、−N(CH3)−、−NHC(=O)−、−N(CH3)C(=O)−、−C(=O)O−から選ばれる請求項1〜3のいずれか1項に記載の化合物及びその薬学的に許容可能な塩。
  5. 1は、1、2又は3個のRにより置換されてもよい、C1-4アルキル基、C1-6ヘテロアルキル基、C3-7シクロアルキル基、3〜7員ヘテロシクロアルキル基、6〜10員アリール基、5〜6員ヘテロアリール基から選ばれる請求項1〜3のいずれか1項に記載の化合物及びその薬学的に許容可能な塩。
  6. 1は、1、2又は3個のRにより置換されてもよい、C1-4アルキル基、シクロブタニル基、シクロペンタニル基、シクロペンテニル基、ビスシクロ[3.1.0]ペンテニル基、オキセタニル基、テトラヒドロフラニル基、テトラヒドロピラニル基、フェニル基、ナフチル基、チエニル基、ピラゾリル基、イミダゾリル基、オキサゾリル基、チアゾリル基、モルホリニル基、ピペラジニル基、ピペリジニル基、ピリジル基、ピラジニル基、ピリミジニル基から選ばれる請求項5に記載の化合物及びその薬学的に許容可能な塩。
  7. Figure 2020522542
  8. Figure 2020522542
  9. Figure 2020522542
  10. 2は、H、ハロゲン、OH、NH2、CN、又は1、2又は3個のRにより置換されてもよい、C1-3アルキル基、C1-3アルコキシ基、C1-3アルキルチオ基、C1-3アルキルアミノ基から選ばれる請求項1〜3のいずれか1項に記載の化合物及びその薬学的に許容可能な塩。
  11. Figure 2020522542
  12. 3は、1、2又は3個のRにより置換されてもよい、フェニル基、ピリジル基、ピリミジニル基、ピラジニル基、チエニル基、チアゾリル基、イソチアゾリル基、オキサゾリル基、イソオキサゾリル基、テトラヒドロピラニル基、ピペリジニル基、モルホリニル基から選ばれる請求項1〜3のいずれか1項に記載の化合物又はその薬学的に許容可能な塩。
  13. 3は、1、2又は3個のRにより置換されてもよい、
    Figure 2020522542
    から選ばれる請求項12に記載の化合物又はその薬学的に許容可能な塩。
  14. 3は、
    Figure 2020522542
    から選ばれる請求項13に記載の化合物又はその薬学的に許容可能な塩。
  15. Figure 2020522542
    選ばれる請求項1又は14に記載の化合物又はその薬学的に許容可能な塩。
  16. 4は、H、Meから選ばれる請求項1〜3のいずれか1項に記載の化合物又はその薬学的に許容可能な塩。
  17. 以下から選ばれる請求項1〜5、9〜16のいずれか1項に記載の化合物及びその薬学的に許容可能な塩。
    Figure 2020522542
    (式中、
    R、R2、R3、R4、R5、R6、L1、Lは、請求項1〜5、9〜16と同義であり、
    Tは、N又はCHから選ばれ、
    Dは、CH2又はOから選ばれ、
    m、pは、それぞれ独立して0、1、2又は3から選ばれ、且つmとpは、同時に0又は3から選ばれてはならず、
    nは、0、1、2又は3から選ばれ、
    且つmが0、Dが0である場合、nは、3ではない。)
  18. 以下から選ばれる下記式に示される化合物。
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
  19. 以下から選ばれる請求項18に記載の化合物。
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
    Figure 2020522542
  20. AT2R受容体関連疾患の治療薬の調製における、請求項1〜18のいずれか1項に記載の化合物又はその薬学的に許容可能な塩の応用。
  21. 慢性疼痛の治療薬の調製における、請求項1〜18のいずれか1項に記載の化合物又はその薬学的に許容可能な塩の応用。
JP2019567596A 2017-06-09 2018-06-08 At2r受容体拮抗剤としてのカルボン酸誘導体 Active JP6873284B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710434262.2 2017-06-09
CN201710434262 2017-06-09
PCT/CN2018/090432 WO2018224037A1 (zh) 2017-06-09 2018-06-08 作为at2r受体拮抗剂的羧酸衍生物

Publications (2)

Publication Number Publication Date
JP2020522542A true JP2020522542A (ja) 2020-07-30
JP6873284B2 JP6873284B2 (ja) 2021-05-19

Family

ID=64565746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019567596A Active JP6873284B2 (ja) 2017-06-09 2018-06-08 At2r受容体拮抗剤としてのカルボン酸誘導体

Country Status (9)

Country Link
US (1) US11021445B2 (ja)
EP (1) EP3620454B1 (ja)
JP (1) JP6873284B2 (ja)
KR (1) KR102132761B1 (ja)
CN (1) CN110914243B (ja)
AU (1) AU2018279669B8 (ja)
ES (1) ES2878313T3 (ja)
PT (1) PT3620454T (ja)
WO (1) WO2018224037A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2019373178B2 (en) * 2018-11-02 2022-03-24 Shandong Danhong Pharmaceutical Co., Ltd. Angiotensin II receptor 2 antagonist salt form and crystalline form, and preparation method therefor
CN110950739B (zh) * 2019-11-22 2022-05-20 浙江工业大学 一种苯酚类化合物邻位直接氟化的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040167197A1 (en) * 2003-02-26 2004-08-26 Rudolph Amy E. Compositions, combinations, and methods for treating cardiovascular conditions and other associated conditions
JP2012500267A (ja) * 2008-08-19 2012-01-05 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ 冷感−メントール受容体拮抗剤
JP2013517300A (ja) * 2010-01-19 2013-05-16 スピニフェクス ファーマシューティカルズ ピーティーワイ リミテッド 神経伝導速度改善のための方法および組成物
JP2016525093A (ja) * 2013-07-08 2016-08-22 ノバルティス アーゲー ヘテロ環式化合物およびそれらの使用方法
WO2017036318A1 (zh) * 2015-08-29 2017-03-09 上海翰森生物医药科技有限公司 1,2,3,4-四氢异喹啉衍生物、其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246943A (en) * 1992-05-19 1993-09-21 Warner-Lambert Company Substituted 1,2,3,4-tetahydroisoquinolines with angiotensin II receptor antagonist properties
PT1830869E (pt) * 2004-12-24 2013-08-22 Spinifex Pharm Pty Ltd Método de tratamento ou profilaxia
DK2595960T3 (en) * 2010-07-21 2016-05-09 Novartis Ag Salt and solvates of a tetrahydroisoquinoline derivative

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040167197A1 (en) * 2003-02-26 2004-08-26 Rudolph Amy E. Compositions, combinations, and methods for treating cardiovascular conditions and other associated conditions
JP2012500267A (ja) * 2008-08-19 2012-01-05 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ 冷感−メントール受容体拮抗剤
JP2013517300A (ja) * 2010-01-19 2013-05-16 スピニフェクス ファーマシューティカルズ ピーティーワイ リミテッド 神経伝導速度改善のための方法および組成物
JP2016525093A (ja) * 2013-07-08 2016-08-22 ノバルティス アーゲー ヘテロ環式化合物およびそれらの使用方法
WO2017036318A1 (zh) * 2015-08-29 2017-03-09 上海翰森生物医药科技有限公司 1,2,3,4-四氢异喹啉衍生物、其制备方法和应用

Also Published As

Publication number Publication date
CN110914243A (zh) 2020-03-24
PT3620454T (pt) 2021-09-10
AU2018279669A8 (en) 2020-10-15
AU2018279669B2 (en) 2020-05-28
KR20200013052A (ko) 2020-02-05
CN110914243B (zh) 2023-02-28
ES2878313T3 (es) 2021-11-18
AU2018279669B8 (en) 2020-10-15
US20200102275A1 (en) 2020-04-02
WO2018224037A1 (zh) 2018-12-13
KR102132761B1 (ko) 2020-07-17
EP3620454A4 (en) 2020-04-08
JP6873284B2 (ja) 2021-05-19
EP3620454A1 (en) 2020-03-11
EP3620454B1 (en) 2021-05-05
AU2018279669A1 (en) 2020-01-16
US11021445B2 (en) 2021-06-01

Similar Documents

Publication Publication Date Title
JP6600365B2 (ja) Jak阻害剤
JP7346441B2 (ja) 置換ピリジン及びピリミジン並びにglun2b受容体調節物質としてのそれらの使用
CN107011330A (zh) 布鲁顿酪氨酸激酶抑制剂
EP4048259A1 (en) Inhibitors of raf kinases
JP2023089010A (ja) 3-ヒドロキシ-N-(3-(7H-ピロロ[2,3-d]ピリミジン-4-イル)フェニル)ピロリジン-1-カルボキサミド誘導体
CN111344290A (zh) 作为Wee1抑制剂的大环类化合物及其应用
JP7168149B2 (ja) Fgfr阻害剤としてのピラジン-2(1h)-オン系化合物
JP7123956B2 (ja) スピロ化合物およびその使用
JP2020508342A (ja) 三環式化合物及びその応用
JP7237010B2 (ja) Hdac6選択的阻害剤およびその製造方法と使用
JP2023505850A (ja) サイクリン依存性キナーゼ9阻害剤としての化合物及びその用途
JP7086075B2 (ja) Ccr2/ccr5受容体拮抗剤としてのビフェニル化合物
JP6873284B2 (ja) At2r受容体拮抗剤としてのカルボン酸誘導体
TWI706950B (zh) 二氮雜-苯並熒蒽類化合物
JP6883882B2 (ja) S1p1アゴニスト及びその応用
CN111148515A (zh) 2,6-二氧杂螺[4,5]癸烷类衍生物、其制备方法及其在医药上的应用
CN111718332B (zh) 2-取代吡唑氨基-4-取代氨基-5-嘧啶甲酰胺类化合物、组合物及其应用
EP3720855B1 (en) Imidazopyridine derivatives and the use thereof as medicament
JP7245832B2 (ja) ピリミジンスルファミド系誘導体、その製造方法およびその医薬における使用

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210420

R150 Certificate of patent or registration of utility model

Ref document number: 6873284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150