JP2020174448A - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
JP2020174448A
JP2020174448A JP2019074409A JP2019074409A JP2020174448A JP 2020174448 A JP2020174448 A JP 2020174448A JP 2019074409 A JP2019074409 A JP 2019074409A JP 2019074409 A JP2019074409 A JP 2019074409A JP 2020174448 A JP2020174448 A JP 2020174448A
Authority
JP
Japan
Prior art keywords
value
axis current
control
current command
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019074409A
Other languages
English (en)
Inventor
将人 堀
Masahito Hori
将人 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2019074409A priority Critical patent/JP2020174448A/ja
Priority to CN202010267167.XA priority patent/CN111817632B/zh
Publication of JP2020174448A publication Critical patent/JP2020174448A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Ac Motors In General (AREA)
  • Stopping Of Electric Motors (AREA)

Abstract

【課題】回生電力を回転電機にて消費させて制動力を得ることを可能とする車両の制御装置を提供する。【解決手段】モータECU20は、車両100の駆動軸1,2を駆動するためのMG40を回生動作させている状態にて、MG40のコイルに入力される駆動電流を生成するための電流制御値(d軸電流指令値Id、q軸電流指令値Iq)を所定範囲にて周期的に変動させ、この変動された電流制御値に基づく駆動電流を受けたMG40にて生じる鉄損によって、MG40の回生電力を消費させる。【選択図】図1

Description

本発明は、車両の制御装置に関する。
EV(Electrical Vehicle)又はHEV(Hybrid Electrical Vehicle:ハイブリッド電気自動車)等の電動車両には、車輪の駆動力を得るためのモータ等の回転電機と、バッテリと、が搭載されている。電動車両では、制動時に回転電機を発電機として機能させて回生電力を生成し、これをバッテリへの充電等によって消費することで、制動力を得ることが行われている。しかし、バッテリが十分に充電されている状態等においては、回生電力を消費させることができず、制動力を別手段で賄う等で対応せざるを得ない場合がある。
特許文献1には、バッテリが過充電したり過大な電圧により充電したりするおそれがあると判断した場合には、トルクに寄与しない無効電力をモータに印加する(具体的には、モータの電流指令値を修正する)ことにより、余剰分の電力をモータで消費させることが記載されている。
特開2005−002989号公報
しかし、特許文献1には、具体的な電流指令値の制御方法については記載されていない。
本発明の目的は、回生電力を回転電機にて消費させて制動力を得ることを可能とする車両の制御装置を提供することにある。
本発明の車両の制御装置は、車両の駆動軸を駆動するための回転電機を回生動作させている状態にて、前記回転電機のコイルに入力される駆動電流を生成するための電流制御値を所定範囲にて周期的に変動させる第一制御を行う制御部を備え、前記第一制御によって変動された前記電流制御値に基づく前記駆動電流を受けた前記回転電機にて生じる鉄損によって前記回転電機の回生電力を消費させるものである。
本発明の車両の制御装置によれば、回生電力を回転電機にて消費させて制動力を得ることができる。
本発明の車両の制御装置によって制御される車両の一実施形態の概略構成を示す模式図である。 図1に示すモータECUのハードウェア構成を示す模式図である。 図1に示すモータECUが第一制御を行っている状態における電流ベクトルの変化の一例を説明するための電流ベクトル平面を示す図である。 図1に示すモータECUが比較例の制御を行っている状態における電流ベクトルの変化の一例を説明するための電流ベクトル平面を示す図である。 図1に示すMGのコイルに供給される1相の交流電流の波形の一例を示す図である。 図1に示すモータECUが第一制御の第一の変形例を行っている状態における電流ベクトルの変化の一例を説明するための電流ベクトル平面を示す図である。
図1は、本発明の車両の制御装置によって制御される車両の一実施形態の概略構成を示す模式図である。図1に示す車両100は、駆動輪DW,DWと、駆動軸1と、駆動軸2と、ディファレンシャルギヤ3と、バッテリ(BATT)50と、駆動軸1,2に動力を伝達するモータジェネレータ(MG)40と、PDU(Power Drive Unit)30と、PDU30を制御するモータECU(Electronic Control Unit)20と、車両100全体を統括制御するマネジメントECU10と、を備える。モータECU20とPDU30は、車両の制御装置を構成する。
駆動軸1,2は、駆動輪DW,DWにMG40の出力を伝える回転軸(例えばドライブシャフトやプロペラシャフト等)である。
MG40は、ディファレンシャルギヤ3及び駆動軸1,2を介して駆動輪DW,DWに接続されている。MG40は、バッテリ50からの電力供給によって、駆動輪DW,DWの動力源である電動機として動作し、車両100が走行するための動力を発生する。MG40にて発生したトルクは、ディファレンシャルギヤ3及び駆動軸1,2を介して、駆動輪DW,DWに伝達される。MG40は、車両100の制動時には発電機として動作し得る。MG40は、例えば、3相交流式のIPM(Interior Permanent Magnet)等のPMSM(Permanent Magnet Synchronous Motor)等により構成される。
バッテリ50は、例えば直列に接続された複数の蓄電セルを有し、例えば100〜200Vの高電圧を供給する。蓄電セルは、例えば、リチウムイオン電池又はニッケル水素電池等である。
PDU30は、MG40が電動機として動作する際のバッテリ50の出力電圧を昇圧する。また、PDU30は、車両100の制動時にMG40が発電して直流に変換された回生電力をバッテリ50に充電する場合に、MG40の出力電圧を降圧する。
PDU30は、MG40のコイルに3相の交流電流を入力するためのモータドライバ31と、モータドライバ31を制御するための制御電圧を、モータECU20にて生成された電流制御値に基づいて生成する電圧生成部32と、を備える。モータドライバ31は、例えば、2つのトランジスタの直列回路が3組並列に接続された構成である。モータドライバ31の各トランジスタは、電圧生成部32にて生成された制御電圧によってオンオフ制御される。
電圧生成部32は、ベクトル制御を行うためのハードウェアであり、モータECU20から入力されるd軸電流指令値Id及びq軸電流指令値Iqに基づいて、モータドライバ31の各トランジスタの制御電圧を生成する。PDU30では、モータECU20から入力されるd軸電流指令値Id及びq軸電流指令値Iqに基づいて生成された制御電圧によってモータドライバ31が制御されることで、このd軸電流指令値Id及びq軸電流指令値Iqに基づく3相交流電流がモータドライバ31からMG40のコイルに供給される。
d軸電流指令値Idを横軸とし、q軸電流指令値Iqを縦軸とする電流ベクトル平面を定義すると、この電流ベクトル平面の原点から、d軸電流指令値Id及びq軸電流指令値Iqのプロット点まで延びる電流ベクトルの長さによって3相交流電流の振幅が決まり、この電流ベクトルの進角によって3相交流電流の位相が決まる。
モータECU20は、d軸電流指令値Id及びq軸電流指令値Iqを生成してPDU30の電圧生成部32に入力する。モータECU20は、MG40の回転数rpm、PDU30にバッテリ50から入力される電圧V2、及びMG40のトルク目標値GT等の情報に基づいて、d軸電流指令値Id及びq軸電流指令値Iqを生成する。モータECU20の具体的な構成は後述する。
マネジメントECU10は、アクセル開度AP、車両100の走行速度V、バッテリ50の充電状態を示すSOC(State Of Charge)、及び車両100の走行路の勾配情報θ等を取得し、これら情報に基づいて、回生動作中のMG40における廃電(MG40の回生電力をバッテリ50等の機器にて消費させるのではなく、自機にて消費させることを言う)が必要か否かを判断する。マネジメントECU10は、廃電が必要と判断した場合には、必要廃電量Wと廃電指示信号をモータECU20に入力する。
モータECU20は、MG40が発電機として動作中(回生動作中)であり、且つ、廃電指示信号をマネジメントECU10から受けた場合には、PDU30に入力するd軸電流指令値Id及びq軸電流指令値Iqの各々を、所定範囲にて周期的に変動させる第一制御を行う。
モータECU20は、記憶媒体としてのROM20aを備えている。ROM20aには、マネジメントECU10から指定され得る必要廃電量Wを、MG40の回転数rpm及びトルク目標値GTの組み合わせにおいて実現するために必要なd軸電流指令値Idの増減量(Δd)のデータが記憶されている。
モータECU20は、廃電指示信号と必要廃電量WをマネジメントECU10から受けると、その時点でのMG40の回転数rpm及びトルク目標値GTの組み合わせにて、その必要廃電量Wを実現するために必要なd軸電流指令値Idの増減量(Δd)を、ROM20aから検索して取得する。そして、モータECU20は、廃電指示信号を受ける直前においてPDU30に入力していたd軸電流指令値Id(以下では、Id_bfともいう)に増減量Δdを加算した値から、d軸電流指令値Id_bfから増減量Δdを減算した値を上記所定範囲とし、この所定範囲にて、そのd軸電流指令値Id_bfを中心値として、PDU30に入力するd軸電流指令値IdをΔdずつ増減させる。
モータECU20は、PDU30に入力中のd軸電流指令値Idの増減によってMG40のトルクが変動しないように、PDU30に入力するq軸電流指令値Iqを、廃電指示信号を受ける直前においてPDU30に入力していたq軸電流指令値Iqに対して増減させる。このように、モータECU20は、第一制御時には、MG40のトルクを一定にしたまま、d軸電流指令値Id及びq軸電流指令値Iqの各々を周期的に変動させる。
図2は、図1に示すモータECU20のハードウェア構成を示す模式図である。モータECU20は、図示省略のプロセッサと、T−IMAP21と、電流ベクトルシフタ(CVS)積分器22と、切替部23,24と、を備える。
T−IMAP21には、モータECU20のプロセッサから、MG40の回転数rpm、入力電圧V2、及びトルク目標値GTの情報が入力される。T−IMAP21は、入力された情報に基づいて、入力されたトルク目標値GTを実現するために必要なd軸電流指令値Id及びq軸電流指令値Iqの組み合わせをROM20a内のデータベースから読み出し、読み出したデータを、d軸電流出力値Id_TI及びq軸電流出力値Iq_TIとして出力する。T−IMAP21から出力されたd軸電流出力値Id_TIは、CVS積分器22と切替部23とに入力される。T−IMAP21から出力されたq軸電流出力値Iq_TIは、CVS積分器22と切替部24とに入力される。
CVS積分器22は、T−IMAP21から入力されたd軸電流出力値Id_TI及びq軸電流出力値Iq_TIと、モータECU20のプロセッサから入力された情報とに基づいて、d軸電流出力値Id_CVS及びq軸電流出力値Iq_CVSを出力する。d軸電流出力値Id_CVSは、切替部23に入力される。q軸電流出力値Iq_CVSは、切替部24に入力される。
切替部23と切替部24には、モータECU20のプロセッサから、廃電指示信号が入力される。切替部23は、廃電指示信号を受けた場合には、d軸電流出力値Id_CVSをd軸電流指令値Idとして出力し、廃電指示信号を受けていない場合には、d軸電流出力値Id_TIをd軸電流指令値Idとして出力する。切替部23から出力されたd軸電流指令値Idは、電圧生成部32に入力される。
切替部24は、廃電指示信号を受けた場合には、q軸電流出力値Iq_CVSをq軸電流指令値Iqとして出力し、廃電指示信号を受けていない場合には、q軸電流出力値Iq_TIをq軸電流指令値Iqとして出力する。切替部24から出力されたq軸電流指令値Iqは、電圧生成部32に入力される。
CVS積分器22には、モータECU20のプロセッサから、d軸電流指示値Id_CM、MG40のトルクの推定値であるトルク推定値ET、トルク目標値GT、及び廃電指示信号が入力される。CVS積分器22は、廃電指示信号を受信していない期間においては、d軸電流出力値Id_CVS及びq軸電流出力値Iq_CVSをそれぞれゼロとして動作を停止する。
モータECU20のプロセッサは、廃電指示信号と必要廃電量WをマネジメントECU10から受けると、その時点でのMG40の回転数rpm及びトルク目標値GTの組み合わせにて、その必要廃電量Wを実現するために必要なd軸電流指令値Idの増減量(Δd)を、ROM20aから検索して取得する。そして、モータECU20は、廃電指示信号を受ける直前においてT−IMAP21から出力されていたd軸電流出力値Id_TIに増減量Δdを加算した値(Id_MAXという)と、d軸電流出力値Id_TIから増減量Δdを減算した値(Id_MINという)を生成し、Id_MAXとId_MINをそれぞれd軸電流指示値Id_CMとして、交互にCVS積分器22に入力する。
CVS積分器22は、モータECU20のプロセッサから廃電指示信号の入力を受けると、その時点にてT−IMAP21から出力されていたd軸電流出力値Id_TI及びq軸電流出力値Iq_TIを初期値にセットする。そして、CVS積分器22は、プロセッサからId_MAXが入力されると、d軸電流出力値Id_CVSを初期値からId_MAXまで上昇させる。その後、CVS積分器22は、プロセッサからId_MINが入力されると、d軸電流出力値Id_CVSをId_MAXからId_MINまで低下させる。プロセッサからId_MAXとId_MINが所定間隔にて交互に入力されることで、CVS積分器22のd軸電流出力値Id_CVSは、初期値のd軸電流出力値Id_TIを中心として一定時間ごとにΔd増減されることになる。
CVS積分器22は、q軸電流出力値Iq_CVSについては、入力されるトルク推定値ETとトルク目標値GTとが一致するように、出力中のd軸電流出力値Id_CVSに応じて変動させる。
廃電指示信号がCVS積分器22、切替部23、及び切替部24に入力されると、CVS積分器22の出力がそのままd軸電流指令値Id及びq軸電流指令値Iqとして電圧生成部32に入力されることになる。例えば、廃電指示信号がCVS積分器22に入力されてd軸電流出力値Id_CVSが初期値から増加し、d軸電流指令値Idが増加する場合を考える。この場合には、増加後のd軸電流指令値Idと、CVS積分器22に初期値として設定されたq軸電流出力値Iq_TIからなるq軸電流指令値Iqとが電圧生成部32に入力される。
電圧生成部32では、これらd軸電流指令値Id及びq軸電流指令値IqからPI制御に基づいてd軸電圧指令値Vd及びq軸電圧指令値Vqが生成される。モータECU20のプロセッサは、例えば、このd軸電圧指令値Vd及びq軸電圧指令値Vqから、MG40のトルク推定値ETを求める。モータECU20のプロセッサは、CVS積分器22から出力されたd軸電流出力値Id_CVS及びq軸電流出力値Iq_CVSから、MG40のトルク推定値ETを求めてもよい。
トルク推定値ETが求められると、これがCVS積分器22に入力される。CVS積分器22では、現時点でのd軸電流出力値Id_CVSがd軸電流指令値Idとなっている状態にて、トルク推定値ETとトルク目標値GTが一致するように、q軸電流出力値Iq_CVSの調整を行う。この調整によって、d軸電流指令値Id及びq軸電流指令値Iqが変動している状態であっても、トルク推定値ETはトルク目標値GTに近い状態に制御される。つまり、MG40のトルク変動なく、d軸電流指令値Id及びq軸電流指令値Iqの変動が行われることになる。
図3は、図1に示すモータECU20が第一制御を行っている状態における電流ベクトルの変化の一例を説明するための電流ベクトル平面を示す図である。図3の横軸はd軸電流指令値Idを示している。図3の縦軸はq軸電流指令値Iqを示している。図3に示す“最大トルク/電流曲線”は、原点Oからの距離(電流ベクトルの大きさに相当)が最小となる各定トルク曲線上の動作ポイントの集合である。図3には、廃電指示信号をモータECU20が受けた時点でのトルク目標値に対応した定トルク曲線を太実線にて示している。
廃電指示信号をモータECU20が受けた時点では、電流ベクトルの終点は、図3に示す定トルク曲線と“最大トルク/電流曲線”との交点である動作点P1にある。動作点P1におけるd軸電流指令値Idの値は、CVS積分器22において設定されたd軸電流出力値の初期値(d軸電流出力値Id_TI)である。動作点P1におけるq軸電流指令値Iqの値は、CVS積分器22において設定されたq軸電流出力値の初期値(q軸電流出力値Iq_TI)である。
第一制御が開始されると、CVS積分器22にId_MAXが入力されることでd軸電流指令値IdがΔd増加し、それに追従してq軸電流指令値IqがΔq1低下することで、電流ベクトルの終点は、定トルク曲線上を移動して動作点P2に達する(ステップS1)。
その後、CVS積分器22にId_MINが入力されると、d軸電流指令値IdがΔd減少し、それに追従してq軸電流指令値IqがΔq1増加することで、電流ベクトルの終点は、定トルク曲線上を移動して動作点P1に達し(ステップS2)、続けて、d軸電流指令値IdがΔd減少し、それに追従してq軸電流指令値IqがΔq2増加することで、電流ベクトルの終点は、定トルク曲線上を移動して動作点P3へと達する(ステップS3)。
その後、CVS積分器22にId_MAXが入力されると、d軸電流指令値IdがΔd増加し、それに追従してq軸電流指令値IqがΔq1減少することで、電流ベクトルの終点は、定トルク曲線上を移動して、動作点P1へと達する(ステップS4)。第一制御中は、以上のステップS1からステップS4の動作が繰り返される。
図3の例では、d軸電流指令値Idが、d軸電流出力値Id_TIを基準としてΔd増加した状態とΔd減少した状態とを繰り返すことになる。また、q軸電流指令値Iqが、q軸電流出力値Iq_TIを基準としてΔq1減少した状態とΔq2増加した状態とを繰り返すことになる。なお、ステップS1開始からステップS4終了までの時間が、d軸電流指令値Id及びq軸電流指令値Iqの変動周期に相当する。
図4は、図1に示すモータECU20が比較例の制御を行っている状態における電流ベクトルの変化の一例を説明するための電流ベクトル平面を示す図である。この比較例の制御では、廃電指示信号を受けたモータECU20が、電流ベクトルの終点を、定トルク曲線上の動作点P1から動作点P4に変更し、この状態を維持する。
図5は、MG40のコイルに供給される1相の交流電流の波形の一例を示す図である。図5に示す波形41は、図4に示す比較例の制御を行っている状態における交流電流の波形を示している。図5に示す波形42は、図3に示す第一制御を行っている状態における交流電流の波形を示している。図5に示す波形43は、第一制御又は比較例の制御が開始される直前の状態における交流電流の波形を示している。
第一制御が行われることで、波形42に示すように、コイルの駆動電流は細かく変動するが、その実効値は、波形43と大きく変わってはいない。一方、比較例の制御が行われた場合には、コイルの駆動電流の実効値が波形43と比べて2倍近くまで上昇している。比較例の制御を行った場合には、コイルの駆動電流の実効値が上昇することで、MG40にて銅損を発生させることができる。一方、第一制御を行った場合には、コイルの駆動電流の実効値は直前の値と同等となるため、銅損をほぼ発生させることなく、主にMG40のコア部分にて鉄損を発生させることができる。
このように、本形態の車両100によれば、モータECU20が行う第一制御によって、MG40にて鉄損を発生させることできる。この鉄損によって、MG40の回生電力を消費させる(廃電する)ことができるため、回生による制動力を確保することができる。この鉄損による発熱はMG40のコア部分にて生じるが、このコア部分は熱容量が大きいことから、MG40の温度上昇は抑制される。また、上述した増減量Δdや上記の変動周期等を調整することで、鉄損の発生量を細かく調整することが可能であるため、状況に応じた柔軟な廃電制御が可能となる。
また、本形態の車両100によれば、鉄損によって廃電が可能になることで、銅損を増加させる必要がなくなる。図4に示すように銅損を増やす制御を行う場合には、MG40を駆動するモータドライバ31やMG40のコイルにおける発熱量が大きくなる。このため、耐熱性を考慮した設計が必要になるが、第一制御を行うことで、こういった考慮が不要となり、車両100の設計自由度を高めることができる。
また、本形態においては、第一制御時において、d軸電流指令値Idは、第一制御開始直前の値を基準値としてΔdずつ均等に増減される。このため、第一制御が行われている期間のMG40の駆動電流の実効値を、第一制御が行われる直前のときの値により近づけることができる。したがって、MG40を駆動するモータドライバ31やMG40のコイルにおける発熱量を増やすことなく、廃電を行うことが可能になる。
また、本形態の車両100によれば、図3に示したように、第一制御時においては、d軸電流指令値Id及びq軸電流指令値Iqが定トルク曲線上に存在するように制御される。このため、トルク変動を伴うことなく、鉄損を増加させて廃電を行うことができ、車両100の乗り心地を向上させることができる。
(第一制御の第一の変形例)
上記実施形態において、モータECU20のCVS積分器22は、廃電指示信号を受けた場合に設定する初期値を、廃電指示信号を受ける直前のd軸電流出力値Id_TI及びq軸電流出力値Iq_TIとしている。本変形例においては、この初期値を、廃電指示信号を受ける直前のd軸電流出力値Id_TI及びq軸電流出力値Iq_TIの各々から増加又は減少させた値に設定する。
図6は、図1に示すモータECU20が第一制御の第一の変形例を行っている状態における電流ベクトルの変化の一例を説明するための電流ベクトル平面を示す図である。
廃電指示信号をモータECU20が受けた時点では、電流ベクトルの終点は、図6に示す定トルク曲線と“最大トルク/電流曲線”との交点である動作点P1にあるものとする。動作点P1におけるd軸電流指令値Idの値は、廃電指示信号を受ける直前のd軸電流出力値Id_TIである。動作点P1におけるq軸電流指令値Iqの値は、廃電指示信号を受ける直前のq軸電流出力値Iq_TIである。
第一制御が開始されると、モータECU20は、電流ベクトルの終点が図6の定トルク曲線上の動作点P2となるように、CVS積分器22の初期値を設定する(ステップS11)。この動作点P2におけるd軸電流指令値Idの値は、廃電指示信号を受ける直前のd軸電流出力値Id_TIよりも大きい値である。動作点P2におけるq軸電流指令値Iqの値は、廃電指示信号を受ける直前のq軸電流出力値Iq_TIよりも小さい値である。
CVS積分器22にId_MAX(ここでは、動作点P2におけるd軸電流指令値IdにΔdを加算した値)が入力されると、d軸電流指令値IdがΔd増加し、それに追従してq軸電流指令値Iqが低下することで、電流ベクトルの終点は、定トルク曲線上を移動して動作点P5に達する(ステップS12)。
その後、CVS積分器22にId_MIN(ここでは、動作点P2におけるd軸電流指令値IdからΔdを減算した値)が入力されると、d軸電流指令値IdがΔd減少し、それに追従してq軸電流指令値Iqが増加することで、電流ベクトルの終点は、定トルク曲線上を移動して動作点P2に達し(ステップS13)、続けて、d軸電流指令値IdがΔd減少し、それに追従してq軸電流指令値Iqが増加することで、電流ベクトルの終点は、定トルク曲線上を移動して動作点P1へと達する(ステップS14)。
その後、CVS積分器22にId_MAXが入力されると、d軸電流指令値IdがΔd増加し、それに追従してq軸電流指令値Iqが減少することで、電流ベクトルの終点は、定トルク曲線上を移動して、動作点P2へと達する(ステップS15)。第一制御中は、以上のステップS12からステップS15の動作が繰り返される。なお、ステップS12開始からステップS15終了までの時間が、d軸電流指令値Id及びq軸電流指令値Iqの変動周期に相当する。
このように、図6の例では、d軸電流指令値Idが、d軸電流出力値Id_TIよりも大きな値を基準としてΔd増加した状態とΔd減少した状態とを繰り返すことになる。また、q軸電流指令値Iqが、q軸電流出力値Iq_TIよりも小さな値を基準として増加する状態と減少する状態とを繰り返すことになる。
以上の第一の変形例によれば、モータECU20が行う第一制御によって、電流ベクトルの終点が動作点P2を跨いで変動することになるため、駆動電流の実効値を、図3の例と比較すると、第一制御前よりも大きくすることができる。このため、MG40にて銅損を発生させることができ、より多くの廃電が可能となる。また、銅損と鉄損を組み合わせて廃電を行うことで、車両100の状況に合わせた柔軟な廃電制御が実現可能となる。
第一の変形例においては、例えば、マネジメントECU10から指定され得る必要廃電量Wを、MG40の回転数rpm及びトルク目標値GTの組み合わせにおいて実現するために必要なd軸電流指令値Idの増減量(Δd)のデータと、そのトルク目標値GTに対応する定トルク曲線上の図6のステップS11にて移動させるべき動作点P2のデータとを対応付けてROM20aに記憶しておけばよい。そして、モータECU20は、廃電指示信号を受けると、必要廃電量W、回転数rpm、及びトルク目標値GTに基づいてROM20aから増減量Δdのデータとこれに対応する動作点P2のデータを取得し、動作点P2のデータにしたがってCVS積分器22の初期値をセットする。また、モータECU20のプロセッサは、動作点P2のd軸電流指令値IdにΔdを加算した値と、動作点P2のd軸電流指令値IdからΔdを減算した値とを、それぞれ、CVS積分器22に入力するd軸電流指示値Id_CMとする。これにより、図6に示した電流ベクトルの制御が可能となる。
ここまでの説明では、モータECU20のプロセッサがd軸電流指示値Id_CMのみをCVS積分器22に入力することで、電圧生成部32に入力されるd軸電流指令値Id及びq軸電流指令値Iqを定トルク曲線上にて変動させるものとした。この構成によれば、ROM20aには増減量Δdのデータだけ記憶しておけばよいため、ROM20aに予め記憶しておくデータ量を減らすことができる。
ただし、ROM20aに十分な容量が確保できるのであれば、マネジメントECU10から指定され得る必要廃電量W、MG40の回転数rpm、及びトルク目標値GTの組み合わせに対応させて、その必要廃電量Wを実現することのできる図3に示した定トルク曲線の動作点P2から動作点P3までの範囲の情報をROM20aに記憶しておいてもよい。そして、モータECU20のプロセッサは、マネジメントECU10から指定された必要廃電量W、MG40の回転数rpm、及びトルク目標値GTの組み合わせに対応する上記範囲の情報を読み出し、その情報にしたがって、図3の動作点P2から動作点P3の範囲にてd軸電流指令値Id及びq軸電流指令値Iqを変動させて電圧生成部32に入力してもよい。
本発明は、駆動軸1,2をMG40によって駆動するタイプの車両であれば適用可能である。例えば、シリーズ方式のHEV、パラレル方式のHEV、シリーズ方式とパラレル方式の両方式を切り換え可能なHEVにも適用可能である。
以上説明してきたように、本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
(1)
車両(車両100)の駆動軸(駆動軸1,2)を駆動するための回転電機(MG40)を回生動作させている状態にて、前記回転電機のコイルに入力される駆動電流を生成するための電流制御値(d軸電流指令値Id、q軸電流指令値Iq、)を所定範囲にて周期的に変動させる第一制御を行う制御部(モータECU20)を備え、
前記第一制御によって変動された前記電流制御値に基づく前記駆動電流を受けた前記回転電機にて生じる鉄損によって前記回転電機の回生電力を消費させる車両の制御装置(モータECU20及びPDU30)。
(1)によれば、電流制御値が所定範囲にて周期的に変動されることで、この電流制御値に基づいて生成される駆動電流を受けた回転電機によって鉄損が生じる。この鉄損によって回生電力を消費させる(廃電する)ことができるため、回生による制動力を確保することができる。また、所定範囲又は電流制御値の変動周期等を調整することで、鉄損の発生量を細かく調整することが可能であるため、状況に応じた柔軟な廃電制御が可能となる。
(2)
(1)記載の車両の制御装置であって、
前記電流制御値を変動させる前記所定範囲は、所定値(d軸電流出力値Id_TI、q軸電流出力値Iq_TI)に第一の値を加算した値と、前記所定値から第二の値を減算した値との間の範囲であり、
前記制御部は、前記第一制御を行う直前にて設定していた前記電流制御値を前記所定値として前記第一制御を行う電動車両の制御装置。
(2)によれば、第一制御を行う直前にて設定していた電流制御値を跨いで電流制御値が増減されるため、第一制御が行われている期間の電流制御値に基づく駆動電流の実効値を、第一制御が行われる直前のときの値に近づけることができる。したがって、回転電機を駆動する駆動回路や回転電機のコイルにおける発熱量を増やすことなく廃電を行うことが可能になる。
(3)
(1)又は(2)記載の車両の制御装置であって、
前記制御部は、前記第一制御を行っている状態における前記回転電機のトルクが前記第一制御を行う直前のトルク目標値と一致するように、前記電流制御値を制御する車両の制御装置。
(3)によれば、トルク変動を抑制しつつ回転電機にて鉄損を生じさせることができ、車両の乗り心地を向上させることができる。
(4)
(1)から(3)のいずれか1つに記載の車両の制御装置であって、
前記回転電機のコイルに前記駆動電流を供給する駆動回路(モータドライバ31)と、
前記駆動回路を制御するための制御電圧を前記電流制御値に基づいて生成する電圧生成部(電圧生成部32)と、を備え、
前記電流制御値は、前記電圧生成部に入力されるd軸電流指令値とq軸電流指令値である車両の制御装置。
(5)
(4)記載の車両の制御装置であって、
前記制御部は、前記回転電機のトルク目標値に基づいて前記d軸電流指令値と前記q軸電流指令値を生成する第一ユニット(T−IMAP21)と、前記第一制御の実行の指示を受けた場合に、前記第一ユニットにて最後に生成された前記d軸電流指令値に第一の値を加算した値と、当該d軸電流指令値から第二の値を減算した値との間にて周期的に変動するd軸電流指令値を生成し、当該変動するd軸電流指令値に基づく駆動電流を受けた前記回転電機のトルクが前記トルク目標値となるように変動させた前記q軸電流指令値を生成する第二ユニット(CVS積分器22)と、前記指示を受けていない場合には前記第一ユニットにて生成された前記d軸電流指令値及び前記q軸電流指令値を前記電圧生成部に入力し、前記指示を受けた場合には前記第二ユニットにて生成された前記d軸電流指令値及び前記q軸電流指令値を前記電圧生成部に入力する第三ユニット(切替部23,24)と、を備える車両の制御装置。
(6)
(1)又は(2)記載の車両の制御装置であって、
前記電流制御値を変動させる前記所定範囲は、所定値に第一の値を加算した値と、前記所定値から第二の値を減算した値との間の範囲であり、
前記制御部は、前記第一制御を行う直前にて設定していた前記電流制御値を増加又は減少させた値を前記所定値として前記第一制御を行う車両の制御装置。
(6)によれば、第一制御が行われることで、回転電機にて鉄損だけでなく銅損も発生させることができる。このように鉄損と銅損の組み合わせによって回生電力を消費させることで、回生電力の消費量をより柔軟に制御可能となり、状況に応じた最適な廃電を行うことができる。また、所定値として設定された電流制御値の増加又は減少量を小さな値にすることで、回転電機を駆動する駆動回路や回転電機のコイルにおける銅損による発熱量を抑制することができ、耐久性の向上、製造コストの低減を図ることができる。
1、2 駆動軸
20 モータECU
30 PDU
31 モータドライバ
32 電圧生成部
40 モータジェネレータ

Claims (6)

  1. 車両の駆動軸を駆動するための回転電機を回生動作させている状態にて、前記回転電機のコイルに入力される駆動電流を生成するための電流制御値を所定範囲にて周期的に変動させる第一制御を行う制御部を備え、
    前記第一制御によって変動された前記電流制御値に基づく前記駆動電流を受けた前記回転電機にて生じる鉄損によって前記回転電機の回生電力を消費させる車両の制御装置。
  2. 請求項1記載の車両の制御装置であって、
    前記電流制御値を変動させる前記所定範囲は、所定値に第一の値を加算した値と、前記所定値から第二の値を減算した値との間の範囲であり、
    前記制御部は、前記第一制御を行う直前にて設定していた前記電流制御値を前記所定値として前記第一制御を行う車両の制御装置。
  3. 請求項1又は2記載の車両の制御装置であって、
    前記制御部は、前記第一制御を行っている状態における前記回転電機のトルクが前記第一制御を行う直前のトルク目標値と一致するように、前記電流制御値を制御する車両の制御装置。
  4. 請求項1から3のいずれか1項記載の車両の制御装置であって、
    前記回転電機のコイルに前記駆動電流を供給する駆動回路と、
    前記駆動回路を制御するための制御電圧を前記電流制御値に基づいて生成する電圧生成部と、を備え、
    前記電流制御値は、前記電圧生成部に入力されるd軸電流指令値とq軸電流指令値である車両の制御装置。
  5. 請求項4記載の車両の制御装置であって、
    前記制御部は、前記回転電機のトルク目標値に基づいて前記d軸電流指令値と前記q軸電流指令値を生成する第一ユニットと、前記第一制御の実行の指示を受けた場合に、前記第一ユニットにて最後に生成された前記d軸電流指令値に第一の値を加算した値と、当該d軸電流指令値から第二の値を減算した値との間にて周期的に変動するd軸電流指令値を生成し、当該変動するd軸電流指令値に基づく駆動電流を受けた前記回転電機のトルクが前記トルク目標値となるように変動させた前記q軸電流指令値を生成する第二ユニットと、前記指示を受けていない場合には前記第一ユニットにて生成された前記d軸電流指令値及び前記q軸電流指令値を前記電圧生成部に入力し、前記指示を受けた場合には前記第二ユニットにて生成された前記d軸電流指令値及び前記q軸電流指令値を前記電圧生成部に入力する第三ユニットと、を備える車両の制御装置。
  6. 請求項1又は2記載の車両の制御装置であって、
    前記電流制御値を変動させる前記所定範囲は、所定値に第一の値を加算した値と、前記所定値から第二の値を減算した値との間の範囲であり、
    前記制御部は、前記第一制御を行う直前にて設定していた前記電流制御値を増加又は減少させた値を前記所定値として前記第一制御を行う車両の制御装置。
JP2019074409A 2019-04-09 2019-04-09 車両の制御装置 Pending JP2020174448A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019074409A JP2020174448A (ja) 2019-04-09 2019-04-09 車両の制御装置
CN202010267167.XA CN111817632B (zh) 2019-04-09 2020-04-07 车辆的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019074409A JP2020174448A (ja) 2019-04-09 2019-04-09 車両の制御装置

Publications (1)

Publication Number Publication Date
JP2020174448A true JP2020174448A (ja) 2020-10-22

Family

ID=72831821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074409A Pending JP2020174448A (ja) 2019-04-09 2019-04-09 車両の制御装置

Country Status (2)

Country Link
JP (1) JP2020174448A (ja)
CN (1) CN111817632B (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4013905B2 (ja) * 2003-05-21 2007-11-28 トヨタ自動車株式会社 動力出力装置およびその制御方法並びに自動車
JP4666354B2 (ja) * 2005-03-16 2011-04-06 国立大学法人長岡技術科学大学 交流交流電力変換器の制御装置
JP2010035396A (ja) * 2008-06-24 2010-02-12 Toyota Auto Body Co Ltd バッテリ電流抑制方法及びバッテリ電流抑制制御装置
WO2010089889A1 (ja) * 2009-02-09 2010-08-12 トヨタ自動車株式会社 電源システムおよびそれを備えた電動車両
JP5200991B2 (ja) * 2009-02-23 2013-06-05 マツダ株式会社 電動車両のモータ制御方法及びその装置
JP6395268B2 (ja) * 2016-03-31 2018-09-26 本田技研工業株式会社 発電装置を備える車両

Also Published As

Publication number Publication date
CN111817632A (zh) 2020-10-23
CN111817632B (zh) 2024-05-28

Similar Documents

Publication Publication Date Title
JP6315622B2 (ja) 車両
JP6335852B2 (ja) ハイブリッド車両の制御装置
US7317295B2 (en) Electric motor driving system, electric four-wheel drive vehicle, and hybrid vehicle
JP5652659B2 (ja) 電動機制御装置
JP4600390B2 (ja) 電源システムおよびそれを備える車両、ならびにその制御方法
JP5459394B2 (ja) 蓄電装置の制御装置およびそれを搭載する車両
CN103042948B (zh) 控制包括永磁同步马达的车辆的系统和方法
JP5924367B2 (ja) 電動車両
WO2018105323A1 (ja) 駆動システム
CN113733988B (zh) 电动汽车的动力电池加热方法、装置以及汽车
JP6395268B2 (ja) 発電装置を備える車両
Murthy et al. Vehicle braking strategies based on regenerative braking boundaries of electric machines
JP5534323B2 (ja) 電動機制御装置
KR20170119349A (ko) 차량의 컨버터 제어방법 및 시스템
JP6825043B2 (ja) ハイブリッド車両の制御装置
JP6543745B2 (ja) ハイブリッド車両の制御装置
JP2020174448A (ja) 車両の制御装置
JP2020121643A (ja) 車両の発電制御装置
JP2019161748A (ja) インバータの制御方法及びインバータ制御装置
US11708060B2 (en) Electrified powertrain with centralized power distribution strategy and decentralized inverters
JP7099132B2 (ja) 回転電機制御システム
JP2021132464A (ja) 車両の駆動装置及び車両の制御方法
JP5545035B2 (ja) モータ駆動装置及び電動車両
JP2017154582A (ja) ハイブリッド車両
JP2020111281A (ja) 車両の発電制御装置