JP2020170878A - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP2020170878A
JP2020170878A JP2020126280A JP2020126280A JP2020170878A JP 2020170878 A JP2020170878 A JP 2020170878A JP 2020126280 A JP2020126280 A JP 2020126280A JP 2020126280 A JP2020126280 A JP 2020126280A JP 2020170878 A JP2020170878 A JP 2020170878A
Authority
JP
Japan
Prior art keywords
layer
transistor
oxide semiconductor
semiconductor layer
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2020126280A
Other languages
English (en)
Inventor
黒川 義元
Yoshimoto Kurokawa
義元 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2020170878A publication Critical patent/JP2020170878A/ja
Priority to JP2022058497A priority Critical patent/JP7432644B2/ja
Priority to JP2024015451A priority patent/JP2024050789A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14665Imagers using a photoconductor layer
    • H01L27/14669Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78663Amorphous silicon transistors
    • H01L29/78666Amorphous silicon transistors with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Thin Film Transistor (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】レンズを必要としない撮像装置を提供する。【解決手段】第1の層と、第2の層と、第3の層と、を有する撮像装置であって、第2の層は、第1の層と第3の層との間に設けられ、第1の層は、回折格子を有し、第2の層は、光電変換素子を有し、第3の層は、活性層に酸化物半導体を有するトランジスタを有する構成とする。【選択図】図1

Description

本発明の一態様は、酸化物半導体を用いた撮像装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の
一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明
の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・
オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明
の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装
置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を
一例として挙げることができる。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指す。トランジスタ、半導体回路は半導体装置の一態様である。また、記憶装置、
表示装置、撮像装置、電子機器は、半導体装置を有する場合がある。
絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタを構成する技術が
注目されている。当該トランジスタは集積回路(IC)や表示装置のような電子デバイス
に広く応用されている。トランジスタに適用可能な半導体材料として、シリコン系半導体
が広く知られているが、その他の材料として酸化物半導体が注目されている。
例えば、酸化物半導体として酸化亜鉛、またはIn−Ga−Zn系酸化物半導体を用いて
トランジスタを作製する技術が開示されている(特許文献1および特許文献2参照)。
また、特許文献3では、酸化物半導体を有するオフ電流が極めて低いトランジスタを画素
回路の一部に用い、CMOS(Complementary Metal Oxide
Semiconductor)回路が作製可能なシリコンを有するトランジスタを周辺回
路に用いる構成の撮像装置が開示されている。
また、特許文献4では、シリコンを有するトランジスタと、酸化物半導体を有するトラン
ジスタと、結晶性シリコン層を有するフォトダイオードを積層する構成の撮像装置が開示
されている。
また、特許文献5では、レンズの替わりに回折格子を用いる技術を利用した撮像装置が開
示されている。
特開2007−123861号公報 特開2007−96055号公報 特開2011−119711号公報 特開2013−243355号公報 米国特許公開2014/0253781
撮像装置は、画素が集積化されたチップに対して光を入射させ、当該光を信号化させるこ
とによって画像情報を得る。ここで、当該光は、一般的にレンズを通して当該チップに入
射される。当該レンズは電子機器(例えばカメラなど)の仕様などにあわせて、望遠レン
ズ、広角レンズ、ズームレンズ、またはF値(焦点距離/有効口径)が小さい明るいレン
ズなどが用いられる。
一方で、電子機器またはカメラモジュールなどの製造コストにおいて、レンズ部品が占め
る割合が大きいことが課題となっている。電子機器またはカメラモジュールからレンズを
除くことで、それらをより安価に製造することができる。例えば、特許文献5に開示され
ている技術は、レンズを用いない撮像装置の一態様である。
したがって、本発明の一態様では、チップ外のレンズを必要としない撮像装置を提供する
ことを目的の一つとする。または、高速動作に適した撮像装置を提供することを目的の一
つとする。または、解像度の高い撮像装置を提供することを目的の一つとする。または、
集積度の高い撮像装置を提供することを目的の一つとする。または、低消費電力の撮像装
置を提供することを目的の一つとする。または、低照度下で撮像することができる撮像装
置を提供することを目的の一つとする。または、ダイナミックレンジの広い撮像装置を提
供することを目的の一つとする。または、広い温度範囲において使用可能な撮像装置を提
供することを目的の一つとする。または、高開口率の撮像装置を提供することを目的の一
つとする。または、信頼性の高い撮像装置を提供することを目的の一つとする。または、
新規な撮像装置などを提供することを目的の一つとする。または、新規な半導体装置など
を提供することを目的の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一
態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、酸化物半導体用いて形成されたトランジスタを有する撮像装置に関す
る。
本発明の一態様は、第1の層と、第2の層と、第3の層と、を有する撮像装置であって、
第2の層は、第1の層と第3の層との間に設けられ、第1の層は、回折格子を有し、第2
の層は、光電変換素子を有し、第3の層は、活性層に酸化物半導体を有するトランジスタ
を有することを特徴とする撮像装置である。
また、本発明の他の一態様は、第1の層と、第2の層と、第3の層と、第4の層と、を有
する撮像装置であって、第1の層、第2の層、第3の層および第4の層は、当該順序の積
層で設けられ、第1の層は、回折格子を有し、第2の層は、光電変換素子を有し、第3の
層は、活性層に酸化物半導体を有するトランジスタを有し、第4の層は、活性領域または
活性層にシリコンを有するトランジスタを有することを特徴とする撮像装置である。
上記第3の層は、第1のトランジスタと、第2のトランジスタと、第3のトランジスタと
、第4のトランジスタと、を有し、第1のトランジスタのソース電極またはドレイン電極
の一方は、光電変換素子の一方の電極と電気的に接続され、第1のトランジスタのソース
電極またはドレイン電極の他方は、第2のトランジスタのゲート電極と電気的に接続され
、第1のトランジスタのソース電極またはドレイン電極の他方は、第3のトランジスタの
ソース電極またはドレイン電極の一方と電気的に接続され、第2のトランジスタのソース
電極またはドレイン電極の一方は、第4のトランジスタのソース電極またはドレイン電極
の一方と電気的に接続されている構成とすることができる。
また、第1のトランジスタのソース電極またはドレイン電極の他方は、容量素子の一方の
電極と電気的に接続されている構成とすることができる。
また、酸化物半導体は、Inと、Znと、M(MはAl、Ti、Ga、Sn、Y、Zr、
La、Ce、NdまたはHf)と、を有することが好ましい。
また、光電変換素子は、光電変換層にセレンまたはセレンを含む化合物を用いることがで
きる。
したがって、本発明の一態様を用いることで、チップ外のレンズを必要としない撮像装置
を提供することすることができる。または、高速動作に適した撮像装置を提供することが
できる。または、解像度の高い撮像装置を提供することができる。または、集積度の高い
撮像装置を提供することができる。または、低消費電力の撮像装置を提供することができ
る。または、低照度下で撮像することができる撮像装置を提供することができる。または
、ダイナミックレンジの広い撮像装置を提供することができる。または、広い温度範囲に
おいて使用可能な撮像装置を提供することができる。または、高開口率の撮像装置を提供
することができる。または、信頼性の高い撮像装置を提供することができる。または、新
規な撮像装置などを提供することができる。または、新規な半導体装置などを提供するこ
とができる。
なお、本発明の一態様はこれらの効果に限定されるものではない。例えば、本発明の一態
様は、場合によっては、または、状況に応じて、これらの効果以外の効果を有する場合も
ある。または、例えば、本発明の一態様は、場合によっては、または、状況に応じて、こ
れらの効果を有さない場合もある。
撮像装置を説明する断面図および上面図。 グローバルシャッタ方式およびローリングシャッタ方式の動作を説明する図。 撮像の方法を説明する図。 撮像装置が有する回路を説明する図。 撮像装置を説明する断面図。 光電変換素子の接続形態を説明する断面図。 光電変換素子の接続形態を説明する断面図。 撮像装置を説明する断面図。 光電変換素子の接続形態を説明する断面図。 撮像装置を説明する断面図。 撮像装置を説明する断面図。 撮像装置を説明する断面図。 回折格子の形状を説明する上面図。 回折格子の形状を説明する断面図。 撮像装置の構成を説明する断面図。 撮像装置の構成を説明する断面図。 撮像装置の構成を説明する断面図。 撮像装置の構成を説明する断面図。 撮像装置の構成を説明する断面図。 湾曲した撮像装置を説明する図。 画素回路の構成を説明する図。 画素回路の動作を説明するタイミングチャート。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 画素回路の構成を説明する図。 グローバルシャッタ方式とローリングシャッタ方式の動作を説明するタイミングチャート。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタのチャネル幅方向の断面を説明する図。 トランジスタのチャネル長方向の断面を説明する図。 半導体層を説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタを説明する上面図および断面図。 トランジスタのチャネル幅方向の断面を説明する図。 トランジスタのチャネル長方向の断面を説明する図。 トランジスタを説明する上面図。 電子機器を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨およびその範囲から逸脱することなくその形態および詳細を様々に変
更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施
の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成
において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通
して用い、その繰り返しの説明は省略することがある。なお、図を構成する同じ要素のハ
ッチングを異なる図面間で適宜省略または変更する場合もある。
例えば、本明細書等において、XとYとが接続されている、と明示的に記載されている場
合は、XとYとが電気的に接続されている場合と、XとYとが機能的に接続されている場
合と、XとYとが直接接続されている場合とが、本明細書等に開示されているものとする
。したがって、所定の接続関係、例えば、図または文章に示された接続関係に限定されず
、図または文章に示された接続関係以外のものも、図または文章に記載されているものと
する。
ここで、X、Yは、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、層
、など)であるとする。
XとYとが直接的に接続されている場合の一例としては、XとYとの電気的な接続を可能
とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ
オード、表示素子、発光素子、負荷など)が、XとYとの間に接続されていない場合であ
り、XとYとの電気的な接続を可能とする素子(例えば、スイッチ、トランジスタ、容量
素子、インダクタ、抵抗素子、ダイオード、表示素子、発光素子、負荷など)を介さずに
、XとYとが、接続されている場合である。
XとYとが電気的に接続されている場合の一例としては、XとYとの電気的な接続を可能
とする素子(例えば、スイッチ、トランジスタ、容量素子、インダクタ、抵抗素子、ダイ
オード、表示素子、発光素子、負荷など)が、XとYとの間に1個以上接続されることが
可能である。なお、スイッチは、オンオフが制御される機能を有している。つまり、スイ
ッチは、導通状態(オン状態)、または、非導通状態(オフ状態)になり、電流を流すか
流さないかを制御する機能を有している。または、スイッチは、電流を流す経路を選択し
て切り替える機能を有している。なお、XとYとが電気的に接続されている場合は、Xと
Yとが直接的に接続されている場合を含むものとする。
XとYとが機能的に接続されている場合の一例としては、XとYとの機能的な接続を可能
とする回路(例えば、論理回路(インバータ、NAND回路、NOR回路など)、信号変
換回路(DA変換回路、AD変換回路、ガンマ補正回路など)、電位レベル変換回路(電
源回路(昇圧回路、降圧回路など)、信号の電位レベルを変えるレベルシフタ回路など)
、電圧源、電流源、切り替え回路、増幅回路(信号振幅または電流量などを大きく出来る
回路、オペアンプ、差動増幅回路、ソースフォロワ回路、バッファ回路など)、信号生成
回路、記憶回路、制御回路など)が、XとYとの間に1個以上接続されることが可能であ
る。なお、一例として、XとYとの間に別の回路を挟んでいても、Xから出力された信号
がYへ伝達される場合は、XとYとは機能的に接続されているものとする。なお、XとY
とが機能的に接続されている場合は、XとYとが直接的に接続されている場合と、XとY
とが電気的に接続されている場合とを含むものとする。
なお、XとYとが電気的に接続されている、と明示的に記載されている場合は、XとYと
が電気的に接続されている場合(つまり、XとYとの間に別の素子又は別の回路を挟んで
接続されている場合)と、XとYとが機能的に接続されている場合(つまり、XとYとの
間に別の回路を挟んで機能的に接続されている場合)と、XとYとが直接接続されている
場合(つまり、XとYとの間に別の素子又は別の回路を挟まずに接続されている場合)と
が、本明細書等に開示されているものとする。つまり、電気的に接続されている、と明示
的に記載されている場合は、単に、接続されている、とのみ明示的に記載されている場合
と同様な内容が、本明細書等に開示されているものとする。
なお、例えば、トランジスタのソース(又は第1の端子など)が、Z1を介して(又は介
さず)、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z
2を介して(又は介さず)、Yと電気的に接続されている場合や、トランジスタのソース
(又は第1の端子など)が、Z1の一部と直接的に接続され、Z1の別の一部がXと直接
的に接続され、トランジスタのドレイン(又は第2の端子など)が、Z2の一部と直接的
に接続され、Z2の別の一部がYと直接的に接続されている場合では、以下のように表現
することが出来る。
例えば、「XとYとトランジスタのソース(又は第1の端子など)とドレイン(又は第2
の端子など)とは、互いに電気的に接続されており、X、トランジスタのソース(又は第
1の端子など)、トランジスタのドレイン(又は第2の端子など)、Yの順序で電気的に
接続されている。」と表現することができる。または、「トランジスタのソース(又は第
1の端子など)は、Xと電気的に接続され、トランジスタのドレイン(又は第2の端子な
ど)はYと電気的に接続され、X、トランジスタのソース(又は第1の端子など)、トラ
ンジスタのドレイン(又は第2の端子など)、Yは、この順序で電気的に接続されている
」と表現することができる。または、「Xは、トランジスタのソース(又は第1の端子な
ど)とドレイン(又は第2の端子など)とを介して、Yと電気的に接続され、X、トラン
ジスタのソース(又は第1の端子など)、トランジスタのドレイン(又は第2の端子など
)、Yは、この接続順序で設けられている」と表現することができる。これらの例と同様
な表現方法を用いて、回路構成における接続の順序について規定することにより、トラン
ジスタのソース(又は第1の端子など)と、ドレイン(又は第2の端子など)とを、区別
して、技術的範囲を決定することができる。
または、別の表現方法として、例えば、「トランジスタのソース(又は第1の端子など)
は、少なくとも第1の接続経路を介して、Xと電気的に接続され、前記第1の接続経路は
、第2の接続経路を有しておらず、前記第2の接続経路は、トランジスタを介した、トラ
ンジスタのソース(又は第1の端子など)とトランジスタのドレイン(又は第2の端子な
ど)との間の経路であり、前記第1の接続経路は、Z1を介した経路であり、トランジス
タのドレイン(又は第2の端子など)は、少なくとも第3の接続経路を介して、Yと電気
的に接続され、前記第3の接続経路は、前記第2の接続経路を有しておらず、前記第3の
接続経路は、Z2を介した経路である。」と表現することができる。または、「トランジ
スタのソース(又は第1の端子など)は、少なくとも第1の接続経路によって、Z1を介
して、Xと電気的に接続され、前記第1の接続経路は、第2の接続経路を有しておらず、
前記第2の接続経路は、トランジスタを介した接続経路を有し、トランジスタのドレイン
(又は第2の端子など)は、少なくとも第3の接続経路によって、Z2を介して、Yと電
気的に接続され、前記第3の接続経路は、前記第2の接続経路を有していない。」と表現
することができる。または、「トランジスタのソース(又は第1の端子など)は、少なく
とも第1の電気的パスによって、Z1を介して、Xと電気的に接続され、前記第1の電気
的パスは、第2の電気的パスを有しておらず、前記第2の電気的パスは、トランジスタの
ソース(又は第1の端子など)からトランジスタのドレイン(又は第2の端子など)への
電気的パスであり、トランジスタのドレイン(又は第2の端子など)は、少なくとも第3
の電気的パスによって、Z2を介して、Yと電気的に接続され、前記第3の電気的パスは
、第4の電気的パスを有しておらず、前記第4の電気的パスは、トランジスタのドレイン
(又は第2の端子など)からトランジスタのソース(又は第1の端子など)への電気的パ
スである。」と表現することができる。これらの例と同様な表現方法を用いて、回路構成
における接続経路について規定することにより、トランジスタのソース(又は第1の端子
など)と、ドレイン(又は第2の端子など)とを、区別して、技術的範囲を決定すること
ができる。
なお、これらの表現方法は、一例であり、これらの表現方法に限定されない。ここで、X
、Y、Z1、Z2は、対象物(例えば、装置、素子、回路、配線、電極、端子、導電膜、
層、など)であるとする。
なお、回路図上は独立している構成要素同士が電気的に接続しているように図示されてい
る場合であっても、1つの構成要素が、複数の構成要素の機能を併せ持っている場合もあ
る。例えば配線の一部が電極としても機能する場合は、一の導電膜が、配線の機能、及び
電極の機能の両方の構成要素の機能を併せ持っている。したがって、本明細書における電
気的に接続とは、このような、一の導電膜が、複数の構成要素の機能を併せ持っている場
合も、その範疇に含める。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応
じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜
」という用語に変更することが可能な場合がある。または、例えば、「絶縁膜」という用
語を、「絶縁層」という用語に変更することが可能な場合がある。
(実施の形態1)
本実施の形態では、本発明の一態様である撮像装置について、図面を参照して説明する。
図1(A)は、本発明の一態様の撮像装置の断面模式図である。当該撮像装置は、層11
00、層1200および層1500を有し、層1200は、層1100と層1500との
間に設けられる。
層1100はトランジスタを有し、層1200は光電変換素子を有する。ここで、当該ト
ランジスタと当該光電変換素子は回路90を形成する。回路90は、画素回路としての機
能を有することができる。また、回路90は、図1(B)の上面図に示すように、マトリ
クス状に配置され、画素アレイ91を構成する。個々の回路90から信号を取り出すこと
で画像情報を形成することができる。なお、図1(B)では明瞭化のため層1500を省
いている。
層1500は、透光性を有し、層1200側とは逆側に複数の溝または突起が設けられた
形状を有している。層1500は、当該溝または突起が設けられた領域を有することで、
回折格子として作用させることができる。
本発明の一態様の撮像装置では、回折格子を介した被写体の像(回折画像)を画素に取り
込み、画素における撮像画像から演算処理により入力画像(被写体の像)を構成する。こ
こで、当該演算処理では、回折格子による入力画像から回折画像への変換の逆変換を行う
入力画像を無数の点光源の集まりと定義し、各点光源から発せられた光は、当該回折格子
を介して回折光となる。当該回折光が撮像装置の各画素で検出されると、画素アレイ91
でどのようなパターンを生じるかを光線追跡法や電磁界シミュレーションなどで算出する
これにより、撮像装置の画素が取得するデータと、当該点光源から発せられた光の強度と
を対応させる係数を求めることができる。当該係数を全ての画素において算出することで
、回折格子による入力画像から回折画像への変換係数を構成することができる。
また、入力画像は複数の点光源の光強度に重み付けをしたものと定義することができる。
したがって、撮像装置における撮像画像は、入力画像に対応した重み係数を成分とするベ
クトルと、変数係数を要素とする行列と、の行列演算で算出することができる。つまり、
撮像装置における撮像画像の各画素のデータを成分とするベクトルと、前述した行列の逆
行列と、の行列演算により、入力画像に相当するベクトルが得られることになる。
上記撮像装置では、回折格子による回折光を画素で検出するため、点光源を入力画像とす
る場合でも、撮像装置の全画素のデータを用いた演算処理が必要となる。つまり、撮像中
に点光源が移動した場合には、回折格子による回折光は全く異なるパターンとなるため、
移動前後で撮像した画像の一部同士を組み合わせた画像から演算処理で得られる画像は、
入力画像とは全く異なる画像になる。
一般的に、図1(B)の上面図に示すような画素がマトリクス状に配置された撮像装置で
は、図2(A)に示す、行毎に撮像動作21、保持動作22、読み出し動作23を行う駆
動方法であるローリングシャッタ方式が用いられる。ローリングシャッタ方式を用いる場
合には、撮像の同時性が失われるため、被写体が移動した場合には、演算処理により入力
画像を構成することは困難である。
したがって、本発明の一態様は、回折格子を用いた撮像装置において、図2(B)に示す
、全行で同時に撮像動作21、保持動作22を行い、行毎に読み出し動作23を行う駆動
方法であるグローバルシャッタ方式を用いる。グローバルシャッタ方式を用いることで、
撮像装置の各画素における撮像の同時性を確保することができ、被写体が移動する場合で
あっても撮像画像から高品質の入力画像を構成することができる。
ここで、図3(A)、(B)を用いて、被写体が移動した場合の撮像について説明する。
時刻T1、T2で点光源である被写体(Target)の位置がX1、X2に移動したと
する。また、簡単のため、撮像装置の画素はY1、Y2とする。図3(A)は、レンズを
有する撮像装置の場合に相当する。なお、被写体からレンズを介した光が撮像装置に入射
するものとする。また、簡単のため、被写体がX1、X2にあるとき、光は画素Y1、Y
2への入射が支配的であるとする。
時刻T1、時刻T2における入力画像に相当するベクトルは(1,0)、(0,1)
であり、撮像装置への入射光に相当するベクトルは(1,0)、(0,1)である。
撮像装置がグローバルシャッタ方式で駆動される場合において、撮像動作を時刻T1にお
いて全行一括で行ったとき、撮像画像に相当するベクトルは(1,0)である。これは
、時刻T1において被写体を歪みが無く撮像できることに相当する。
一方、撮像装置がローリングシャッタ方式で駆動される場合、撮像動作を時刻T1におい
て画素Y1の行、時刻T2で画素Y2の行で順次行ったとき、撮像画像に相当するベクト
ルは(1,1)である。これは、時刻T1と時刻T2における被写体の像が均等に混ざ
った像に相当し、歪んだ撮像画像に相当する。
図3(B)は、回折格子を用いた撮像装置の場合に相当する。ここでは、被写体から回折
格子を介した光が撮像装置に入射するものとする。ここで、回折格子に相当する行列をA
={(a,b),(c,d)}とし、時刻T1、時刻T2における入力画像に相当するベ
クトルは(1,0)、(0,1)とすると、撮像装置への入射光に相当するベクトル
(a,c)、(b,d)である。なお、上記行列の逆変換行列はA−1={(d,
−b),(−c,a)}(簡単のため、ad−bc=1とする)である。
撮像装置がローリングシャッタ方式で駆動される場合、撮像動作を時刻T1において画素
Y1の行、時刻T2で画素Y2の行で順次行ったとき、撮像画像に相当するベクトルは
(a,d)である。したがって、逆変換行列はA−1(a,d)=((a−b)d
,d−ac)となる。これは、時刻T1と時刻T2における被写体の像が単純に混ざっ
た像ではなく、時刻T1と時刻T2における被写体の像とは全く異なる像に相当し、被写
体の入力画像を演算処理で容易には構成できないことに相当する。
一方、撮像装置がグローバルシャッタ方式で駆動される場合、撮像動作を時刻T1におい
て全行一括で行ったとき、撮像画像に相当するベクトルは(a,c)である。したがっ
て、逆変換行列はA−1(a,c)=(1,0)となる。これは、時刻T1におけ
る被写体の入力画像を演算処理により構成できることに相当する。したがって、グローバ
ルシャッタ方式で駆動することにより、移動する被写体の撮像も可能なレンズレスの撮像
装置を提供することができる。
グローバルシャッタ方式を実現するには、画素を構成する回路を酸化物半導体を用いたト
ランジスタ(以下、OSトランジスタ)で構成することが好ましい。例えば、回路90は
、図4(A)に示す構成とすることができる。
回路90において、トランジスタ51のソース電極またはドレイン電極の一方は、光電変
換素子60の一方の電極66と電気的に接続される。また、トランジスタ51のソース電
極またはドレイン電極の他方は、トランジスタ52のゲート電極と電気的に接続される。
また、トランジスタ51のソース電極またはドレイン電極の他方は、トランジスタ53の
ソース電極またはドレイン電極の一方と電気的に接続される。また、トランジスタ52の
ソース電極またはドレイン電極の一方は、トランジスタ54のソース電極またはドレイン
電極の一方と電気的に接続される。また、容量素子59は設けない構成としてもよい。
また、各トランジスタのソース電極またはドレイン電極は、配線としての機能を有するこ
とができる。例えば、配線71および配線79は、一方が電源線、他方が出力線として機
能させることができる。また、配線72は電源線として機能させることができる。また、
配線77は電源線(低電位)としての機能を有することができる。また、配線75、76
、78は、トランジスタのオンオフを制御する信号線として機能させることができる。ま
た、配線74は接続配線としての機能を有することができる。
ここで、トランジスタ51は、光電変換素子60の出力に応じて電荷蓄積部(FD)の電
位を制御するための転送トランジスタとして機能させることができる。また、トランジス
タ52は、電荷蓄積部(FD)の電位に応じた出力を行う増幅トランジスタとして機能さ
せることができる。また、トランジスタ53は、電荷蓄積部(FD)の電位を初期化する
リセットトランジスタとして機能させることができる。また、トランジスタ54は画素を
選択する選択トランジスタとして機能させることができる。
トランジスタ51乃至トランジスタ54には、OSトランジスタを用いることが特に好ま
しい。
OSトランジスタは極めて低いオフ電流特性を有するため、撮像のダイナミックレンジを
拡大することができる。図4(A)に示す回路構成では、光電変換素子60に入射される
光の強度が大きいときに電荷蓄積部(FD)の電位が小さくなる。OSトランジスタは極
めてオフ電流が低いため、ゲート電位が極めて小さい場合においても当該ゲート電位に応
じた電流を正確に出力することができる。したがって、検出することのできる照度のレン
ジ、すなわちダイナミックレンジを広げることができる。
また、トランジスタ51およびトランジスタ53の低いオフ電流特性によって電荷蓄積部
(FD)で電荷を保持できる期間を極めて長くすることができる。そのため、回路構成や
動作方法を複雑にすることなく、全画素で同時に電荷の蓄積動作を行うグローバルシャッ
タ方式を適用することができる。したがって、被写体が動体であっても歪の小さい画像を
容易に得ることができる。
また、OSトランジスタは、シリコンを活性領域または活性層に用いたトランジスタ(以
下、Siトランジスタ)よりも電気特性変動の温度依存性が小さいため、極めて広い温度
範囲で使用することができる。したがって、OSトランジスタを有する撮像装置および半
導体装置は、自動車、航空機、宇宙機などへの搭載にも適している。
また、OSトランジスタは、Siトランジスタよりもドレイン耐圧の高い特性を有する。
セレン系材料を光電変換層とした光電変換素子では、アバランシェ現象が起こりやすいよ
うに比較的高い電圧(例えば、10V以上)を印加することが好ましい。したがって、O
Sトランジスタと、セレン系材料を光電変換層とした光電変換素子とを組み合わせること
で、信頼性の高い撮像装置とすることができる。
図5(A)は、本発明の一態様の撮像装置の断面図の一例であり、図4(A)に示す画素
回路における光電変換素子60、トランジスタ51、トランジスタ52および容量素子5
9の具体的な接続形態の一例を示している。なお、上記要素における電気的な接続の形態
は一例である。
本実施の形態において、各配線、各電極および各導電体81を個別の要素として図示して
いるが、それらが電気的に接続している場合においては、同一の要素として設けられる場
合もある。また、トランジスタのゲート電極、ソース電極、またはドレイン電極が導電体
81を介して各配線と接続される形態は一例であり、トランジスタのゲート電極、ソース
電極、またはドレイン電極のそれぞれが配線としての機能を有する場合もある。また、図
面に示される配線等の一部が設けられない場合や、上記以外の配線やトランジスタ等が各
層に含まれる場合もある。
また、各要素上には保護膜、層間絶縁膜または平坦化膜としての機能を有する絶縁層41
および42等が設けられる。例えば、絶縁層41および42等は、酸化シリコン膜、酸化
窒化シリコン膜などの無機絶縁膜を用いることができる。または、アクリル樹脂、ポリイ
ミド樹脂などの有機絶縁膜などを用いてもよい。絶縁層41および42等の上面は、必要
に応じてCMP(Chemical Mechanical Polishing)法等
で平坦化処理を行うことが好ましい。
なお、上記配線等の一部が設けられない場合や、上記以外の配線やトランジスタ等が各層
に含まれる場合もある。また、上記以外の層が含まれる場合もある。また、上記の一部の
層が含まれない場合もある。
層1500においては、上面に段差がある領域を例示しているが、層1500の上面に設
けられる複数の溝または突起には様々な形態があり、図5(A)に示す位置に段差がある
とは限られず、ある画素上における層1500には段差がない場合もある。
なお、図5(A)において、各トランジスタはバックゲートを有する形態を例示している
が、図5(B)に示すように、バックゲートを有さない形態であってもよい。また、図5
(C)に示すように一部のトランジスタ、例えばトランジスタ51のみにバックゲートを
有するような形態であってもよい。当該バックゲートは、対向して設けられるトランジス
タのフロントゲートと電気的に接続する場合がある。または、当該バックゲートにフロン
トゲートとは異なる固定電位が供給される場合がある。なお、当該バックゲート有無に関
する形態は、本実施の形態で説明する他の撮像装置の形態にも適用することができる。
層1200に設けられる光電変換素子60は、様々な形態の素子を用いることができる。
図5(A)では、セレン系材料を光電変換層61に用いた形態を図示している。セレン系
材料を用いた光電変換素子60は、可視光に対する外部量子効率が高い特性を有する。当
該光電変換素子では、アバランシェ増倍により入射される光量に対する電子の増幅が大き
い高感度のセンサとすることができる。つまり、セレン系材料を光電変換層61に用いる
ことで、画素面積が縮小しても十分な光電流を得ることができる。また、光感度が大きい
ことから、セレン系材料を用いた光電変換素子は、低照度環境における撮像にも適してい
るといえる。また、セレン系材料は光吸収係数が高いため、光電変換層61を薄くしやす
い利点を有する。
セレン系材料としては、非晶質セレンまたは結晶セレンを用いることができる。結晶セレ
ンは、一例として、非晶質セレンを成膜後、熱処理することで得ることができる。なお、
結晶セレンの結晶粒径を画素ピッチより小さくすることで、画素ごとの特性ばらつきを低
減させることができる。また、結晶セレンは、非晶質セレンよりも可視光に対する分光感
度や光吸収係数が高い特性を有する。
なお、光電変換層61は単層として図示しているが、セレン系材料の受光面側に正孔注入
阻止層として酸化ガリウムまたは酸化セリウムなどを設け、電極66側に電子注入阻止層
として酸化ニッケルまたは硫化アンチモンなどを設ける構成とすることもできる。
また、光電変換層61は、銅、インジウム、セレンの化合物(CIS)を含む層であって
もよい。または、銅、インジウム、ガリウム、セレンの化合物(CIGS)を含む層であ
ってもよい。CISおよびCIGSでは、セレンの単層と同様にアバランシェ増倍が利用
できる光電変換素子を形成することができる。
セレン系材料を用いた光電変換素子60は、例えば、金属材料などで形成された電極66
と透光性導電層62との間に光電変換層61を有する構成とすることができる。また、C
ISおよびCIGSはp型半導体であり、接合を形成するためにn型半導体の硫化カドミ
ウムや硫化亜鉛等を接して設けてもよい。
アバランシェ現象を発生させるためには、光電変換素子に比較的高い電圧(例えば、10
V以上)を印加することが好ましい。OSトランジスタは、Siトランジスタよりもドレ
イン耐圧の高い特性を有するため、光電変換素子に比較的高い電圧を印加することが容易
である。したがって、ドレイン耐圧の高いOSトランジスタと、セレン系材料を光電変換
層とした光電変換素子とを組み合わせることで、高感度、かつ信頼性の高い撮像装置とす
ることができる。
なお、図5(A)では、光電変換層61および透光性導電層62を画素回路間で分離しな
い構成としているが、図6(A)に示すように回路間で分離する構成としてもよい。また
、画素間における電極66を有さない領域には、絶縁体で隔壁67を設け、光電変換層6
1および透光性導電層62に亀裂が入らないようにすることが好ましいが、図6(B)に
示すように隔壁67を設けない構成としてもよい。また、図6(C)、(D)に示すよう
に透光性導電層62と配線77が直接接する形態としてもよい。
また、電極66および配線77等は多層としてもよい。例えば、図7(A)に示すように
、電極66を導電層66a、66bの二層とし、配線77を導電層77a、77bの二層
とすることができる。図7(A)の構成においては、例えば、導電層66aおよび77a
を低抵抗の金属等を選択して形成し、導電層66bおよび77bを光電変換層61とコン
タクト特性の良い金属等を選択して形成するとよい。このような構成とすることで、光電
変換素子の電気特性を向上させることができる。また、一部の金属は透光性導電層62と
接触することにより電蝕を起こすことがある。そのような金属を導電層77aに用いた場
合でも導電層77bを介することによって電蝕を防止することができる。
導電層66bおよび導電層77bには、例えば、モリブデンやタングステンなどを用いる
ことができる。また、導電層66aおよび導電層77aには、例えば、アルミニウム、チ
タン、またはアルミニウムをチタンで挟むような積層を用いることができる。
また、絶縁層41が多層である構成であってもよい。例えば、図7(B)に示すように、
絶縁層41が絶縁層41aおよび絶縁層41bを有し、かつ絶縁層41aと絶縁層41b
とのエッチングレート等が異なる場合は、導電体81は段差を有するようになる。層間絶
縁膜や平坦化膜に用いられるその他の絶縁層が多層である場合も同様に導電体81は段差
を有するようになる。なお、ここでは絶縁層41が2層である例を示したが、絶縁層41
およびその他の絶縁層は3層以上の構成であってもよい。また、図7(C)に示すように
、絶縁層41の上面を平坦に加工してもよい。
なお、隔壁67は、無機絶縁体や絶縁有機樹脂などを用いて形成することができる。また
、隔壁67は、トランジスタ等に対する遮光のため、および/または1画素あたりの受光
部の面積を確定するために黒色等に着色されていてもよい。
また、光電変換素子60には、非晶質シリコン膜や微結晶シリコン膜などを用いたpin
型ダイオード素子などを用いてもよい。
例えば、図8は光電変換素子60にpin型の薄膜フォトダイオードを用いた例である。
当該フォトダイオードは、n型の半導体層65、i型の半導体層64、およびp型の半導
体層63が順に積層された構成を有している。i型の半導体層64には非晶質シリコンを
用いることが好ましい。また、p型の半導体層63およびn型の半導体層65には、それ
ぞれの導電型を付与するドーパントを含む非晶質シリコンまたは微結晶シリコンなどを用
いることができる。非晶質シリコンを光電変換層とするフォトダイオードは可視光の波長
領域における感度が高く、微弱な可視光を検知しやすい。
図8に示す光電変換素子60では、カソードとして作用するn型の半導体層65がトラン
ジスタ51と電気的な接続を有する電極66と電気的な接続を有する。また、アノードと
して作用するp型の半導体層63が導電体81を介して配線78と電気的な接続を有する
なお、図4(A)に示す回路90では、光電変換素子60のアノードおよびカソードにお
いて、それぞれに接続される配線等の接続形態が図4(A)とは逆となる場合もある。
なお、いずれの場合においても、p型の半導体層63が受光面となるように光電変換素子
60を形成することが好ましい。p型の半導体層63を受光面とすることで、光電変換素
子60の出力電流を高めることができる。
また、pin型の薄膜フォトダイオードの形態を有する光電変換素子60の構成、ならび
に光電変換素子60および配線の接続形態は、図9(A)、(B)、(C)、(D)、(
E)、(F)に示す例であってもよい。なお、光電変換素子60の構成、光電変換素子6
0と配線の接続形態はこれらに限定されず、他の形態であってもよい。
図9(A)は、光電変換素子60のp型の半導体層63と接する透光性導電層62を設け
た構成である。透光性導電層62は電極として作用し、光電変換素子60の出力電流を高
めることができる。
透光性導電層62には、例えば、インジウム錫酸化物、シリコンを含むインジウム錫酸化
物、亜鉛を含む酸化インジウム、酸化亜鉛、ガリウムを含む酸化亜鉛、アルミニウムを含
む酸化亜鉛、酸化錫、フッ素を含む酸化錫、アンチモンを含む酸化錫、またはグラフェン
等を用いることができる。また、透光性導電層62は単層に限らず、異なる膜の積層であ
っても良い。
図9(B)は、光電変換素子60のp型の半導体層63と配線78が直接的な接続を有す
る構成である。
図9(C)は、光電変換素子60のp型の半導体層63と接する透光性導電層62が設け
られ、配線78と透光性導電層62が電気的な接続を有する構成である。
図9(D)は、光電変換素子60を覆う絶縁層にp型の半導体層63が露出する開口部が
設けられ、当該開口部を覆う透光性導電層62と配線78が電気的な接続を有する構成で
ある。
図9(E)は、光電変換素子60を貫通する導電体81が設けられた構成である。当該構
成では、配線77は導電体81を介してp型の半導体層63と電気的に接続される。なお
、図面上では、配線77と電極66とは、n型の半導体層63を介して見かけ上導通して
しまう形態を示している。しかしながら、n型の半導体層63の横方向の抵抗が高いため
、配線77と電極66との間に適切な間隔を設ければ、両者間は極めて高抵抗となる。し
たがって、光電変換素子60は、アノードとカソードが短絡することなく、ダイオード特
性を有することができる。なお、p型の半導体層63と電気的に接続される導電体81は
複数であってもよい。
図9(F)は、図9(E)の光電変換素子60に対して、p型の半導体層63と接する透
光性導電層62を設けた構成である。
なお、図9(D)、図9(E)、および図9(F)に示す光電変換素子60では、受光領
域と配線等が重ならないため、広い受光面積を確保できる利点を有する。
また、光電変換素子60には、図10に示すように、シリコン基板40を光電変換層とし
たフォトダイオードを用いることもできる。
上述したセレン系材料や非晶質シリコンなどを用いて形成した光電変換素子60は、成膜
工程、リソグラフィ工程、エッチング工程などの一般的な半導体作製工程を用いて作製す
るこができる。また、セレン系材料は高抵抗であり、図5(A)に示すように、光電変換
層61を回路間で分離しない構成とすることもできる。したがって、本発明の一態様の撮
像装置は、歩留りが高く、低コストで作製することができる。一方で、結晶性シリコンを
光電変換層61とするフォトダイオードを形成する場合は、研磨工程や貼り合わせ工程な
どの難度の高い工程が必要となる。
また、本発明の一態様の撮像装置は、回路が形成されたシリコン基板40が積層された構
成としてもよい。例えば、図11に示すようにシリコン基板40に活性領域を有するトラ
ンジスタ55およびトランジスタ56を有する層1400が画素回路と重なる構成とする
ことができる。
シリコン基板40に形成された回路は、画素回路が出力する信号を読み出す機能や当該信
号を変換する処理などを行う機能を有することができ、例えば、図4(B)に示す回路図
のようなCMOSインバータを含む構成とすることができる。トランジスタ55(n−c
h型)およびトランジスタ56(p−ch型)のゲート電極は電気的に接続される。また
、一方のトランジスタのソース電極またはドレイン電極の一方は、他方のトランジスタの
ソース電極またはドレイン電極の一方と電気的に接続される。また、両方のトランジスタ
のソース電極またはドレイン電極の他方はそれぞれ別の配線に電気的に接続される。
また、シリコン基板40はバルクのシリコン基板に限らず、ゲルマニウム、シリコンゲル
マニウム、炭化シリコン、ガリウムヒ素、アルミニウムガリウムヒ素、インジウムリン、
窒化ガリウム、有機半導体を材料とする基板を用いることもできる。
また、トランジスタ55およびトランジスタ56は、図11(B)に示すように、シリコ
ン薄膜の活性層58を有するトランジスタであってもよい。また、活性層58は、多結晶
シリコンやSOI(Silicon on Insulator)の単結晶シリコンとす
ることができる。
上記積層において、トランジスタ55およびトランジスタ56を有する層と、トランジス
タ51、トランジスタ52を有する層との間には絶縁層80が設けられる。ここで、図1
0および図11(A)に示すように、酸化物半導体を有するトランジスタが形成される領
域と、Siトランジスタ(図10ではSiフォトダイオード)が形成される領域との間に
は絶縁層80が設けられる。
トランジスタ55およびトランジスタ56の活性領域近傍に設けられる絶縁層中の水素は
シリコンのダングリングボンドを終端する。したがって、当該水素はトランジスタ55お
よびトランジスタ56の信頼性を向上させる効果がある。一方、トランジスタ51等の活
性層である酸化物半導体層の近傍に設けられる絶縁層中の水素は、酸化物半導体中にキャ
リアを生成する要因の一つとなる。そのため、当該水素はトランジスタ51等の信頼性を
低下させる要因となる場合がある。したがって、シリコン系半導体材料を用いたトランジ
スタを有する一方の層と、OSトランジスタを有する他方の層を積層する場合、これらの
間に水素の拡散を防止する機能を有する絶縁層80を設けることが好ましい。絶縁層80
により、一方の層に水素を閉じ込めることでトランジスタ55およびトランジスタ56の
信頼性が向上することができる。また、一方の層から他方の層への水素の拡散が抑制され
ることでトランジスタ51等の信頼性も向上させることができる。
絶縁層80としては、例えば、酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム
、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化
窒化ハフニウム、イットリア安定化ジルコニア(YSZ)等を用いることができる。
なお、図11に示すような構成では、シリコン基板40に形成される回路(例えば、駆動
回路)と、トランジスタ51等と、光電変換素子60とを重なるように形成することがで
きるため、画素の集積度を高めることができる。すなわち、撮像装置の解像度を高めるこ
とができる。例えば、画素数が4K2K、8K4Kまたは16K8Kなどの撮像装置に用
いることが適する。
また、図11に示す撮像装置は、シリコン基板40には光電変換素子を設けない構成であ
る。したがって、各種トランジスタや配線などの影響を受けずに光電変換素子60に対す
る光路を確保することができ、高開口率の画素を形成することができる。
また、本発明の一態様の撮像装置は、図12に示す構成とすることができる。
図12に示す撮像装置は、図11(A)に示す撮像装置の変形例であり、OSトランジス
タおよびSiトランジスタでCMOSインバータを構成する例を図示している。
ここで、層1400に設けるSiトランジスタであるトランジスタ56はp−ch型とし
、層1100に設けるOSトランジスタであるトランジスタ55はn−ch型とする。p
−ch型トランジスタのみをシリコン基板40に設けることで、ウェル形成やn型不純物
層形成など工程を省くことができる。
なお、図12に示す撮像装置は、光電変換素子60にセレンを用いた例を示したが、図8
と同様にpin型の薄膜フォトダイオードを用いた構成としてもよい。
図12に示す撮像装置において、トランジスタ55は、層1100に形成するトランジス
タ51およびトランジスタ52と同一の工程で作製することができる。したがって、撮像
装置の製造工程を簡略化することができる。
なお、本実施の形態における撮像装置が有するトランジスタおよび光電変換素子の構成は
一例である。したがって、例えば、トランジスタ51乃至トランジスタ54の一つ以上を
活性領域または活性層にシリコン等を有するトランジスタで構成することもできる。また
、トランジスタ55およびトランジスタ56の両方または一方を活性層に酸化物半導体層
を有するトランジスタで構成することもできる。
図13(A)乃至図13(F)は、回折格子として作用する層1500の上面図の例であ
る。当該図面のハッチング部が凸部であっても凹部であってもどちらでもよい。なお、図
13(A)乃至図13(F)に示すそれぞれのパターンを画素アレイ上に複数並べて設け
てもよい。
また、凸部または凹部の断面は図1(A)に示すような側面が垂直な形状に限られず、図
14(A)乃至図14(D)に示す形状であってもよい。また、凹部の形状は図14(E
)に示すような形状であってもよい。
層1500は、透光性を有する材料で形成することができる。例えば、酸化シリコン膜、
酸化窒化シリコン膜などの無機絶縁膜を用いることができる。または、アクリル樹脂、ポ
リイミド樹脂などの有機絶縁膜などを用いてもよい。または、上記無機絶縁膜と有機絶縁
膜との積層であってもよい。
また、層1500は、感光性樹脂などを用いたリソグラフィ工程で形成することができる
。また、リソグラフィ工程とエッチング工程とを用いて形成することもできる。また、ナ
ノインプリントリソグラフィやレーザスクライブなどを用いて形成することもできる。
図15(A)は、撮像装置にカラーフィルタ等を付加した形態の一例の断面図である。当
該断面図は、3画素分の画素回路を有する領域の一部を示している。光電変換素子60が
形成される層1200上には、絶縁層2500が形成される。絶縁層2500は可視光に
対して透光性の高い酸化シリコン膜などを用いることができる。また、パッシベーション
膜として窒化シリコン膜を積層する構成としてもよい。また、反射防止膜として、酸化ハ
フニウムなどの誘電体膜を積層する構成としてもよい。
絶縁層2500上には、遮光層2510が形成されてもよい。遮光層2510は、上部の
カラーフィルタを通る光の混色を防止する機能を有する。遮光層2510には、アルミニ
ウム、タングステンなどの金属層や当該金属層と反射防止膜としての機能を有する誘電体
膜を積層する構成とすることができる。
絶縁層2500および遮光層2510上には平坦化膜として有機樹脂層2520を設ける
構成とすることができる。また、画素別にカラーフィルタ2530が形成される。例えば
、カラーフィルタ2530a、カラーフィルタ2530bおよびカラーフィルタ2530
cに、R(赤)、G(緑)、B(青)、Y(黄)、C(シアン)、M(マゼンタ)などの
色を割り当てることにより、カラー画像を得ることができる。
カラーフィルタ2530上には、透光性を有する絶縁層2560などを設けることができ
る。または、絶縁層2560を設けずに層1500を形成してもよい。
また、図15(B)に示すように、カラーフィルタ2530の代わりに光学変換層255
0を用いてもよい。このような構成とすることで、様々な波長領域における画像が得られ
る撮像装置とすることができる。
例えば、光学変換層2550に可視光線の波長以下の光を遮るフィルタを用いれば赤外線
撮像装置とすることができる。また、光学変換層2550に近赤外線の波長以下の光を遮
るフィルタを用いれば遠赤外線撮像装置とすることができる。また、光学変換層2550
に可視光線の波長以上の光を遮るフィルタを用いれば紫外線撮像装置とすることができる
また、光学変換層2550にシンチレータを用いれば、X線撮像装置などに用いる、放射
線の強弱を可視化した画像を得る撮像装置とすることができる。被写体を透過したX線等
の放射線がシンチレータに入射されると、フォトルミネッセンスと呼ばれる現象により可
視光線や紫外光線などの光(蛍光)に変換される。そして、当該光を光電変換素子60で
検知することにより画像データを取得する。また、放射線検出器などに当該構成の撮像装
置を用いてもよい。
シンチレータは、X線やガンマ線などの放射線が照射されると、そのエネルギーを吸収し
て可視光や紫外光を発する物質、または当該物質を含む材料からなる。例えば、Gd
S:Tb、GdS:Pr、GdS:Eu、BaFCl:Eu、NaI、C
sI、CaF、BaF、CeF、LiF、LiI、ZnOなどの材料や、それらを
樹脂やセラミクスに分散させたものを用いることができる。
なお、セレン系材料を用いた光電変換素子60においては、X線等の放射線を電荷に直接
変換することができるため、シンチレータを不要とする構成とすることもできる。
カラーフィルタ2530a、カラーフィルタ2530bおよびカラーフィルタ2530c
上には、マイクロレンズアレイ2540を設けてもよい。マイクロレンズアレイ2540
が有する個々のレンズを通る光が直下のカラーフィルタを通り、光電変換素子60に照射
されるようになる。なお、図15(A)、(B)、(C)に示す層1200以外の領域を
層1600とする。
図15(A)に示す撮像装置の具体的な構成は、図5に示す撮像装置を例にすると、図1
6に示すようになる。また、図10に示す撮像装置を例にすると、図17に示すようにな
る。
また、図15(C)に示す撮像装置の具体的な構成は、図5に示す撮像装置を例にすると
、図18に示すようになる。また、図10に示す撮像装置を例にすると、図19に示すよ
うになる。なお、層1500とマイクロレンズアレイ2540との間に間隔Xを設けても
よい。間隔Xは、1mm以下、好ましくは100μm以下とすることができる。なお、当
該間隔は空間でもよいし、透光性を有する材料を封止層または接着層として設けてもよい
。例えば、窒素や希ガスなどの不活性ガスを当該間隔に封じ込めることができる。または
、アクリル樹脂、エポキシ樹脂またはポリイミド樹脂などを当該間隔に設けてもよい。ま
たはシリコーンオイルなどの液体を設けてもよい。なお、マイクロレンズアレイ2540
を設けない場合においても、カラーフィルタ2530と層1500との間に間隔Xを設け
てもよい。
また、撮像装置は、図20(A1)および図20(B1)に示すように湾曲させてもよい
。図20(A1)は、撮像装置を同図中の二点鎖線X1−X2の方向に湾曲させた状態を
示している。図20(A2)は、図20(A1)中の二点鎖線X1−X2で示した部位の
断面図である。図20(A3)は、図20(A1)中の二点鎖線Y1−Y2で示した部位
の断面図である。
図20(B1)は、撮像装置を同図中の二点鎖線X3−X4の方向に湾曲させ、かつ、同
図中の二点鎖線Y3−Y4の方向に湾曲させた状態を示している。図20(B2)は、図
20(B1)中の二点鎖線X3−X4で示した部位の断面図である。図20(B3)は、
図20(B1)中の二点鎖線Y3−Y4で示した部位の断面図である。
撮像装置を湾曲させることで、像面湾曲や非点収差を低減することができる。よって、撮
像装置と組み合わせて用いるレンズなどの光学設計を容易とすることができる。例えば、
収差補正のためのレンズ枚数を低減できるため、撮像装置を用いた半導体装置などの小型
化や軽量化を容易とすることができる。また、撮像された画像の品質を向上させる事がで
きる。
なお、本実施の形態において、本発明の一態様について述べた。または、他の実施の形態
において、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定さ
れない。例えば、本発明の一態様として、撮像装置に適用した場合の例を示したが、本発
明の一態様は、これに限定されない。場合によっては、または、状況に応じて、本発明の
一態様は、撮像装置に適用しなくてもよい。例えば、本発明の一態様は、別の機能を有す
る半導体装置に適用してもよい。例えば、本発明の一態様として、回折格子を有する場合
の例を示したが、本発明の一態様は、これに限定されない。場合によっては、または、状
況に応じて、本発明の一態様では、他の光学素子を有していてもよい。または例えば、場
合によっては、または、状況に応じて、本発明の一態様では、回折格子を有していなくて
もよい。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態2)
本実施の形態では、実施の形態1で説明した回路90について説明する。
図4(A)に示す回路90および各配線との接続形態の詳細を図21(A)に示す。図2
1(A)に示す回路は、光電変換素子60、トランジスタ51、トランジスタ52、トラ
ンジスタ53、およびトランジスタ54を含んだ構成となっている。
光電変換素子60のアノードは配線316に接続され、カソードはトランジスタ51のソ
ース電極またはドレイン電極の一方と接続される。トランジスタ51のソース電極または
ドレイン電極の他方は電荷蓄積部(FD)と接続され、ゲート電極は配線312(TX)
と接続される。トランジスタ52のソース電極またはドレイン電極の一方は配線314(
GND)と接続され、ソース電極またはドレイン電極の他方はトランジスタ54のソース
電極またはドレイン電極の一方と接続され、ゲート電極は電荷蓄積部(FD)と接続され
る。トランジスタ53のソース電極またはドレイン電極の一方は電荷蓄積部(FD)と接
続され、ソース電極またはドレイン電極の他方は配線317と接続され、ゲート電極は配
線311(RS)と接続される。トランジスタ54のソース電極またはドレイン電極の他
方は配線315(OUT)と接続され、ゲート電極は配線313(SE)に接続される。
なお、上記接続は全て電気的な接続とする。
なお、配線314には、GND、VSS、VDDなどの電位が供給されていてもよい。こ
こで、電位や電圧は相対的なものである。そのため、GNDの電位の大きさは、必ずしも
、0ボルトであるとは限らないものとする。
光電変換素子60は受光素子であり、画素回路に入射した光に応じた電流を生成する機能
を有する。トランジスタ53は、光電変換素子60による電荷蓄積部(FD)への電荷蓄
積を制御する機能を有する。トランジスタ54は、電荷蓄積部(FD)の電位に応じた信
号を出力する機能を有する。トランジスタ55は、電荷蓄積部(FD)の電位のリセット
する機能を有する。トランジスタ56は、読み出し時に画素回路の選択を制御する機能を
有する。
なお、電荷蓄積部(FD)は、電荷保持ノードであり、光電変換素子60が受ける光の量
に応じて変化する電荷を保持する。
なお、トランジスタ52とトランジスタ54とは、配線314と配線315との間で、直
列接続されていればよい。したがって、配線314、トランジスタ52、トランジスタ5
4、配線315の順で並んでもよいし、配線314、トランジスタ54、トランジスタ5
2、配線315の順で並んでもよい。
配線311(RS)は、トランジスタ53を制御するための信号線としての機能を有する
。配線312(TX)は、トランジスタ51を制御するための信号線としての機能を有す
る。配線313(SE)は、トランジスタ54を制御するための信号線としての機能を有
する。配線314(GND)は、基準電位(例えばGND)を供給する信号線としての機
能を有する。配線315(OUT)は、トランジスタ52から出力される信号を読み出す
ための信号線としての機能を有する。配線316は電荷蓄積部(FD)から光電変換素子
60を介して電荷を出力するための信号線としての機能を有し、図21(A)の回路にお
いては低電位線である。また、配線317は電荷蓄積部(FD)の電位をリセットするた
めの信号線としての機能を有し、図21(A)の回路においては高電位線である。
ここで、図21(A)に示す配線と図4(A)に示す配線との関係は次の通りである。配
線76は配線311(RS)に相当する。配線75は配線312(TX)に相当する。配
線78は配線313(SE)に相当する。配線79は配線314(GND)に相当する。
配線71は配線315(OUT)に相当する。配線77は配線316に相当する。
また、本発明の一態様の画素回路は、図21(B)に示す構成であってもよい。図21(
B)に示す回路は、図10に示す回路と構成要素は同じであるが、光電変換素子60のア
ノードがトランジスタ51のソース電極またはドレイン電極の一方と電気的に接続され、
光電変換素子60のカソードが配線316と電気的に接続される点で異なる。この場合、
配線316は光電変換素子60を介して電荷蓄積部(FD)に電荷を供給するための信号
線としての機能を有し、図21(B)の回路においては高電位線となる。また、配線31
7は低電位線となる。
次に、図21(A)、(B)に示す各素子の構成について説明する。
光電変換素子60には、実施の形態1で説明したように、セレン系材料と導電層で構成さ
れた素子や、シリコン層によってpin型の接合が形成された素子を用いることができる
トランジスタ51、トランジスタ52、トランジスタ53、およびトランジスタ54は、
非晶質シリコン、微結晶シリコン、多結晶シリコン、単結晶シリコンなどのシリコン半導
体を用いて形成することも可能であるが、OSトランジスタで形成することが好ましい。
酸化物半導体でチャネル形成領域を形成したトランジスタは、極めてオフ電流が低い特性
を示す特徴を有している。
特に、電荷蓄積部(FD)と接続されているトランジスタ51およびトランジスタ53の
リーク電流が大きいと、電荷蓄積部(FD)に蓄積された電荷が保持できる時間が十分で
なくなる。したがって、少なくとも当該二つのトランジスタにOSトランジスタを使用す
ることで、電荷蓄積部(FD)からの不要な電荷の流出を防止することができる。
また、トランジスタ52およびトランジスタ54においても、リーク電流が大きいと、配
線314または配線315に不必要な電荷の出力が起こるため、これらのトランジスタと
して、酸化物半導体でチャネル形成領域を形成したトランジスタを用いることが好ましい
図21(A)の回路の動作の一例について図22(A)に示すタイミングチャートを用い
て説明する。
図22(A)では簡易に説明するため、各配線の電位は、二値変化する信号として与える
。ただし、各電位はアナログ信号であるため、実際には状況に応じて二値に限らず種々の
値を取り得る。なお、図に示す信号701は配線311(RS)の電位、信号702は配
線312(TX)の電位、信号703は配線313(SE)の電位、信号704は電荷蓄
積部(FD)の電位、信号705は配線315(OUT)の電位に相当する。なお、配線
316の電位は常時”Low”、配線317の電位は常時”High”とする。
時刻Aにおいて、配線311の電位(信号701)を”High”、配線312の電位(
信号702)を”High”とすると、電荷蓄積部(FD)の電位(信号704)は配線
317の電位(”High”)に初期化され、リセット動作が開始される。なお、配線3
15の電位(信号705)は、”High”にプリチャージしておく。
時刻Bにおいて、配線311の電位(信号701)を”Low”とするとリセット動作が
終了し、蓄積動作が開始される。ここで、光電変換素子60には逆方向バイアスが印加さ
れるため、逆方向電流により、電荷蓄積部(FD)の電位(信号704)が低下し始める
。光電変換素子60は、光が照射されると逆方向電流が増大するので、照射される光の量
に応じて電荷蓄積部(FD)の電位(信号704)の低下速度は変化する。すなわち、光
電変換素子60に照射する光の量に応じて、トランジスタ54のソース電極とドレイン電
極間のチャネル抵抗が変化する。
時刻Cにおいて、配線312の電位(信号702)を”Low”とすると蓄積動作が終了
し、電荷蓄積部(FD)の電位(信号704)は一定となる。ここで、当該電位は、蓄積
動作中に光電変換素子60が生成した電荷量により決まる。すなわち、光電変換素子に照
射されていた光の量に応じて変化する。また、トランジスタ51およびトランジスタ53
は、酸化膜半導体層でチャネル形成領域を形成したオフ電流が極めて低いトランジスタで
構成されているため、後の選択動作(読み出し動作)を行うまで、電荷蓄積部(FD)の
電位を一定に保つことが可能である。
なお、配線312の電位(信号702)を”Low”とする際に、配線312と電荷蓄積
部(FD)との間における寄生容量により、電荷蓄積部(FD)の電位に変化が生じるこ
とがある。当該電位の変化量が大きい場合は、蓄積動作中に光電変換素子60が生成した
電荷量を正確に取得できないことになる。当該電位の変化量を低減するには、トランジス
タ51のゲート電極−ソース電極(もしくはゲート電極−ドレイン電極)間容量を低減す
る、トランジスタ52のゲート容量を増大する、電荷蓄積部(FD)に保持容量を設ける
、などの対策が有効である。なお、本実施の形態では、これらの対策により当該電位の変
化を無視できるものとしている。
時刻Dに、配線313の電位(信号703)を”High”にすると、トランジスタ54
が導通して選択動作が開始され、配線314と配線315が、トランジスタ52とトラン
ジスタ54とを介して導通する。そして、配線315の電位(信号705)は、低下して
いく。なお、配線315のプリチャージは、時刻D以前に終了しておけばよい。ここで、
配線315の電位(信号705)が低下する速さは、トランジスタ52のソース電極とド
レイン電極間の電流に依存する。すなわち、蓄積動作中に光電変換素子60に照射されて
いる光の量に応じて変化する。
時刻Eにおいて、配線313の電位(信号703)を”Low”にすると、トランジスタ
54が遮断されて選択動作は終了し、配線315の電位(信号705)は、一定値となる
。ここで、一定値となる値は、光電変換素子60に照射されていた光の量に応じて変化す
る。したがって、配線315の電位を取得することで、蓄積動作中に光電変換素子60に
照射されていた光の量を知ることができる。
より具体的には、光電変換素子60に照射されている光が強いと、電荷蓄積部(FD)の
電位、すなわちトランジスタ52のゲート電圧は低下する。そのため、トランジスタ52
のソース電極−ドレイン電極間に流れる電流は小さくなり、配線315の電位(信号70
5)はゆっくりと低下する。したがって、配線315からは比較的高い電位を読み出すこ
とができる。
逆に、光電変換素子60に照射されている光が弱いと、電荷蓄積部(FD)の電位、すな
わち、トランジスタ52のゲート電圧は高くなる。そのため、トランジスタ52のソース
電極−ドレイン電極間に流れる電流は大きくなり、配線315の電位(信号705)は速
く低下する。したがって、配線315からは比較的低い電位を読み出すことができる。
次に、図21(B)の回路の動作の例について図22(B)に示すタイミングチャートを
用いて説明する。なお、配線316の電位は常時”High”、配線317の電位は常時
”Low”とする。
時刻Aにおいて、配線311の電位(信号701)を”High”、配線312の電位(
信号702)を”High”とすると、電荷蓄積部(FD)の電位(信号704)は配線
317の電位(”Low”)に初期化され、リセット動作が開始される。なお、配線31
5の電位(信号705)は、”High”にプリチャージしておく。
時刻Bにおいて、配線311の電位(信号701)を”Low”とするとリセット動作が
終了し、蓄積動作が開始される。ここで、光電変換素子60には逆方向バイアスが印加さ
れるため、逆方向電流により、電荷蓄積部(FD)の電位(信号704)が上昇し始める
時刻C以降の動作は、図22(A)のタイミングチャートの説明を参照することができ、
時刻Eにおいて、配線315の電位を取得することで、蓄積動作中に光電変換素子60に
照射されていた光の量を知ることができる。
なお、図21(A)に示す画素回路は、図26に示すようにトランジスタ52乃至トラン
ジスタ54を複数の画素で共用する形態としてもよい。図26は垂直方向の複数の画素で
トランジスタ52乃至トランジスタ54を共用する構成を例示しているが、水平方向また
は水平垂直方向の複数の画素でトランジスタ52乃至トランジスタ54を共用してもよい
。このような構成とすることで、一画素あたりが有するトランジスタ数を削減させること
ができる。なお、図26ではトランジスタ52乃至トランジスタ54が4画素で共用され
る形態を図示しているが、2画素、3画素または5画素以上であってもよい。また、図2
1(B)に示す画素回路においても同様な構成とすることができる。
また、本発明の一態様の画素回路は、図23(A)、(B)に示す構成であってもよい。
図23(A)に示す回路は、図21(A)に示す回路の構成からトランジスタ53、配線
316および配線317を省いた構成であり、配線311(RS)は光電変換素子60の
アノードに電気的に接続される。その他の構成は、図21(A)に示す回路と同じである
図23(B)に示す回路は、図23(A)に示す回路と構成要素は同じであるが、光電変
換素子60のアノードがトランジスタ52のソース電極またはドレイン電極の一方と電気
的に接続され、光電変換素子60のカソードが配線311(RS)と電気的に接続される
点で異なる。
図23(A)の回路は図21(A)の回路と同様に、図22(A)に示すタイミングチャ
ートで動作させることができる。
時刻Aにおいて、配線311の電位(信号701)を”High”、配線312の電位(
信号702)を”High”とすると、光電変換素子60に順方向バイアスが印加され、
電荷蓄積部(FD)の電位(信号704)が”High”となる。すなわち、電荷蓄積部
(FD)の電位は配線311(RS)の電位(”High”)に初期化され、リセット状
態となる。以上がリセット動作の開始である。なお、配線315の電位(信号705)は
、”High”にプリチャージしておく。
時刻Bにおいて、配線311の電位(信号701)を”Low”とするとリセット動作が
終了し、蓄積動作が開始される。ここで、光電変換素子60には逆方向バイアスが印加さ
れるため、逆方向電流により、電荷蓄積部(FD)の電位(信号704)が低下し始める
時刻C以降の動作は、図21(A)の回路動作の説明を参照することができ、時刻Eにお
いて、配線315の電位を取得することで、蓄積動作中に光電変換素子60に照射されて
いた光の量を知ることができる。
図23(B)の回路は、図22(C)に示すタイミングチャートで動作させることができ
る。
時刻Aにおいて、配線311の電位(信号701)を”Low”、配線312の電位(信
号702)を”High”とすると、光電変換素子60に順方向バイアスが印加され、電
荷蓄積部(FD)の電位(信号704)が”Low”のリセット状態となる。以上がリセ
ット動作の開始である。なお、配線315電位(信号705)は、”High”にプリチ
ャージしておく。
時刻Bにおいて、配線311の電位(信号701)を”High”とするとリセット動作
が終了し、蓄積動作が開始される。ここで、光電変換素子60には逆方向バイアスが印加
されるため、逆方向電流により、電荷蓄積部(FD)の電位(信号704)が上昇し始め
る。
時刻C以降の動作は、図21(A)の回路動作の説明を参照することができ、時刻Eにお
いて、配線315の電位を取得することで、蓄積動作中に光電変換素子60に照射されて
いた光の量を知ることができる。
なお、図23(A)に示す画素回路は、図27に示すようにトランジスタ52およびトラ
ンジスタ54を複数の画素で共用する形態としてもよい。図27は垂直方向の複数の画素
でトランジスタ52およびトランジスタ54を共用する構成を例示しているが、水平方向
または水平垂直方向の複数の画素でトランジスタ52およびトランジスタ54を共用して
もよい。なお、図27ではトランジスタ52およびトランジスタ54が4画素で共用され
る形態を図示しているが、2画素、3画素または5画素以上であってもよい。また、図2
3(B)に示す画素回路においても同様な構成とすることができる。
また、図21(A)、(B)および図23(A)、(B)では、トランジスタ51が設け
られている場合の例を示したが、本発明の一態様は、これに限定されない。図24(A)
、(B)に示すように、トランジスタ51を省くことも可能である。
また、画素回路に用いるトランジスタは、図25(A)または図25(B)に示すように
、トランジスタ51、トランジスタ52、およびトランジスタ54にバックゲートを設け
た構成であってもよい。図25(A)はバックゲートに定電位を印加する構成であり、し
きい値電圧を制御することができる。また、図25(B)はフロントゲートと同じ電位が
バックゲートに印加される構成であり、オン電流を増加させることができる。なお、図2
5(A)においては、バックゲートが配線314(GND)と電気的に接続される構成を
例示したが、定電位が供給される別の配線と電気的に接続されていてもよい。なお、図2
5(A)、(B)は図23(A)に示す回路においてトランジスタにバックゲートを設け
た例を示したが、同様の構成を図21(A)、(B)、図23(B)、図24(A)、(
B)に示す回路にも適用することもできる。また、一つの回路に含まれるトランジスタに
対し、フロントゲートと同じ電位がバックゲートに印加される構成、バックゲートに定電
位を印加する構成、またはバックゲートを設けない構成を必要に応じて任意に組み合わせ
た回路構成としてもよい。
なお、図25(A)に示す画素回路は、図28に示すようにトランジスタ51およびトラ
ンジスタ54を複数の画素で共用する形態としてもよい。また、図25(B)に示す画素
回路は、図29に示すようにトランジスタ52およびトランジスタ54を複数の画素で共
用する形態としてもよい。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態3)
本実施の形態では、実施の形態1で説明したグローバルシャッタ方式およびローリングシ
ャッタ方式の詳細について説明する。
実施の形態2で説明したように、画素回路の動作は、リセット動作、蓄積動作、および選
択動作の繰り返しである。画素マトリクス全体を制御する撮像方法としては、グローバル
シャッタ方式とローリングシャッタ方式が知られている。
図30(A)は、グローバルシャッタ方式におけるタイミングチャートである。なお、図
30(A)は、マトリクス状に複数の画素回路を有し、当該画素回路に図21(A)の回
路を有する撮像装置を例として、第1行目から第n行目(nは3以上の自然数)の画素回
路の動作を説明するものである。なお、下記の動作説明は、図21(B)、図23(A)
、(B)、および図24(A)、(B)に示す回路にも適用することができる。
図30(A)において、信号501、信号502、信号503は、第1行目、第2行目、
第n行目の各画素回路に接続された配線311(RS)に入力される信号である。また、
信号504、信号505、信号506は、第1行目、第2行目、第n行目の各画素回路に
接続された配線312(TX)に入力される信号である。また、信号507、信号508
、信号509は、第1行目、第2行目、第n行目の各画素回路に接続された配線313(
SE)に入力される信号である。
また、期間510は、1回の撮像に要する期間である。また、期間511は、各行の画素
回路がリセット動作を同時に行っている期間である。また、期間520は、各行の画素回
路が蓄積動作を同時に行っている期間である。なお、選択動作は各行の画素回路で順次行
われる。一例として、期間531は、第1行目の画素回路が選択動作を行っている期間で
ある。このように、グローバルシャッタ方式では、全画素回路で略同時にリセット動作が
行われた後、全画素回路で略同時に蓄積動作が行われ、1行毎に順次読み出し動作が行わ
れる。
つまり、グローバルシャッタ方式では、全ての画素回路において蓄積動作が略同時に行わ
れているため、各行の画素回路における撮像の同時性が確保される。したがって、被写体
が動体であっても歪の小さい画像を取得することができる。
一方、図30(B)は、ローリングシャッタ方式を用いた場合のタイミングチャートであ
る。なお、信号501乃至509は図30(A)の説明を参照することができる。期間6
10は1回の撮像に要する期間である。また、期間611、期間612、期間612は、
それぞれ第1行目、第2行目、第n行目のリセット期間である。また、期間621、期間
622、期間623は、それぞれ第1行目、第2行目、第n行目の蓄積動作期間である。
また、期間631は、1行目の画素回路が選択動作を行っている期間である。このように
、ローリングシャッタ方式では、蓄積動作が全ての画素回路では同時に行われず、行毎に
順次行われるため、各行の画素回路における撮像の同時性が確保されない。したがって、
一行目の最終行目では撮像のタイミングが異なるため、動体が被写体である場合は歪の大
きい画像となってしまう。
グローバルシャッタ方式を実現するためには、各画素からの信号の読み出しが順次終了す
るまで、電荷蓄積部(FD)の電位を長時間保つ必要がある。電荷蓄積部(FD)の電位
の長時間の保持は、トランジスタ53などにチャネル形成領域を酸化物半導体で形成した
極めてオフ電流の低いトランジスタを用いることで実現できる。一方、トランジスタ53
などにチャネル形成領域をシリコンなどで形成したトランジスタを適用した場合は、オフ
電流が高いために電荷蓄積部(FD)の電位を長時間保持できず、グローバルシャッタ方
式を用いることが困難となる。
以上のように、画素回路にチャネル形成領域を酸化物半導体で形成したトランジスタを用
いることでグローバルシャッタ方式を容易に実現することができる。
本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
(実施の形態4)
本実施の形態では、本発明の一態様に用いることのできる酸化物半導体を有するトランジ
スタについて図面を用いて説明する。なお、本実施の形態における図面では、明瞭化のた
めに一部の要素を拡大、縮小、または省略して図示している。
図31(A)、(B)は、本発明の一態様のトランジスタ101の上面図および断面図で
ある。図31(A)は上面図であり、図31(A)に示す一点鎖線B1−B2方向の断面
が図31(B)に相当する。また、図31(A)に示す一点鎖線B3−B4方向の断面が
図37(A)に相当する。また、一点鎖線B1−B2方向をチャネル長方向、一点鎖線B
3−B4方向をチャネル幅方向と呼称する。
トランジスタ101は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130と、酸化物半導体層130と電気的に接続する導電層140および導電
層150と、酸化物半導体層130、導電層140および導電層150と接する絶縁層1
60と、絶縁層160と接する導電層170と、導電層140、導電層150、絶縁層1
60および導電層170と接する絶縁層175と、絶縁層175と接する絶縁層180と
、を有する。また、必要に応じて絶縁層180に平坦化膜としての機能を付加してもよい
ここで、導電層140はソース電極層、導電層150はドレイン電極層、絶縁層160は
ゲート絶縁膜、導電層170はゲート電極層としてそれぞれ機能することができる。
また、図31(B)に示す領域231はソース領域、領域232はドレイン領域、領域2
33はチャネル形成領域として機能することができる。領域231および領域232は導
電層140および導電層150とそれぞれ接しており、導電層140および導電層150
として酸素と結合しやすい導電材料を用いれば領域231および領域232を低抵抗化す
ることができる。
具体的には、酸化物半導体層130と導電層140および導電層150とが接することで
酸化物半導体層130内に酸素欠損が生じ、当該酸素欠損と酸化物半導体層130内に残
留または外部から拡散する水素との相互作用により、領域231および領域232は低抵
抗のn型となる。
なお、トランジスタの「ソース」や「ドレイン」の機能は、異なる極性のトランジスタを
採用する場合や、回路動作において電流の方向が変化する場合などには入れ替わることが
ある。このため、本明細書においては、「ソース」や「ドレイン」という用語は、入れ替
えて用いることができるものとする。また、「電極層」は、「配線」と言い換えることも
できる。
また、導電層170は、導電層171および導電層172の二層で形成される例を図示し
ているが、一層または三層以上の積層であってもよい。当該構成は本実施の形態で説明す
る他のトランジスタにも適用できる。
また、導電層140および導電層150は単層で形成される例を図示しているが、二層以
上の積層であってもよい。当該構成は本実施の形態で説明する他のトランジスタにも適用
できる。
また、本発明の一態様のトランジスタは、図32(A)、(B)に示す構成であってもよ
い。図32(A)はトランジスタ102の上面図であり、図32(A)に示す一点鎖線C
1−C2方向の断面が図32(B)に相当する。また、図32(A)に示す一点鎖線C3
−C4方向の断面は、図37(B)に相当する。また、一点鎖線C1−C2方向をチャネ
ル長方向、一点鎖線C3−C4方向をチャネル幅方向と呼称する。
トランジスタ102は、ゲート絶縁膜として作用する絶縁層160の端部とゲート電極層
として作用する導電層170の端部とを一致させない点を除き、トランジスタ101と同
様の構成を有する。トランジスタ102の構造は、導電層140および導電層150が絶
縁層160で広く覆われているため、導電層140および導電層150と導電層170と
の間の抵抗が高く、ゲートリーク電流の少ない特徴を有している。
トランジスタ101およびトランジスタ102は、導電層170と導電層140および導
電層150が重なる領域を有するトップゲート構造である。当該領域のチャネル長方向の
幅は、寄生容量を小さくするために3nm以上300nm未満とすることが好ましい。当
該構成では、酸化物半導体層130にオフセット領域が形成されないため、オン電流の高
いトランジスタを形成しやすい。
また、本発明の一態様のトランジスタは、図33(A)、(B)に示す構成であってもよ
い。図33(A)はトランジスタ103の上面図であり、図33(A)に示す一点鎖線D
1−D2方向の断面が図33(B)に相当する。また、図33(A)に示す一点鎖線D3
−D4方向の断面は、図37(A)に相当する。また、一点鎖線D1−D2方向をチャネ
ル長方向、一点鎖線D3−D4方向をチャネル幅方向と呼称する。
トランジスタ103は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130と、酸化物半導体層130と接する絶縁層160と、絶縁層160と接
する導電層170と、酸化物半導体層130、絶縁層160および導電層170を覆う絶
縁層175と、絶縁層175と接する絶縁層180と、絶縁層175および絶縁層180
に設けられた開口部を通じて酸化物半導体層130と電気的に接続する導電層140およ
び導電層150を有する。また、必要に応じて絶縁層180、導電層140および導電層
150に接する絶縁層(平坦化膜)などを有していてもよい。
ここで、導電層140はソース電極層、導電層150はドレイン電極層、絶縁層160は
ゲート絶縁膜、導電層170はゲート電極層としてそれぞれ機能することができる。
また、図33(B)に示す領域231はソース領域、領域232はドレイン領域、領域2
33はチャネル形成領域として機能することができる。領域231および領域232は絶
縁層175と接しており、例えば絶縁層175として水素を含む絶縁材料を用いれば領域
231および領域232を低抵抗化することができる。
具体的には、絶縁層175を形成するまでの工程により領域231および領域232に生
じる酸素欠損と、絶縁層175から領域231および領域232に拡散する水素との相互
作用により、領域231および領域232は低抵抗のn型となる。なお、水素を含む絶縁
材料としては、例えば窒化シリコンや窒化アルミニウムなどを用いることができる。
また、本発明の一態様のトランジスタは、図34(A)、(B)に示す構成であってもよ
い。図34(A)はトランジスタ104の上面図であり、図34(A)に示す一点鎖線E
1−E2方向の断面が図34(B)に相当する。また、図34(A)に示す一点鎖線E3
−E4方向の断面は、図37(A)に相当する。また、一点鎖線E1−E2方向をチャネ
ル長方向、一点鎖線E3−E4方向をチャネル幅方向と呼称する。
トランジスタ104は、導電層140および導電層150が酸化物半導体層130の端部
を覆うように接している点を除き、トランジスタ103と同様の構成を有する。
また、図34(B)に示す領域331および領域334はソース領域、領域332および
領域335はドレイン領域、領域333はチャネル形成領域として機能することができる
領域331および領域332は、トランジスタ101における領域231および領域23
2と同様に低抵抗化することができる。
また、領域334および領域335は、トランジスタ103における領域231および領
域232と同様に低抵抗化することができる。なお、チャネル長方向における領域334
および領域335の長さが100nm以下、好ましくは50nm以下の場合には、ゲート
電界の寄与によりオン電流は大きく低下しない。したがって、領域334および領域33
5の低抵抗化を行わない場合もある。
トランジスタ103およびトランジスタ104は、導電層170と導電層140および導
電層150が重なる領域を有さないセルフアライン構造である。セルフアライン構造のト
ランジスタはゲート電極層とソース電極層およびドレイン電極層間の寄生容量が極めて小
さいため、高速動作用途に適している。
また、本発明の一態様のトランジスタは、図35(A)、(B)に示す構成であってもよ
い。図35(A)はトランジスタ105の上面図であり、図35(A)に示す一点鎖線F
1−F2方向の断面が図35(B)に相当する。また、図35(A)に示す一点鎖線F3
−F4方向の断面は、図37(A)に相当。また、一点鎖線F1−F2方向をチャネル長
方向、一点鎖線F3−F4方向をチャネル幅方向と呼称する。
トランジスタ105は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130と、酸化物半導体層130と電気的に接続する導電層141および導電
層151と、酸化物半導体層130、導電層141、導電層151と接する絶縁層160
と、絶縁層160と接する導電層170と、酸化物半導体層130、導電層141、導電
層151、絶縁層160および導電層170と接する絶縁層175と、絶縁層175と接
する絶縁層180と、絶縁層175および絶縁層180に設けられた開口部を通じて導電
層141および導電層151とそれぞれ電気的に接続する導電層142および導電層15
2を有する。また、必要に応じて絶縁層180、導電層142および導電層152に接す
る絶縁層などを有していてもよい。
ここで、導電層141および導電層151は、酸化物半導体層130の上面と接し、側面
には接しない構成となっている。
トランジスタ105は、導電層141および導電層151を有する点、絶縁層175およ
び絶縁層180に設けられた開口部を有する点、ならびに当該開口部を通じて導電層14
1および導電層151とそれぞれ電気的に接続する導電層142および導電層152を有
する点を除き、トランジスタ101と同様の構成を有する。導電層140(導電層141
および導電層142)はソース電極層として作用させることができ、導電層150(導電
層151および導電層152)はドレイン電極層として作用させることができる。
また、本発明の一態様のトランジスタは、図36(A)、(B)に示す構成であってもよ
い。図36(A)はトランジスタ106の上面図であり、図36(A)に示す一点鎖線G
1−G2方向の断面が図36(B)に相当する。また、図36(A)に示す一点鎖線G3
−G4方向の断面は、図37(A)に相当する。また、一点鎖線G1−G2方向をチャネ
ル長方向、一点鎖線G3−G4方向をチャネル幅方向と呼称する。
トランジスタ106は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130と、酸化物半導体層130と電気的に接続する導電層141および導電
層151と、酸化物半導体層130と接する絶縁層160と、絶縁層160と接する導電
層170と、絶縁層120、酸化物半導体層130、導電層141、導電層151、絶縁
層160、導電層170と接する絶縁層175と、絶縁層175と接する絶縁層180と
、絶縁層175および絶縁層180に設けられた開口部を通じて導電層141および導電
層151とそれぞれ電気的に接続する導電層142および導電層152を有する。また、
必要に応じて絶縁層180、導電層142および導電層152に接する絶縁層(平坦化膜
)などを有していてもよい。
ここで、導電層141および導電層151は、酸化物半導体層130の上面と接し、側面
には接しない構成となっている。
トランジスタ106は、導電層141および導電層151を有する点を除き、トランジス
タ103と同様の構成を有する。導電層140(導電層141および導電層142)はソ
ース電極層として作用させることができ、導電層150(導電層151および導電層15
2)はドレイン電極層として作用させることができる。
トランジスタ105およびトランジスタ106の構成では、導電層140および導電層1
50が絶縁層120と接しない構成であるため、絶縁層120中の酸素が導電層140お
よび導電層150に奪われにくくなり、絶縁層120から酸化物半導体層130中への酸
素の供給を容易とすることができる。
なお、トランジスタ103における領域231および領域232、トランジスタ104お
よびトランジスタ106における領域334および領域335には、酸素欠損を形成し導
電率を高めるための不純物を添加してもよい。酸化物半導体層に酸素欠損を形成する不純
物としては、例えば、リン、砒素、アンチモン、ホウ素、アルミニウム、シリコン、窒素
、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、インジウム、フッ素、塩素、チ
タン、亜鉛、および炭素のいずれかから選択される一つ以上を用いることができる。当該
不純物の添加方法としては、プラズマ処理法、イオン注入法、イオンドーピング法、プラ
ズマイマージョンイオンインプランテーション法などを用いることができる。
不純物元素として、上記元素が酸化物半導体層に添加されると、酸化物半導体層中の金属
元素および酸素の結合が切断され、酸素欠損が形成される。酸化物半導体層に含まれる酸
素欠損と酸化物半導体層中に残存または後から添加される水素の相互作用により、酸化物
半導体層の導電率を高くすることができる。
なお、不純物元素の添加により酸素欠損が形成された酸化物半導体に水素を添加すると、
酸素欠損サイトに水素が入り伝導帯近傍にドナー準位が形成される。その結果、酸化物導
電体を形成することができる。ここでは、導電体化された酸化物半導体を酸化物導電体と
いう。なお、酸化物導電体は酸化物半導体と同様に透光性を有する。
酸化物導電体は、縮退半導体であり、伝導帯端とフェルミ準位とが一致または略一致して
いると推定される。このため、酸化物導電体層とソース電極層およびドレイン電極層とし
て機能する導電層との接触はオーミック接触であり、酸化物導電体層とソース電極層およ
びドレイン電極層として機能する導電層との接触抵抗を低減することができる。
また、本発明の一態様のトランジスタは、図38(A)、(B)、(C)、(D)、(E
)、(F)に示すチャネル長方向の断面図、ならびに図37(C)、(D)に示すチャネ
ル幅方向の断面図のように、酸化物半導体層130と基板115との間に導電層173を
備えていてもよい。導電層173を第2のゲート電極層(バックゲート)として用いるこ
とで、オン電流の増加や、しきい値電圧の制御を行うことができる。なお、図38(A)
、(B)、(C)、(D)、(E)、(F)に示す断面図において、導電層173の幅を
酸化物半導体層130よりも短くしてもよい。さらに、導電層173の幅を導電層170
の幅よりも短くしてもよい。
オン電流を増加させるには、例えば、導電層170と導電層173を同電位とし、ダブル
ゲートトランジスタとして駆動させればよい。また、しきい値電圧の制御を行うには、導
電層170とは異なる定電位を導電層173に供給すればよい。導電層170と導電層1
73を同電位とするには、例えば、図37(D)に示すように、導電層170と導電層1
73とをコンタクトホールを介して電気的に接続すればよい。
また、図31乃至図36におけるトランジスタ101乃至トランジスタ106では、酸化
物半導体層130が単層である例を図示したが、酸化物半導体層130は積層であっても
よい。トランジスタ101乃至トランジスタ106の酸化物半導体層130は、図39(
B)、(C)または図39(D)、(E)に示す酸化物半導体層130と入れ替えること
ができる。
図39(A)は酸化物半導体層130の上面図であり、図39(B)、(C)は、二層構
造である酸化物半導体層130の断面図である。また、図39(D)、(E)は、三層構
造である酸化物半導体層130の断面図である。
酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130cには、それ
ぞれ組成の異なる酸化物半導体層などを用いることができる。
また、本発明の一態様のトランジスタは、図40(A)、(B)に示す構成であってもよ
い。図40(A)はトランジスタ107の上面図であり、図40(A)に示す一点鎖線H
1−H2方向の断面が図40(B)に相当する。また、図40(A)に示す一点鎖線H3
−H4方向の断面が図46(A)に相当する。また、一点鎖線H1−H2方向をチャネル
長方向、一点鎖線H3−H4方向をチャネル幅方向と呼称する。
トランジスタ107は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130aおよび酸化物半導体層130bからなる積層と、当該積層と電気的に
接続する導電層140および導電層150と、当該積層、導電層140および導電層15
0と接する酸化物半導体層130cと、酸化物半導体層130cと接する絶縁層160と
、絶縁層160と接する導電層170と、導電層140、導電層150、酸化物半導体層
130c、絶縁層160および導電層170と接する絶縁層175と、絶縁層175と接
する絶縁層180と、を有する。また、必要に応じて絶縁層180に平坦化膜としての機
能を付加してもよい。
トランジスタ107は、領域231および領域232において酸化物半導体層130が二
層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において
酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化
物半導体層130c)である点、および導電層140および導電層150と絶縁層160
との間に酸化物半導体層の一部(酸化物半導体層130c)が介在している点を除き、ト
ランジスタ101と同様の構成を有する。
また、本発明の一態様のトランジスタは、図41(A)、(B)に示す構成であってもよ
い。図41(A)はトランジスタ108の上面図であり、図41(A)に示す一点鎖線I
1−I2方向の断面が図41(B)に相当する。また、図41(A)に示す一点鎖線I3
−I4方向の断面が図46(B)に相当する。また、一点鎖線I1−I2方向をチャネル
長方向、一点鎖線I3−I4方向をチャネル幅方向と呼称する。
トランジスタ108は、絶縁層160および酸化物半導体層130cの端部が導電層17
0の端部と一致しない点がトランジスタ107と異なる。
また、本発明の一態様のトランジスタは、図42(A)、(B)に示す構成であってもよ
い。図42(A)はトランジスタ109の上面図であり、図42(A)に示す一点鎖線J
1−J2方向の断面が図42(B)に相当する。また、図42(A)に示す一点鎖線J3
−J4方向の断面が図46(A)に相当する。また、一点鎖線J1−J2方向をチャネル
長方向、一点鎖線J3−J4方向をチャネル幅方向と呼称する。
トランジスタ109は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130aおよび酸化物半導体層130bからなる積層と、当該積層と接する酸
化物半導体層130cと、酸化物半導体層130cと接する絶縁層160と、絶縁層16
0と接する導電層170と、当該積層、酸化物半導体層130c、絶縁層160および導
電層170を覆う絶縁層175と、絶縁層175と接する絶縁層180と、絶縁層175
および絶縁層180に設けられた開口部を通じて当該積層と電気的に接続する導電層14
0および導電層150を有する。また、必要に応じて絶縁層180、導電層140および
導電層150に接する絶縁層(平坦化膜)などを有していてもよい。
トランジスタ109は、領域231および領域232において酸化物半導体層130が二
層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において
酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化
物半導体層130c)である点を除き、トランジスタ103と同様の構成を有する。
また、本発明の一態様のトランジスタは、図43(A)、(B)に示す構成であってもよ
い。図43(A)はトランジスタ110の上面図であり、図43(A)に示す一点鎖線K
1−K2方向の断面が図43(B)に相当する。また、図43(A)に示す一点鎖線K3
−K4方向の断面が図46(A)に相当する。また、一点鎖線K1−K2方向をチャネル
長方向、一点鎖線K3−K4方向をチャネル幅方向と呼称する。
トランジスタ110は、領域231および領域232において酸化物半導体層130が二
層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において
酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化
物半導体層130c)である点を除き、トランジスタ104と同様の構成を有する。
また、本発明の一態様のトランジスタは、図44(A)、(B)に示す構成であってもよ
い。図44(A)はトランジスタ111の上面図であり、図44(A)に示す一点鎖線K
1−K2方向の断面が図44(B)に相当する。また、図44(A)に示す一点鎖線K3
−K4方向の断面が図46(A)に相当する。また、一点鎖線K1−K2方向をチャネル
長方向、一点鎖線K3−K4方向をチャネル幅方向と呼称する。
トランジスタ111は、基板115と接する絶縁層120と、絶縁層120と接する酸化
物半導体層130aおよび酸化物半導体層130bからなる積層と、当該積層と電気的に
接続する導電層141および導電層151と、当該積層、導電層141および導電層15
1と接する酸化物半導体層130cと、酸化物半導体層130cと接する絶縁層160と
、絶縁層160と接する導電層170と、当該積層、導電層141、導電層151、酸化
物半導体層130c、絶縁層160および導電層170と接する絶縁層175と、絶縁層
175と接する絶縁層180と、絶縁層175および絶縁層180に設けられた開口部を
通じて導電層141および導電層151とそれぞれ電気的に接続する導電層142および
導電層152を有する。また、必要に応じて絶縁層180、導電層142および導電層1
52に接する絶縁層(平坦化膜)などを有していてもよい。
トランジスタ111は、領域231および領域232において酸化物半導体層130が二
層(酸化物半導体層130a、酸化物半導体層130b)である点、領域233において
酸化物半導体層130が三層(酸化物半導体層130a、酸化物半導体層130b、酸化
物半導体層130c)である点、および導電層141および導電層151と絶縁層160
との間に酸化物半導体層の一部(酸化物半導体層130c)が介在している点を除き、ト
ランジスタ105と同様の構成を有する。
また、本発明の一態様のトランジスタは、図45(A)、(B)に示す構成であってもよ
い。図45(A)はトランジスタ112の上面図であり、図45(A)に示す一点鎖線M
1−M2方向の断面が図45(B)に相当する。また、図45(A)に示す一点鎖線M3
−M4方向の断面が図46(A)に相当する。また、一点鎖線M1−M2方向をチャネル
長方向、一点鎖線M3−M4方向をチャネル幅方向と呼称する。
トランジスタ112は、領域331、領域332、領域334および領域335において
酸化物半導体層130が二層(酸化物半導体層130a、酸化物半導体層130b)であ
る点、領域333において酸化物半導体層130が三層(酸化物半導体層130a、酸化
物半導体層130b、酸化物半導体層130c)である点を除き、トランジスタ106と
同様の構成を有する。
また、本発明の一態様のトランジスタは、図47(A)、(B)、(C)、(D)、(E
)、(F)に示すチャネル長方向の断面図、ならびに図46(C)、(D)に示すチャネ
ル幅方向の断面図のように、酸化物半導体層130と基板115との間に導電層173を
備えていてもよい。当該導電層を第2のゲート電極層(バックゲート)として用いること
で、オン電流の増加や、しきい値電圧の制御を行うことができる。なお、図47(A)、
(B)、(C)、(D)、(E)、(F)に示す断面図において、導電層173の幅を酸
化物半導体層130よりも短くしてもよい。さらに、導電層173の幅を導電層170の
幅よりも短くしてもよい。
また、本発明の一態様のトランジスタにおける導電層140(ソース電極層)および導電
層150(ドレイン電極層)は、図48(A)、(B)に示す上面図(酸化物半導体層1
30、導電層140および導電層150のみを図示)のように酸化物半導体層130の幅
(WOS)よりも導電層140および導電層150の幅(WSD)が長く形成されていて
もよいし、短く形成されていてもよい。WOS≧WSD(WSDはWOS以下)とするこ
とで、ゲート電界が酸化物半導体層130全体にかかりやすくなり、トランジスタの電気
特性を向上させることができる。
本発明の一態様のトランジスタ(トランジスタ101乃至トランジスタ112)では、い
ずれの構成においても、ゲート電極層である導電層170は、ゲート絶縁膜である絶縁層
160を介して酸化物半導体層130のチャネル幅方向を電気的に取り囲み、オン電流が
高められる。このようなトランジスタの構造を、surrounded channel
(s−channel)構造とよぶ。
また、酸化物半導体層130aおよび酸化物半導体層130bを有するトランジスタ、な
らびに酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層130c
を有するトランジスタにおいては、酸化物半導体層130を構成する二層または三層の材
料を適切に選択することで酸化物半導体層130bに電流を流すことができる。酸化物半
導体層130bに電流が流れることで、界面散乱の影響を受けにくく、高いオン電流を得
ることができる。なお、酸化物半導体層130bを厚くすると、オン電流を向上させるこ
とができる。例えば、酸化物半導体層130bの膜厚を100nm乃至200nmとして
もよい。
以上の構成のトランジスタを用いることにより、半導体装置に良好な電気特性を付与する
ことができる。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることが
できる。
(実施の形態5)
本実施の形態では、実施の形態4に示したトランジスタの構成要素について詳細を説明す
る。
基板115には、ガラス基板、石英基板、半導体基板、セラミックス基板、表面が絶縁処
理された金属基板などを用いることができる。または、トランジスタやフォトダイオード
が形成されたシリコン基板、および当該シリコン基板上に絶縁層、配線、コンタクトプラ
グとして機能を有する導電体等が形成されたものを用いることができる。なお、シリコン
基板にp−ch型のトランジスタを形成する場合は、n型の導電型を有するシリコン基
板を用いることが好ましい。または、n型またはi型のシリコン層を有するSOI基板
であってもよい。また、当該シリコン基板に設けるトランジスタがp−ch型である場合
、トランジスタを形成する面の面方位は、(110)面であることが好ましい。(110
)面にp−ch型トランジスタを形成することで、移動度を高くすることができる。
絶縁層120は、基板115に含まれる要素からの不純物の拡散を防止する役割を有する
ほか、酸化物半導体層130に酸素を供給する役割を担うことができる。したがって、絶
縁層120は酸素を含む絶縁膜であることが好ましく、化学量論組成よりも多い酸素を含
む絶縁膜であることがより好ましい。絶縁層120は、TDS法で測定した酸素原子に換
算しての酸素の放出量が1.0×1019atoms/cm以上であることが好ましい
。なお、上記TDS分析時における膜の表面温度は100℃以上700℃以下、または1
00℃以上500℃以下の範囲とする。また、基板115が他のデバイスが形成された基
板である場合、絶縁層120は、層間絶縁膜としての機能も有する。その場合は、表面が
平坦になるようにCMP法等で平坦化処理を行うことが好ましい。
例えば、絶縁層120には、酸化アルミニウム、酸化マグネシウム、酸化シリコン、酸化
窒化シリコン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム
、酸化ランタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルなどの酸化物絶縁膜
、窒化シリコン、窒化酸化シリコン、窒化アルミニウム、窒化酸化アルミニウムなどの窒
化物絶縁膜、またはこれらの混合材料を用いることができる。また、上記材料の積層であ
ってもよい。
なお、本実施の形態では、トランジスタが有する酸化物半導体層130が酸化物半導体層
130a、酸化物半導体層130bおよび酸化物半導体層130cを絶縁層120側から
順に積んだ三層構造である場合を主として詳細を説明する。
なお、酸化物半導体層130が単層の場合は、本実施の形態に示す、酸化物半導体層13
0bに相当する層を用いればよい。
また、酸化物半導体層130が二層の場合は、本実施の形態に示す、酸化物半導体層13
0aに相当する層および酸化物半導体層130bに相当する層を絶縁層120側から順に
積んだ積層を用いればよい。この構成の場合、酸化物半導体層130aと酸化物半導体層
130bとを入れ替えることもできる。
また、酸化物半導体層130が四層以上である場合は、例えば、本実施の形態で説明する
三層構造の酸化物半導体層130に対して他の酸化物半導体層を付加する構成とすること
ができる。
一例としては、酸化物半導体層130bには、酸化物半導体層130aおよび酸化物半導
体層130cよりも電子親和力(真空準位から伝導帯下端までのエネルギー)が大きい酸
化物半導体を用いる。電子親和力は、真空準位と価電子帯上端とのエネルギー差(イオン
化ポテンシャル)から、伝導帯下端と価電子帯上端とのエネルギー差(エネルギーギャッ
プ)を差し引いた値として求めることができる。
酸化物半導体層130aおよび酸化物半導体層130cは、酸化物半導体層130bを構
成する金属元素を一種以上含み、例えば、伝導帯下端のエネルギーが酸化物半導体層13
0bよりも、0.05eV、0.07eV、0.1eV、0.15eVのいずれか以上で
あって、2eV、1eV、0.5eV、0.4eVのいずれか以下の範囲で真空準位に近
い酸化物半導体で形成することが好ましい。
このような構造において、導電層170に電界を印加すると、酸化物半導体層130のう
ち、伝導帯下端のエネルギーが最も小さい酸化物半導体層130bにチャネルが形成され
る。
また、酸化物半導体層130aは、酸化物半導体層130bを構成する金属元素を一種以
上含んで構成されるため、酸化物半導体層130bと絶縁層120が接した場合の界面と
比較して、酸化物半導体層130bと酸化物半導体層130aとの界面には界面準位が形
成されにくくなる。該界面準位はチャネルを形成することがあるため、トランジスタのし
きい値電圧が変動することがある。したがって、酸化物半導体層130aを設けることに
より、トランジスタのしきい値電圧などの電気特性のばらつきを低減することができる。
また、当該トランジスタの信頼性を向上させることができる。
また、酸化物半導体層130cは、酸化物半導体層130bを構成する金属元素を一種以
上含んで構成されるため、酸化物半導体層130bとゲート絶縁膜(絶縁層160)が接
した場合の界面と比較して、酸化物半導体層130bと酸化物半導体層130cとの界面
ではキャリアの散乱が起こりにくくなる。したがって、酸化物半導体層130cを設ける
ことにより、トランジスタの電界効果移動度を高くすることができる。
酸化物半導体層130aおよび酸化物半導体層130cには、例えば、Al、Ti、Ga
、Ge、Y、Zr、Sn、La、CeまたはHfを酸化物半導体層130bよりも高い原
子数比で含む材料を用いることができる。具体的には、当該原子数比を1.5倍以上、好
ましくは2倍以上、さらに好ましくは3倍以上とする。前述の元素は酸素と強く結合する
ため、酸素欠損が酸化物半導体層に生じることを抑制する機能を有する。すなわち、酸化
物半導体層130aおよび酸化物半導体層130cは、酸化物半導体層130bよりも酸
素欠損が生じにくいということができる。
また、酸化物半導体層130a、酸化物半導体層130b、および酸化物半導体層130
cとして用いることのできる酸化物半導体は、少なくともInもしくはZnを含むことが
好ましい。または、InとZnの双方を含むことが好ましい。また、該酸化物半導体を用
いたトランジスタの電気特性のばらつきを減らすため、それらと共に、スタビライザーを
含むことが好ましい。
スタビライザーとしては、Ga、Sn、Hf、Al、またはZr等がある。また、他のス
タビライザーとしては、ランタノイドである、La、Ce、Pr、Nd、Sm、Eu、G
d、Tb、Dy、Ho、Er、Tm、Yb、Lu等がある。
例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化ガリウム、酸化亜鉛、I
n−Zn酸化物、Sn−Zn酸化物、Al−Zn酸化物、Zn−Mg酸化物、Sn−Mg
酸化物、In−Mg酸化物、In−Ga酸化物、In−Ga−Zn酸化物、In−Al−
Zn酸化物、In−Sn−Zn酸化物、Sn−Ga−Zn酸化物、Al−Ga−Zn酸化
物、Sn−Al−Zn酸化物、In−Hf−Zn酸化物、In−La−Zn酸化物、In
−Ce−Zn酸化物、In−Pr−Zn酸化物、In−Nd−Zn酸化物、In−Sm−
Zn酸化物、In−Eu−Zn酸化物、In−Gd−Zn酸化物、In−Tb−Zn酸化
物、In−Dy−Zn酸化物、In−Ho−Zn酸化物、In−Er−Zn酸化物、In
−Tm−Zn酸化物、In−Yb−Zn酸化物、In−Lu−Zn酸化物、In−Sn−
Ga−Zn酸化物、In−Hf−Ga−Zn酸化物、In−Al−Ga−Zn酸化物、I
n−Sn−Al−Zn酸化物、In−Sn−Hf−Zn酸化物、In−Hf−Al−Zn
酸化物を用いることができる。
なお、ここで、例えば、In−Ga−Zn酸化物とは、InとGaとZnを主成分として
有する酸化物という意味である。また、InとGaとZn以外の金属元素が入っていても
よい。また、本明細書においては、In−Ga−Zn酸化物で構成した膜をIGZO膜と
も呼ぶ。
また、InMO(ZnO)(m>0、且つ、mは整数でない)で表記される材料を用
いてもよい。なお、Mは、Ga、Y、Zr、La、Ce、またはNdから選ばれた一つの
金属元素または複数の金属元素を示す。また、InSnO(ZnO)(n>0、且
つ、nは整数)で表記される材料を用いてもよい。
なお、酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130cが、
少なくともインジウム、亜鉛およびM(Al、Ti、Ga、Ge、Y、Zr、Sn、La
、CeまたはHf等の金属)を含むIn−M−Zn酸化物であるとき、酸化物半導体層1
30aをIn:M:Zn=x:y:z[原子数比]、酸化物半導体層130bをI
n:M:Zn=x:y:z[原子数比]、酸化物半導体層130cをIn:M:Z
n=x:y:z[原子数比]とすると、y/xおよびy/xがy/x
よりも大きくなることが好ましい。y/xおよびy/xはy/xよりも1.
5倍以上、好ましくは2倍以上、さらに好ましくは3倍以上とする。このとき、酸化物半
導体層130bにおいて、yがx以上であるとトランジスタの電気特性を安定させる
ことができる。ただし、yがxの3倍以上になると、トランジスタの電界効果移動度
が低下してしまうため、yはxの3倍未満であることが好ましい。
酸化物半導体層130aおよび酸化物半導体層130cにおけるZnおよびOを除いた場
合において、InおよびMの原子数比率は、好ましくはInが50atomic%未満、
Mが50atomic%以上、さらに好ましくはInが25atomic%未満、Mが7
5atomic%以上とする。また、酸化物半導体層130bのZnおよびOを除いての
InおよびMの原子数比率は、好ましくはInが25atomic%以上、Mが75at
omic%未満、さらに好ましくはInが34atomic%以上、Mが66atomi
c%未満とする。
また、酸化物半導体層130bは、酸化物半導体層130aおよび酸化物半導体層130
cよりもインジウムの含有量を多くするとよい。酸化物半導体では主として重金属のs軌
道がキャリア伝導に寄与しており、Inの含有率を多くすることにより、より多くのs軌
道が重なるため、InがMよりも多い組成となる酸化物はInがMと同等または少ない組
成となる酸化物と比較して移動度が高くなる。そのため、酸化物半導体層130bにイン
ジウムの含有量が多い酸化物を用いることで、高い電界効果移動度のトランジスタを実現
することができる。
酸化物半導体層130aの厚さは、3nm以上100nm以下、好ましくは5nm以上5
0nm以下、さらに好ましくは5nm以上25nm以下とする。また、酸化物半導体層1
30bの厚さは、3nm以上200nm以下、好ましくは10nm以上150nm以下、
さらに好ましくは15nm以上100nm以下とする。また、酸化物半導体層130cの
厚さは、1nm以上50nm以下、好ましくは2nm以上30nm以下、さらに好ましく
は3nm以上15nm以下とする。また、酸化物半導体層130bは、酸化物半導体層1
30aより厚い方が好ましい。
酸化物半導体層をチャネルとするトランジスタに安定した電気特性を付与するためには、
酸化物半導体層中の不純物濃度を低減し、酸化物半導体層を真性または実質的に真性にす
ることが有効である。ここで、実質的に真性とは、酸化物半導体層のキャリア密度が、1
×1017/cm未満であること、好ましくは1×1015/cm未満であること、
さらに好ましくは1×1013/cm未満であって、1×10−9/cm以上である
こととする。
また、酸化物半導体層において、水素、窒素、炭素、シリコン、および主成分以外の金属
元素は不純物となる。例えば、水素および窒素はドナー準位の形成に寄与し、キャリア密
度を増大させてしまう。また、シリコンは酸化物半導体層中で不純物準位の形成に寄与す
る。当該不純物準位はトラップとなり、トランジスタの電気特性を劣化させることがある
。したがって、酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層
130cの層中や、それぞれの界面において不純物濃度を低減させることが好ましい。
酸化物半導体層を真性または実質的に真性とするためには、SIMS(Secondar
y Ion Mass Spectrometry)分析で見積もられるシリコン濃度が
1×1019atoms/cm3未満、好ましくは5×1018atoms/cm未満
であって、1×1018atoms/cm以上となる領域を有するように制御する。ま
た、水素濃度が、2×1020atoms/cm3以下、好ましくは5×1019ato
ms/cm以下、より好ましくは5×1018atoms/cm以下であって、1×
1017atoms/cm以上になる領域を有するように制御する。また、窒素濃度は
、5×1019atoms/cm未満、好ましくは5×1018atoms/cm
下、より好ましくは5×1017atoms/cm以下であって、5×1016ato
ms/cm以上となる領域を有するように制御する。
また、シリコンや炭素が高濃度で含まれると、酸化物半導体層の結晶性を低下させること
がある。酸化物半導体層の結晶性を低下させないためには、例えばシリコン濃度を1×1
19atoms/cm未満、好ましくは5×1018atoms/cm未満であっ
て、1×1018atoms/cm以上になる領域を有するように制御する。また、炭
素濃度を1×1019atoms/cm未満、好ましくは5×1018atoms/c
未満であって、6×1017atoms/cm以上になる領域を有するように制御
する。
また、上述のように高純度化された酸化物半導体膜をチャネル形成領域に用いたトランジ
スタのオフ電流は極めて小さい。例えば、ソースとドレインとの間の電圧を0.1V、5
V、または、10V程度とした場合に、トランジスタのチャネル幅あたりのオフ電流を数
yA/μm乃至数zA/μmにまで低減することが可能となる。
なお、トランジスタのゲート絶縁膜としては、シリコンを含む絶縁膜が多く用いられるた
め、上記理由により酸化物半導体層のチャネルとなる領域は、本発明の一態様のトランジ
スタのようにゲート絶縁膜と接しない構造が好ましいということができる。また、ゲート
絶縁膜と酸化物半導体層との界面にチャネルが形成される場合、該界面でキャリアの散乱
が起こり、トランジスタの電界効果移動度が低くなることがある。このような観点からも
、酸化物半導体層のチャネルとなる領域はゲート絶縁膜から離すことが好ましいといえる
したがって、酸化物半導体層130を酸化物半導体層130a、酸化物半導体層130b
、酸化物半導体層130cの積層構造とすることで、酸化物半導体層130bにチャネル
を形成することができ、高い電界効果移動度および安定した電気特性を有したトランジス
タを形成することができる。
酸化物半導体層130a、酸化物半導体層130b、酸化物半導体層130cのバンド構
造においては、伝導帯下端のエネルギーが連続的に変化する。これは、酸化物半導体層1
30a、酸化物半導体層130b、酸化物半導体層130cの組成が近似することにより
、酸素が相互に拡散しやすい点からも理解される。したがって、酸化物半導体層130a
、酸化物半導体層130b、酸化物半導体層130cは組成が異なる層の積層体ではある
が、物性的に連続であるということもでき、図面において、当該積層体のそれぞれの界面
は点線で表している。
主成分を共通として積層された酸化物半導体層130は、各層を単に積層するのではなく
連続接合(ここでは特に伝導帯下端のエネルギーが各層の間で連続的に変化するU字型の
井戸構造(U Shape Well))が形成されるように作製する。すなわち、各層
の界面にトラップ中心や再結合中心のような欠陥準位を形成するような不純物が存在しな
いように積層構造を形成する。仮に、積層された酸化物半導体層の層間に不純物が混在し
ていると、エネルギーバンドの連続性が失われ、界面でキャリアがトラップあるいは再結
合により消滅してしまう。
例えば、酸化物半導体層130aおよび酸化物半導体層130cにはIn:Ga:Zn=
1:3:2、1:3:3、1:3:4、1:3:6、1:4:5、1:6:4または1:
9:6(原子数比)などのIn−Ga−Zn酸化物などを用いることができる。また、酸
化物半導体層130bにはIn:Ga:Zn=1:1:1、2:1:3、5:5:6、ま
たは3:1:2(原子数比)などのIn−Ga−Zn酸化物などを用いることができる。
なお、上記酸化物をスパッタターゲットとして成膜を行った場合、成膜される酸化物半導
体層130a、酸化物半導体層130b、および酸化物半導体層130cの原子数比は必
ずしも同一とならず、±20%程度の差を有する。
酸化物半導体層130における酸化物半導体層130bはウェル(井戸)となり、酸化物
半導体層130を用いたトランジスタにおいて、チャネルは酸化物半導体層130bに形
成される。なお、酸化物半導体層130は伝導帯下端のエネルギーが連続的に変化してい
るため、U字型井戸とも呼ぶことができる。また、このような構成で形成されたチャネル
を埋め込みチャネルということもできる。
また、酸化物半導体層130aおよび酸化物半導体層130cと、酸化シリコン膜などの
絶縁層との界面近傍には、不純物や欠陥に起因したトラップ準位が形成され得る。酸化物
半導体層130aおよび酸化物半導体層130cがあることにより、酸化物半導体層13
0bと当該トラップ準位とを遠ざけることができる。
ただし、酸化物半導体層130aおよび酸化物半導体層130cの伝導帯下端のエネルギ
ーと、酸化物半導体層130bの伝導帯下端のエネルギーとの差が小さい場合、酸化物半
導体層130bの電子が該エネルギー差を越えてトラップ準位に達することがある。電子
がトラップ準位に捕獲されることで、絶縁層界面にマイナスの電荷が生じ、トランジスタ
のしきい値電圧はプラス方向にシフトしてしまう。
酸化物半導体層130a、酸化物半導体層130bおよび酸化物半導体層130cには、
結晶部が含まれることが好ましい。特にc軸に配向した結晶を用いることでトランジスタ
に安定した電気特性を付与することができる。また、c軸に配向した結晶は歪曲に強く、
フレキシブル基板を用いた半導体装置の信頼性を向上させることができる。
ソース電極層として作用する導電層140およびドレイン電極層として作用する導電層1
50には、例えば、Al、Cr、Cu、Ta、Ti、Mo、W、Ni、Mn、Nd、Sc
、および当該金属材料の合金から選ばれた材料の単層、または積層を用いることができる
。代表的には、特に酸素と結合しやすいTiや、後のプロセス温度が比較的高くできるこ
となどから、融点の高いWを用いることがより好ましい。また、低抵抗のCuやCu−M
nなどの合金と上記材料との積層を用いてもよい。なお、トランジスタ105、トランジ
スタ106、トランジスタ111、トランジスタ112においては、例えば、導電層14
1および導電層151にW、導電層142および導電層152にTiとAlとの積層膜な
どを用いることができる。
上記材料は酸化物半導体膜から酸素を引き抜く性質を有する。そのため、上記材料と接し
た酸化物半導体層の一部の領域では酸化物半導体膜中の酸素が脱離し、酸素欠損が形成さ
れる。膜中に僅かに含まれる水素と当該酸素欠損が結合することにより当該領域は顕著に
n型化する。したがって、n型化した当該領域はトランジスタのソースまたはドレインと
して作用させることができる。
また、導電層140および導電層150にWを用いる場合には、窒素をドーピングしても
よい。窒素をドーピングすることで酸素を引き抜く性質を適度に弱めることができ、n型
化した領域がチャネル領域まで拡大することを防ぐことができる。また、導電層140お
よび導電層150をn型の半導体層との積層とし、n型の半導体層と酸化物半導体層を接
触させることによってもn型化した領域がチャネル領域まで拡大することを防ぐことがで
きる。n型の半導体層としては、窒素が添加されたIn−Ga−Zn酸化物、酸化亜鉛、
酸化インジウム、酸化スズ、酸化インジウムスズなどを用いることができる。
ゲート絶縁膜として作用する絶縁層160には、酸化アルミニウム、酸化マグネシウム、
酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸
化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、
酸化ハフニウムおよび酸化タンタルを一種以上含む絶縁膜を用いることができる。また、
絶縁層160は上記材料の積層であってもよい。なお、絶縁層160に、La、N、Zr
などを、不純物として含んでいてもよい。
また、絶縁層160の積層構造の一例について説明する。絶縁層160は、例えば、酸素
、窒素、シリコン、ハフニウムなどを有する。具体的には、酸化ハフニウム、および酸化
シリコンまたは酸化窒化シリコンを含むと好ましい。
酸化ハフニウムおよび酸化アルミニウムは、酸化シリコンや酸化窒化シリコンと比べて比
誘電率が高い。したがって、酸化シリコンを用いた場合と比べて絶縁層160の膜厚を大
きくできるため、トンネル電流によるリーク電流を小さくすることができる。即ち、オフ
電流の小さいトランジスタを実現することができる。さらに、結晶構造を有する酸化ハフ
ニウムは、非晶質構造を有する酸化ハフニウムと比べて高い比誘電率を備える。したがっ
て、オフ電流の小さいトランジスタとするためには、結晶構造を有する酸化ハフニウムを
用いることが好ましい。結晶構造の例としては、単斜晶系や立方晶系などが挙げられる。
ただし、本発明の一態様は、これらに限定されない。
また、酸化物半導体層130と接する絶縁層120および絶縁層160は、窒素酸化物の
放出量の少ない膜を用いることが好ましい。窒素酸化物の放出量の多い絶縁層と酸化物半
導体が接した場合、窒素酸化物に起因する準位密度が高くなることがある。絶縁層120
および絶縁層160には、例えば、窒素酸化物の放出量の少ない酸化窒化シリコン膜また
は酸化窒化アルミニウム膜等の酸化物絶縁層を用いることができる。
窒素酸化物の放出量の少ない酸化窒化シリコン膜は、TDS法において、窒素酸化物の放
出量よりアンモニアの放出量が多い膜であり、代表的にはアンモニアの放出量が1×10
18個/cm以上5×1019個/cm以下である。なお、アンモニアの放出量は、
膜の表面温度が50℃以上650℃以下、好ましくは50℃以上550℃以下の加熱処理
による放出量とする。
絶縁層120および絶縁層160として、上記酸化物絶縁層を用いることで、トランジス
タのしきい値電圧のシフトを低減することが可能であり、トランジスタの電気特性の変動
を低減することができる。
ゲート電極層として作用する導電層170には、例えば、Al、Ti、Cr、Co、Ni
、Cu、Y、Zr、Mo、Ru、Ag、Mn、Nd、Sc、TaおよびWなどの導電膜を
用いることができる。また、上記材料の合金や上記材料の導電性窒化物を用いてもよい。
また、上記材料、上記材料の合金、および上記材料の導電性窒化物から選ばれた複数の材
料の積層であってもよい。代表的には、タングステン、タングステンと窒化チタンの積層
、タングステンと窒化タンタルの積層などを用いることができる。また、低抵抗のCuま
たはCu−Mnなどの合金や上記材料とCuまたはCu−Mnなどの合金との積層を用い
てもよい。本実施の形態では、導電層171に窒化タンタル、導電層172にタングステ
ンを用いて導電層170を形成する。
絶縁層175には、水素を含む窒化シリコン膜または窒化アルミニウム膜などを用いるこ
とができる。実施の形態4に示したトランジスタ103、トランジスタ104、トランジ
スタ106、トランジスタ109、トランジスタ110、およびトランジスタ112では
、絶縁層175として水素を含む絶縁膜を用いることで酸化物半導体層の一部をn型化す
ることができる。また、窒化絶縁膜は水分などのブロッキング膜としての作用も有し、ト
ランジスタの信頼性を向上させることができる。
また、絶縁層175としては酸化アルミニウム膜を用いることもできる。特に、実施の形
態4に示したトランジスタ101、トランジスタ102、トランジスタ105、トランジ
スタ107、トランジスタ108、およびトランジスタ111では絶縁層175に酸化ア
ルミニウム膜を用いることが好ましい。酸化アルミニウム膜は、水素、水分などの不純物
、および酸素の両方に対して膜を透過させない遮断効果が高い。したがって、酸化アルミ
ニウム膜は、トランジスタの作製工程中および作製後において、水素、水分などの不純物
の酸化物半導体層130への混入防止、酸素の酸化物半導体層からの放出防止、絶縁層1
20からの酸素の不必要な放出防止の効果を有する保護膜として用いることに適している
。また、酸化アルミニウム膜に含まれる酸素を酸化物半導体層中に拡散させることもでき
る。
また、絶縁層175上には絶縁層180が形成されていることが好ましい。当該絶縁層に
は、酸化マグネシウム、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリ
コン、酸化ガリウム、酸化ゲルマニウム、酸化イットリウム、酸化ジルコニウム、酸化ラ
ンタン、酸化ネオジム、酸化ハフニウムおよび酸化タンタルを一種以上含む絶縁膜を用い
ることができる。また、当該絶縁層は上記材料の積層であってもよい。
ここで、絶縁層180は絶縁層120と同様に化学量論組成よりも多くの酸素を有するこ
とが好ましい。絶縁層180から放出される酸素は絶縁層160を経由して酸化物半導体
層130のチャネル形成領域に拡散させることができることから、チャネル形成領域に形
成された酸素欠損に酸素を補填することができる。したがって、安定したトランジスタの
電気特性を得ることができる。
半導体装置を高集積化するにはトランジスタの微細化が必須である。一方、トランジスタ
の微細化によりトランジスタの電気特性が悪化することが知られており、特にチャネル幅
が縮小するとオン電流が低下する。
本発明の一態様のトランジスタ107乃至トランジスタ112では、チャネルが形成され
る酸化物半導体層130bを覆うように酸化物半導体層130cが形成されており、チャ
ネル形成層とゲート絶縁膜が接しない構成となっている。そのため、チャネル形成層とゲ
ート絶縁膜との界面で生じるキャリアの散乱を抑えることができ、トランジスタのオン電
流を大きくすることができる。
また、本発明の一態様のトランジスタでは、前述したように酸化物半導体層130のチャ
ネル幅方向を電気的に取り囲むようにゲート電極層(導電層170)が形成されているた
め、酸化物半導体層130に対しては上面に垂直な方向からのゲート電界に加えて、側面
に垂直な方向からのゲート電界が印加される。すなわち、チャネル形成層に対して全体的
にゲート電界が印加されることになり実効チャネル幅が拡大するため、さらにオン電流を
高められる。
また、本発明の一態様における酸化物半導体層130が二層または三層のトランジスタで
は、チャネルが形成される酸化物半導体層130bを酸化物半導体層130a上に形成す
ることで界面準位を形成しにくくする効果を有する。また、本発明の一態様における酸化
物半導体層130が三層のトランジスタでは、酸化物半導体層130bを三層構造の中間
に位置する層とすることで上下からの不純物混入の影響を排除できる効果などを併せて有
する。そのため、上述したトランジスタのオン電流の向上に加えて、しきい値電圧の安定
化や、S値(サブスレッショルド値)の低減をはかることができる。したがって、ゲート
電圧VGが0V時の電流を下げることができ、消費電力を低減させることができる。また
、トランジスタのしきい値電圧が安定化することから、半導体装置の長期信頼性を向上さ
せることができる。また、本発明の一態様のトランジスタは、微細化にともなう電気特性
の劣化が抑えられることから、集積度の高い半導体装置の形成に適しているといえる。
なお、本実施の形態で説明した金属膜、半導体膜、無機絶縁膜など様々な膜は、代表的に
はスパッタ法やプラズマCVD法により形成することができるが、他の方法、例えば、熱
CVD法により形成してもよい。熱CVD法の例としては、MOCVD(Metal O
rganic Chemical Vapor Deposition)法やALD(A
tomic Layer Deposition)法などがある。
熱CVD法は、プラズマを使わない成膜方法のため、プラズマダメージにより欠陥が生成
されることが無いという利点を有する。
また、熱CVD法では、原料ガスと酸化剤を同時にチャンバー内に送り、チャンバー内を
大気圧または減圧下とし、基板近傍または基板上で反応させて基板上に堆積させることで
成膜を行ってもよい。
ALD法は、チャンバー内を大気圧または減圧下とし、反応のための原料ガスをチャンバ
ーに導入・反応させ、これを繰り返すことで成膜を行う。原料ガスと一緒に不活性ガス(
アルゴン、或いは窒素など)をキャリアガスとして導入しても良い。例えば2種類以上の
原料ガスを順番にチャンバーに供給してもよい。その際、複数種の原料ガスが混ざらない
ように第1の原料ガスの反応後、不活性ガスを導入し、第2の原料ガスを導入する。ある
いは、不活性ガスを導入する代わりに真空排気によって第1の原料ガスを排出した後、第
2の原料ガスを導入してもよい。第1の原料ガスが基板の表面に吸着・反応して第1の層
を成膜し、後から導入される第2の原料ガスが吸着・反応して、第2の層が第1の層上に
積層されて薄膜が形成される。このガス導入順序を制御しつつ所望の厚さになるまで複数
回繰り返すことで、段差被覆性に優れた薄膜を形成することができる。薄膜の厚さは、ガ
ス導入の繰り返す回数によって調節することができるため、精密な膜厚調節が可能であり
、微細なFETを作製する場合に適している。
MOCVD法やALD法などの熱CVD法は、これまでに記載した実施形態に開示された
金属膜、半導体膜、無機絶縁膜など様々な膜を形成することができ、例えば、In−Ga
−Zn−O膜を成膜する場合には、トリメチルインジウム(In(CH)、トリメ
チルガリウム(Ga(CH)、およびジメチル亜鉛(Zn(CH)を用いる
ことができる。これらの組み合わせに限定されず、トリメチルガリウムに代えてトリエチ
ルガリウム(Ga(C)を用いることもでき、ジメチル亜鉛に代えてジエチル
亜鉛(Zn(C)を用いることもできる。
例えば、ALDを利用する成膜装置により酸化ハフニウム膜を形成する場合には、溶媒と
ハフニウム前駆体を含む液体(ハフニウムアルコキシドや、テトラキスジメチルアミドハ
フニウム(TDMAH、Hf[N(CH)やテトラキス(エチルメチルアミド
)ハフニウムなどのハフニウムアミド)を気化させた原料ガスと、酸化剤としてオゾン(
)の2種類のガスを用いる。
例えば、ALDを利用する成膜装置により酸化アルミニウム膜を形成する場合には、溶媒
とアルミニウム前駆体を含む液体(トリメチルアルミニウム(TMA、Al(CH
)など)を気化させた原料ガスと、酸化剤としてHOの2種類のガスを用いる。他の材
料としては、トリス(ジメチルアミド)アルミニウム、トリイソブチルアルミニウム、ア
ルミニウムトリス(2,2,6,6−テトラメチル−3,5−ヘプタンジオナート)など
がある。
例えば、ALDを利用する成膜装置により酸化シリコン膜を形成する場合には、ヘキサク
ロロジシランを被成膜面に吸着させ、酸化性ガス(O、一酸化二窒素)のラジカルを供
給して吸着物と反応させる。
例えば、ALDを利用する成膜装置によりタングステン膜を成膜する場合には、WF
スとBガスを順次導入して初期タングステン膜を形成し、その後、WFガスとH
ガスを順次導入してタングステン膜を形成する。なお、Bガスに代えてSiH
ガスを用いてもよい。
例えば、ALDを利用する成膜装置により酸化物半導体膜、例えばIn−Ga−Zn−O
膜を成膜する場合には、In(CHガスとOガスを順次導入してIn−O層を形
成し、その後、Ga(CHガスとOガスを順次導入してGaO層を形成し、更に
その後Zn(CHガスとOガスを順次導入してZnO層を形成する。なお、これ
らの層の順番はこの例に限らない。これらのガスを用いてIn−Ga−O層やIn−Zn
−O層、Ga−Zn−O層などの混合化合物層を形成しても良い。なお、Oガスに変え
てAr等の不活性ガスでバブリングして得られたHOガスを用いても良いが、Hを含ま
ないOガスを用いる方が好ましい。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることが
できる。
(実施の形態6)
以下では、本発明の一態様に用いることのできる酸化物半導体膜の構造について説明する
なお、本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で
配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、
「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう
。したがって、85°以上95°以下の場合も含まれる。
また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す
酸化物半導体膜は、非単結晶酸化物半導体膜と単結晶酸化物半導体膜とに大別される。非
単結晶酸化物半導体膜とは、CAAC−OS(C Axis Aligned Crys
talline Oxide Semiconductor)膜、多結晶酸化物半導体膜
、微結晶酸化物半導体膜、非晶質酸化物半導体膜などをいう。
まずは、CAAC−OS膜について説明する。
CAAC−OS膜は、c軸配向した複数の結晶部を有する酸化物半導体膜の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Micro
scope)によって、CAAC−OS膜の明視野像および回折パターンの複合解析像(
高分解能TEM像ともいう。)を観察することで複数の結晶部を確認することができる。
一方、高分解能TEM像によっても明確な結晶部同士の境界、即ち結晶粒界(グレインバ
ウンダリーともいう。)を確認することができない。そのため、CAAC−OS膜は、結
晶粒界に起因する電子移動度の低下が起こりにくいといえる。
試料面と概略平行な方向から、CAAC−OS膜の断面の高分解能TEM像を観察すると
、結晶部において、金属原子が層状に配列していることを確認できる。金属原子の各層は
、CAAC−OS膜の膜を形成する面(被形成面ともいう。)または上面の凹凸を反映し
た形状であり、CAAC−OS膜の被形成面または上面と平行に配列する。
一方、試料面と概略垂直な方向から、CAAC−OS膜の平面の高分解能TEM像を観察
すると、結晶部において、金属原子が三角形状または六角形状に配列していることを確認
できる。しかしながら、異なる結晶部間で、金属原子の配列に規則性は見られない。
CAAC−OS膜に対し、X線回折(XRD:X−Ray Diffraction)装
置を用いて構造解析を行うと、例えばInGaZnOの結晶を有するCAAC−OS膜
のout−of−plane法による解析では、回折角(2θ)が31°近傍にピークが
現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属される
ことから、CAAC−OS膜の結晶がc軸配向性を有し、c軸が被形成面または上面に概
略垂直な方向を向いていることが確認できる。
なお、InGaZnOの結晶を有するCAAC−OS膜のout−of−plane法
による解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れ
る場合がある。2θが36°近傍のピークは、CAAC−OS膜中の一部に、c軸配向性
を有さない結晶が含まれることを示している。CAAC−OS膜は、2θが31°近傍に
ピークを示し、2θが36°近傍にピークを示さないことが好ましい。
CAAC−OS膜は、不純物濃度の低い酸化物半導体膜である。不純物は、水素、炭素、
シリコン、遷移金属元素などの酸化物半導体膜の主成分以外の元素である。特に、シリコ
ンなどの、酸化物半導体膜を構成する金属元素よりも酸素との結合力の強い元素は、酸化
物半導体膜から酸素を奪うことで酸化物半導体膜の原子配列を乱し、結晶性を低下させる
要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径
(または分子半径)が大きいため、酸化物半導体膜内部に含まれると、酸化物半導体膜の
原子配列を乱し、結晶性を低下させる要因となる。なお、酸化物半導体膜に含まれる不純
物は、キャリアトラップやキャリア発生源となる場合がある。
また、CAAC−OS膜は、欠陥準位密度の低い酸化物半導体膜である。例えば、酸化物
半導体膜中の酸素欠損は、キャリアトラップとなることや、水素を捕獲することによって
キャリア発生源となることがある。
不純物濃度が低く、欠陥準位密度が低い(酸素欠損の少ない)ことを、高純度真性または
実質的に高純度真性と呼ぶ。高純度真性または実質的に高純度真性である酸化物半導体膜
は、キャリア発生源が少ないため、キャリア密度を低くすることができる。したがって、
当該酸化物半導体膜を用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(
ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純
度真性である酸化物半導体膜は、キャリアトラップが少ない。そのため、当該酸化物半導
体膜を用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとな
る。なお、酸化物半導体膜のキャリアトラップに捕獲された電荷は、放出するまでに要す
る時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が
高く、欠陥準位密度が高い酸化物半導体膜を用いたトランジスタは、電気特性が不安定と
なる場合がある。
また、CAAC−OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性
の変動が小さい。
次に、微結晶酸化物半導体膜について説明する。
微結晶酸化物半導体膜は、高分解能TEM像において、結晶部を確認することのできる領
域と、明確な結晶部を確認することのできない領域と、を有する。微結晶酸化物半導体膜
に含まれる結晶部は、1nm以上100nm以下、または1nm以上10nm以下の大き
さであることが多い。特に、1nm以上10nm以下、または1nm以上3nm以下の微
結晶であるナノ結晶(nc:nanocrystal)を有する酸化物半導体膜を、nc
−OS(nanocrystalline Oxide Semiconductor)
膜と呼ぶ。また、nc−OS膜は、例えば、高分解能TEM像では、結晶粒界を明確に確
認できない場合がある。
nc−OS膜は、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上
3nm以下の領域)において原子配列に周期性を有する。また、nc−OS膜は、異なる
結晶部間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。し
たがって、nc−OS膜は、分析方法によっては、非晶質酸化物半導体膜と区別が付かな
い場合がある。例えば、nc−OS膜に対し、結晶部よりも大きい径のX線を用いるXR
D装置を用いて構造解析を行うと、out−of−plane法による解析では、結晶面
を示すピークが検出されない。また、nc−OS膜に対し、結晶部よりも大きいプローブ
径(例えば50nm以上)の電子線を用いる電子回折(制限視野電子回折ともいう。)を
行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し
、結晶部の大きさと近いか結晶部より小さいプローブ径の電子線を用いるナノビーム電子
回折を行うと、スポットが観測される。また、nc−OS膜に対しナノビーム電子回折を
行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。また、
nc−OS膜に対しナノビーム電子回折を行うと、リング状の領域内に複数のスポットが
観測される場合がある。
nc−OS膜は、非晶質酸化物半導体膜よりも規則性の高い酸化物半導体膜である。その
ため、nc−OS膜は、非晶質酸化物半導体膜よりも欠陥準位密度が低くなる。ただし、
nc−OS膜は、異なる結晶部間で結晶方位に規則性が見られない。そのため、nc−O
S膜は、CAAC−OS膜と比べて欠陥準位密度が高くなる。
次に、非晶質酸化物半導体膜について説明する。
非晶質酸化物半導体膜は、膜中における原子配列が不規則であり、結晶部を有さない酸化
物半導体膜である。石英のような無定形状態を有する酸化物半導体膜が一例である。
非晶質酸化物半導体膜は、高分解能TEM像において結晶部を確認することができない。
非晶質酸化物半導体膜に対し、XRD装置を用いた構造解析を行うと、out−of−p
lane法による解析では、結晶面を示すピークが検出されない。また、非晶質酸化物半
導体膜に対し、電子回折を行うと、ハローパターンが観測される。また、非晶質酸化物半
導体膜に対し、ナノビーム電子回折を行うと、スポットが観測されず、ハローパターンが
観測される。
なお、酸化物半導体膜は、nc−OS膜と非晶質酸化物半導体膜との間の物性を示す構造
を有する場合がある。そのような構造を有する酸化物半導体膜を、特に非晶質ライク酸化
物半導体(amorphous−like OS:amorphous−like Ox
ide Semiconductor)膜と呼ぶ。
amorphous−like OS膜は、高分解能TEM像において鬆(ボイドともい
う。)が観察される場合がある。また、高分解能TEM像において、明確に結晶部を確認
することのできる領域と、結晶部を確認することのできない領域と、を有する。amor
phous−like OS膜は、TEMによる観察程度の微量な電子照射によって、結
晶化が起こり、結晶部の成長が見られる場合がある。一方、良質なnc−OS膜であれば
、TEMによる観察程度の微量な電子照射による結晶化はほとんど見られない。
なお、amorphous−like OS膜およびnc−OS膜の結晶部の大きさの計
測は、高分解能TEM像を用いて行うことができる。例えば、InGaZnOの結晶は
層状構造を有し、In−O層の間に、Ga−Zn−O層を2層有する。InGaZnO
の結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9
層がc軸方向に層状に重なった構造を有する。よって、これらの近接する層同士の間隔は
、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその
値は0.29nmと求められている。そのため、高分解能TEM像における格子縞に着目
し、格子縞の間隔が0.28nm以上0.30nm以下である箇所においては、それぞれ
の格子縞がInGaZnOの結晶のa−b面に対応する。
なお、酸化物半導体膜は、例えば、非晶質酸化物半導体膜、amorphous−lik
e OS膜、微結晶酸化物半導体膜、CAAC−OS膜のうち、二種以上を有する積層膜
であってもよい。
本実施の形態に示す構成は、他の実施の形態に示す構成と適宜組み合わせて用いることが
できる。
(実施の形態7)
本発明の一態様に係る撮像装置および当該撮像装置を含む半導体装置は、表示機器、パー
ソナルコンピュータ、記録媒体を備えた画像再生装置(代表的にはDVD:Digita
l Versatile Disc等の記録媒体を再生し、その画像を表示しうるディス
プレイを有する装置)に用いることができる。その他に、本発明の一態様に係る撮像装置
および当該撮像装置を含む半導体装置を用いることができる電子機器として、携帯電話、
携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチル
カメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲー
ションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、
複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)
、自動販売機などが挙げられる。これら電子機器の具体例を図49に示す。
図49(A)は携帯型ゲーム機であり、筐体901、筐体902、表示部903、表示部
904、マイク905、スピーカー906、操作キー907、スタイラス908、カメラ
909等を有する。なお、図38(A)に示した携帯型ゲーム機は、2つの表示部903
と表示部904とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定さ
れない。カメラ909には本発明の一態様のレンズレスの撮像装置を用いることができる
図49(B)は携帯データ端末であり、第1筐体911、表示部912、カメラ919等
を有する。表示部912が有するタッチパネル機能により情報の入出力を行うことができ
る。カメラ919には本発明の一態様のレンズレスの撮像装置を用いることができる。
図49(C)は腕時計型の情報端末であり、筐体931、表示部932、リストバンド9
33、カメラ939等を有する。表示部932はタッチパネルとなっていてもよい。カメ
ラ939には本発明の一態様のレンズレスの撮像装置を用いることができる。
図49(D)は携帯電話であり、筐体951に、表示部952、マイク957、スピーカ
ー954、カメラ959、入出力端子956、操作用のボタン955等を有する。カメラ
959には本発明の一態様のレンズレスの撮像装置を用いることができる。
図49(E)は自動車であり、車体961、車輪962、ダッシュボード963、ライト
964、カメラ965等を有する。カメラ965は近接する物体の位置を検出する機能も
有しており、本発明の一態様のレンズレスの撮像装置を用いることができる。
なお、本実施の形態は、本明細書で示す他の実施の形態と適宜組み合わせることができる
21 撮像動作
22 保持動作
23 読み出し動作
40 シリコン基板
41 絶縁層
41a 絶縁層
41b 絶縁層
51 トランジスタ
52 トランジスタ
53 トランジスタ
54 トランジスタ
55 トランジスタ
56 トランジスタ
58 活性層
59 容量素子
60 光電変換素子
61 光電変換層
62 透光性導電層
63 半導体層
64 半導体層
65 半導体層
66 電極
66a 導電層
66b 導電層
67 隔壁
71 配線
72 配線
74 配線
75 配線
76 配線
77 配線
77a 導電層
77b 導電層
78 配線
79 配線
80 絶縁層
81 導電体
90 回路
91 画素アレイ
101 トランジスタ
102 トランジスタ
103 トランジスタ
104 トランジスタ
105 トランジスタ
106 トランジスタ
107 トランジスタ
108 トランジスタ
109 トランジスタ
110 トランジスタ
111 トランジスタ
112 トランジスタ
115 基板
120 絶縁層
130 酸化物半導体層
130a 酸化物半導体層
130b 酸化物半導体層
130c 酸化物半導体層
140 導電層
141 導電層
142 導電層
150 導電層
151 導電層
152 導電層
160 絶縁層
170 導電層
171 導電層
172 導電層
173 導電層
175 絶縁層
180 絶縁層
231 領域
232 領域
233 領域
311 配線
312 配線
313 配線
314 配線
315 配線
316 配線
317 配線
331 領域
332 領域
333 領域
334 領域
335 領域
501 信号
502 信号
503 信号
504 信号
505 信号
506 信号
507 信号
508 信号
509 信号
510 期間
511 期間
520 期間
531 期間
610 期間
611 期間
612 期間
621 期間
622 期間
623 期間
631 期間
701 信号
702 信号
703 信号
704 信号
705 信号
901 筐体
902 筐体
903 表示部
904 表示部
905 マイク
906 スピーカー
907 操作キー
908 スタイラス
909 カメラ
911 筐体
912 表示部
919 カメラ
931 筐体
932 表示部
933 リストバンド
939 カメラ
951 筐体
952 表示部
954 スピーカー
955 ボタン
956 入出力端子
957 マイク
959 カメラ
961 車体
962 車輪
963 ダッシュボード
964 ライト
965 カメラ
1100 層
1200 層
1400 層
1500 層
1600 層
2500 絶縁層
2510 遮光層
2520 有機樹脂層
2530 カラーフィルタ
2530a カラーフィルタ
2530b カラーフィルタ
2530c カラーフィルタ
2540 マイクロレンズアレイ
2550 光学変換層
2560 絶縁層

Claims (1)

  1. 第1の層と、第2の層と、第3の層と、第4の層を有する撮像装置であって、
    前記第1の層は、回折格子を有し、
    前記第2の層は、カラーフィルターを有し、
    前記第3の層は、遮光層を有し、
    前記第4の層は、光電変換素子を有し、
    前記第1の層、前記第2の層、前記第3の層、及び前記第4の層は、当該順序の積層で設けられる、撮像装置。
JP2020126280A 2014-10-29 2020-07-27 撮像装置 Withdrawn JP2020170878A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022058497A JP7432644B2 (ja) 2014-10-29 2022-03-31 撮像装置
JP2024015451A JP2024050789A (ja) 2014-10-29 2024-02-05 撮像装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014219832 2014-10-29
JP2014219832 2014-10-29

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015211421A Division JP2016092413A (ja) 2014-10-29 2015-10-28 撮像装置および電子機器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022058497A Division JP7432644B2 (ja) 2014-10-29 2022-03-31 撮像装置

Publications (1)

Publication Number Publication Date
JP2020170878A true JP2020170878A (ja) 2020-10-15

Family

ID=55853550

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2015211421A Withdrawn JP2016092413A (ja) 2014-10-29 2015-10-28 撮像装置および電子機器
JP2020126280A Withdrawn JP2020170878A (ja) 2014-10-29 2020-07-27 撮像装置
JP2022058497A Active JP7432644B2 (ja) 2014-10-29 2022-03-31 撮像装置
JP2024015451A Pending JP2024050789A (ja) 2014-10-29 2024-02-05 撮像装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015211421A Withdrawn JP2016092413A (ja) 2014-10-29 2015-10-28 撮像装置および電子機器

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022058497A Active JP7432644B2 (ja) 2014-10-29 2022-03-31 撮像装置
JP2024015451A Pending JP2024050789A (ja) 2014-10-29 2024-02-05 撮像装置

Country Status (2)

Country Link
US (2) US9761730B2 (ja)
JP (4) JP2016092413A (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016092413A (ja) * 2014-10-29 2016-05-23 株式会社半導体エネルギー研究所 撮像装置および電子機器
US9773832B2 (en) 2014-12-10 2017-09-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10495793B2 (en) * 2015-02-12 2019-12-03 Rambus Inc. Systems and methods for lensless image acquisition
JP6688116B2 (ja) 2015-03-24 2020-04-28 株式会社半導体エネルギー研究所 撮像装置および電子機器
TWI713367B (zh) 2015-07-07 2020-12-11 日商半導體能源研究所股份有限公司 成像裝置及其運作方法
US10163948B2 (en) * 2015-07-23 2018-12-25 Semiconductor Energy Laboratory Co., Ltd. Imaging device and electronic device
US10090344B2 (en) 2015-09-07 2018-10-02 Semiconductor Energy Laboratory Co., Ltd. Imaging device, method for operating the same, module, and electronic device
US10896923B2 (en) 2015-09-18 2021-01-19 Semiconductor Energy Laboratory Co., Ltd. Method of operating an imaging device with global shutter system
US10109667B2 (en) 2015-10-09 2018-10-23 Semiconductor Energy Laboratory Co., Ltd. Imaging device, module, and electronic device
US11522098B2 (en) * 2016-04-01 2022-12-06 Trustees Of Dartmouth College UV/VIS/IR backside-illuminated photon-counting sensor
US20190215473A1 (en) * 2016-07-13 2019-07-11 Sony Corporation Imaging apparatus, imaging device, and image processing apparatus
JP6685887B2 (ja) * 2016-12-13 2020-04-22 株式会社日立製作所 撮像装置
JP7139327B2 (ja) 2017-06-27 2022-09-20 株式会社半導体エネルギー研究所 半導体装置および電子部品
JP2019057649A (ja) * 2017-09-21 2019-04-11 株式会社リコー 撮像素子、撮像装置および画像入力装置
EP3700195A4 (en) * 2017-10-19 2020-12-16 Sony Corporation INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, IMAGING DEVICE AND PROGRAM
US11631713B2 (en) 2017-10-19 2023-04-18 Sony Corporation Information processing device, information processing method, image capturing device, and program
WO2019078340A1 (ja) * 2017-10-19 2019-04-25 ソニー株式会社 撮像装置および方法、並びに、画像処理装置および方法
WO2019078338A1 (ja) * 2017-10-19 2019-04-25 ソニー株式会社 電子機器
WO2019078334A1 (ja) * 2017-10-19 2019-04-25 ソニー株式会社 撮像素子、画像処理装置、画像処理方法、および、プログラム
EP3700182A4 (en) * 2017-10-19 2020-12-30 Sony Corporation ELECTRONIC DEVICE
WO2019078335A1 (ja) * 2017-10-19 2019-04-25 ソニー株式会社 撮像装置および方法、並びに、画像処理装置および方法
EP3700192B1 (en) * 2017-10-19 2023-08-30 Sony Group Corporation Imaging device and signal processing device
KR20200094741A (ko) * 2017-11-30 2020-08-07 소니 주식회사 촬상 장치, 촬상 방법 및 촬상 소자
US11283993B2 (en) * 2017-12-22 2022-03-22 Sony Corporation Image-capturing apparatus, image-capturing method, and image-capturing device
CN108766989B (zh) * 2018-06-01 2021-09-03 京东方科技集团股份有限公司 一种光学传感器件及其制作方法、显示器件、显示设备
WO2020021399A1 (ja) 2018-07-27 2020-01-30 株式会社半導体エネルギー研究所 表示装置、表示モジュール、及び電子機器
FR3124310A1 (fr) * 2021-06-18 2022-12-23 Stmicroelectronics (Crolles 2) Sas Capteur de lumière

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351972A (ja) * 2005-06-17 2006-12-28 Matsushita Electric Ind Co Ltd 固体撮像素子、固体撮像装置およびその製造方法
JP2007109801A (ja) * 2005-10-12 2007-04-26 Sumitomo Electric Ind Ltd 固体撮像装置とその製造方法
JP2012080065A (ja) * 2010-09-07 2012-04-19 Sony Corp 固体撮像素子、固体撮像装置、撮像機器、及び、偏光素子の製造方法
US20140253781A1 (en) * 2013-03-05 2014-09-11 Rambus Inc. Phase Gratings with Odd Symmetry for High-Resolution Lensed and Lensless Optical Sensing

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0732245B2 (ja) * 1986-01-24 1995-04-10 キヤノン株式会社 フオトセンサの製造方法
JPH05152553A (ja) * 1991-11-28 1993-06-18 Hitachi Ltd 二次元イメージセンサ
TWM249381U (en) * 2003-12-19 2004-11-01 Hon Hai Prec Ind Co Ltd Image sensor
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP1998375A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method
JP5280671B2 (ja) * 2006-12-20 2013-09-04 富士フイルム株式会社 画像検出器および放射線検出システム
JP2010074137A (ja) * 2008-08-19 2010-04-02 Fujifilm Corp 撮像装置
US8400537B2 (en) 2008-11-13 2013-03-19 Omnivision Technologies, Inc. Image sensors having gratings for color separation
JP5342862B2 (ja) * 2008-12-16 2013-11-13 株式会社島津製作所 光マトリックスデバイスの製造方法
US8558182B2 (en) 2009-10-09 2013-10-15 University Of Rochester Optical element, device, method, and applications
KR101824123B1 (ko) 2009-11-06 2018-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2011086848A1 (en) 2010-01-15 2011-07-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for driving the same
KR101924318B1 (ko) 2010-02-12 2018-12-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 구동 방법
JP5771079B2 (ja) * 2010-07-01 2015-08-26 株式会社半導体エネルギー研究所 撮像装置
TWI575494B (zh) 2011-08-19 2017-03-21 半導體能源研究所股份有限公司 半導體裝置的驅動方法
JP2013093371A (ja) 2011-10-24 2013-05-16 Sony Corp 半導体装置、および、その製造方法、固体撮像装置
JP2013098503A (ja) * 2011-11-07 2013-05-20 Toshiba Corp 固体撮像素子
US9029863B2 (en) * 2012-04-20 2015-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9236408B2 (en) 2012-04-25 2016-01-12 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor device including photodiode
JP5972065B2 (ja) * 2012-06-20 2016-08-17 富士フイルム株式会社 薄膜トランジスタの製造方法
US8872120B2 (en) 2012-08-23 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Imaging device and method for driving the same
JP6325229B2 (ja) * 2012-10-17 2018-05-16 株式会社半導体エネルギー研究所 酸化物膜の作製方法
TWI612321B (zh) * 2013-02-27 2018-01-21 半導體能源研究所股份有限公司 成像裝置
JP5939184B2 (ja) * 2013-03-22 2016-06-22 ソニー株式会社 半導体装置の製造方法
CN106537898B (zh) 2014-07-25 2020-07-28 株式会社半导体能源研究所 成像装置
JP2016092413A (ja) * 2014-10-29 2016-05-23 株式会社半導体エネルギー研究所 撮像装置および電子機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351972A (ja) * 2005-06-17 2006-12-28 Matsushita Electric Ind Co Ltd 固体撮像素子、固体撮像装置およびその製造方法
JP2007109801A (ja) * 2005-10-12 2007-04-26 Sumitomo Electric Ind Ltd 固体撮像装置とその製造方法
JP2012080065A (ja) * 2010-09-07 2012-04-19 Sony Corp 固体撮像素子、固体撮像装置、撮像機器、及び、偏光素子の製造方法
US20140253781A1 (en) * 2013-03-05 2014-09-11 Rambus Inc. Phase Gratings with Odd Symmetry for High-Resolution Lensed and Lensless Optical Sensing

Also Published As

Publication number Publication date
JP2024050789A (ja) 2024-04-10
JP2016092413A (ja) 2016-05-23
JP2022089868A (ja) 2022-06-16
US9761730B2 (en) 2017-09-12
JP7432644B2 (ja) 2024-02-16
US20160126275A1 (en) 2016-05-05
US20180013010A1 (en) 2018-01-11
US10256345B2 (en) 2019-04-09

Similar Documents

Publication Publication Date Title
JP7432644B2 (ja) 撮像装置
JP6932868B2 (ja) 撮像装置及び電子機器
JP6845968B2 (ja) 撮像装置
JP7049413B2 (ja) 電子機器
JP6896898B2 (ja) 撮像装置
JP2022003826A (ja) 撮像装置
JP6692681B2 (ja) 撮像装置の駆動方法
JP7085595B2 (ja) 撮像装置
JP6688116B2 (ja) 撮像装置および電子機器
JP6913773B2 (ja) 電子機器及び撮像装置
JP7019784B2 (ja) 撮像装置
JP2022065135A (ja) 撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20220401