JP2020119831A - レドックスフロー型二次電池のリバランスシステム - Google Patents

レドックスフロー型二次電池のリバランスシステム Download PDF

Info

Publication number
JP2020119831A
JP2020119831A JP2019011530A JP2019011530A JP2020119831A JP 2020119831 A JP2020119831 A JP 2020119831A JP 2019011530 A JP2019011530 A JP 2019011530A JP 2019011530 A JP2019011530 A JP 2019011530A JP 2020119831 A JP2020119831 A JP 2020119831A
Authority
JP
Japan
Prior art keywords
secondary battery
redox flow
active material
diaphragm
flow secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019011530A
Other languages
English (en)
Inventor
尚浩 宋
Shang Hao Song
尚浩 宋
和明 田畑
Kazuaki Tabata
和明 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chikoji Gakuen Educational Foundation
Ohara Kosho Co Ltd
Original Assignee
Chikoji Gakuen Educational Foundation
Ohara Kosho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chikoji Gakuen Educational Foundation, Ohara Kosho Co Ltd filed Critical Chikoji Gakuen Educational Foundation
Priority to JP2019011530A priority Critical patent/JP2020119831A/ja
Publication of JP2020119831A publication Critical patent/JP2020119831A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

【課題】電解槽の陰極の対極反応でハロゲンガスを発生させないレドックスフロー型二次電池のリバランスシステムを提供すること。【解決手段】本発明のレドックスフロー型二次電池のリバランスシステムは、正極活物質と負極活物質の何れか一方又は両方を、電解槽1を用いて還元するレドックスフロー型二次電池のリバランスシステムにおいて、電解槽1の陰極室102と陽極室104を分離するイオン伝導性の隔膜100を用い、隔膜100の温度が、電解時に、10℃以下に保持されるようにすることを特徴とする。【選択図】図1

Description

本発明は、レドックスフロー型二次電池のリバランスシステムに関し、より詳しくは、電解槽の陰極の対極反応でハロゲンガスを発生させないレドックスフロー型二次電池のリバランスシステムに関する。
レドックスフロー型二次電池としては、塩酸酸性鉄―クロム系電解液、硫酸・ハロゲン化水素酸酸性バナジウム系電解液を用いたレドックス電池などがある。
特許文献1には、硫酸と塩酸を用いたバナジウム電解質を用いる技術が開示され、塩酸はその存在によってバナジウムイオンが電離しやすくなると共に酸化物等の発生を抑制できると述べている。
これらの電解液は、硫酸のみの酸性バナジウム系レドックス電池と異なり、正負極液の充放電深度を同レベルに調整する場合、単純に電解還元法を適用すると、ハロゲンが発生するおそれがある。
特許第5864682号
pH0近傍における酸素発生と塩素発生の電位は、塩素発生が0.2V程度しか貴でないため、とくに酸素過電圧の大きくなりやすい炭素電極などを使用すると、塩素ガスが発生してしまう傾向にある。
したがって、バナジウムレドックスフロー型二次電池において、電解槽を用いてリバランスを行う際に、電解槽から塩素ガスを発生させない電解還元法を導入することが困難になる。電解液に臭化物イオンが共存する場合は、酸素よりも臭素が優先して発生する傾向にあり、塩素以外のハロゲン化物イオンでもハロゲンガスを発生させない電解還元法を導入することが困難になる。
そこで、本発明の課題は、電解槽の陰極の対極反応でハロゲンガスを発生させないレドックスフロー型二次電池のリバランスシステムを提供することにある。
また本発明の他の課題は、以下の記載によって明らかとなる。
上記課題は、以下の各発明によって解決される。
(請求項1)
正極活物質と負極活物質の何れか一方又は両方を、電解槽を用いて還元するレドックスフロー型二次電池のリバランスシステムにおいて、
前記電解槽の陰極室と陽極室を分離するイオン伝導性の隔膜を用い、
前記隔膜の温度が、電解時に、10℃以下に保持されるようにすることを特徴とするレドックスフロー型二次電池のリバランスシステム。
(請求項2)
前記イオン伝導性の隔膜が、イオン交換膜であって、
該イオン交換膜の陽極室側に10℃以下の電解液を流通させることを特徴とする請求項1記載のレドックスフロー型二次電池のリバランスシステム。
(請求項3)
正極活物質と負極活物質の何れか一方又は両方を、電解槽を用いて還元するレドックスフロー型二次電池のリバランスシステムにおいて、
該電解槽に陽極室を構成するイオン伝導性の隔壁を用い、
該隔壁と陰極室とを分離する隔膜を用い、
前記隔壁の温度が、電解時に80℃以上に保持されるようにすることを特徴とするレドックスフロー型二次電池のリバランスシステム。
(請求項4)
前記陽極室を形成するイオン伝導性の隔壁は、多孔質のグラファイト基盤と、酸化ジルコンを含む複合酸化物からなる被膜とからなることを特徴とする請求項3記載のレドックスフロー型二次電池のリバランスシステム。
(請求項5)
前記多孔質のグラファイト基盤に、80℃以上の電解液を流通させることを特徴とする請求項4記載のレドックスフロー型二次電池のリバランスシステム。
(請求項6)
前記イオン伝導性の隔壁を構成する前記多孔質のグラファイト基盤に、 前記イオン伝導性の隔壁を構成する前記多孔質のグラファイト基盤に、加熱部を接設することを特徴とする請求項4又は5記載のレドックスフロー型二次電池のリバランスシステム。
本発明によれば、電解槽の陰極の対極反応でハロゲンガスを発生させないレドックスフロー型二次電池のリバランスシステムを提供することができる。
本発明のレドックスフロー型二次電池のリバランスシステムに用いる電解槽の一例を示す図 図1の電解槽に用いられる隔膜の一例を示す断面図 本発明のレドックスフロー型二次電池のリバランスシステムに用いる電解槽の他の例を示す図 図3の電解槽に用いられる隔壁の一例を示す断面図
以下に、本発明を実施するための形態について詳しく説明する。
図1において、1は、レドックスフロー型二次電池のリバランスシステムに用いる電解槽であり、電解槽1を用いることによってリバランスを行うことができる。
電解槽1は、例えば、陰極101が設けられた陰極室102と、陽極103が設けられた陽極室104とを備える。陰極室102と陽極室104との間には隔膜100が設けられている。隔膜100によって、陰極室102と陽極室104とが分離されている。
隔膜100としては、イオン伝導性があれば、格別限定されないが、例えばフッ素樹脂膜系陽イオン交換膜を用いることができる。
隔膜100としては、1枚であってもよいが、複数枚積層してもよく、例えば、2〜5枚積層することも好ましく、2〜4枚積層することがより好ましい。図2には、100a、100b及び100cの3枚を積層した例が示されている。隔膜100の市販品としては、DuPont社製「ナフィオン117」を例示できる。
陰極101と陽極103は、炭素繊維フェルト電極を好ましく用いることができる。
陰極液は、バナジウム濃度は、格別限定されるわけではないが、例えば1.5M〜2.5Mが好ましく、硫酸根(硫酸水素イオン)濃度は3M〜5Mが好ましく、塩化物イオン濃度は例えば0.5M〜1.5M程度である。
陽極液には、ハロゲン化物イオンを含まず、4M〜6Mの範囲の硫酸根(硫酸水素イオン)を含む。
本実施の形態では、恒温水槽2に入れた容量例えば100mLの電解液ホルダー200からチューブポンプ201で陽極室104に送液することによって、電解槽1の隔膜100に接している陽極室104の電解液の温度を調整できるように循環する態様が示されている。
恒温水槽2によって、電解液ホルダー200内の電解液が、10℃以下、好ましくは5℃以下に調整される。
本態様においては、上記の循環によって、イオン伝導性の隔膜100の温度が、好ましくは隔膜100の膜面全部の温度が、電解時に10℃以下に保持され、好ましくは5℃以下に保持される。
イオン伝導性の隔膜100の温度は、本態様では、塩化物イオンの隔膜の通過を阻止することを意図しているので、塩化物イオンが陰極室から陽極室に移行する可能性のある膜面の温度が調整されていることが好ましい。
塩化物イオンが陰極室から陽極室に移行する可能性のある膜面は、設置されている隔膜の面積の全部である場合と、全部でない場合もあることに留意する必要がある。
上記の保持状態で、所定時間、陰極液を電解還元したときに、対極液(陽極液)中に塩化物イオンが存在するか否かは、例えばパージトラップ法で検出する手法が採用され、具体的には、酸性ガスの検知管を使用して検知できる。
本態様においては、対極液(陽極液)中に塩化物イオンは検出されていない。このことは、陰極液中の塩化物イオンが隔膜を透過していないことを示している。
更に、本発明の他の実施形態としては、イオン伝導性の隔膜100の陰極室102側に、10℃以下の電解液を流通させることは好ましい。陽極室104の液循環による冷却により隔膜100の温度を10℃以下に低下させているが、更に加えて、上述の陰極室102側に、10℃以下の電解液を流通させることにより、イオン伝導性の隔膜100の全面の領域の温度が、電解時に10℃以下に確実に保持できるので好ましい。
陰極室102側に、10℃以下の電解液を流通させる手法は、格別限定されず、図1に示す陽極室104に適用した冷却手法をそのまま適用してもよいし、あるいは異なった手法でもよい。
図1の冷却手段として、恒温槽を用いる手法を記載したが、循環ラインの配管自体を冷水や冷気で冷却する手法でもよい。
かかる冷却手段により、隔膜を冷却し、所定温度以下に保持されることにより、ハロゲン化物イオンの透過抵抗を大きくし、結果として、事実上プロトン(水素イオン)伝導性および/もしくは電子伝導性のみの隔膜として機能させることができる。
本発明において、隔膜にイオン交換膜を用いた場合、陽極室側の温度を10℃以下、好ましくは5℃以下とすることによって、ハロゲン化物イオンを電解槽の陽極側に透過することを防止できる。
陽イオン交換膜であるナフィオン117系の隔膜では、10℃以下で、ハロゲン化イオンの対極液(陽極液)への移動が非常に小さくなり、5℃では有意な差として測定(定量)できなくなる。
次に、電解槽1にイオン伝導性の隔壁を用いた例について、図3及び図4に基づいて説明する。
105は、陽極室を構成するイオン伝導性の隔壁である。
イオン伝導性の隔壁105は、イオン伝導性を有するものであれば格別限定されない。
陽極室を構成するイオン伝導性の隔壁105は、例えば、図3に示すように、グラファイト基盤105aと、酸化ジルコンを含む複合酸化物からなる被膜105bとからなる。
複合酸化物からなる被膜105bは、例えば、酸化ジルコンと酸化ストロンチウムの複合酸化物(ZrO・SrO)が挙げられ、具体的には、ジルコン酸ストロンチウムの被膜が挙げられる。
前記陽極室を構成するイオン伝導性の隔壁105と、陰極室102との間には、隔膜100であるイオン交換膜が設けられている。
隔壁105を製造する手法としては、限定される訳ではないが、例えば、先ず、イオン伝導性を有するグラファイト粉を樹脂結着し、再焼成したイオン伝導性シートを製造し、次いで、そのイオン伝導性シートであるグラファイト基盤105aに、酸化ジルコニウム(ZrO)と、酸化ストロンチウム(SrO)の複合酸化物(ZrO・SrO)をスラリーにして塗布し、窒素気流中1500℃で焼結する。
グラファイト基盤105a上に形成したジルコニア複合酸化物薄膜に欠落部、ピンホールを作らないために、複合酸化物を再度塗布して、再焼成して、複合酸化物(ZrO・SrO)の被膜105bを形成する。
この複合酸化物の被膜105bに、隔膜100であるイオン交換膜として、例えばフッ素樹脂膜系陽イオン交換膜「ナフィオン117」を近接して設けることができる。
本発明においては、イオン伝導性の隔壁105の温度が、電解時に80℃以上に保持されるようにすることが好ましい。
本実施形態において、隔壁105の温度という場合、塩化物イオンの透過に影響する隔壁105の部分の温度を意味する。塩化物イオンの透過を阻止するために隔壁の温度調整を行うからである。
また、グラファイト基盤105aは多孔質であることが好ましい。これによりグラファイト基盤105aは、電解液が浸透し、電極として機能させることができる。
本発明においては、イオン伝導性の隔壁105を構成する多孔質のグラファイト基盤105aに、加熱部106を接設することが好ましい。
加熱部106としては、ヒーティングテープ、ヒートシール、あるいはその他、加熱部材が挙げられる。
かかる加熱部106により、隔壁105のグラファイト基盤105aを外部から加熱することができる。
本発明においては、グラファイト基盤105aに80℃以上の電解液を流通させることも好ましい。これにより、グラファイト基盤105aを内部から加熱することができる。図3において、107はヒーター109が設置された加熱タンクである。加熱タンク107内の液温はヒーター109によって、80℃以上90℃以下に調節される。
本実施形態においては、加熱部106とヒーター109とを併用してもよい。例えば、ヒーティングテープとヒーター109とを併用し、グラファイト基盤105aの外部及び内部から加熱することにより、グラファイト基盤105aを電解時に80℃以上に保持されるようにしてもよい。これらの併用により、迅速に温度上昇を可能にし、結果として、処理速度の向上、ヒーターのエネルギー消費の抑制を図ることができる。
ヒーター109を用いる場合には、6M硫酸の陽極液は、チューブポンプ108によって加熱タンク107と陽極室を構成するイオン伝導性の隔壁105との間を循環する。
かかる加熱循環を行うことによって、隔壁を加熱し、所定温度以上に保持されることにより、電解時のハロゲン化物イオンの透過抵抗を大きくし、結果として、事実上プロトン(水素イオン)伝導性および/もしくは電子伝導性のみの隔壁として機能させることができる。
例えば素焼き板のような隔壁の場合は、プロトン輸率が著しく高いものを用いると、その隔壁の温度を上げて使用することができる。
昇温によってプロトン輸率が多少低下しても、プロトンの輸率としては、99.5%を上回る大きさであり、事実上プロトン(水素イオン)伝導性および/もしくは電子伝導性のみの隔壁として十分に機能する。
動作温度を100℃に近づけると数mA/cm程度の電流密度でリバランスが可能である。
隔壁105の他の好ましい一例を図4に示す。図4において、グラファイト基盤105aは、櫛歯状であってもよい。櫛歯と櫛歯との間には、櫛歯状流路110が形成される。櫛歯状にすることにより、熱を有する電解液が溜まる櫛歯状流路110が形成されるため、グラファイト基盤105aの加熱を補助することができる。
本発明のレドックスフロー型二次電池の活物質液のリバランスシステムは、正極活物質液と負極活物質液の何れか一方又は両方を、前述した電解槽を用いて還元する。
ここで、レドックスフロー型二次電池は、正・負極活物質が電解液であり、燃料電池と同様に活物質を透過させる電極を持つ電池本体に活物質を送液する、「活物質再生型燃料電池」とも言われている。
この電池本体は、例えば、複極仕切板(バイポーラプレート)を介して直列に積層され、各シングルセル(単電池)には共通の正・負極活物質液が供給される。したがって単電池間では充放電深度にバラツキができないという大きな特徴がある。
一方で、例えば鉛二次電池では、均等充電操作(小さな電流で極板からのガス発生を伴う完全充電状態にする操作)、ニッケルを負極とする二次電池では、完全放電操作などによって充電深度を揃えるなどの方法が採られている。ただし、リチウムイオン電池はそのような方法が採れず、個々の単電池に対して電気回路的に入出力電流を調整して充放電深度を揃える工夫がされている。
つまり、同じ二次電池ではあるが、レドックスフロー型二次電池では、正・負極活物質間のバランスの崩れは、単電池ごとではなく、共通の電解液で起こるため、共通の電解液でまとめて調整することができる。つまり、レドックスフロー型二次電池は、活物質単位ごとに充放電深度を調整すれば良い点で、特に大型二次電池においては大きなメリットがある。
ここで、レドックスフロー型二次電池において、正・負極活物質間のバランスの崩れは、主に充放電に伴う電極反応の副反応に基づいている。一般に副反応の中で、負極における水素発生が最も大きな原因とされている。
特に、鉄―クロム系のレドックス電池では、負極におけるクロム2価/3価の電極反応の副反応としての水素発生、また、貯蔵タンク内でも、高い充電状態におけるクロム2価による水素発生が原因とされている。
クロム2価/3価の電極電位と比べて、負極の反応が0.2Vほど貴にあるバナジウム系においても、負極側では同様な充電深度の崩れが起こり、両液間の充電深度のリバランスは必要である。
一般にこのリバランスは負極液よりも、電位的に容易にできる正極液を還元する形で、電解還元や還元性物質の投与によって行われている。
バナジウム系における両極液のSOC(State of Charge;充電深度)の不均衡化の原因は、負極活物質側からの水素ガス発生だけでなく、隔膜を通してバナジウム2価、あるいは5価が透過する場合に起こるクロスミキシングがある。正極活物質液側からバナジウム5価が負極活物質側に透過すると、負極活物質側では2当量のバナジウム2価が酸化(自己放電)される。正極活物質側ではバナジウム5価が減少する1当量分だけの自己放電なので、両極液のSOCの不均衡が生じることになる。
ここで、電解還元は、電池系に薬剤を持ち込む必要がなく、メンテナンス上、実施し易い方法であり、リバランスシステムとして、負極活物質液に対して過充電状態にある正極活物質液を電解還元する付帯設備が設けられることが多い。
しかし、電解液中に塩化物イオンなどのハロゲン化物イオンが共存する場合、前記付帯設備として設けられる電解槽の対極(陽極)からハロゲンが発生するので、それを環境中に放散させない設備も必要になる。
上記の環境への放散を防止するためには、上述のような電解槽の対極からのハロゲンの発生を防止することが重要であり、ハロゲンの発生を防止するためには、例えば陰極側に存在するハロゲン化物イオンが、対極(陽極)室に透過しないようにすることが重要である。
そこで、本発明では、陰極室側の陰極液に含まれるハロゲン化物イオンが、対極(陽極)室に透過しないようにするため、陰極室と対極室とを分離する隔膜を10℃以下に保持すること、或いは陽極室を構成する隔壁を、電解時に80℃以上に保持することなどの特徴的な工夫を実施している。
例えばバナジウムイオンを用いるバナジウムレドックスフロー型二次電池において、上述した隔膜又は隔壁を用いた電解槽を設け、電池内の正極活物質液及び負極活物質液のバナジウムイオンの価数のリバランスを行う際に、上記付帯設備として設けられる電解槽で還元された還元液を用いることが好ましい。
バナジウムレドックスフロー型二次電池において、正極活物質液には、4価及び5価バナジウムイオンによるレドックス系を用い、負極活物質液には、2価及び3価バナジウムイオンによるレドックス系を用いることができる。
バナジウムレドックスフロー型二次電池は、正極及び負極における活物質液中の活物質の電極反応(酸化還元反応)によって充放電を行う。充電時及び放電時の電極反応は、それぞれ下記のように表される。
(充電時の電極反応)
正極反応:VO2+(4価)+HO → VO (5価)+2H+e
負極反応:V3+(3価)+e → V2+(2価)
(放電時の電極反応)
正極反応:VO (5価)+2H+e → VO2+(4価)+H
負極反応:V2+(2価) → V3+(3価)+e
バナジウムレドックスフロー型二次電池としては、例えば、活物質液をタンクと電極との間で循環しながら充放電動作を行うバナジウムレドックスフロー電池が挙げられる。また、バナジウムレドックスフロー型二次電池として、活物質液を静止した状態で充放電動作を行うものを用いてもよい。
バナジウムレドックスフロー型二次電池において、上記のような充放電動作を繰返すと、種々の原因によって、正極活物質液及び負極活物質液におけるバナジウムイオン平均価数(以下、単に平均価数ともいう)のバランスが崩れてくる。
本発明では、電池内の正極活物質液及び負極活物質液のバナジウムイオンの価数のリバランスを行う際に、上記電解槽で還元された還元液を用いることが好ましい。ハロゲンガスの発生が抑制された好適なリバランス液だからである。
このリバランス液は、電位的に容易にできる正極活物質液を還元することが好ましい。リバランスは、負極活物質液よりも、電位的に容易にできる正極活物質液を還元する形で行う方が処理しやすいからである。
リバランス液を活物質液に添加する際には、上記の還元液を活物質液に対してリバランス液として添加してもよいが、活物質液の一部を置換するようにリバランス液を添加することが好ましい。
活物質液の一部を置換するようにリバランス液を添加することによって、リバランス液の添加量が少量で済み、更に活物質液の容量を維持しながら、リバランスを行うことができる。
以下、本発明の実施例により、本発明の効果について例証する。
(実施例1、2)
図1に示す装置を用いた。DuPont社製「ナフィオン117」(フッ素樹脂膜系陽イオン交換膜)を3枚積層したものを隔膜として用いた。
また有効電極面積10cm(縦10cm×横1cm)である炭素繊維フェルト電極を用いた小型単電解槽を用いた。
電解槽に、バナジウム濃度2.1M、硫酸根濃度4.5M、塩化物イオン濃度1.0Mの陰極液を入れ、これを電解還元した。
対極液には、6M硫酸を循環使用した。対極液は、恒温水槽に入れた容量100mLの電解液ホルダーからチューブポンプで単電解槽に送液(約7mL/分)することによって、電解槽の隔膜に接している電解液温度を調整できるようにした。
また。比較のために、隔膜(DuPont社製「ナフィオン117」)一枚だけを用いた電解槽での試験も行った。
一時間、電流密度50mA/cmで陰極液を電解還元した後、対極(陽極)液中の塩化物イオンをパージトラップ法で検出した。検出には酸性ガスの検知管を使用し、塩化水素濃度を検出した。
隔膜枚数、対極(陽極)液温度と酸化性ガス検知との関係は以下の表1に示す通りであった。ここで、推定輸率とは、隔膜を透過した電荷が、すべて塩化物イオンである場合を100%として算出した。
Figure 2020119831
(実施例3、4)
図3に示す装置を用いた。
グラファイト粉を樹脂結着し、再焼成した伝導性シートにジルコン酸ストロンチウム(SrZrO、富士フィルム和光純薬社製市販品)をスラリーにして塗布し、窒素気流中1500℃で焼結した。
グラファイト基盤上に形成したジルコニア薄膜に欠落部、ピンホールを作らないために、ジルコン酸ストロンチウムを再度塗布して再焼成した。
この上にナフィオン117を置いて、これをリバランス用電解槽の陽極(隔壁)とした。
実施例1と異なり、ヒーティングテープでグラファイト基盤105a側から隔壁105を加熱した。
6M硫酸の陽極液はチューブポンプで循環した。
電流値1mA(電流密度0.1mA/cm)で8時間、陰極液の電解還元を行った。
実施例1と同様に、電解還元後の対極(陽極)液中の塩化物イオンをパージトラップ法で検出した。検出には酸性ガスの検知管を使用し、塩化水素濃度を検出した。
グラファイト基盤処理、対極(陽極)基盤温度、印加電圧、酸化性ガス検知及び推定輸率の関係は以下の表2に示す通りであった。ここで、推定輸率とは、隔壁を透過した電荷が、すべて塩化物イオンである場合を100%として算出した。
Figure 2020119831
1 :電解槽
100 :隔膜
101 :陰極
102 :陰極室
103 :陽極
104 :陽極室
105 :隔壁
105a :グラファイト基盤
105b :被膜
106 :加熱部
107 :加熱タンク
108 :チューブポンプ
109 :ヒーター
2 :恒温水槽
200 :電解液ホルダー
201 :チューブポンプ

Claims (6)

  1. 正極活物質と負極活物質の何れか一方又は両方を、電解槽を用いて還元するレドックスフロー型二次電池のリバランスシステムにおいて、
    前記電解槽の陰極室と陽極室を分離するイオン伝導性の隔膜を用い、
    前記隔膜の温度が、電解時に、10℃以下に保持されるようにすることを特徴とするレドックスフロー型二次電池のリバランスシステム。
  2. 前記イオン伝導性の隔膜が、イオン交換膜であって、
    該イオン交換膜の陽極室側に10℃以下の電解液を流通させることを特徴とする請求項1記載のレドックスフロー型二次電池のリバランスシステム。
  3. 正極活物質と負極活物質の何れか一方又は両方を、電解槽を用いて還元するレドックスフロー型二次電池のリバランスシステムにおいて、
    該電解槽に陽極室を構成するイオン伝導性の隔壁を用い、
    該隔壁と陰極室とを分離する隔膜を用い、
    前記隔壁の温度が、電解時に80℃以上に保持されるようにすることを特徴とするレドックスフロー型二次電池のリバランスシステム。
  4. 前記陽極室を形成するイオン伝導性の隔壁は、多孔質のグラファイト基盤と、酸化ジルコンを含む複合酸化物からなる被膜とからなることを特徴とする請求項3記載のレドックスフロー型二次電池のリバランスシステム。
  5. 前記多孔質のグラファイト基盤に、80℃以上の電解液を流通させることを特徴とする請求項4記載のレドックスフロー型二次電池のリバランスシステム。
  6. 前記イオン伝導性の隔壁を構成する前記多孔質のグラファイト基盤に、加熱部を接設することを特徴とする請求項4又は5記載のレドックスフロー型二次電池のリバランスシステム。
JP2019011530A 2019-01-25 2019-01-25 レドックスフロー型二次電池のリバランスシステム Pending JP2020119831A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019011530A JP2020119831A (ja) 2019-01-25 2019-01-25 レドックスフロー型二次電池のリバランスシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019011530A JP2020119831A (ja) 2019-01-25 2019-01-25 レドックスフロー型二次電池のリバランスシステム

Publications (1)

Publication Number Publication Date
JP2020119831A true JP2020119831A (ja) 2020-08-06

Family

ID=71891162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019011530A Pending JP2020119831A (ja) 2019-01-25 2019-01-25 レドックスフロー型二次電池のリバランスシステム

Country Status (1)

Country Link
JP (1) JP2020119831A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116742018A (zh) * 2023-08-14 2023-09-12 保定市数果信息技术有限公司 一种液流电池的石墨毡电极改性处理装置及其实施方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116742018A (zh) * 2023-08-14 2023-09-12 保定市数果信息技术有限公司 一种液流电池的石墨毡电极改性处理装置及其实施方法
CN116742018B (zh) * 2023-08-14 2024-04-09 保定市数果信息技术有限公司 一种液流电池的石墨毡电极改性处理装置及其实施方法

Similar Documents

Publication Publication Date Title
CN110311147B (zh) 液流电池电解质平衡策略
CN110036518B (zh) 用于再循环液流电池的电解液的方法和装置
US20160248109A1 (en) Driven electrochemical cell for electrolyte state of charge balance in energy storage devices
JP5422083B2 (ja) ノンフローレドックス電池
JPH06188005A (ja) レドックス電池
US11851773B2 (en) Use of polyoxometalate mediators
US20220209274A1 (en) Redox flow battery with a balancing cell
JP2015504233A (ja) 電気化学を基礎とするエネルギーの生成もしくは蓄積のためのシステム
JP5864682B2 (ja) ペースト状バナジウム電解質の製造方法及びバナジウムレドックス電池の製造方法
JP6378319B2 (ja) フロー電池の健全性維持方法
JP2018516428A (ja) 液体電解液の処理方法
JP6599991B2 (ja) 高分子電解質膜、これを含む電気化学電池及びフロー電池、高分子電解質膜の製造方法、及びフロー電池用電解液
JP3163370B2 (ja) レドックス電池
JP6080223B2 (ja) 空気呼吸式燃料電池、電池スタックおよび電池スタックのバッテリーとしての利用
KR101506951B1 (ko) 레독스 흐름 전지 전해액 제조장치 및 그 제조방법
KR20160085113A (ko) 플로우 배터리에 적용 가능한 전해액 혼합 모듈 및 이를 이용한 플로우 배터리의 전해액 혼합 방법
JP2020119831A (ja) レドックスフロー型二次電池のリバランスシステム
TW201703328A (zh) 氧化還原液流電池用電極、及氧化還原液流電池系統
JP6663923B2 (ja) レドックス電池
JP2014127428A (ja) バナジウムレドックス電池
WO2018079965A1 (ko) 효율적인 수소-전기 생산이 가능한 역전기 투석 장치를 이용한 하이브리드 발전 시스템 및 에너지 자립형 수소-전기 복합 충전 스테이션
JP2019160469A (ja) レドックスフロー電池用電解液及びレドックスフロー電池
US10069161B2 (en) In-situ gravitational separation of electrolyte solutions in flow redox battery systems
JP2016186853A (ja) バナジウムレドックス電池
CN109599579A (zh) 燃料电池的输出检测方法