JP2020113592A - 積層セラミックコンデンサの製造方法 - Google Patents

積層セラミックコンデンサの製造方法 Download PDF

Info

Publication number
JP2020113592A
JP2020113592A JP2019001669A JP2019001669A JP2020113592A JP 2020113592 A JP2020113592 A JP 2020113592A JP 2019001669 A JP2019001669 A JP 2019001669A JP 2019001669 A JP2019001669 A JP 2019001669A JP 2020113592 A JP2020113592 A JP 2020113592A
Authority
JP
Japan
Prior art keywords
laser
irradiation
ceramic capacitor
manufacturing
internal electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019001669A
Other languages
English (en)
Other versions
JP7280697B2 (ja
Inventor
明彦 河野
Akihiko Kono
明彦 河野
哲彦 福岡
Tetsuhiko Fukuoka
哲彦 福岡
靖也 加藤
Haruya Kato
靖也 加藤
宣彰 倉林
Nobuaki Kurabayashi
宣彰 倉林
昌司 楠本
Masashi Kusumoto
昌司 楠本
亮 大野
Akira Ono
亮 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2019001669A priority Critical patent/JP7280697B2/ja
Publication of JP2020113592A publication Critical patent/JP2020113592A/ja
Application granted granted Critical
Publication of JP7280697B2 publication Critical patent/JP7280697B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

【課題】内部電極間の短絡不良を防止しつつ、後付けされたサイドマージン部の不具合を防止することが可能な積層セラミックコンデンサの製造方法を提供する。【解決手段】本発明の一形態に係る積層セラミックコンデンサの製造方法は、部電極が積層されたセラミック積層体を切断して、上記内部電極の端部が露出した側面を有する積層チップを作製する工程を含む。トップハット型の出力分布を有するレーザが、照射強度分布が均一となる中央部と、上記中央部の周囲に位置し上記中央部から照射強度が漸減する周縁部と、をそれぞれ含み上記周縁部が相互にオーバーラップするように配置された複数の照射領域に照射される。上記レーザ照射後の上記側面を覆うようにサイドマージン部が設けられる。【選択図】図11

Description

本発明は、小型化及び大容量化に対応可能な積層セラミックコンデンサの製造方法に関する。
近年、電子機器の小型化及び高性能化に伴い、電子機器に用いられる積層セラミックコンデンサに対する小型化及び大容量化への要求がますます強くなってきている。積層セラミックコンデンサのサイズを小さく抑えつつ容量を大きくするためには、積層セラミックコンデンサの内部電極の交差面積(対向する内部電極同士の重なり合う部分の面積)を大きくすることが有効である。
内部電極の交差面積を大きくする観点から、マザーブロックの切断によって複数のグリーンチップを得た後、このグリーンチップの側面に、セラミックグリーンシートを貼り付け、サイドマージンを後付けする技術が知られている(例えば特許文献1参照)。
また、特許文献2及び3には、セラミックシートと内部電極とが交互に積層された積層体を切断した後、切断面である側面から露出した内部電極の端部を除去した後に当該側面にサイドマージン部を設け、内部電極の端部間の短絡不良を防止する技術が記載されている。
特開2012−209539号公報 特開2016−225603号公報 特開2017−120880号公報
しかしながら、内部電極間の上記側面における短絡不良を防止しつつ、後付けされたサイドマージン部の剥がれやクラックの発生といった不具合を防止する技術については知られていない。
以上のような事情に鑑み、本発明の目的は、内部電極間の短絡不良を防止しつつ、後付けされたサイドマージン部の不具合を防止することが可能な積層セラミックコンデンサの製造方法を提供することにある。
上記目的を達成するため、本発明の一形態に係る積層セラミックコンデンサの製造方法は、内部電極が積層されたセラミック積層体を切断して、上記内部電極の端部が露出した側面を有する積層チップを作製する工程を含む。
トップハット型の出力分布を有するレーザが、照射強度分布が均一となる中央部と、上記中央部の周囲に位置し上記中央部から照射強度が漸減する周縁部と、をそれぞれ含み上記周縁部が相互にオーバーラップするように配置された複数の照射領域に照射される。
上記レーザ照射後の上記側面を覆うようにサイドマージン部が設けられる。
上記製造方法によれば、側面から露出する内部電極の端部がレーザによって除去されることで、仮に側面に傷や付着物があった場合でも、内部電極の端部間がセラミックシートによって絶縁されることとなる。したがって、内部電極の短絡不良を防止できる。加えて、中央部の照射強度分布が均一であり、かつ複数の照射領域がオーバーラップする領域が照射強度の弱い周縁部である。このため、レーザの照射強度を全体に均一化し、内部電極の端部を深く除去しすぎることを防止できる。これにより、側面とサイドマージン部との密着性を確保し、サイドマージン部の剥がれや、側面でのクラックの発生を防止し、サイドマージン部を後付けする場合の不具合を防止できる。
具体的には、上記レーザを、上記側面の手前又は奥側でフォーカスさせることによりデフォーカスさせ、上記複数の照射領域に照射してもよい。
これにより、上記照射領域にレーザを照射することができる。
例えば、上記内部電極の端部を、上記側面から上記積層チップの内側方向へ0.5μm以上1.0μm以下除去してもよい。
これにより、内部電極の端部を適度な深さで除去でき、側面に対するサイドマージン部の剥がれや、側面でのクラックの発生をより効果的に防止できる。
上記レーザは、グリーンレーザであってもよい。
これにより、レーザ処理時における内部電極端部の熱によるダメージを防止できるとともに、内部電極を効率的に除去することができる。
内部電極間の短絡不良を防止しつつ、後付けされたサイドマージン部の不具合を防止することが可能な積層セラミックコンデンサの製造方法を提供することができる。
本発明の一実施形態に係る積層セラミックコンデンサの斜視図である。 上記積層セラミックコンデンサのA−A'線に沿った断面図である。 上記積層セラミックコンデンサのB−B'線に沿った断面図である。 図3に示した断面図の一部を拡大して示す図である。 上記積層セラミックコンデンサの製造方法を示すフローチャートである。 上記積層セラミックコンデンサの製造過程を示す斜視図である。 上記積層セラミックコンデンサの製造過程を示す斜視図である。 上記積層セラミックコンデンサの製造過程を示す斜視図である。 上記製造過程におけるレーザ照射工程を模式的に示す図である。 上記製造過程における未焼成の積層チップの側面において、レーザが照射される照射領域の配置例を示す図である。 図10における2つの照射領域のみを示す図である。 図11に示す2つの照射領域の照射強度分布例を示すグラフであり、縦軸がレーザの照射強度、横軸がZ軸方向又はX軸方向における位置を表す。 本実施形態の比較例に係る2つの照射領域を示す図である。 図13に示す2つの照射領域の照射強度分布例を示すグラフであり、縦軸がレーザの照射強度、横軸がZ軸方向又はX軸方向における位置を表す。
以下、図面を参照しながら、本発明の実施形態を説明する。
図面には、適宜相互に直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は全図において共通である。
[積層セラミックコンデンサ10の構成]
図1〜3は、本発明の一実施形態に係る積層セラミックコンデンサ10を示す図である。図1は、積層セラミックコンデンサ10の斜視図である。図2は、積層セラミックコンデンサ10の図1のA−A'線に沿った断面図である。図3は、積層セラミックコンデンサ10のB−B'線に沿った断面図である。
積層セラミックコンデンサ10は、素体11と、第1外部電極14と、第2外部電極15とを具備する。素体11は、複数の第1内部電極12及び複数の第2内部電極13を有する。外部電極14,15は、素体11のX軸方向両端面を覆っている。第1外部電極14は第1内部電極12に接続され、第2外部電極15は第2内部電極13に接続されている。
素体11は、積層チップ16と、第1サイドマージン部20と、第2サイドマージン部21と、オフセット部24とを有する。
積層チップ16は、セラミックスにより構成され、その内部に、複数の第1内部電極12と、複数の第2内部電極13とが配置される。第1内部電極12及び第2内部電極13は、XY平面に沿って延びる平板状であり、セラミック層17を介してZ軸方向に交互に積層されている。セラミック層17及び内部電極12,13の厚み及び層数は、特に限定されない。
内部電極12,13は、それぞれ導電性材料からなり、平板状に構成された積層セラミックコンデンサ10の内部電極として機能する。当該導電性材料としては、例えばニッケル(Ni)、銅(Cu)、パラジウム(Pd)、白金(Pt)、銀(Ag)、金(Au)、又はこれらの合金を含む金属材料が用いられる。
セラミック層17を構成するセラミックス材料としては、例えば、チタン酸バリウム(BaTiO)に代表される、バリウム(Ba)及びチタン(Ti)を含むペロブスカイト構造の材料を用いることができる。また、セラミック層17を構成するセラミックス材料は、チタン酸バリウム系以外にも、チタン酸ストロンチウム(SrTiO)系、チタン酸カルシウム(CaTiO)系、チタン酸マグネシウム(MgTiO)系、ジルコン酸カルシウム(CaZrO)系、チタン酸ジルコン酸カルシウム(Ca(Zr,Ti)O)系、ジルコン酸バリウム(BaZrO)系、酸化チタン(TiO)系などであってもよい。
上記の構成により、積層セラミックコンデンサ10では、第1外部電極14と第2外部電極15との間に電圧が印加されると、第1内部電極12と第2内部電極13との間の複数のセラミック層17に電圧が加わる。これにより、積層セラミックコンデンサ10では、第1外部電極14と第2外部電極15との間の電圧に応じた電荷が複数のセラミック層17に蓄えられる。
積層チップ16は、さらに、第1カバー層18と、第2カバー層19と、を有する。第1カバー層18は積層チップ16のZ軸方向上側に配置され、第2カバー層19は積層チップ16のZ軸方向下側に配置される。
サイドマージン部20,21は、X−Z平面に沿って延びる平板状である。第1サイドマージン部20は積層チップ16のY軸方向を向いた側面を覆い、第2サイドマージン部21は積層チップ16の第1サイドマージン部20とは反対側の側面を覆っている。
カバー層18,19及びサイドマージン部20,21は、主に、内部電極12,13を保護するとともに、内部電極12,13の周囲の絶縁性を確保する機能を有する。カバー層18,19及びサイドマージン部20,21も、誘電体であるセラミックスによって形成されている。カバー層18,19及びサイドマージン部20,21を形成する材料は、絶縁性を有する材料であればよいが、セラミック層17と同様の材料を用いることより素体11における内部応力が抑制される。
図4は、図3に示した断面図の一部を拡大して示す図である。図3及び図4に示すように、オフセット部24は、各内部電極12,13と第1サイドマージン部20との間、及び、各内部電極12,13と第2サイドマージン部21との間に、それぞれ形成されている。図4には、各内部電極12,13と第2サイドマージン部21との間に形成されたオフセット部24が示されている。積層チップ16の側面のうち、第2サイドマージン部21に覆われた側面を側面S2とすると、各内部電極12,13は、積層チップ16の側面S2側に、各々の端部22,23を有する。
図示及び説明を省略するが、積層チップ16の第1サイドマージン部20側の側面S1においても、各内部電極12,13及びオフセット部24の構造は、第2サイドマージン部21側の側面S2におけるものと実質的に同一である。
オフセット部24は、各内部電極12,13の端部22,23を、積層チップ16の側面S1,S2から積層チップ16の内側方向へオフセットさせるように設けられたギャップである。オフセット部24は、空隙領域(エアギャップ)であってもよい。あるいは、オフセット部24は、非晶質領域であってもよい。非晶質領域は、結晶構造を有さない材料からなる領域であって、例えばガラス質からなる。ガラス質の例としては、Ba、Ni、マンガン(Mn)等の金属元素を含むシリコン酸化物が挙げられる。
オフセット部24のオフセット幅Wは、例えば、0.5μm以上1.0μm以下である。オフセット幅Wは、積層チップ16の側面S1,S2から内部電極12,13の端部22,23までの距離とする。これにより、詳細を後述するように、内部電極12,13の端部の構造欠陥に基づく短絡不良を防止でき、かつ、サイドマージン部20,21の剥がれや側面S1,S2におけるクラックの発生を防止できる。
[積層セラミックコンデンサ10の製造方法]
図5は、積層セラミックコンデンサ10の製造方法を示すフローチャートである。図6〜8は、積層セラミックコンデンサ10の製造過程を示す図である。以下、積層セラミックコンデンサ10の製造方法について、図5に沿って、図6〜8を適宜参照しながら説明する。
(ステップS01:セラミック積層体の作製工程)
ステップS01では、図6に示すように、第1セラミックシート101、第2セラミックシート102及び第3セラミックシート103を積層して、セラミック積層体104を作製する。
図6に示すセラミックシート101,102,103は、誘電体セラミックスを主成分とする未焼成の誘電体グリーンシートとして構成される。第1セラミックシート101には、第1内部電極12に対応する未焼成の第1内部電極112が形成される。第2セラミックシート102には、第2内部電極13に対応する未焼成の第2内部電極113が形成される。第3セラミックシート103には、内部電極が形成されていない。
各内部電極112,113は、X軸方向に平行な切断線Lxを横切り、かつY軸方向に平行な切断線Lyに沿って延びる複数の帯状の電極パターンを有する。これらの内部電極112,113は、印刷法等により、導電性ペーストをセラミックシート101,102に塗布することで形成される。
セラミックシート101,102は、図6に示すように、Z軸方向に交互に積層される。セラミックシート103は、セラミックシート101,102の積層体のZ軸方向上下面に積層される。セラミックシート103の積層体は、カバー層18,19に対応する。
なお、セラミックシート101,102,103の積層枚数等は、適宜調整可能である。
セラミックシート101,102,103の積層体をZ軸方向から圧着することで、内部電極112,113が積層されたセラミック積層体104が作製される。
(ステップS02:積層チップ116の作製工程)
ステップS02では、ステップS01で得られたセラミック積層体104を切断して、積層チップ116を作製する。
本ステップでは、切断線Lx及び切断線Lyに沿って、セラミック積層体104をX軸方向及びY軸方向に切断する。これにより、図7に示すように、内部電極112,113の端部122,123が露出した側面Su1,Su2を有する積層チップ116が作製される。側面Su1,Su2は、切断線Lxに基づく切断面であり、Y軸方向に向いた面である。
(ステップS03:レーザ照射工程)
ステップS03では、ステップS02で得られた積層チップ116の側面Su1,Su2にレーザを照射する。これにより、内部電極112,113の側面Su1,Su2から露出した端部122,123を除去する。レーザ照射工程の詳細については、後述する。
(ステップS04:サイドマージン部形成工程)
ステップS04では、図8に示すように、レーザ照射後の未焼成の積層チップ116の側面Su1,Su2に、未焼成の第1サイドマージン部120及び第2サイドマージン部121を設けて、未焼成の素体111を作製する。これらのサイドマージン部120,121は、例えば、セラミックシートの貼り付けによって形成されてもよいし、ディップ法等によってセラミックシートを塗布することにより形成されてもよい。
未焼成の素体111は、内部電極112,113と第1サイドマージン部120との間、及び、内部電極112,113と第2サイドマージン部121との間に、それぞれオフセット部24となる空隙124を有する。
(ステップS05:焼成工程)
ステップS05では、ステップS04で得られた未焼成の素体111を焼成することにより、図1〜4に示す積層セラミックコンデンサ10の素体11を作製する。焼成は例えば還元雰囲気下、あるいは、低酸素分圧雰囲気下において行うことができる。
焼成雰囲気によっては、レーザ照射処理によって形成した空隙124に、セラミック層17やサイドマージン部20,21に含まれるSi成分を含む液相のガラスが流れ込むことがある。またこの際、サイドマージン部20,21や内部電極112,113に含まれるBa、Ni、Mn等の金属元素がこのガラス質に拡散することもある。これにより、非晶質領域からなるオフセット部24が形成される。
なお、上記空隙に非晶質領域が形成されない場合、空隙領域からなるオフセット部24が形成される。
(ステップS06:外部電極形成工程)
ステップS06で、ステップS05で得られた素体11に外部電極14,15を形成することにより、図1〜3に示す積層セラミックコンデンサ10を作製する。
ステップS06では、まず、素体11の一方のX軸方向端面を覆うように未焼成の電極材料を塗布し、素体11の他方のX軸方向端面を覆うように未焼成の電極材料を塗布する。塗布された未焼成の電極材料を、例えば、還元雰囲気下、又は低酸素分圧雰囲気下において焼き付け処理を行って、素体11に下地膜を形成する。そして、素体11に焼き付けられた下地膜の上に、中間膜及び表面膜を電解メッキなどのメッキ処理で形成して、外部電極14,15が完成する。
なお、上記のステップS06における処理の一部を、ステップS05の前に行ってもよい。例えば、ステップS05の前に未焼成の素体111のX軸方向両端面に未焼成の電極材料を塗布し、ステップS06において、未焼成の素体111を焼成すると同時に、未焼成の電極材料を焼き付けて外部電極14,15の下地層を形成してもよい。また、脱バインダ処理した素体111に未焼成の電極材料を塗布して、これらを同時に焼成してもよい。
[レーザ照射工程(ステップS03)の詳細な説明]
ステップS02の積層チップ116の作製工程では、未焼成のセラミック積層体104を切断する際に、側面Su1,Su2に露出した内部電極112,113の端部122,123に展延が生じたり、側面Su1,Su2に傷や付着物が生じたりする可能性がある。このような内部電極112,113の端部122,123の構造欠陥により、側面Su1,Su2において端部122,123同士が接触し、短絡不良を招くおそれがある。
そこで、ステップS03において、積層チップ116の側面Su1,Su2に対してレーザを照射する。これにより、内部電極112,113の端部122,123の構造欠陥部分を除去し、短絡不良を防止することができる。
一方、端部122,123の除去量が大きい場合、後付けされたサイドマージン部120,121と側面Su1,Su2との密着性を十分確保できないことがある。この場合、焼成時における素体11とサイドマージン部20,21との収縮率の違い等から、サイドマージン部20,21の剥がれや、側面Su1,Su2におけるクラック等の不具合が発生しやすくなる。
このため、内部電極112,113の端部122,123は、例えば、側面Su1,Su2から積層チップ116の内側方向へ0.5μm以上1.0μm以下除去される。当該除去量を0.5μm以上とすることで、内部電極112,113の端部122,123の構造欠陥部分を確実に除去でき、短絡不良を防止できる。当該除去量を1.0μm以下とすることで、側面Su1,Su2とサイドマージン部120,121との密着性を十分に確保し、剥がれやクラックなどの不具合を防止できる。
内部電極112,113の端部122,123の除去量は、オフセット幅Wと同様に、積層チップ116の側面Su1,Su2から、除去後の内部電極112,113の端部までの距離とする。
端部122,123の除去量の制御は、レーザの照射条件やスポット形状を調整することで実現できる。
本実施形態のレーザは、例えば、グリーンレーザである。グリーンレーザは、532nmの波長帯を含む、500nm以上550nm以下の波長を有するレーザである。
グリーンレーザを用いることで、より長い波長帯のレーザと比較して、照射時の発熱を抑制することができる。照射時に発熱した場合、内部電極112,113の端部122,123が加熱されて球状化し、その部分を基点としてクラックが発生する恐れがある。さらに、クラックが発生した場合、クラックの部分に水分等が侵入することで、ショートが発生しやすくなる。グリーンレーザにより、このようなクラックの発生や短絡不良を防止することができる。
また、グリーンレーザを用いることで、より短波長帯のレーザと比較して、各照射領域Rに対応するスポットを適度に大きくすることができる。これにより、レーザ処理工程の時間を短縮し、生産効率を高めることができる。また、グリーンレーザを用いることで、端部122,123にエネルギを十分に吸収させることができ、効率よく端部122,123の除去を行うことができる。
図9は、レーザ照射装置200によって側面Su1,Su2にレーザLを照射する態様を模式的に示す図である。
レーザ照射装置200としては、例えば、レーザを反射させるミラーの角度を制御することで、レーザのスポットを移動させることが可能なパルスレーザ装置を用いることができる。パルス幅は特に限定されないが、例えば、ナノ秒パルスレーザ、ピコ秒パルスレーザ及びフェムト秒パルスレーザ等を用いることができる。
図10は、積層チップ116の側面Su1,Su2において、レーザLが照射される照射領域Rの配置例を示す図である。同図において、照射領域Rを一点鎖線で示す。
レーザ照射装置200は、側面Su1,Su2の複数の照射領域RにレーザLを照射する。同図には、X軸方向に並ぶ5つの照射領域RがZ軸方向に2列配置された例を示す。レーザLのスポットが側面Su1,Su2よりも小さいことで、レーザLのエネルギ密度を適度に高め、上記除去量を上記範囲に制御することが可能となる。
図11は、図10における2つの照射領域Rのみを示す図である。図12は、図11に示す2つの照射領域Rの照射強度分布例を示すグラフであり、縦軸がレーザの照射強度、横軸がZ軸方向又はX軸方向における位置を表す。図11では、中央部R1を周縁部R2よりも密度の高いドットで表している。
各照射領域Rは、照射強度分布が平均化された中央部R1と、中央部R1の周囲に位置し中央部R1から照射強度が漸減する周縁部R2と、を有する。「照射強度分布が平均化された」部分とは、非ガウシアン型の照射強度分布を有し、照射強度の値の変動が、平均値を基準として−20%〜+20%の範囲内に収まる部分をいう。図12に示すように、照射領域Rにおける照射強度分布は、略台形型となる。
各照射領域Rは、周縁部R2が相互にオーバーラップするように側面Su1,Su2上に配置されている。これにより、側面Su1,Su2全体を万遍なく照射することができる。オーバーラップ領域Rvの照射強度は、図12の破線で示すように、2つの照射領域R(周縁部R2)における照射強度の和となる。照射強度の小さい周縁部R2がオーバーラップ領域Rvを含むことで、オーバーラップ領域Rvにおいて照射強度が高まることを防止し、内部電極112,113の端部122,123の過剰な除去を抑制できる。
本実施形態の照射領域Rは、トップハット型の出力分布を有するレーザLをデフォーカスさせることにより実現できる。デフォーカスとは、レーザLを側面Su1,Su2の手前又は奥側でフォーカスすることを言う。「側面Su1,Su2の手前」とは、側面Su1,Su2とレーザ照射装置200の出射部201(図9参照)との間の位置を言う。「側面Su1,Su2の奥側」とは、側面Su1,Su2から出射部201とは離間する方向に進んだ位置を言う。
図13は、トップハット型の出力分布を有するレーザLを側面Su1,Su2においてフォーカスさせた、すなわちジャストフォーカスさせた場合の、2つの照射領域R'を示す図である。図14は、図13に示す2つの照射領域R'の照射強度分布例を示すグラフであり、縦軸がレーザの照射強度、横軸がZ軸方向又はX軸方向における位置を表す。
トップハット型のレーザ出力強度分布は、全体として平均化されており、矩形分布型であることを特徴とする。このため、図13及び図14に示すように、レーザLを側面Su1,Su2においてフォーカスさせた、すなわちジャストフォーカスさせた場合には、照射強度分布も全体に平均化される。この結果、各照射領域R'は、照射強度が漸減する周縁部を有さないか、非常に狭い周縁部を有することとなる。
ジャストフォーカスさせたレーザLを側面Su1,Su2全体に照射しようとする場合、高い照射強度の領域がオーバーラップして配置される。このオーバーラップ領域R'vは、非オーバーラップ領域R'nに対して、2倍程度の照射強度を有する。すなわち、側面Su1,Su2内に、局所的に非常に高い照射強度の領域が生じる。
このため、レーザLをジャストフォーカスさせた場合のオーバーラップ領域R'vでは、端部122,123の除去量が1.0μmよりも大きくなりやすい。したがって、側面Su1,Su2とサイドマージン部120,121との密着性が不安定となる。これにより、焼成時におけるサイドマージン部120,121と積層チップ116との収縮率の違いに起因して、サイドマージン部120,121の剥がれや側面Su1,Su2におけるクラックといった不具合が発生しやすくなる。さらに、剥がれやクラックの部分に水分が侵入することで、ショートが発生しやすくなる。
これに対し、本実施形態では、トップハット型の出力分布を有するレーザLをデフォーカスさせる。これにより、非オーバーラップ領域Rnに含まれる中央部R1では照射強度分布を平均化できるとともに、オーバーラップ領域Rvを含む周縁部R2では照射強度を抑えられる。したがって、全体としてより均一な強度でレーザ照射することができ、端部122,123の除去量の制御をより精度よく行うことができる。
また、レーザLのデフォーカス量を調整することにより、周縁部R2の形状を制御できる。デフォーカス量とは、側面Su1,Su2とフォーカス位置との距離をいう。デフォーカス量は、例えば3mm以上5mm以下とすることができる。これにより、オーバーラップ可能な周縁部R2を広く確保でき、側面Su1,Su2全体を処理するための照射領域Rの位置制御がより容易になる。
以上より、本実施形態のレーザ照射工程によれば、端部122,123の除去量を、0.5μm以上1.0μm以下の範囲に調整することが容易になり、焼成後におけるサイドマージン部120,121の剥がれやクラックといった不具合の発生を抑制できる。
以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
10…積層セラミックコンデンサ
12,13…内部電極
16…積層チップ
17…セラミック層
20,21…サイドマージン部
22,23…端部
24…オフセット部
104…未焼成の積層体
111…未焼成の素体
112,113…未焼成の内部電極
116…未焼成の積層チップ
120,121…未焼成のサイドマージン部
122,123…未焼成の内部電極の端部
Su1,Su2…未焼成の積層チップの側面
W…オフセット幅
R…照射領域
R1…中央部
R2…周縁部

Claims (4)

  1. 内部電極が積層されたセラミック積層体を切断して、前記内部電極の端部が露出した側面を有する積層チップを作製し、
    トップハット型の出力分布を有するレーザを、照射強度分布が平均化された中央部と、前記中央部の周囲に位置し前記中央部から照射強度が漸減する周縁部と、をそれぞれ含み前記周縁部が相互にオーバーラップするように配置された複数の照射領域に照射し、
    前記レーザ照射後の前記側面を覆うようにサイドマージン部を設ける
    積層セラミックコンデンサの製造方法。
  2. 請求項1に記載の積層セラミックコンデンサの製造方法であって、
    前記レーザを、前記側面の手前又は奥側でフォーカスさせることによりデフォーカスさせ、前記複数の照射領域に照射する
    積層セラミックコンデンサの製造方法。
  3. 請求項1又は2に記載の積層セラミックコンデンサの製造方法であって、
    前記内部電極の端部を、前記側面から前記積層チップの内側方向へ0.5μm以上1.0μm以下除去する
    積層セラミックコンデンサの製造方法。
  4. 請求項1から3のいずれか一項に記載の積層セラミックコンデンサの製造方法であって、
    前記レーザは、グリーンレーザである
    積層セラミックコンデンサの製造方法。
JP2019001669A 2019-01-09 2019-01-09 積層セラミックコンデンサの製造方法 Active JP7280697B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019001669A JP7280697B2 (ja) 2019-01-09 2019-01-09 積層セラミックコンデンサの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019001669A JP7280697B2 (ja) 2019-01-09 2019-01-09 積層セラミックコンデンサの製造方法

Publications (2)

Publication Number Publication Date
JP2020113592A true JP2020113592A (ja) 2020-07-27
JP7280697B2 JP7280697B2 (ja) 2023-05-24

Family

ID=71668274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019001669A Active JP7280697B2 (ja) 2019-01-09 2019-01-09 積層セラミックコンデンサの製造方法

Country Status (1)

Country Link
JP (1) JP7280697B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327782A (ja) * 1996-06-07 1997-12-22 Mitsubishi Heavy Ind Ltd レーザエッチング装置
JP2012024783A (ja) * 2010-07-20 2012-02-09 Ushio Inc レーザリフトオフ方法
JP2012143787A (ja) * 2011-01-12 2012-08-02 Hitachi High-Technologies Corp 薄膜レーザパターニング方法及び装置
JP2016097448A (ja) * 2014-11-26 2016-05-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 被加工物上にレーザビームを結像するための装置および方法
JP2016124022A (ja) * 2015-01-07 2016-07-11 浜松ホトニクス株式会社 レーザ加工ヘッド及びレーザ加工装置
JP2016225603A (ja) * 2015-05-29 2016-12-28 太陽誘電株式会社 積層セラミックコンデンサ及びその製造方法
JP2017120880A (ja) * 2015-12-25 2017-07-06 太陽誘電株式会社 積層セラミック電子部品及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09327782A (ja) * 1996-06-07 1997-12-22 Mitsubishi Heavy Ind Ltd レーザエッチング装置
JP2012024783A (ja) * 2010-07-20 2012-02-09 Ushio Inc レーザリフトオフ方法
JP2012143787A (ja) * 2011-01-12 2012-08-02 Hitachi High-Technologies Corp 薄膜レーザパターニング方法及び装置
JP2016097448A (ja) * 2014-11-26 2016-05-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh 被加工物上にレーザビームを結像するための装置および方法
JP2016124022A (ja) * 2015-01-07 2016-07-11 浜松ホトニクス株式会社 レーザ加工ヘッド及びレーザ加工装置
JP2016225603A (ja) * 2015-05-29 2016-12-28 太陽誘電株式会社 積層セラミックコンデンサ及びその製造方法
JP2017120880A (ja) * 2015-12-25 2017-07-06 太陽誘電株式会社 積層セラミック電子部品及びその製造方法

Also Published As

Publication number Publication date
JP7280697B2 (ja) 2023-05-24

Similar Documents

Publication Publication Date Title
KR101854519B1 (ko) 적층 세라믹 콘덴서 및 그 제조 방법
JP6346910B2 (ja) 積層セラミックコンデンサ及びその製造方法
CN108573811B (zh) 层叠陶瓷电容器及其制造方法
KR101983436B1 (ko) 적층 세라믹 전자 부품 및 그 제조 방법
JP6835561B2 (ja) 積層セラミックコンデンサ及びその製造方法
JP6954519B2 (ja) 積層セラミックコンデンサ
JP2018148117A (ja) 積層セラミックコンデンサ及びその製造方法
TW201830433A (zh) 陶瓷電子零件及其製造方法
JP6609137B2 (ja) セラミック電子部品、及びその製造方法
CN108183024B (zh) 层叠陶瓷电子部件的制造方法
JP7280697B2 (ja) 積層セラミックコンデンサの製造方法
US10510487B2 (en) Multi-layer ceramic electronic component and method of producing the same
JPH10241992A (ja) 積層コンデンサとそのトリミング方法
JP6110927B2 (ja) 積層セラミックコンデンサ
JP2005340388A (ja) 積層型電子部品
US20230335340A1 (en) Multilayer ceramic electronic component, circuit board, and method of manufacturing multilayer ceramic electronic component
WO2023120216A1 (ja) 積層セラミック電子部品およびその製造方法
US20230207199A1 (en) Manufacturing method for multilayer ceramic electronic component
JP2023176236A (ja) 電子部品及び電子部品の製造方法
JP2022021734A (ja) セラミック電子部品およびその製造方法
JP2020064940A (ja) 積層セラミック電子部品の製造方法
KR20230073752A (ko) 적층 세라믹 전자부품
KR20180065911A (ko) 적층 세라믹 전자 부품의 제조 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211130

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20220707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230512

R150 Certificate of patent or registration of utility model

Ref document number: 7280697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150