JP2020103935A - イメージングシステムの動作を制御する方法及びイメージを取得するシステム - Google Patents

イメージングシステムの動作を制御する方法及びイメージを取得するシステム Download PDF

Info

Publication number
JP2020103935A
JP2020103935A JP2020037727A JP2020037727A JP2020103935A JP 2020103935 A JP2020103935 A JP 2020103935A JP 2020037727 A JP2020037727 A JP 2020037727A JP 2020037727 A JP2020037727 A JP 2020037727A JP 2020103935 A JP2020103935 A JP 2020103935A
Authority
JP
Japan
Prior art keywords
imaging
images
interest
region
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020037727A
Other languages
English (en)
Other versions
JP7069236B2 (ja
Inventor
コートニー,ブライアン
Brian Courtney
シンド,アマンディープ
Amandeep Thind
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Conavi Medical Inc
Original Assignee
Conavi Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conavi Medical Inc filed Critical Conavi Medical Inc
Publication of JP2020103935A publication Critical patent/JP2020103935A/ja
Priority to JP2022076012A priority Critical patent/JP2022106900A/ja
Application granted granted Critical
Publication of JP7069236B2 publication Critical patent/JP7069236B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0073Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by tomography, i.e. reconstruction of 3D images from 2D projections
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/33Heart-related electrical modalities, e.g. electrocardiography [ECG] specially adapted for cooperation with other devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6876Blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/445Details of catheter construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/007Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • G06T7/32Determination of transform parameters for the alignment of images, i.e. image registration using correlation-based methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
    • A61B18/24Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4245Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Vascular Medicine (AREA)
  • Human Computer Interaction (AREA)
  • Quality & Reliability (AREA)
  • Hematology (AREA)
  • Acoustics & Sound (AREA)
  • Anesthesiology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Cardiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Endoscopes (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】血管内の構造の高解像度イメージングを提供する。【解決手段】管腔内媒体の存在に適合性があるイメージング方式を有するイメージングプローブを用いて、関心領域を特定するために処理される画像を記録し、管腔内媒体の置換が有利なその後の低侵襲動作の間に媒体置換動作を行う、自動化又は半自動化された手法で低侵襲処置を実行する。低侵襲処置は、第2のイメージング方式で画像を記録することを含んでいてもよく、治療療法であってもよい。この方法は、実時間で実行してもよく、この場合、第1のイメージング方式によって取得された画像は、実時間で処理され、所定の位置において低侵襲処置を実行するか否かが判定される。【選択図】図6

Description

関連出願への相互参照
本出願は、2010年、11月8日に出願された、米国仮出願番号61/411,225、発明の名称「SYSTEMS AND METHODS FOR IMPROVED VISUALIZATION DURING MINIMALLY INVASIVE PROCEDURES」の優先権を主張し、この文献の全体は、引用によって本願に援用される。
本発明は、包括的に言えば、高解像度医療用イメージングの分野に関する。具体的には、本発明は、2つ以上のイメージング方式を含む低侵襲の方法(minimally invasive methods)に関する。
高解像度医療用イメージングには、組織構造、解剖学的組織及び/又は組成の評価、体の局部的領域への介入(interventions)の計画及び/又誘導、局部的領域の構造、組成又は他の特性を変更する介入の結果の評価を含む広範囲に亘る診断用途がある。多くの異なる高解像度イメージング方式のうち、臨床用及び研究用の非常に有用なツールとして、高周波超音波法及び光干渉断層法の2つがある。
高周波超音波法は、脈管内及び心臓内の処置に特に有用な技術である。これらの用途のために、1つ以上の超音波トランスデューサが、体内に挿入可能なカテーテル又は他のデバイスに組み込まれる。高周波超音波法の特に重要な2つの具体例として、血管のイメージングのための血管内超音波法(intravascular ultrasound:IVUS)及び心室腔のイメージングのための心腔内心エコー法(intracardiac echocardiography :ICE)がある。ICE及びIVUSは、何れも低侵襲であり、血管又は心室腔内に1つ以上の超音波トランスデューサを配置し、これらの構造の高品質画像を撮像することを含む。
IVUSの中心周波数は、通常、3〜200MHzの範囲内にあり、より典型的には、8〜80MHzの範囲内にある。周波数を高くすると、解像度が高くなるが、信号侵入が悪化し、この結果、視野が狭くなる。侵入深度は、1ミリメートル未満から数センチメートルまでの範囲を取ることができ、これは、例えば、トランスデューサの中心周波数及び形状、イメージングが行われる媒体による減衰、システムの信号対雑音比に影響する具体例固有の仕様等の幾つかのパラメータによって決まる。
高解像度イメージング方法は、多くの場合、プローブの先端部近傍のイメージングデバイスにトルクを伝達する回転軸を使用する。これらの回転軸は、多くの場合、長く、薄く、柔軟であり、このため、例えば、脈管構造、泌尿生殖路、気道及びこれに類する他の体内の管腔等の解剖学的な導管を介してこれらを送達することができる。ケーブルに特定の方向のトルクが加えられると、トルクケーブルは、基端及び先端における回転の程度が緊密な関係を有するような特性を備えていることが理想的である。このようにトルクケーブルの先端(体内)における回転角によって、トルクケーブルの基端(体外)における回転角が適切に概算できるようにすることで、超音波カテーテルの設計が容易になる。
(光ファイババンドルを採用する)血管内視鏡カテーテル、フェイズドアレイイメージングシステム(phased array imaging systems)等のようにトルクケーブルなしで動作する他のイメージングシステムもある。更に、トルクケーブルを使用することに代えて、カテーテルの先端にマイクロモータを組み込んだイメージングシステムも提案及び実証されている。
後方散乱信号の取得及び/又は解析を修正して、イメージングされた組織に関する更なる情報を入手又は推定できるようにした高周波超音波法のバリエーションも存在している。これらには、組織が異なる血圧で圧縮される際の組織内の歪み(strain)を評価するエラストグラフィ(de Korte et al Circulation.2002 Apr 9;105(14):1627-30)、解剖構造内の血流等の動きを評価するドップラーイメージング、後方散乱信号の無線周波数特性をパターン認識アルゴリズムに組み合わせて用いて組織の組成の推定を試みるバーチャルヒストロジ(virtual histology)(Nair, U.S. Patent No.6,200,268)、第2高調波イメージング(Goertz et al, Invest Radiol.2006 Aug;41(8):631-8)等が含まれる。単結晶超音波トランスデューサ及び合成超音波トランスデューサの使用を含む超音波トランスデューサは、大幅に向上している。
血管内の構造の高解像度イメージングを提供するための血管内超音波法のためのカテーテルベースのシステムは、Yock(米国特許番号第4,794,931号)に開示されている。このシステムは、外側シースを備え、長いトルクケーブルの先端近傍において、外側シース内に超音波トランスデューサが設けられている。トルクケーブル及び超音波トランスデューサアセンブリをモータが回転させると、解剖学的構造、例えば、血管の2D断面画像を生成することができる。カテーテル又はトルクケーブル及び超音波トランスデューサの直線的な平行移動を超音波トランスデューサの回転動作と組み合わせることによって、カテーテルの長手方向に沿った一連の2D画像を取得することができる。
Hossack他(WO/2006/121851)は、CMUTトランスデューサ及び反射面を用いる前方視超音波トランスデューサ(forward looking ultrasound transducer)を開示している。
医療分野で使用されている光ファイバテクノロジに基づく光学イメージ法は、光干渉断層法(optical coherence tomography:OCT)、血管内視鏡、近赤外線分光法、Raman分光法及び蛍光分光法を含む。これらの方式は、通常、イメージング側と画像検出器との間でシャフトに沿って光エネルギを伝達する1つ以上の光ファイバの使用を必要とする。
光干渉断層法は、超音波法に類似する光学的手法であり、1〜30ミクロン程度のイメージング解像度を提供するが、多くの場合、組織への侵入深度は、超音波より浅い。また、光ファイバを用いて、組織のレーザアブレーション及び光力学治療等の治療処置のためにエネルギを伝達することもできる。他の有用な光学イメージング方式には、プローブを使用して、光の後方反射に基づいて画像を取得する内視鏡検査又は他の同様の又は関連するイメージングメカニズムが含まれる。検出器及び光源の小型化によって、カテーテル自体に光源及び/又は検出器を含ませることができるようになり、光の伝送及び/又は検出における中継部品として機能する光ファイバを不要にできる可能性がある。
光干渉断層法は、殆どの生物学的媒体(biologic media)において、侵入深度が浅い(500〜3000ミクロン程度)という制約がある。血液を含むこのような媒体の多くは、光学的に不透明である。これまでのOCTでは、光学的にクリアな環境を得るために、血液の置換(displacement)が必要であった。1つの手法では、血液に適合性がないイメージング方式で測定を行う前に、血液を他の流体に置換する。Atlasに付与されている米国特許番号第7,625,366号は、フラッシュ液を血管に注入し、最小量の血液置換でOCT測定を実行するフラッシュカテーテルの一例を開示している。この目的で使用され又は想定されている流体は、X線不透過造影剤又は様々な系統の食塩水、乳酸リンゲル液等が含まれる。米国特許番号第7,794,446号(Bosse他)及び米国特許番号第7,747,315号(Villard他)には、OCTイメージングに使用するための改良されたフラッシュ液の組成が開示されている。
より高い透明度を有する他の流体の導入による血液の置換によって、光干渉断層法イメージングを行うことができる期間が提供される。この時間窓は、例えば閉塞バルーン(occlusion balloon)を組み込んだガイドカテーテルを使用して血管内のフローを減少させることによって拡大できる。例えば、McGee他に付与されている米国特許番号第5,722,403号、第5,740,808号、第5,752,158号、第5,848,969号、第5,904,651号及び第6,047,218号には、イメージング装置を組み込んだ、膨張可能なバルーンを含むイメージングカテーテルシステムが開示されている。Webler他に付与されている米国特許番号第7,674,240号には、血管を閉塞するためにバルーンを膨張及び収縮させる改良されたデバイスが開示されている。
OCTイメージングを向上させるための他の流体の導入による血液の置換は、従来、手動の作業で行われており、この場合、イメージング処置の間、施術者が透明な流体を1回以上注入する。このような注入は、手動の注射器の使用、加圧流体送達システムの使用、動力付きのポンプの使用を含む様々な手法で行うことができる。加圧流体送達システムは、単純に重力を利用して圧力を生じさせるものであってもよく、検査用の流体(fluid of interest)で満たされた圧縮可能又は変形可能なコンパートメントに圧力を印加するデバイスであってもよい。例えば、圧力注入バッグ(pressure infuser bags)は、従来の血圧測定用カフと同様の膨張式ブラダ(inflatable bladder)を用いて閉じたコンパートメント内の流体のバッグに圧力を印加する。膨張式ブラダ及び流体のバッグは、閉じた空間を共有する。したがって、手動のハンドポンプ等によってブラダが膨張すると、流体を患者に加圧注入することができる。
これに代えて、例えば、X線不透過造影剤、食塩水又は空気等の光学的に透明な媒体で満たされたバルーンを使用して、血液を置換することもできる。バルーンは、OCTイメージング又は近赤外線(near infra-red:NIR)分光法等のために使用される光がイメージングプローブから出射されるカテーテルの領域を取り囲むようにしてもよい。
ここで、血管から血液を置換する際に障害が生じることがある。例えば、置換された流体の導入によって、血管壁から粒子が剥がれ落ち、塞栓症が生じる僅かな可能性がある。誤って強すぎる力で流体を注入した場合、血管壁の層間で解離(dissection)が生じるおそれがあり、又は解離が既に存在している部位の近傍に流体を注入した場合、解離が悪化するおそれがある。心臓等の重要な器官において血液を他の流体に置換することによって生じる可能性がある合併症には、標的器官の虚血及び不整脈等が含まれる。置換流体が心筋に適量の酸素を搬送しなければ、低酸素症の結果、心不整脈が生じることもある。また、これらは、心筋内の電解質の濃度の変化に起因して生じる場合もある。
心臓、脳、腎臓等の低酸素症の影響を受けやすい重要な器官に血液を供給する血管では、長期間に亘る血液置換及び/又は血管閉塞によって臨床的な問題が生じる可能性があり、施術者は、血液を置換する期間を最短にする必要がある。
血液を置換する期間を最短化する必要性は、適切な量のイメージングデータを取得する要求とのバランスを図る必要がある。例えば、イメージングプローブを血管の長軸に沿って平行移動する場合、光学イメージング技術によって適切にイメージングされる血管の部分は、血液を適切に置換している時間の長さによって制限される。光学的に透明な流体を注入する場合、血液を置換する期間が重要であるだけではなく、注入される流体の量も重要な意味を有することがある。
例えば、施術者が光学的に透明な媒体としてX線不透過造影剤を使用する場合がある。ここで、造影剤は、腎臓機能に有害な作用を有することが多く、急性腎不全の要因となることが医療分野で知られている。一方、血液の置換が不十分であれば、最適なイメージングは得られない。
光干渉断層法(optical coherence tomography:OCT)のバリエーションには、組織成分の複屈折の特性を利用して構造及び組成に関する追加的情報を取得する偏光感受型OCT(polarization sensitive OCT:PS−OCT)、イメージングされた構造の組成に関する情報を同様に向上させる分光OCT(spectroscopic OCT)、フロー及び動きに関する情報を提供するドップラーOCT、OCTによるエラストグラフィ、イメージングデータをより速やかに取得でき、したがって、より短時間に多くの関心領域をイメージングできる光周波数領域イメージング(optical frequency domain imaging:OFDI)等が含まれる。
OCTの他にも、光ファイバに基づくイメージングの幾つかの他の形式が存在する。Amundson他は、赤外光を用いた血液を介するイメージングのためのシステムを開示している(米国特許番号第6,178,346号)。このイメージングシステムに使用される電磁波スペクトルの範囲は、血液を介する侵入を最適化するものが選択され、これによって、イメージングされる領域から血液を退避させる必要なく、可視スペクトルの血管内視鏡によって得られるものと同様の血液を介する光学イメージングが実現する。
Tearney他(米国特許番号第6,134,003号)は、光干渉断層法によって、高周波超音波又はIVUSで容易に得られる解像度より高い解像度のイメージングを提供する幾つかの実施形態を開示している。
Dewhurst(米国特許番号第5,718,231号)は、脈管内イメージングのための前方視プローブ(forward looking probe)を開示しており、ここでは、光ファイバは、超音波トランスデューサを通過して延び、プローブの端部の正面の標的組織を照射する。そして、光は、標的組織とインタラクトして超音波を発生させ、この超音波を超音波センサが受信する。このシステムは、光学的画像を受信及び処理するように構成されていないため、イメージは、光音響イメージのみである。Dewhurstのデバイスで使用される超音波センサは、薄膜PVDF等の薄膜高分子圧電材料に制限され、超音波エネルギを受信するのみであり、電気エネルギを超音波に変換することはない。
剛性を有する又は柔軟なシャフトの先端の近傍で、生体内の領域を照射する原理に基づいて、哺乳類の体内の内部導管及び構造(例えば、血管、胃腸管及び肺系統)を視覚化する血管内視鏡、内視鏡、気管支鏡及び他の多くのイメージングデバイスが開示されている。そして、シャフトの端部近傍の光検出器アレイ(例えば、CCDアレイ)によって、又は光ファイバのバンドルによって、受光した光をシャフトの先端から基端に伝送し、光検出器のアレイ又は照射された領域を表す画像を施術者が生成又は視認できるようにする他のシステムによって、画像が生成される。ファイバのバンドルは、嵩張り、シャフトの柔軟性を低下させる等の短所がある。
低侵襲の解剖構造の評価のための他の光ファイバに基づく方式としては、Motz他が開示するRaman分光法(J Biomed Opt.2006 Mar-Apr; 11(2))、Caplan他が開示する近赤外線分光法(J Am Coll Cardiol.2006 Apr 18;47(8 Suppl):C92-6)及び、例えば、腫瘍内の蛋白質分解酵素の標識蛍光イメージング(tagged fluorescent imaging)等の蛍光イメージング(Radiology.2004 Jun;231(3):659-66)等が含まれる。
近年、単一のデバイス内で複数のイメージング方式を結合したプローブ設計が出現している。Maschke(米国特許出願番号第11/291,593号に対応する米国特許出願公開番号第2006/0116571号)には、OCTイメージングトランスデューサ及びIVUSイメージングトランスデューサの両方が装着されたガイドワイヤの実施形態が開示されている。ここに記述されている発明には、幾つかの短所がある。典型的なガイドワイヤの直径は、通常、0.014〜0.035インチ(約350〜875ミクロン)であるが、典型的な超音波トランスデューサのサイズは、少なくとも400ミクロン×400ミクロンであり、20〜100MHzの範囲の周波数では、通常、より大きなサイズを有する。トランスデューサが小さすぎると、ビームの集光が不十分になり、信号特性が悪くなる。Maschkeでは、IVUSイメージングメカニズム及びOCTイメージングメカニズムは、ガイドワイヤの長手方向に沿った異なる位置に設けられ、この種の構成(IVUSイメージング手段及びOCTイメージング手段がイメージングシャフトの長手方向に沿った異なる位置に設けられている構成)に関連する実質的な短所は、イメージの最適な重ね合わせが不可能であるという点である。
同様に、Maschkeに付与されている米国特許番号第7,289,842号は、カテーテル上でIVUSとOCTとを結合したイメージングシステムを開示しており、ここでは、IVUSイメージング要素及びOCTイメージング要素は、長軸を中心に回転するカテーテルの長手方向に沿って、互いに位置がずれている。また、Maschkeに開示されている画像の生成では、画像の中心部分を、実質的にシステムの解像度がより高いOCTイメージング部の出力から取得し、画像の外側部分を、実質的にシステムの超音波イメージング部の出力から取得し、超音波の侵入深度の深さと、カテーテル近傍の組織について、OCTの解像度の高さとを組合せて利用する。
Irionに付与されている米国特許第6,390,978号では、高周波超音波を光干渉断層法と組み合わせて使用する手法が開示されており、ここでは、超音波ビーム及びOCTビームは、互いに重ねられる。
Courtney他による米国特許出願公開公報第2008/0177138号には、側方視及び/又は前方視イメージングが可能な小型のイメージングアセンブリ内にIVUSトランスデューサ及びOCTトランスデューサの両方を組み込んだ改良された多方式(multimodal)イメージングシステムが開示されている。このような多方式イメージングシステムによれば、単方式イメージングデバイスを用いるより、多くの診断情報を得ることができる。実際、光干渉断層法は、通常、超音波より解像度が優れており、脈管及び他の組織内の幾つかの構造又は部分を特定できる可能性が超音波より高い。例えば、動脈の表面近傍の線維性被膜の厚さ又は炎症又は壊死領域の存在は、光干渉断層法で分析することが好ましい。
しかしながら、多くの多方式イメージングデバイスでは、1つ以上のイメージング方式が血液に対して適合性を有していないという問題がある。例えば、IVUS及びOCTの両方を組み合わせた多方式イメージングデバイスの場合、IVUSトランスデューサは、検査中の血管内に血液がある状態で機能できるが、OCT方式は、血液置換を必要とする。このような要求のために処置が複雑になり、2つのイメージング方式からの結果を調整及び参照することが困難になる。
多方式イメージングデバイスを使用する際に生じる他の問題は、1つのイメージング方式を使用し、続いて、血液置換の後に他のイメージング方式をした結果、重ね合わせが不正確になる可能性がある点である。例えば、IVUS及びOCT等の脈管内イメージングは、イメージングプロトコルが必要である臨床試験目的のために用いられることが多い。1つ以上の方式を手動で用いて、他の1つ以上の方式で更に詳細に評価する必要がある領域を特定することは、施術者間での差が大きい。更に、異なる患者間又は異なる時点で血管の構造及び/又は組成を比較する能力に依存する臨床試験では、検査のための方法の再現性が重要となる。
米国特許番号第7,758,499号において、Adlerは、血液の存在による妥協が最小の1000nm未満の波長でのIRイメージングを、可視光によるイメージング等の他のイメージング方式と組み合わせて使用することを提案している。ここでは、多方式光学イメージングを達成するために、血液置換法を採用して、IR及び/又は可視光でのイメージングを実現している。
また、近年、Muller他は、単一のイメージングデバイスにおいて複数のイメージング方式を使用することを提案している(米国特許出願公開第2009/0299195号)。Mullerは、単一の脈管内処置の間に、血管内超音波法、光干渉断層法、近赤外線分光法を組み合わせて、動脈の形態における複数の異なる異常を検出する方法及びシステムを開示している。
しかしながら、既存の方法は、多方式の画像を連続的に取得するための手動の操作を採用し、かなりの熟練を必要とし、更に、画像を空間的に整列させるための複雑な操作も含んでいる。したがって、上述した問題を解決し、標準化された画像データ取得を可能にし、向上した性能及び臨床的有用性を提供する多方式イメージング方法が未だ望まれている。
本発明の実施形態は、2つ以上イメージング方式を用いてデータを収集できる管腔内プローブによって、血管及び他の組織からデータを特定及び/又は収集する能力を改善するシステム及び方法を提供し、1つ以上のイメージング方式は、管腔内媒体(例えば、血液)を介してデータを収集でき、他の1つ以上の方式は、管腔内媒体が視野から少なくとも部分的に置換された場合に性能が向上する。
一側面においては、低侵襲処置を実行するために管腔又は空洞内で媒体置換動作を行う方法が提供され、この方法は、イメージングプローブの機能的部品の第1の平行移動動作を行う際に第1のイメージング方式によって取得される第1の画像の組を記録するステップと、第1のイメージング方式は、置換可能な媒体の存在に適合性があり、第1の画像の組をイメージングプローブの機能的部品の関連する位置と空間的に相関させるステップと、第1の画像の組を処理して、関心領域を特定するステップと、媒体置換動作を行い、関心領域に亘ってイメージングプローブの機能的部品の第2の平行移動動作を実行するステップとを有し、低侵襲処置は、媒体置換動作の間に関心領域内で実行される。
他の側面として、管腔又は空洞内で低侵襲イメージング処置を実行するために媒体置換動作を行う方法が提供され、この方法は、(a)置換可能な媒体の存在に適合性がある、イメージングプローブの第1のイメージング方式によって1つ以上の画像を取得するステップと、(b)1つ以上の画像を処理して関心領域を特定するステップと、(c)関心領域が特定された場合、媒体置換動作を行い、媒体置換動作を実行しながら、低侵襲処置を実行するステップとを有する。
他の側面においては、プローブによって、管腔又は空洞内で低侵襲イメージング処置を実行するために媒体置換動作を行う方法が提供され、この方法は、外部イメージング装置によって、低侵襲処置を実行する領域の1つ以上の画像を取得するステップと、1つ以上の画像内で関心領域を特定するステップと、プローブの機能的部品を関心領域に平行移動しながら、外部イメージング装置によって1つ以上の更なる画像を取得し、機能的部品の位置が1つ以上の更なる画像によって特定可能であるステップと、媒体置換動作を行い、関心領域内でプローブの機能的部品に関連する平行移動動作を実行するステップとを有する。
他の側面においては、管腔又は空洞内で低侵襲イメージング処置を実行するために媒体置換動作を行う方法が提供され、この方法は、プローブの機能的部品の第1の平行移動動作を実行した際、非イメージング方式から取得された測定値の組を記録するステップと、非イメージング方式は、置換可能な媒体の存在に適合性があり、測定値の組をプローブの機能的部品の関連する位置と空間的に相関させるステップと、測定値の組を処理して、関心領域を特定するステップと、媒体置換動作を行い、関心領域に亘ってプローブの機能的部品の第2の平行移動動作を実行するステップとを有し、低侵襲処置は、媒体置換動作の間に関心領域内で実行される。
他の側面においては、管腔又は空洞内で低侵襲イメージング処置を実行するために媒体置換動作を行う方法が提供され、この方法は、(a)置換可能な媒体の存在に適合性がある、プローブの非イメージング方式によって1つ以上の測定値を取得するステップと、(b)1つ以上の測定値を処理して関心領域を特定するステップと、(c)関心領域が特定された場合、媒体置換動作を行い、媒体置換動作を実行しながら、低侵襲処置を実行するステップとを有する。
本発明の機能的及び有益な側面は、以下の詳細情報及び図面を参照することによって明らかとなる。
多方式イメージングを実行するためのシステムを示すブロック図である。 統合型媒体置換システムを組み込んだ、多方式イメージングを実行するための第2のシステムを示すブロック図である。 血管内超音波法(intravascular ultrasound:IVUS)及び光干渉断層法(optical coherence tomography:OCT)の両方を組み込んだ多方式イメージングシステムの具体例として、コネクタ、導管及びイメージングアセンブリを含む柔軟なイメージングプローブを示す斜視図である。(a)は図1のイメージングプローブの破線に沿った中央部分の断面図である。(b)は図1のイメージングプローブの先端領域の拡大斜視図である。 (c)はアダプタによって、イメージングプローブの回転部品及び非回転部品をイメージングシステムの他の部分にどのように接続するかを概略的に示す図である。(d)はプローブの回転部品及び非回転部品のアダプタへの接続の具体例の斜視図である。 (a)、(b)、(c)、(d)はイメージングアセンブリの回転速度の関数として、傾斜可能な偏向面がイメージング角度を変更できる音響イメージング及び光学イメージングの両方が可能なイメージングプローブの先端を示す図である。 (a)、(b)は超音波トランスデューサ及び結合された同一平面上のIVUS及びOCTイメージングのための光ファイバを備える側方視多方式イメージングアセンブリの具体例を示す図である。 第1のイメージング方式によって取得された結果を用いて、管腔内媒体の置換が有利な第2のイメージング方式を用いる画像の収集を行って、低侵襲処置を実行する方法のフローチャートである。 第1のイメージング方式によって取得された結果を実時間で用いて、管腔内媒体の置換が有利な第2のイメージング方式を用いる画像の収集を行って、低侵襲処置を実行する方法のフローチャートである。 統合型媒体置換システム及び外部イメージング装置を組み込んだ多方式イメージングを実行するためのシステムのブロック図である。
以下、後述する詳細を参照して、本発明の様々な実施形態及び側面を説明する。以下の説明及び図面は、本発明を例示的に示すものであり、本発明を制限するものとは解釈されない。本発明の様々な実施形態の完全な理解のために、多くの具体的詳細について説明する。なお、本発明の実施形態を簡潔に示すために、幾つかの実例では、周知又は従来の技術詳細については、説明しない。なお、ここに開示する方法のステップの順序は、方法が実効性を有する限り、限定的なものではない。更に、特段の指定がない限り、2つ以上のステップを同時に行ってもよく、ここに示す順序とは異なる順序で行ってもよい。
ここで使用する「備える(comprises)」、「備えている(comprising)」等の表現は、排他的ではなく、包括的で非限定的な表現として解釈される。具体的には、本明細書及び特許請求の範囲において用いられる「備える」及びその活用形は、特定の特徴、ステップ、又は要素が含まれることを意味する。これらの表現は、他の特徴、ステップ又は要素の存在を除外するようには解釈されない。
ここで使用する「例示的(exemplary)」とは、「具体例、実例又は例証として役立つ」という意味であり、ここに開示する他の構成に比べて好ましい又は有利であると解釈されるものではない。
ここで使用する「約(about)」及び「概ね(approximately)」は、粒子、混合物の組成又は他の物理的特性又は特徴の寸法の範囲に関連して用いられる場合、寸法の範囲の上限及び下限における僅かな差異が許容され、寸法の大部分が平均的にこの範囲を満たすが、一部の寸法が統計的にこの範囲から外れる実施形態が排除されないことを意図する。すなわち、これらの実施形態は、本発明の範囲から除外されない。
ここで使用する「高解像度イメージング(high resolution imaging)」という用語は、以下に限定されるものではないが、超音波及び光学イメージングを含む高解像度イメージングを示す。ここで使用する「高周波超音波(high frequency ultrasound)」という用語は、周波数が約3MHzより高く、より典型的には、8〜200MHzの範囲の超音波イメージングを指す。
ここで使用する「イメージングエネルギ(imaging energy)」という用語は、光エネルギ、音響エネルギ又はこれらの両方を指す。特に、「光(light)」及び/又は「光学(optical)」は、紫外、可視、近赤外線及び/又は赤外線スペクトルに含まれる1つ以上の波長を有する電磁波を指す。
ここで使用する「画像解析(image analysis)」という用語は、関心領域を特定する画像データの処理を一般化して指示するものであり、関心領域は、関連性がある1つ以上の画像又はその一部に関係する。
ここで使用する「平行移動(translation)」及び「平行移動動作(translation operation)」という用語は、管腔内プローブ、例えば、イメージングプローブに関連して用いられる場合、プローブの少なくとも一部の平行移動を指し、プローブが配置されている管腔に対して、プローブの機能的部分が平行移動することを意味する。プローブの機能的部分の具体例は、イメージングアセンブリである。平行移動動作は、プローブの他の部分、例えば外側シースに対してプローブの機能的部分を平行移動させることを含む。
本発明の実施形態は、少なくとも1つのイメージング方式(imaging modality)においてイメージングの間に管腔内流体を置換することが有利である多方式(multimodal)イメージングカテーテルベースのデバイスを用いて、低侵襲処置の間に改善されたイメージングを実行するシステム及び方法を提供する。特定の実施形態は、管腔内媒体(intraluminal medium)の置換を含む後続のイメージングステップのために管腔内の領域を選択する標準化された及び/又は自動化されたシステム及び方法を提供する。
一実施形態においては、管腔内媒体内でのイメージングに適合性がある少なくとも1つのイメージング方式と、管腔内媒体の置換によってイメージング性能が向上する少なくとも1つのイメージング方式とを含む多方式イメージングシステムを提供する。図1は、多方式イメージングシステム100の例示的な実施形態を示すブロック図である。管腔内に挿入され、解剖構造102(例えば、管腔又は血管)に送達可能なイメージングプローブ105は、その先端115の近傍に設けられたイメージングアセンブリ110と、長手方向の実質的な一部に沿う任意のイメージング導管120と、基端部130に設けられたコネクタ125とを備える。
イメージングアセンブリ110は、イメージングアセンブリ110の近くの領域をイメージングする際に、多方式信号(例えば、音響信号、光信号)を送信及び/又は受信するイメージングプローブ105の部品を包括的に指す。多方式イメージングアセンブリ110は、2つ以上のイメージング方式を用いるイメージングのための部品及びデバイスを含む。イメージングアセンブリ110は、イメージングトランスデューサ、検出器及び/又はイメージングエネルギ結合デバイス(imaging energy coupling devices)を備えていてもよい。所与のイメージング方式に基づいてプローブの付近で組織を照射するためのイメージングエネルギは、イメージングアセンブリ110内に収容されている1つ以上のトランスデューサが生成してもよく、及び/又はイメージングプローブの外部で1つ以上の外部のトランスデューサが生成し、エネルギ誘導デバイス(光ファイバ又は光導波路等)によって、イメージング導管120を介してイメージングアセンブリ110に送達してもよい。同様に、イメージングする組織内で生成又は散乱した所与のイメージング方式に関連する入射イメージングエネルギは、イメージングアセンブリ110内に収容されている検出器が受信してもよく、イメージングアセンブリ内で受信し、イメージング導管120内のイメージングエネルギ誘導デバイスを介して、外部検出器に供給してもよい。イメージングカプラ及び関連するエネルギ誘導デバイスが1つ以上のイメージング方式をサポートしてもよい。例えば、光ファイバ及びレンズ又はミラーアセンブリを使用して、OCTイメージング方式及びIRイメージング方式の両方に関連するイメージングエネルギを送達してもよい。2つ以上のイメージング方式に関連するイメージングエネルギは、共通のエネルギ生成及び/又は受信装置によって生成及び/又は受信してもよく、互いに周波数多重化及び/又は時間的にインタリーブしてもよい。イメージングプローブ105は、管腔内の径方向の視野を獲得するために、回転可能であってもよく、回転式イメージング要素を含んでいてもよい。
少なくとも1つのイメージング方式が光学イメージングである実施形態では、イメージングアセンブリ110は、通常、光ファイバの先端、及びレンズ(例えば、ボールレンズ又はGRINレンズとして知られる屈折率分布型レンズ)等の任意の光学部品の組合せを含み、これらは連携して、光受信機(イメージングされる組織から光エネルギを回収する回収要素)として機能し、光学エミッタ(出射された光ビームをイメージングされる組織に集光及び/又は方向付けする集光及び/又はビーム方向付け要素)としても機能できる。光学エミッタ及び/又は受信機の一部として、ミラー及び/又はプリズムが組み込まれることが多い。イメージングアセンブリ110、コネクタ125及び/又はイメージング導管120は、食塩水等の流体に浸すことができる。多方式の光学及び音響イメージングでは、イメージングプローブ105は、光学イメージングのために気体で満たされた少なくとも1つの区画又は管腔と、音響イメージングのために流体で満たされた少なくとも1つの区画又はチャンバとに区画分けされる。
イメージング導管120は、通常、コネクタ125を介してエミッタ及び/又はレシーバをアダプタユニット140に接続する少なくとも1つの光導波路又は少なくとも1つ(オプションとして、2つ以上)の導線を含む。また、イメージング導管120は、イメージングアセンブリを回転又は平行移動するための機械的駆動力伝達メカニズムとして機能できる。例えば、イメージング導管120は、互いに絶縁された2層の電線によって包み込まれた光ファイバを含んでいてもよい。更に、イメージング導管120は、例えば、螺旋状に巻回されたワイヤ等の他の構造的特徴によって補強してもよく、又はスキャンメカニズムを回転させるイメージングトルクケーブルを構成するために用いられる当業者に周知の他の設計によって補強してもよい。また、イメージング導管は、イメージングプローブ105の先端に設けられ、イメージングアセンブリ110の1つ以上の部品を局所的に回転させるマイクロモータに電力を供給してもよい。
図3は、本発明の実施形態に基づく多方式イメージングシステムの部品として使うことができる多方式イメージングプローブの例示的な実施形態の斜視図である。図3に示すプローブは、2008年1月22日に出願された、米国特許出願番号第10/010,206号、発明の名称「Scanning Mechanisms for Imaging Probe」及び2009年3月27日に出願された、米国特許出願番号第12/385,014号、発明の名称「Scanning Mechanisms for Imaging Probe」に開示されているものであり、これらの内容の全体は、引用によって本願に援用される。簡潔に言えば、イメージングプローブは、イメージングアセンブリを含むことができ、イメージングアセンブリは、前方視方向に1つ以上の角度でイメージングエネルギビームを方向付ける可動部材を含む。2つの非制限的な具体例においては、可動部材の向きは、可動部材が旋回可能なイメージングアセンブリの回転速度を変更することによって、又は磁力若しくは駆動手段を用いて変更してもよい。
例示的なイメージングプローブは、多方式イメージングのために、超音波方式(例えば、IVUS)及び光学方式(例えば、OCT)の両方を単一のカテーテルアセンブリに組み込んでいる。このシステムは、光ファイバ40と同軸電線50とを含むフレキシブルカテーテルを備える。基端部コネクタは、光ファイバ40を含み、光ファイバ40は、イメージング用の光ファイバ40を光イメージングシステム「バックエンド」に接続するアダプタに接続してもよい。更に、例えば、超音波処理システムのための電子回路又は電源回路及び/又はコントローラ及び処理ユニットに1つ以上の電気導管を接続するための電気的コネクタ56も設けられている。
この具体例におけるイメージング導管は、長軸を中心に回転し、回転する光ファイバプローブの接続は、イメージングプローブ10の基端部コネクタの一部として、又はアダプタ14の一部として組み込まれた光ファイバ回転継手を用いて実現されている。同様に、イメージング導管と共に回転する導線は、例えば、スリップリング又は回転トランスフォーマによって、相対的に固定されている超音波回路の導体及び/又はコントローラ及び処理ユニットに接続されている。これらのスリップリングは、イメージングプローブ10の基端部コネクタの一部として又はアダプタ14の一部として組み込むことができる。
図3(a)は、図3のイメージングプローブの中央部の破線に沿った断面図であり、光ファイバ40、ガイドワイヤポート44及びガイドワイヤ42、イメージング導管34、イメージング導管管腔46、外側シース48、同軸電線50を示しており、外側シース48は、中空の柔軟な細長いシャフトであり、生体適合性を有する材料から形成され、この中空の細長いシャフトを体内の管腔及び空洞に挿入するために適する直径を有している。
イメージングプローブは、フラッシングを容易にするために、長手方向沿って1つ以上の箇所にポートを備えていてもよい。図3(b)に示すイメージングプローブ10の端部の拡大図は、外側シース48の端部において、外側シース48及びフラッシュポート54の端部を超えて延びるガイドワイヤ42の先端を示している。
図3に示すように、イメージングプローブ10の基端部は、ガイドワイヤ42が挿入されるガイドワイヤポート55と、コネクタアセンブリ36とを備え、コネクタアセンブリ36は、コネクタ本体に沿って、フラッシュポート58と電気コンタクト56とを備える。
図3(c)は、アダプタによって、イメージングプローブの回転部品及び非回転部品をイメージングシステムの他の部分にどのように接続することができるかを概略的に示している。図3(d)は、イメージングプローブの回転する部品をアダプタの回転部品にどのように接続することができるかを図式的に示している。それぞれの回転部品は、当分野で周知のコネクタ及び他の構成を用いて、電気的、光学的及び/又は機械的に接続することができる。同様にイメージングプローブの非回転部品は、アダプタ14の非回転部品に接続することができる。アダプタ14は、スリップリング、回転トランスフォーマ、光学回転継手(optical rotary joints)、及び回転部品を非回転部品に電気的又は光学的に接続してシステムの他の部分との必要な電気信号及び光信号の通信を可能にするこれらに類する他の部材を含むことができる。
二重光ファイバ回転継手(dual-fiber optical rotary joints)も使用できるが、構造がかなり複雑になる。イメージングプローブ12内の回転部品に装着されている如何なる導体間の電気的接続も、金属スリップリング及びスプリング、金属スリップリング及びブラシ又は静止した導体と回転する導体との間で導電コンタクトを形成するための他の周知の手法によって、非回転導電要素に接続することができる。
図3(d)では、電気的、光学的及び機械的な接続を個別に示しているが、特定の実施形態の必要に応じて、幾つかのコネクタを結合コネクタに結合することによって、プローブとアダプタとの間を個別に接続する必要があるコネクタの数を減らして、幾つかのコネクタを削減し、より少ないコネクタで接続を行ってもよい。
図4は、多方式イメージングアセンブリを組み込んだイメージングプローブの先端の内部構造の具体例を示している。アセンブリは、傾斜可能部品70を備え、傾斜可能部品70は、傾斜可能部品70に直接的に取り付けられていない1つ以上の部品によって出射及び/又は受信されるイメージングエネルギを偏向する。超音波トランスデューサ88及び光学エミッタ92は、イメージングエネルギを傾斜可能部品70に方向付ける。そして、イメージングエネルギは、傾斜可能部品70に取り付けられているエネルギ偏向部品によって偏向される。超音波イメージングのために、エネルギ偏向部品(傾斜可能部品70)は、例えば、固体金属表面(例えば、ステンレススチール)又は水晶等の結晶表面、ガラス又は硬質ポリマ等の音響反射面を備えていてもよい。
光学イメージングのために、エネルギ偏向部品(傾斜可能部品70)は、例えば、研磨された金属から形成される鏡面、金属化二軸配向ポリエチレンテレフタレート(Mylar)等の金属化ポリマ、スパッタリング又は電気化学蒸着された金属、金属箔又は薄膜反射鏡等の他の反射性を有する部品等の光反射面を備えていてもよい。鏡面を形成するために一般的に使用される金属としては、アルミニウム、銀、鉄鋼、金又はクロム等が含まれる。
図4(a)は、イメージングプローブ31の先端29の例示的な実施形態を示しており、ここでは、先端にイメージングアセンブリ30が設けられ、イメージングアセンブリ30は、傾斜可能部品70を含み、傾斜可能部品は、ピン72に取り付けられた円盤であり、円盤70は、ピンを中心に旋回可能である。
ピン72は、傾斜可能な円盤70の傾斜軸を画定する。イメージングアセンブリ30が静止しているとき、円盤70は、任意の開始位置に留まる。ここに示す具体例では、この開始位置は、最大のイメージング角度に対応する停止片80によって画定され、捻りバネ76によって付勢される回復力が円盤70を停止片80に押し付けている。図4(b)は、図4(a)の縦の破線2(c)−2(c)に沿った断面図である。
外部の力、例えば、重力、磁力、静電力、他の可動部品又は流体との摩擦力、圧縮力、てこの力、垂直抗力、又は傾斜軸を巡って傾斜可能部品70に加わる不完全な反対トルク(incompletely opposed torque)の他のソース等によって傾斜可能部品70が望ましい配向から傾くと、傾斜角が大きくなる。
1つ以上の停止片80、82によって、傾斜可能部品70の傾斜角の範囲を規制してもよい。例えば、停止片80は、傾斜可能部品70が停止片80に接触している状態で傾斜角のそれ以上の変更を妨げる停止片として、イメージングアセンブリ30のシェル84から延出するポスト(post)又はリップ(lip)であってもよい。したがって、停止片を用いて、停止片の位置によって画定される最大値を超えないように傾斜角を規制することができる。一旦、傾斜角がこの最大値に至ると、停止片80が傾斜可能部品70に加える垂直抗力が回復メカニズムに抗う。多くの実施形態において、この最大傾斜角は、イメージングアセンブリ30が静止し、低い回転速度である際に至る傾斜角である。
更なる又は代わりの停止片82を設け、傾斜可能部品70が動作範囲の上限の回転速度である際に至る最小傾斜角を画定してもよい。特定の実施形態についての以下の説明からも明らかであるが、実際には、傾斜角をゼロにすることによって特別な利益が得られないことも多い。
イメージングアセンブリ30は、傾斜可能部品70の傾斜角を大きくすることに寄与する1つ以上のメカニズムを含むことできる。ここでは、説明のために、このようなメカニズムを回復メカニズム(restoring mechanism)と呼ぶ。回復メカニズムとしては、捻りバネ76(図4(a)及び図4(c))又は圧縮ばねを用いることができ、ここで、バネ76の一端は、傾斜可能部品70に機械的に接触又は接続されている。他端は、機械的にイメージングプローブ31の他の部分、例えば、イメージングアセンブリの本体に接続されている。
イメージングアセンブリ30が回転すると、円盤70は、円盤70の表面によって画定される面の法線が長軸に対して実質的に平行となるように、自らを整列させようとする。図4(c)に示すように、図示されている(最小のイメージング角度に対応する)他の停止片82は、イメージングアセンブリの高い回転速度において円盤70が望ましい配向に至ることを防ぐ。適切に構成されたイメージングアセンブリでは、最小のイメージング角度に対応する停止片82は、ゼロの角度に対応し、イメージングプローブの長軸に対して平行なイメージングを提供する。
図5は、Courtney他によって2008年1月22日に出願された米国特許出願番号第12/010,208号、発明の名称「Imaging Probe with Combined Ultrasound and Optical Means of Imaging」に開示されている多方式イメージングシステムで使用される多方式イメージングアセンブリの他の具体例を示しており、この文献の全体は、引用によって本願に援用される。図5(a)に示すように、イメージングアセンブリ550は、音響及び光学手段による同じ方向におけるイメージングを実現するように構成され、音響トランスデューサ内のチャネルを介して光エネルギを伝達できるようにした音響トランスデューサを使用している。本質的には、アセンブリ550は、その基板を介して形成される光透過性チャネルを有するように変更された音響トランスデューサ502を使用する。音響トランスデューサ502は、当分野で周知の如何なる種類の超音波トランスデューサであってもよく、例えば、圧電体(例えば、PZT又はPVDF、圧電単結晶等)、複合トランスデューサ、又は容量型微細加工超音波トランスデューサ(capacitive micromachined ultrasonic transducer:cMUT)等であってもよい。
導電体500は、トランスデューサの音響基板502の両側の導電層501に接続される。光ファイバ503は、光学イメージングを可能にするための光学導管を提供する。トランスデューサの出射面には、エポキシ層(例えば、銀又は銅導電性エポキシ層、これらは、トランスデューサを駆動する電極の一方又は両方として機能してもよい。)又はポリマ(例えば、パリレン又はPVDF)等の1つ以上の整合層を追加してもよい。
圧電材料502の両側の導電層501は、圧電体に電圧を印加する必要性から組み込まれる。開口507は、直接的に、又は1つ以上のミラー又はプリズム及び1つ以上のレンズ(図示せず)を介して、光導波路503に接続される。開口内に何らかの光学部品が含まれる場合、適応性がある材料、例えば、シリコン又はポリマ等の緩衝/絶縁層506によって、光学部品を音響基板502から分離することができ、これは、電気的絶縁体として機能し、又は音響基板502によって生じる圧力の光学部品への伝達を最小化する。
図5(b)に示すように、ファイバからの光は、ファイバからの光を光透過性チャネル507に偏向するミラー404(又はプリズム)に方向付けることができる。
更に、多方式イメージングシステムの他の非制限的な具体例は、Muller他によって出願された米国特許出願公開第2009/0299195号、発明の名称「Multimodal Catheter System and Method for Intravascular Analysis」のFigure1に示されており、この文献については、Figure1のみが引用によって本願に援用される。このシステムは、単一の脈管内処置によって、動脈形態における複数の異なる異常を検出するために、血管内超音波法、光干渉断層法、近赤外線分光法を組み合わせている。
上述の具体例は、後述する本発明の実施形態に適用することができる多方式イメージングシステムを例示している。なお、上述の具体例は、非制限的な具体例として提示したものであり、本発明の実施形態では、他の多方式イメージングプローブを用いることもできる。
再び図1を参照して説明すると、多方式イメージングシステム100は、非侵襲的処置の間に管腔内媒体を置換し、イメージングの間に管腔内媒体を移動させることが有利なイメージング方式をサポートするように構成されている。このような置換は、以下に限定されるものではないが、米国特許出願公開番号第2009/0299195号、及び全体が引用により本願に援用される米国特許番号第7,758,499号、発明の名称「Method and Apparatus for Viewing Through Blood」に開示されているような、管腔内フラッシングによる管腔内媒体の置換のためのサブシステム及び管腔の制御された遮断による管腔内媒体の置換のためのサブシステムを含む多くのデバイス及びサブシステムの1つによって提供及び制御してもよい。
一実施形態においては、管腔内フラッシングは、入力ポートを介してイメージングプローブ105にフラッシュ液を供給し、イメージングプローブの長手方向の1つ以上の箇所に設けられている出力ポートからフラッシュ液を管腔に流し込むことによって達成される。これに代えて、フラッシュ液は、イメージングされる管腔に流体を導入できる従来のガイドカテーテルを介して供給してもよい。これに代えて、フラッシュ液は、例えば、全体が引用により本願に援用される米国特許番号第7,625,366号、発明の名称「Flush Catheter with Flow Directing Sheath」に開示されているような専用のフラッシュカテーテルを介して供給してもよい。フラッシュ液、例えば食塩水、乳酸リンゲル液又は造影剤は、手動で、例えば、外部の注射器を用いて供給してもよい。幾つかの例示的な実施形態では、フラッシュは、自動注入器、圧力注入バッグ、蠕動ポンプ、シリンジポンプ又はピストンポンプ、バルブシステム、重力加圧システム、自動又は手動の圧力印加を用いた外部からの媒体への加圧によって行ってもよい。
一実施形態においては、符号135で包括的に示す媒体置換装置は、1つ以上の媒体置換動作を提供及び/又は調整又は制御する。上述のように、媒体置換装置135は、インタフェースを介してイメージングプローブ105に接続してもよく、媒体置換を行うための又は独立した装置(例えば、ガイドカテーテル又は専用のフラッシュカテーテル)として設けてもよい。非制限的な具体例では、媒体置換装置135は、(タンクから)関心領域へのフラッシュ液の量を制御する外部ポンプ(図示せず)を含んでいてもよい。他の具体例では、媒体置換装置135は、イメージングプローブ110上又はイメージングプローブ110内に収容され、制御された膨張によって管腔を完全に又は部分的に閉塞し、媒体置換を達成する膨張可能なバルーンを備えていてもよい。
他の実施形態においては、媒体置換装置135は、更に、ユーザ又は医師がスイッチを操作したときのみ自動化された置換動作を実行又は許可する外部の手動スイッチを含んでいてもよい。このようなスイッチは、何らかの自動化された置換動作を監視する際に、人間の施術者が能動的に関与することを要求する半自動化された媒体置換の管理モードを実現する。適切なスイッチの非制限的な具体例は、自動化された置換(例えば、注入又は膨張)を実行するために、継続的に押下する必要があるボタン又はフットペダルを含む。
再び図1を参照して説明すると、ドライバ及びアダプタユニット140は、イメージングプローブ105と、適切な制御及び/又は処理サブシステムとの間で、何らかのファイバ及び/又はワイヤによる動力及び/又は信号の伝達を可能にするインタフェースを備える。これはイメージングプローブの回転部品に回転動作を伝えるモータドライバサブシステム145を含むことができる。また、モータドライバは、後退メカニズム、前進メカニズム又は前後往復メカニズムを作動して、イメージングアセンブリ110の長手方向の平行移動を行ってもよい。このようなイメージングアセンブリ110のこのような長手方向の平行移動は、イメージアセンブリ110及びイメージング導管120を包囲する外部シャフト(図示せず)の長手方向の平行移動を伴って実行してもよく、相対的に静止している外部シャフト内で実行してもよい。
ドライバ及びアダプタユニット140の部品として、更なるセンササブシステム、例えば、イメージングプローブ110内の回転部品の回転角及び/又はイメージングアセンブリ110の長手方向の位置を感知する位置感知サブシステム150を組み込んでもよい。また、イメージングプローブ110は、イメージングプローブ110に関連する情報、例えば、イメージングプローブ110の仕様を特定する情報及び/又は較正情報を格納するメモリ部品、例えば、EEPROM又は他のプログラマブルメモリデバイスを備えていてもよい。更に、ドライバ及びアダプタユニット140は、イメージングプローブ110とシステムの他の部分との間の電気信号又はパワーの伝達を向上させる増幅器160を備えていてもよい。
ドライバ及びアダプタユニット140は、インタフェースを介して制御ユニット165に接続されている。制御ユニット165は、多方式イメージングデバイスをサポートする第1のイメージング方式コントローラサブシステム170及び第2のイメージング方式コントローラサブシステム175(システムは、ここに示す2つに加えて、更なるイメージング方式及びコントローラを含むことができる。)を備え、多方式イメージングには、以下に限定されるものではないが、(1)超音波、(2)光干渉断層法、(3)血管内視鏡、(4)赤外線イメージング(5)近赤外線イメージング、(6)Raman分光法ベースのイメージング及び(7)蛍光イメージング等のイメージング方式の何れが含まれていてもよい。
ここでは、第1及び第2のイメージング方式コントローラを個別のサブシステムとして示しているが、これらは、1つであってもよく、同じであってもよい。例えば、OCTデータ及び近赤外線(NIR)分光データは、共通の光源及び信号取得システムを介して取得することができる。また、第1及び第2の方式が共にIVUSであり、一方の方式が他方の方式より低い周波数のIVUSである場合、IVUSデータの2つのセットを生成及び取得するために要求されるハードウェアは、動作パラメータが異なるだけで、同じであってもよい。
光学方式コントローラは、干渉計部品、1つ以上の光学基準アーム、光学マルチプレクサ、光学デマルチプレクサ、光源、光検出器、分光器、偏光フィルタ、偏光コントローラ、タイミング回路、アナログ/デジタル変換器及びここに開示し又は引用によって援用される何らかの光学イメージング技術を補助する周知の他の部品等の部品の何れか又は全てを含むことができる。
超音波方式コントローラは、パルス発生器、電子フィルタ、アナログ/デジタル変換器、並列処理アレイ、エンベロープ検出器、時間利得補償増幅器を含む増幅器及びここに開示し又は引用によって援用される何らかの音響イメージング技術を補助する周知の他の部品等の部品の何れか又は全てを含むことができる。制御ユニット165は、以下に限定されるものではないが、モータ駆動コントローラ180、位置感知制御回路190、タイミング回路、立体イメージング(volumetric imaging)プロセッサ、走査変換器及びこの他のサブシステムの1つ以上を含むことができる。
図1に示すように、媒体置換装置135は、制御ユニット165から独立して操作及び/又は制御できる。例えば、媒体置換装置135は、注射器又は手動ポンプを含んでいてもよい。図2に示す他の実施形態においては、制御ユニット165は、媒体置換動作を監視し、媒体置換動作を自動化又は半自動化することもできる媒体置換コントローラ185を更に備える。他の実施形態では、媒体置換コントローラ185は、インタフェースを介して媒体置換装置135に直接的に接続してもよい。媒体置換コントローラ185は、以下に限定されるものではないが、所与の媒体置換動作に供給されるフラッシュ液の体積、所与の患者及び/又は低侵襲処置のための複数の媒体置換動作に供給されるフラッシュ液の総量、所与の媒体置換動作が行われる継続時間、所与の患者及び/又は低侵襲処置のための複数の媒体置換動作が行われる継続時間の合計、媒体置換を行うためにデバイス又はサブシステムに伝達される制御信号及び/又はコマンド等を含む情報を監視できる。
媒体置換コントローラ185は、後に更に説明するように、処理ユニット205によって調整される一連のイメージング及び置換動作の制御の間に使用されるフィードバックループへの入力を提供してもよい。
制御ユニット165は、更に、オプションの心臓センサ200、例えば、イメージングされる患者の体から心電図信号を取得する電極センサを制御するオプションの心臓センサコントローラ195を含むことできる。心電図信号は、心運動が画質に影響を与える状況下で、イメージングデータの取得のタイミングを計るために使用することができる。また、心電図は、取得シーケンスを開始する際の、例えば、所望のスキャンパターンを実現するために、モータの回転速度を変更する際のトリガとしても機能できる。例えば、イメージングシーケンスを心電図(electrocardiogram:ECG)によってトリガすることによって、収縮期又は拡張期等の心周期の特定のフェーズの間に画像を取得することができる。心電図信号は、オプションとして、観測された生理的な状態下で、システムが拍動性又は血流を考慮して媒体置換システムの注入レート又は膨張レートを変更するトリガと機能してもよい。
制御ユニット165は、インタフェースを介して処理ユニット205に接続され、処理ユニット205は、バスによって接続されたプロセッサ210とメモリ及び/又はストレージサブシステム215を備え、システム動作の様々な側面を調整するための複数の処理機能を実行する。なお、制御ユニット165及び処理ユニット205は、個別のサブシステムとして示しているが、これらは、統合されたコンピュータシステム220内に設けてもよい。更に、制御ユニット165の要素の幾つか又は全てを処理ユニット205が実行してもよい。更に、プロセッサ210は、1個以上のCPU、フィールドプログラマブルゲートアレイ、GPU、ASIC、DSPチップ及び当分野で周知の他の処理要素等の複数の処理要素を含んでいてもよい。また、処理ユニット205は、実時間表示又はイメージングデータの取得時より後のデータの表示のためにディスプレイ及びユーザインタフェース225に接続してもよい。
更に、イメージングシステム100は、データストレージコンポーネント(例えば、メモリ、ハードディスクドライブ、リムーバブルストレージデバイス、CDやDVD等の携帯ストレージ媒体のためのリーダ及びレコーダ)を備えていてもよく、これらは、インタフェースを介して、処理ユニット及び/又は制御ユニットの部品に接続してもよい。
一実施形態においては、処理ユニット205は、第1のイメージング方式を用いて取得された画像を解析し、イメージング結果を利用して、画像取得の間に管腔内媒体置換動作を要求し又はこれが有利である第2のイメージング方式に基づく画像の記録を自動化するようにプログラムされる。第1のイメージング方式は、管腔内媒体に適合性を有していてもよく、すなわち、十分な診断感度又は臨床的有用性を有する画像を取得するために管腔内置換動作を必要としなくてもよい。
管腔内液体が血液である一実施形態では、第1のイメージング/検出方式は、以下に限定されるものではないが、グレースケールIVUS、無線周波数IVUS(例えば、Virtual Histology(商標)、統合後方散乱(integrated backscatter)又はiMap(商標))、エラストグラフィ、NIR分光法、ソノルミネッセントイメージング(sono-luminescent imaging)、マイクロバブル増強IVUS(microbubble enhanced IVUS)、標的マイクロバブル増強IVUS(targeted microbubble enhanced IVUS)、光音響イメージング、蛍光分光法、イオン選択電界効果トランジスタ等のバイオセンサの何れかであってもよく、第2のイメージング方式は、以下に限定されるものではないが、OCT、血管内視鏡、NIR分光法、Raman分光法、IVUS、無線周波数IVUS、エラストグラフィ、ソノルミネッセントイメージング、マイクロバブル増強IVUS、標的マイクロバブル増強IVUS、蛍光分光法、光音響イメージングの何れかであってもよい。生来的に光学的な方式である第2のイメージング方式は、電磁波スペクトルにおける紫外線、可視光線、NIR及び/又は赤外線の部分の波長を使用してもよい。
他の実施形態においては、第1及び第2のイメージング方式は、単一のイメージング方式であってもよく、この場合、まず、管腔内媒体がある状態で画像を取得し、次に、置換処理によって向上された画像を取得してもよい。
超音波は、血液に対する妥当な侵入性を有しているが、超音波イメージングプローブの視野から血液を置換することによって、血管壁を特定する能力を更に向上させることができ又は画像コントラストを向上させることができる。一方、超音波は、例えば、血液及び軟組織等の生物学的媒体に良好に侵入する能力を有し、光干渉断層法の侵入深度を超える数ミリメートル又は数センチメートルの幅の侵入深度を有する。
一実施形態においては、第1及び第2のイメージング方式は、何れもIVUSであり、第1の方式は、第2のIVUS方式より低い周波数範囲を有するIVUSである。一般化して言えば、超音波の周波数がより高いと、低い周波数より解像度が高くなるが、周波数を高くすると、血液への侵入が浅くなる。したがって、より高い周波数のIVUSでイメージングを行う場合、血液を置換することが望ましい。2つのIVUSイメージング周波数について、個別の超音波トランスデューサを設けてもよく、1つの超音波トランスデューサが2つ以上のイメージング周波数をサポートできる十分広い帯域幅を有していてもよく、ここでイメージング周波数は、超音波トランスデューサを励起するパルス発生器(pulser)によって使用されるパルスの周波数によって部分的に決定される。
単一のイメージングプローブを用いて、超音波と、例えば、OCT又は近赤外線分光法等の光学イメージング法とを組み合わせる能力は、必要な解像度及び侵入深度の選択に関して有利である。更に、光干渉断層法によって取得される情報の多くは、超音波によって取得される情報を補足し、両方のイメージング法によって取得された情報を解析又は表示することによって、検査される組織への理解、例えば、その組成に関する理解を深める能力が向上する。
なお、脈管内OCTは、血液の存在によって深刻に妨害されるが、NIR分光法は、それほど影響を受けず、血液を介して数ミリメートルの深さまでプラーク組成を評価できる。しかしながら、これは、より大きな血管、及び動脈瘤がなければ内径が通常である筈の血管における動脈瘤の部分に対しては効果的ではない。
図6は、置換可能な管腔内媒体の存在によって妨害される第2のイメージング方式によって次に画像を取得する際に、第1のイメージング方式を用いて記録された画像を用いて置換動作を行う実施形態を示すフローチャートである。
ステップ300において、置換可能な管腔内媒体の存在に適合性がある第1のイメージング方式によって画像を取得するために、多方式イメージングプローブ、例えば、図1のイメージングプローブ105を管腔に挿入する。第1のイメージング動作は、例えば、後退等の平行移動動作であってもよく、これは、第1のイメージング方式を用いてイメージングデータを記録しながら実行される。平行移動動作は、自動化してもよく、第1のイメージング方式のために選択及び/又は最適化された一定の平行移動速度で実行してもよい。第1の平行移動動作の間に第1のイメージング方式デバイス(イメージングプローブ105のイメージングアセンブリ110内に設けられている。)から得られた信号は、第1のイメージング方式コントローラ170に供給される。
この実施形態では、平行移動動作の間に位置感知を採用し、基準位置に対する及びオプションとして基準方向に対する記録された画像の位置を特定する。したがって、記録された画像は、イメージングプローブの位置及びオプションとして向きと関連付けられる。位置感知は、周知の手法の1つを用いて行ってもよく、図1では、包括的に、位置センサ150及び位置感知コントローラ190(これらは、共に複合サブシステムを形成してもよい)として示している。
一実施形態においては、位置感知は、例えば、イメージングプローブ、後退モータ又は駆動素子に接続されたエンコーダ又は他の位置センサを用いた管腔内の長手方向の位置感知によって行われる。位置感知は、空間領域測定によって行ってもよく、平行移動又は回転運動が既知の速度で行われている場合、時間領域測定に基づいて推定してもよい。例えば、イメージングプローブの長手方向の位置に関する位置情報は、平行移動が行われた期間に基づいて推定でき、これは、この期間におけるイメージングプローブの位置の変化率が既知であることを前提としている。プローブの平行移動の間、位置の変化率は、一定であってもよい。回転角感知は、引用により全体が本願に援用される、2008年1月22日に出願された同時に係属中の米国特許出願番号第12/010,207号、発明の名称「Medical Imaging Probe with Rotary Encoder」に開示されているように、イメージングプローブに接続された回転エンコーダ又は他の位置センサを用いて行うことができる。
他の実施形態においては、位置感知は、イメージングプローブ内に設けられ、外部的に生成されたフィールド、例えば、磁界内でイメージングプローブの位置を判定する検出要素を用いて行ってもよく、これは、向き検出と組み合わせて実行してもよい。Muller他による米国特許出願公開番号第2009/0299195号に開示されているように、メディガイドリミテッド社(Mediguide Ltd.)が提供している適切なセンサを採用してもよい。
第1の平行移動動作を実行した後に、ステップ305において、画像解析のために、第1のイメージング方式コントローラ170からの画像データをプロセッサ210に供給する。プロセッサ210は、画像処理アルゴリズムに基づいて画像データを解析して、関心領域、例えば、診断、研究及び/又は臨床的な関心の対象となる領域を特定する。特定される領域は、様々な解剖学的構造及び/又は特徴を表すことができ、これらは、以下に限定されるものではないが、後の解析のための所望の組織タイプ、特定の解剖学的特徴、既知の又は疑いのある病理上の構造又は特徴、及び医療用又は他の人工的構造を含む。適切な関心領域は、以下に限定されるものではないが、プラーク、可能性がある血栓、分岐点(branch points)、病巣、石灰化領域、ステント又は近接照射療法インプラント等の移植領域、狭窄部、血管壁の肥厚領域、脂質コア、壊死領域、線維性被膜、解離部(dissections)、腫瘤(masses)等がある。関心領域は、更に、検出されたマイクロバブル、例えば、標的マイクロバブル(targeted microbubbles)を含む領域であってもよい。また、関心領域は、更なるイメージングデータがなければ自動化又は半自動化された処理アルゴリズムが関心領域を確定的に評価できない不確定(indeterminate)又は不確実(uncertain)な構造又は組成を含んでいてもよい。
関心領域は、更に、臨床症状に至っていないが、破裂又は浸食のリスクが高く、急性心筋梗塞を引き起こす可能性がある血管病巣を含んでいてもよい。これらの所謂「不安定プラーク(vulnerable plaques)」は、これらのプラークを治療して不利な臨床的事象を予防することが概念的に望ましいために関心領域となる。
他の実施形態においては、第1のイメージング方式に基づいて得られた何らかの画像から、不確定な結果が疑われる如何なる領域も関心領域として特定できる。例えば、第1のイメージング方式としてNIR分光法を使用する場合、イメージングプローブのイメージングアセンブリから血管壁までの距離が、血液の存在下でのNIR分光法プローブの範囲によって許容されている距離より更に遠い領域を関心領域として定義してもよい。これに代えて、IVUSイメージングの場合、このような領域は、血管壁がイメージングプローブに接触している領域として定義してもよい。IVUSでは、カテーテルに最も近い視野の一部で幾らかのアーチファクトが生じることがある。これらは、トランスデューサリングダウン(transducer ring-down)と呼ばれる現象及びカテーテルのシースから生じる超音波反射に起因するアーチファクトを含む。OCTは、このようなアーチファクトによる影響を実質的に受けず、カテーテルに最も近い視野の部分でも良好な画像が得られる。
一実施形態においては、関心領域は、既知の幾何学的形状、構造的形態及び/又はイメージング信号の特性を有するステントを含むことができる。これは、金属ステント、ポリマステント、生分解性ステント、ペースメーカワイヤ、ガイドワイヤ等を含んでいてもよい。
関心領域は、多くの既知の画像解析法の1つを用いて特定できる。関心領域は、処理画像によって、予想される値又は範囲と比較することができるメトリック(metrics)を算出することによって特定してもよい。他の具体例では、画像解析は、関心領域を特定するためのパターン認識法と組み合わせて実行される。一具体例においては、イメージング解析は、境界検出を含む。例えば、境界検出を用いて、プラーク肥厚が生じている領域を検出してもよく、この領域は、第2のイメージング方式による後のイメージングに適合する。境界検出は、多くの異なる手法で実施できる。1つの非制限的な具体例として、Papadogiorgaki他は、輪郭最適化技術を用いた境界検出を開示している(Ultrasound in Medicine and Biology 2008, Sept 34(9) 1482-98)。また、境界検出の方法は、例えば、米国特許番号第7,359,554号、発明の名称「System and Method for Identifying a Vascular Border」及び米国特許出願公開番号第2005/0249391号、発明の名称「Method for Segmentation of IVUS Image Sequences」にも開示されており、これらは何れも引用によって全体が本願に援用される。
一実施形態においては、関心領域は、組織特性評価技術を含む画像処理法によって特定される。例えば、引用により全体が本願に援用されるNairによる米国特許番号第6,200,268号に開示されているように、第1のイメージング方式がIVUS又はそのバリエーションである実施形態では、関心領域は、パターン認識アルゴリズムと組み合わせて、後方散乱超音波信号の無線周波数特性によって判定してもよい。これに代えて組織特性評価技術は、グレースケール画素の輝度解析を採用してもよい。例えば、生成された画像において、ある輝度範囲の画素は、軟性プラーク(soft plaque)を表している可能性が高く、これは、更に、脂質過多領域(lipid-rich regions)を含んでいる可能性がある。これに代えて、組織解析アルゴリズム例えば、ウェーブレット分解アルゴリズム又はイメージングデータの統計的特性を評価するアルゴリズムを用いてもよい。これに代えて、ある組織成分の既知の特性を検出する発見的アルゴリズムを用いてもよい。例えば、アルゴリズムは、IVUSイメージングにおいて石灰化の存在との相関性が高いことが知られている音響陰影を検出してもよい。
特定の領域について最も可能性が高い組織組成を特定することができるパターン認識アルゴリズムに幾つかのイメージングデータパラメータを入力することが望ましい場合がある。このようなパターン認識アルゴリズムは、ニューラルネットワーク、ファジィ論理アルゴリズム、データ分類木、最近近接法、他の幾つかのパターン認識法であってもよい。このようなパターン認識アルゴリズムは、組織学、X線撮影、分光法、超音波、光学イメージング及びこの他の何らかの組合せによって、組織の実際の基本的な組成が既知であるイメージングデータを用いてトレーニングしてもよい。このようなパターン認識アルゴリズムは、所与の関心領域について、可能性が高い組織の基本的な組成を特定するだけではなく、正しさの尤度の推定をも提供する。これに代えて、パターン認識アルゴリズムは、単に、第1のイメージング方式によっては、基本的な組成が不確実である領域を特定し、第2のイメージング方式による更なる解析の必要性を促すものであってもよい。
これに加えて、又はこれに代えて、関心領域は、非イメージング方式に基づいて、例えば、温度不均一性に基づいて判定してもよい。温度不均一性を検出する方法の具体例は、例えば、「Stefanidis C, et al., "Thermal heterogeneity within human atherosclerotic coronary arteries detected in vivo: a new method of detection by application of a special thermography catheter", Circulation 1999;99;1965-71」に開示されている。プローブ115の先端部分に温度センサを組み込んで、動脈壁の温度の変化を検出してもよく、温度がより高い領域は、炎症領域に対応している可能性が高いと考えられる。更に他の実施形態では、関心領域は、選択的な検出分子種、例えば、抗体又はアプタマが結合されたイオン選択性電界効果トランジスタ(ion-selective field effect transistor:ISFET)等の局所的バイオセンサによって局所的に検出された生物学的検体、例えば、C反応性蛋白(C-reactive protein:CRP)を検出する炎症のマーカの濃度が最小の領域に基づいて判定してもよい。
上述したような第2のイメージング方式による更なる解析のために関心領域を特定するために自動化されたシステム及び方法は、関心領域の識別に影響を与えるパラメータをユーザが調整又は変更できる設定を含むことができる。例えば、このような設定によって、ユーザは、特定の病理上の特徴又は構造を選択することができ、例えば、少なくとも選択された量のプラーク、選択された最小の血管壁厚、又は選択された壁厚の異常性(eccentricity)の度合いを有する領域の識別を行うことができる。血管壁の肥厚が最小量である領域にプラークが存在することは希であり、血管壁の肥厚が異常である領域にプラークが存在する可能性が高いことが知られている。
他の実施形態として、関心領域の識別をトリガする1つ以上の閾値パラメータを構成できるようにしてもよい。このような実施形態は、媒体置換動作の間に造影剤、食塩水、又は他のフラッシュ液を流し込む場合に特に重要である。関心領域を特定するための1つ以上の閾値パラメータを制御することによって、臨床医師又は施術者は、低侵襲処置の間に送達されるフラッシュ液の量を制御又は制限でき、使用されるフラッシュ液の量による患者への影響を確実に制御又は最小化することができる。
上述した実施形態は、関心領域を特定する自動化された手法を含むが、ユーザ又は施術者は、第1の平行移動(例えば、後退)動作によって取得された画像の結果をレビューすることによって、手動で関心領域を画定し、自動化又は半自動化された第2の平行移動動作のための関心領域を選択してもよく、この第2の平行移動動作においては、以下で更に説明するように、媒体置換動作を実行している間に、関心領域が第2のイメージング方式によってイメージングされる。
また、関心領域は、2つ以上のイメージング方式に基づいて画定又は特定してもよい。例えば、イメージングプローブは、管腔内媒体の存在に適合性がある複数のイメージング方式を含んでいてもよく、上述した方法に基づいて、複数のイメージング方式を処理することによって関心領域を特定してもよい。
再び、図6を参照して説明すると、ステップ305において1つ以上の関心領域を取得した後に、ステップ310において、第2の後退動作の間に第2のイメージング方式によってイメージングされる関心領域を選択する。このステップは、ステップ305において特定された全ての関心領域を自動的に選択することを含んでいてもよく又はこれに代えて、このステップは、ステップ310において特定された関心領域のサブセットを選択することを含んでいてもよい。後者の場合、関心領域のサブセットの選択は、システムを操作するユーザがユーザインタフェース225を介して行ってもよく、後の解析のために望まれる特定される領域のタイプを予め選択することによって行ってもよい。
例えば、ステップ305においては、正常な解剖学的構造、インプラント、組織タイプ、病理上の構造又は徴候等の広範囲に関連する関心領域が特定されるが、システムは、第2のイメージング方式を用いて、検出されたインプラントのみをイメージングするように構成してもよい。これに代えて、システムは、例えば、以下に限定されるものではないが、プラークサイズ、薄い線維性被膜(thin-capped fibroatheroma)であると推定される可能性、脈管構造内の位置及びこの他の幾つかの評価基準の何れかに基づいてステップ305において特定された関心領域を格付けしてもよい。一旦、関心領域が格付けされると、サブセット例えば、使用される基準に基づいて最高に格付けされた関心領域のグループを選択してもよい。
(自動的に又はユーザによる介入によって)第2のイメージング方式によるイメージングのための関心領域を選択した後、第2の後退動作を実行して、選択された関心領域をイメージングする。この動作は、後述するように、多くの実施形態に基づいて実行することができる。
まず、ステップ315で選択された関心領域にイメージングプローブ(及び/又はその機能的部品)を平行移動する。この平行移動は、位置感知システムからのフィードバックにより、プローブが適切な位置に移動したことを判断することによって、手動で実行してもよく、これに加えて又はこれに代えて、イメージングプローブを自動的に平行移動させて、必要な位置にイメージングアセンブリを配置してもよい。
所望の位置へのイメージングプローブの自動的な平行移動は、画像比較技術によって補助又は誘導できる。相互相関技術を用いて、イメージングデータセット内で互いに類似する画像又は領域を特定することができる。2D画像のための最も簡単な形式では、1つの画像の各画素の輝度を他の画像の対応する画素の輝度と乗算し、これらの積の総和を算出する。画像が類似している程、積の総和が大きくなる。一方の画像を他方の画像に対して繰り返しシフト、回転及び/又はモーフィングして、相互相関演算を繰り返すことによって、これらの変化を考慮に入れた2つの画像の類似度の評価を作成することができる。
相互相関技術は、3Dイメージングデータセットに拡張することができ又は2Dイメージングデータセット内で局部的領域に焦点を合わせることができる。相互相関技術は、3Dイメージングデータに由来する2Dイメージングデータセットにも適用できる。例えば、相互相関を断面画像に適用するのではなく、共に積層されて3Dデータセットを形成する一連の2D断面画像から任意の平面を抽出して生成された長手方向の2D画像を使用することもできる。この実施形態では、予備的に選択された画像又は第1の後退の際に特定される開始点及び停止点に対応するイメージングデータセットの相互相関を第2の後退の間に取得されるイメージングデータに適用して、媒体置換動作のための開始点又は停止点をより高精度に特定する。
第2のイメージング方式による画像取得の前に、ステップ325において、置換動作を開始し、第2のイメージング方式によるイメージングをサポートするために、管腔内の置換可能な媒体を置換する。上述したように、以下に限定されるものではないが、フラッシング又は膨張を含む適切な如何なる置換動作を行ってもよい。置換動作は、平行移動ステップ320の完了の前に開始してもよく、この場合、システムは、選択された関心領域を第2のイメージング方式によって評価できる時刻を予測し、及び平行移動ステップ320において第2のイメージング方式のためにイメージングプローブが適切に配設される時刻までに、置換動作によって管腔内媒体を適切に置換し、時間遅延が最短又は皆無で選択された関心領域を評価することができる。媒体を置換している間、ステップ330において後退動作を実行し、第2のイメージング方式を用いて関心領域をイメージングする。
一実施形態においては、平行移動動作を行って第2のイメージング方式によって画像を取得するステップ330を実行する際、第1の方式によって更なる画像を取得して、組織の動き及び/又は位置検出システムにおける誤差等の位置の誤差又は逸脱を調整又は修正してもよい。イメージング方式の位置合わせが正確に行われれば、第1及び第2の方式で画像を同時に取得することによって、組織の動き(すなわち、心運動及び呼吸等)に起因する誤差が生じることなく同じ位置の画像が提供される。一実施形態においては、置換動作、後退動作及びイメージング動作は、イメージングシステムによって自動化され、選択された関心領域がイメージングされる。この置換動作は、第2の後退動作の間に継続的に行ってもよく、断続的に又は間隔を空けて行ってもよい。自動化された注入動作は、ステップ325、330の間に、ユーザが、例えば、ボタン又はフットペダル等のスイッチを継続的に操作することによって、作動化又は実行することができる。このようなイメージングの自動化の管理モードによって、全ての媒体置換動作が施術者の存在の下で実行されることを確実にすることができる。施術者は、例えば、使用されたフラッシュ液の量が、予め選択された量を超えたと考えられる場合に処置を中断できる。
変形例として、ステップ330及びステップ335の1つ以上を手動で実行してもよい。一実施形態においては、ステップ330、335の両方が手動で実行され、置換動作及びイメージング動作を実行する位置は、ステップ315において特定された選択された領域に基づいて、ユーザに示される。例えば、施術者は、イメージングプローブを平行移動してもよく、システムは、(例えば、ユーザインタフェース225を介して)置換及びイメージングを実行する位置をユーザに示すことができる。そして、ユーザは、手動で作動される図1に示す媒体置換装置135を用いて、手動で置換動作を実行できる。
他の実施形態においては、施術者は、イメージングプローブを手動で平行移動でき、イメージングシステムは、ステップ315において選択された関心領域をイメージングプローブが通過する際に、例えば、図2の統合型媒体置換装置135、並びにシステムの関連するモニタ/ドライバ及びコントローラを用いて、自動化された注入及びイメージングを実行できる。
更に他の具体例では、イメージングプローブは、自動的に平行移動でき、イメージングシステムは、第2のイメージング方式によって画像を取得するために置換動作が必要な位置を施術者に示してもよい。このような実施形態では、システムは、施術者によって置換動作が行われれば、第2のイメージング方式を用いて画像を自動的に取得する。
一実施形態においては、置換動作は、例えば、図2に示す媒体置換モニタ155によって監視される。上述したように、監視されるパラメータは、所与の媒体置換動作に供給されるフラッシュ液の体積、所与の患者及び/又は低侵襲処置のための複数の媒体置換動作に供給されるフラッシュ液の総量、所与の媒体置換動作が行われる継続時間、所与の患者及び/又は低侵襲処置のための複数の媒体置換動作が行われる継続時間の合計、媒体置換を行うためにデバイス又はサブシステムに伝達される制御信号及び/又はコマンド等を含むことができる。
一実施形態においては、監視された置換パラメータを用いて、イメージングシステムにフィードバックを行う。監視された置換パラメータの閾値範囲又は最大値をシステムに設定してもよい。このような閾値を超えると、視覚的又は可聴の警告がトリガされるようにしてもよい。これに代えて、閾値を超えると、所与の置換動作を自動的に停止又は中止してもよい(オプションとして、このイベントを施術者に通知してもよい)。監視された置換パラメータを保存して、低侵襲処置の後に施術者又は医師が利用できるようにしてもよく、例えば、処置に関連する文書記録に含まれるようにしてもよい。これに代えて、置換動作の監視を用いて、ステップ325、330を実行する期間又は間隔を決定してもよい。例えば、ステップ320においてイメージングプローブを関心領域に平行移動し、ステップ325において置換動作を開始し、監視された置換閾値に達するまで、管腔内媒体を置換し、イメージングを行いながらイメージングプローブを更に平行移動してもよい。
上述した実施形態においては、処理済みの画像からのフィードバックを利用して、イメージングプローブの平行移動及び/又は回転の速度を制御及び/又は最適化することが望ましいことがある。後退速度又は前進速度及び/又はトルクケーブルの回転速度は、処理ユニット205及び/又はコントローラユニット165によって制御してもよい。これらの速度は、各イメージング方式毎に個別に変更、決定及び/又は最適化してもよい。更に、処理ユニット205によって処理された画像に基づいてこの速度を変更してもよい。例えば、第1のイメージング方式によって得られた画像を評価する際、第2のイメージング方式が適用される領域を第1のイメージング方式が検出する場合、第2のイメージング方式(例えば、OCT)を用いている間、後退の速度及び/又はトルクケーブルの回転速度を高めることが望ましいことがある。管腔内媒体の置換を必要とするイメージング方式の動作の間に画像取得を加速することによって、画像を取得する際の置換の継続時間を短縮し又は導入する必要がある造影剤等の置換媒体の量を低減することができる。
一実施形態においては、回転速度又は平行移動速度を調整しながら、イメージング方式の1つ以上を選択的に停止することが望ましい場合がある。例えば、第1の方式は、媒体置換動作を開始し、第2のイメージング方式を作動し、回転速度を変更し、及び/又は後退速度を変更する関心領域を特定してもよい。異なる回転速度及び/又は後退速度の動作によって第1の方式の有用性が低下する場合、第2の方式を終了することをコントローラが判定するまで、第1の方式を一時的に停止することが望ましいことがある。
例えば、第1のイメージング方式がIVUSである場合、システムは、IVUSが関心領域を特定するIVUS解析の間、5〜100フレーム毎秒の範囲の回転速度で動作できる。ここで、OCT等の第2のイメージング方式でイメージングを行う間、回転速度を1秒あたり50フレーム毎秒より高めてもよく、後退速度を2mm/sより高めてもよい。有用なIVUS画像取得のための回転速度の制限は、実例又は応用例に応じて異なるが、高い回転速度を採用するOCT取得の間、IVUS画像を停止又は削除することは合理的である場合がある。このような場合、関心領域の終端は、第2のイメージング方式によって特定してもよく、第1のイメージング方式に依存することなく関心領域の終端を特定するための幾つかの上述したパラメータ、例えば経過時間、使用された置換媒体の量、又は後退メカニズムからの位置センサデータに基づく既知の位置への到達の何れかによって特定してもよい。
更に他の実施形態では、ステップ325及びステップ330の間、第2のイメージング方式を用いて取得された画像の画像処理を実時間で実行して、画像の品質を評価してもよい。例えば、セクタ等の画像の一部の強度、信号減衰又はテクスチャを予め設定された所望の範囲又は閾値と比較することによって、画像の品質を評価してもよい。例えば、処理ユニット205によって画像を解析し、解剖構造の境界が、適切なフラッシングによって期待される血管壁と管腔との間の明瞭に示されるボーダと比較的又は十分に類似している(例えば、予め選択された基準(metric)によって定義される。)ことを確認してもよい。
これに代えて、画像のセクションを解析して、血液等の管腔内媒体の存在を検出又は推定してもよい。血液は、通常、各方式毎に、信号強度、信号減衰、又はNIRイメージングの場合、スペクトル成分に基づくシグネチャ又はある範囲の外観を有する。画像の品質は、血液の置換が望まれる画像の各セクション内に血液のシグネチャが存在していないことを確実にすることによって、少なくとも部分的に確かなものとすることができる。
そして、読み取られた画質を用いて、ステップ325にフィードバックを提供して、媒体置換動作を規制してもよい。例えば、画像の信号対雑音比が劣っているとみなされる場合、フラッシュ液の送達の速度、フラッシュ液の量、フラッシュ量の時間プロファイル、又は置換バルーンの膨張量を変更してもよい。
これに代えて、非侵襲イメージング方式からのデータを用いて、管腔内媒体の置換の妥当性を評価してもよい。例えば、血管造影図を実時間で処理し、又は置換手段が作動された直後に処理し、これにより得られる画像を処理して、血管が造影剤によって完全に不透明化されたかを判定してもよい。この判定は、血管造影図の画素強度の変化を評価することによって、又は血管造影図の血管境界の鮮鋭度を評価することによって行うことができる。
一実施形態においては、第2のイメージング方式で得られる画質をリアルタイムで評価し、フィードバックを行って置換動作に関連するパラメータを調整することによって、置換動作の側面(aspects)を最小化する。例えば、画質を評価して、置換動作の時間、フラッシュ液の送達の速度及び/又はフラッシュ液の量を最小化してもよい。
他の実施形態においては、リアルタイムの画像解析に基づいて、フラッシングによって視野が適切に改善された後、ステップ330の第2の後退動作を開始してもよく、この後、イメージングプローブは、画像取得のために、関心領域の終端まで平行移動を続ける。この期間に、視野における画質が不適切になった場合、後退コントローラは、停止又はステップバックを行い、画質の評価に基づいて視野が適切であると判定された後に、平行移動を再開する。
ステップ330を実行し、第2のイメージング方式を用いて所与の関心領域の画像を取得した後に、符号335で示すように、ステップ320〜330を繰り返して、ステップ315において選択された更なる関心領域の画像を取得してもよい。したがって、この方法は、ステップ300において完全な後退動作を実行することによって関心領域を特定及び選択し、これに続いてステップ320〜330の連続的な後退及び置換動作を行い、第2のイメージング方式を用いて選択された関心領域の画像を取得することによって実行してもよい。
変形例では、最初の後退動作300は、イメージングされる解剖学的な領域全体の一部だけに亘って行われる部分的な後退動作として実行してもよい。画像解析ステップ305を実時間で実行し、関心領域を「オンザフライ(on the fly)」で特定してもよい。そして、例えば、前後往復を繰り返すような手法で、実時間での選択及びその後のステップ320〜300における第2の後退の自動化、置換及びイメージング動作のために、このような関心領域をユーザに表示してもよい。これに代えて、上述のように、関心領域は、後の解析のために自動的に選択してもよく、ステップ320〜330を自動的に実行してもよい。部分的な後退動作に基づいてステップ300〜330を実行した後に、符号340で示されているように、低侵襲処置が完了したとみなされるまで、更なる部分的な後退動作を繰り返す。
一実施形態においては、第2の後退動作の間に、関心領域の開始点及び停止点を特定することを補助するために画像処理を用いる。一般化して言えば、多くの位置センサを用いて、第2の後退動作のためのイメージングプローブの相対的位置を正確に判定することは、イメージング導管の弛緩、心運動、フロー、及びユーザの不注意によるカテーテルの誤った動きの可能性等に起因して、幾らか不正確になることがある。
一実施形態においては、第2の後退動作をいつ開始及び/又は停止するかの第1の推定のためにポジショニングシステムを使用し、第1の後退動作から開始/停止点の近くで取得された1つ以上のオリジナル画像を第2の後退動作の間に取得された現在の画像と比較して、適切な一致が発見されるまで比較を続け、関心領域の開始点を正確に特定する。このような相対的位置決め方式は、病理上の関心領域に加えて、正常な解剖学的目印、例えば、脈管解剖学上の分岐部(bifurcations of the vascular anatomy)を使用することによって、改善できる。
第2のイメージング動作の間に関心領域の正確な開始位置を判定する画像比較は、既知の幾つかの画像比較法の1つによって行ってもよい。一実施形態においては、画像相互相関を採用する。他の実施形態においては、脈管管腔のサイズを採用する。更に他の実施形態では、(媒体と外膜層との間の)脈管境界の形状を採用する。更に他の実施形態では、内腔の形状境界を採用する。更に他の実施形態では、第1のイメージング方式によって検出された1つ以上の特徴、例えば、石灰化、分岐、インプラント、プラーク、血栓等の存在、形状又はサイズを採用する。一実施形態においては、位置センサ情報、画像比較技術、及び/又は領域の幾何学的特徴の組合せを用いて、開始点及び/又は停止点の特定を補助する。
一実施形態においては、第2の後退動作を必要とすることなく、第2のイメージング方式による実時間の置換及びイメージングをサポートする画像の実時間処理を実行する。この実時間の実施形態を図7のフローチャートに示す。ステップ400において、初期の位置にイメージングプローブを配置した後に、第1のイメージング方式を用いて1つ以上の画像を取得する。ステップ410では、上述した実施形態に開示した方法に基づいて、画像を処理する。実時間の画像処理は、個々の画像を個別に処理して、イメージングプローブの現在位置に対応する画像が第2のイメージングの関心領域となるかを判定すること、又は現在位置に先行する空間的領域内で収集された画像の解析に基づいて、現在位置が関心領域に対応しているかを判定することを含む。これに代えて、実時間の画像処理は、3Dデータセットに対応する一連の画像の処理を含み、第2の方式によるイメージングのための潜在的関心領域の存在に関してより高い確実性を提供するようにしてもよい。
ステップ420では、現在位置が関心領域に対応しているかについての判定を行う。現在位置が関心領域に対応していることを画像処理ステップからの結果が示唆している場合、ステップ430を実行し、媒体置換動作を行う。他の具体例では、この判定は、基準マーカ(例えば、次に限定されるものではないが、血管造影によって検出可能なマーカバンド)からの情報に基づいて行うことができる。上述したように、これは、自動的手法又はシステムが施術者に対して媒体置換を実行又は作動することを促す半自動的手法によって実行してもよい。媒体置換動作が開始された後、ステップ440において、第2のイメージング方式を用いて、現在位置の画像を取得する。そして、ステップ450において、イメージングプローブを新たな位置に平行移動し、ステップ460に従って、プロセスを繰り返す。
ここで、ステップ420において、現在位置が関心領域に対応していないとみなされた場合、ステップ430、440は、バイパスされ、ステップ450を実行して、イメージングプローブを新たな位置に平行移動する。そして、プロセスは、ステップ460に従って繰り返される。上述した実時間の処理は、上述したように、媒体置換及び第2のイメージングステップが実行される場合にイメージングプローブを静止させる、停止−開始を繰り返す手法で行ってもよく、継続的な後退動作の下で行ってもよい。
これまで、実施形態を一連の離散的なステップとして説明したが、実施形態の他の変形例を想到できることは明らかである。例えば、上述した実施形態の変形例として、画像処理ステップが実行されている間、直ちには停止されないモータ又は他の駆動システムを用いてイメージングプローブを平行移動してもよく、この場合、関心領域を特定する判定が行われた時点で、プローブ(又はプローブの機能的部品)は、画像が取得された位置から僅かに平行移動している可能性がある。一具体例においては、置換動作を開始する前に、画像プローブの機能的部品を適切な距離だけ戻り方向に平行移動することによってこれを修正してもよい。これに代えて、通り過ぎの距離が十分に短ければ、修正的な戻り動作を行うことなく、置換動作を直接開始してもよい。他の実施形態では、図7のステップ400〜430の1つ以上を実行しながら、イメージングプローブを継続的に平行移動してもよい。
継続的な後退を採用する一実施形態においては、第2のイメージング方式のためのコントローラは、最適ではないイメージングデータが取得されたことを特定でき、及び(例えば、通知を介して)誤りが発生したことを宣言することができる。この誤りに対しては、誤りに対応する領域を横断するまで、イメージングプローブの平行移動の方向を反転し、正常な方向の平行移動を再開して、ステップ430〜450を再び行うことによって対応してもよい。
これに代えて、ステップ430において、関心領域として特定された特定の位置に基づいて媒体置換動作を開始し、プロセスを繰り返しながら、関心領域として特定されない新たな位置に到達するまで媒体置換動作の作動を継続してもよい。このような新たな位置に到達した場合、媒体置換動作は、ステップ420を実行した後に、ステップ450を実行する前に終了する。このような実施形態によって、媒体置換動作の終了及び再開の必要なく、複数の連続した位置において第2のイメージングが実行される一連の測定サイクルの自動化が実現する。
上述の手法の変形例として、媒体置換動作を実行する前に、イメージングプローブを短い距離だけ逆方向に平行移動することが望ましい場合がある。これに代えて、関心領域の開始を自動的に特定した後に、僅かな逆戻しステップ(例えば、20mm未満、より好ましくは、5mm未満)を実行してもよく、これによって、血液を置換した後に収集されるイメージングデータに関心領域の開始端が含まれる。例えば、関心領域が特定されるまで後退動作を実行し、関心領域が特定されると、媒体置換動作の開始に続いて、約2mmの逆方向(例えば、前進)のステップを実行してもよい。そして、第2の(及びオプションとして第1の)イメージング方式によるイメージングのために後退動作を再開し、置換動作を終了する関心領域の終端が特定されるまでこれを続ける。この方法を繰り返して、次の関心領域を特定及びイメージングしてもよい。
上述した実時間の実施形態で使用するイメージングプローブは、(管腔内媒体に適合性がある)第1のイメージング方式に基づく関心領域の検出のための基端部側センサと、基端部側センサによる関心領域の検出及び管腔内媒体の置換によって性能が向上される第2のイメージング方式に基づく先端部側センサとを備えていてもよい。
より一般化して言えば、上述した実時間の実施形態で使用するイメージングプローブは、(管腔内媒体に適合性がある)第1のイメージング方式に基づく関心領域の検出のための、プローブ上に配置され又は方向付けられたセンサを備えていてもよく、このセンサによって、潜在的関心領域を評価し、この後に、第2のイメージング方式に基づく第2のセンサを配置又は方向付けして、対応する関心領域を評価し、この性能は、第1のセンサによる関心領域の検出及び管腔内媒体の置換によって向上する。
幾つかの上述した実施形態では、置換動作と組み合わせて、第2の後退動作によって、第2のイメージング方式を用いて画像を取得するが、第2のイメージングステップは、後退方向とは逆方向にプローブを前進させることによって行ってもよい。具体的には、イメージングアセンブリが置換流体の塊と同じ方向に動くため、所与の量の置換流体で脈管をイメージングできるので、このような前進動作が好ましいことがある(これは、イメージングコアが、置換流体と反対方向に進むのではなく、置換流体に追従するためである)。また、後退動作は、イメージングプローブの全体を後退させても又はイメージングプローブのコア部品を後退させても達成できることは明らかである。
他の実施形態においては、第1及び第2のイメージング方式によって取得された画像を処理して、組み合わされたイメージング方式を含む低侵襲処置がどの程度実行されたかを示すスコア又はインデクスを提供してもよい。例えば、スコア又はインデクスは、管腔内媒体の適切な置換が行われた後退距離のパーセンテージ又は絶対値を算出することによって判定してもよい。このようなスコア又はインデクスを用いて、特定の研究又はトライアルの目的のために、どのデータセットが適切な品質を提供するかを判定してもよい。これに代えて、スコア又はインデクスは、場合によっては、感度及び/又は速度等のパラメータを変更して、低侵襲処置を繰り返す必要があるかを示す指標として用いてもよい。
なお、上述した実施形態は、2つのイメージング方式を含む多方式イメージングプローブに関する方法及びシステムに関するものであるが、イメージングプローブは、更に多くのイメージング方式を含んでいてもよい。一実施形態においては、管腔内媒体の存在に適合性がある複数のイメージング方式を使用して、関心領域を特定してもよい。更に、置換可能な管腔内媒体の置換が有利な複数のイメージング方式を使用して、関心領域をイメージングしてもよい。
上述した実施形態では、1つ以上のセンサによって評価される領域又は視野が実質的に平行移動動作、例えば、後退動作又は前進動作によって判定される処置を強調して説明した。ここに説明した方法及びデバイスは、第1及び第2の方式によってイメージングされ、評価され又は治療される領域を平行移動以外の動作で判定する他のイメージングシステムにも同様に適用される。例えば、図4a〜図4dに示すイメージングプローブ31は、光学イメージング及び超音波イメージングの両方によって広い領域をイメージングでき、イメージング角度は、偏向可能な部品70の傾斜角によって部分的に決定される。このようなプローブの場合、図6及び図7を用いて上述したような媒体置換の制御のための実施形態の平行移動動作を偏向動作に置き換えることがでる。例えば、イメージング角度が大きい場合、超音波イメージングは、第2のイメージング方式による更なる解析を必要とする関心領域が現在の視野内にないと判定してもよい。媒体置換動作が有利な関心領域は、より前方視方向のイメージング角度において特定してもよい。
同様に、例えば、2Dの又は3Dの超音波プローブで使用される線形アレイ超音波トランスデューサ又はフェイズドアレイトランスデューサ等の電子的操縦法は、平行移動又は偏向のみに依存してイメージングされる領域を判定するわけではない。このようなアレイを低侵襲イメージングプローブに組み込んでもよく、これを本発明の第1又は第2のイメージング方式又はこれらの両方として使用してもよく、媒体置換動作による利益を得てもよい。
更に他の実施形態では、外部イメージング装置をシステムの一部とすることができる。外部イメージング方式の具体例には、血管造影、CT血管造影、磁気共鳴イメージング、外部から印加される超音波等が含まれる。図8に示す実施形態においては、システム500は、蛍光透視イメージング装置510を含むことができ、これは、オプションとして、コンピュータシステム220に接続される(例えば、処理ユニット205に接続される)。平行移動動作を実行して、第1又は第2のイメージング方式によって画像を収集しながら、外部システムをトリガして、イメージングプローブの1つ以上の平行移動動作の間に1つ以上の画像フレームを収集させる画像取得トリガ信号を外部イメージング装置に供給してもよい。一具体例においては、関心がある間隔で信号を供給してもよく、このような間隔は、時間的に一定の間隔であってもよく、平行移動動作の範囲に沿った間隔であってもよい。これに代えて、この間隔は、媒体置換動作の開始又は終了に関連する時間的間隔であってもよく、判定された関心領域をイメージングプローブがイメージングする時点の間隔であってもよい。
他の実施形態においては、外部イメージング装置を用いて、1つ以上の関心領域を特定してもよい。そして、この関心領域を用いて、イメージングプローブによるイメージング方式を用いる後のイメージングを行ってもよく、このイメージングプローブによるイメージング方式は、管腔内媒体の置換が有利な方式である。一具体例においては、第1のイメージング方式は、蛍光透視イメージングデバイスであり、このシステムは、(例えば、心臓の血管造影処置の間に)造影剤を送達するように構成される。初期動作の間、蛍光透視イメージングデバイスを用いて、イメージングプローブを移動させることができる管腔を含む領域をイメージングする。
蛍光透視イメージングの場合、まず、イメージングプローブ又は更なるフラッシュカテーテルを用いて、管腔内に造影剤を供給しながら、1つ以上の初期の蛍光透視画像を取得してもよい。取得された1又は複数の初期の蛍光透視画像を用いて、イメージングプローブによるイメージング方式によってイメージングされる1つ以上の関心領域を特定してもよい。1つ以上の初期画像を観察することによって、1つ以上の関心領域を手動で特定してもよい。例えば、1つ以上の関心領域は、管腔が狭小化している位置に対応していてもよい。
一具体例においては、外部診断装置を用いて、イメージングカテーテルを、1つ以上の初期画像において特定された関心領域に誘導してもよい。例えば、イメージングプローブは、X線不透過マーカ(例えば、X線不透過マーカバンド)等の基準マーカを含んでいてもよく、これによって、外部イメージング装置を用いて、イメージングアセンブリの位置を特定することができる。したがって、外部イメージング装置を用いて、1つ以上の関心領域を含むことが既知である経路を介して平行移動できるようにイメージングプローブを配置することができ、外部診断装置を用いて、平行移動動作の間のイメージングプローブの位置を追跡し、初期画像と比較して、現在位置において媒体置換が必要であるか否かを特定してもよい。
外部の画像診断デバイスを含む更に他の具体例では、イメージングプローブは、第1及び第2のイメージング方式を含むことができ、ここで、第1のイメージング方式は、管腔内媒体の存在に適合性があり、第2のイメージング方式は、管腔内媒体の置換が有利である。(媒体置換動作を実行している間に)第2のイメージング方式によって画像を取得するための関心領域は、(上述のような)外部の診断デバイスと、(初期の平行移動及び第1のイメージング方式によるイメージング動作の間に)第1のイメージング方式の両方によって特定してもよい。
管腔内媒体とは、包括的に言えば、イメージング方式の性能を損なう可能性がある如何なる媒体であってもよい。更に、上述した実施形態は、管腔内流体の置換を含む管腔内のプローブベースのイメージング方法に関するものであるが、上述の方法は、第1のイメージング方式を用いて、第2のイメージング方式に基づくイメージングを改善又はサポートするために、置換可能な媒体の置換を指示する如何なる医療用イメージング用途にも適用できることは明らかである。
本発明の上述した実施形態に適する用途には、胃腸系、心臓系(冠状動脈、末梢血管及び神経系血管を含む)、呼吸器系、眼(網膜を含む)、聴覚系、泌尿生殖器系及び他の多くのイメージングが含まれる。
また、上述した実施形態は、第2のイメージング方式によって画像を取得するプロセスが媒体置換動作によって補助される方法を開示しているが、第2のイメージング方式の使用は、媒体置換動作によって補助又は改善される第2の低侵襲処置の一具体例にすぎないことは明らかである。したがって、他の実施形態では、上述した方法を適応化して、例えば、媒体置換動作が必要又は有利な治療を関心領域に対して自動的又は半自動的に行う低侵襲処置を実現してもよい。例えば、上述した方法における第2のイメージングステップは、媒体置換動作を実行しながら関心領域に対して実行される治療動作と組み合わせてもよく、このような治療動作と置き換えてもよい。治療における低侵襲処置は、以下に限定されるものではないが、光力学治療、レーザアブレーション、無線周波エネルギ等の電気エネルギの印加等を含み、治療の送達は、管腔内媒体の存在に適合性がある第1のイメージング方式に関わる後退動作の間に特定される関心領域によって誘導される。
上述した特定の実施形態は、例示的なものであり、これらの実施形態の様々な変更及び代替を想到することができる。更に、特許請求の範囲は、ここに開示した特定の形式に制限されず、本発明の思想及び範囲内に含まれる全ての修正、均等物及び変形例を包含する。

Claims (123)

  1. 低侵襲処置を実行するために管腔又は空洞内で媒体置換動作を行う方法において、
    イメージングプローブの機能的部品の第1の平行移動動作を行う際に第1のイメージング方式によって取得される第1の画像の組を記録するステップと、
    前記第1のイメージング方式は、置換可能な媒体の存在に適合性があり、前記第1の画像の組を前記イメージングプローブの機能的部品の関連する位置と空間的に相関させるステップと、
    前記第1の画像の組を処理して、関心領域を特定するステップと、
    前記関心領域に亘って前記イメージングプローブの機能的部品の第2の平行移動動作を実行しながら、前記媒体置換動作を行う、ステップとを有し、
    前記低侵襲処置は、前記媒体置換動作の間に関心領域内で実行される方法。
  2. 前記低侵襲処置は、前記媒体置換動作によって向上される請求項1記載の方法。
  3. 前記イメージングプローブは、前記置換可能な媒体の存在に適合性を有する更なるイメージング方式を含み、前記方法は、
    前記第1の平行移動動作が実行される際に前記更なるイメージング方式によって取得された更なる画像の組を記録し、前記更なる画像の組を前記イメージングプローブの機能的部品の位置と空間的に相関させるステップと、
    前記更なる画像の組を処理して、前記関心領域を更に特定するステップとを更に有する請求項1又は2記載の方法。
  4. 前記低侵襲処置は、治療処置である請求項1記載の方法。
  5. 前記第1の画像の組を処理して、更なる関心領域を特定するステップと、
    前記更なる関心領域に亘って更なる平行移動動作を実行しながら、更なる媒体置換動作を行うステップとを有し、
    前記更なる媒体置換動作の間に前記更なる関心領域内で更なる低侵襲処置を実行する請求項1乃至4何れか1項記載の方法。
  6. 前記第1の平行移動動作及び前記第2の平行移動動作の1つ以上は、手動で実行される請求項1乃至5何れか1項記載の方法。
  7. 前記第1の平行移動動作及び前記第2の平行移動動作の1つ以上を自動化するステップを更に有する請求項1乃至5何れか1項記載の方法。
  8. 前記媒体置換動作を行うステップは、前記イメージングプローブが前記関心領域内で平行移動される際に前記媒体置換動作を実行することを施術者に示すステップを含む請求項1乃至7何れか1項記載の方法。
  9. 前記媒体置換動作を行うステップは、前記媒体置換動作を自動化するステップを含む請求項1乃至8何れか1項記載の方法。
  10. 前記媒体置換動作は、媒体置換動作を許可するユーザからの入力を受け取った後に自動化される請求項9記載の方法。
  11. 前記媒体置換動作を自動化するステップは、媒体置換装置を制御して媒体置換動作を実行するステップを含む請求項9又は10記載の方法。
  12. 前記媒体置換装置は、流体輸送装置を含む請求項11記載の方法。
  13. 前記流体輸送装置は、自動注入器、圧力注入バッグ、蠕動ポンプ、シリンジポンプ、ピストンポンプ、バルブシステム、重力加圧システム、外部加圧手段からなるグループから選択される部品を更に備える請求項12記載の方法。
  14. 前記媒体置換動作に関連するパラメータを監視するステップを更に有する請求項1乃至13何れか1項記載の方法。
  15. 前記パラメータが所定の値の範囲に含まれない場合、施術者に警告を発し、又は媒体置換動作を終了するステップを更に有する請求項14記載の方法。
  16. 前記第1の画像の組を処理するステップは、3次元画像データを処理するステップを含む請求項1乃至15何れか1項記載の方法。
  17. 前記関心領域を特定するステップは、前記第1の画像の組を既知の又は予想される特性と比較するステップを含む請求項1乃至16何れか1項記載の方法。
  18. 前記既知の又は予想される特性は、正常な解剖学的特徴、病理上の解剖学的特徴及び医療用インプラントの1つ以上の空間的プロファイル及び/又は組織タイプである請求項17記載の方法。
  19. 前記第1の画像の組を既知の又は予想される特性と比較するステップは、比較メトリックを算出し、前記比較メトリックを閾値又は値の範囲と比較するステップを含む請求項17記載の方法。
  20. 前記閾値は、施術者によって構成可能である請求項19記載の方法。
  21. 1つ以上の関心領域が特定され、
    所定の基準に基づいて前記関心領域を格付けするステップと、
    前記格付けに基づいて前記関心領域のサブセットを選択するステップとを更に有し、
    前記関心領域に亘って第2の平行移動動作を実行しながら、前記媒体置換動作を行うステップは、前記サブセット内の各関心領域について実行される請求項1乃至20何れか1項記載の方法。
  22. 前記第1の画像の組を処理するステップは、パターン認識アルゴリズムを実行するステップを含む請求項1乃至21何れか1項記載の方法。
  23. 前記第1の画像の組を処理するステップは、検出された境界の空間的プロファイル、組織タイプ及び温度プロフィルの1つを判定するステップを含む請求項1乃至21何れか1項記載の方法。
  24. 前記第1のイメージング方式は、血管内超音波法であり、前記組織タイプを判定するステップは、後方散乱超音波信号の無線周波数プロパティを解析するステップを含む請求項23記載の方法。
  25. 前記組織タイプを判定するステップは、グレースケール画素解析、無線周波解析、組織解析及び発見的解析からなるグループから選択される解析方法を実行するステップを含む請求項23記載の方法。
  26. 前記関心領域は、プラーク、血栓、分岐点、病巣、石灰化領域、ステント、近接照射療法インプラント、狭窄部、血管壁の肥厚領域、脂質コア、壊死領域、線維性被膜、解離部、マイクロバブル、標的マイクロバブル、血管病巣及びこれらの組合せからなるグループから選択される物質又は特徴を含む請求項1乃至25何れか1項記載の方法。
  27. 前記関心領域は、前記第1の画像の組を処理することによって得られる不確定な結果に関連している請求項1乃至26何れか1項記載の方法。
  28. 前記関心領域を特定するステップは、
    前記第1の画像の組を施術者に提供するステップと、
    前記施術者から、前記関心領域を特定する入力を受信するステップとを含む請求項1乃至25何れか1項記載の方法。
  29. 前記入力は、前記関心領域に対応する画像のサブセットを含み、前記関心領域を特定するステップは、前記第1の画像の組のサブセットに対応する相対的位置範囲を特定するステップを更に含む請求項28記載の方法。
  30. 前記第1の画像の組を施術者に提供するステップは、前記第1の画像の組内の各画像に対応する相対的位置を提供するステップを更に含み、前記入力は、前記第1の画像の組のサブセットに対応する相対的位置範囲を含む請求項28記載の方法。
  31. 前記第1のイメージング方式は、グレースケールIVUS、無線周波数IVUS、Virtual Histology(商標)、統合後方散乱、iMap(商標)、エラストグラフィ、NIR分光法、ソノルミネッセントイメージング、マイクロバブル増強IVUS、標的マイクロバブル増強IVUS、光音響イメージング、蛍光分光法、バイオセンサ及びイオン選択電界効果トランジスタからなるグループから選択される請求項1乃至30何れか1項記載の方法。
  32. 前記低侵襲処置は、媒前記体置換動作を実行している間に第2のイメージング方式によって取得される第2の画像の組を取得するステップと、前記第2の画像の組を、イメージングプローブの機能的部品の関連する位置と空間的に相関させるステップとを含む請求項1乃至31何れか1項記載の方法。
  33. 前記第1の画像の組及び前記第2の画像の組を処理して、前記第1の画像の組と、前記第2の画像の組とを空間的に相関させるステップを更に有する請求項32記載の方法。
  34. 前記第2の画像の組内で前記関心領域の開始位置及び停止位置の少なくとも1つを特定するステップを更に有する請求項33記載の方法。
  35. 前記第1及び第2の画像の組を処理するステップは、前記第1の画像の組及び前記第2の画像の組内で、病理学的目印、解剖学的目印、解剖学的特徴のサイズ、管腔の直径、脈管解剖学上の分岐部、血管境界の形状及びこれらの組合せからなるグループから選択される特徴を特定するステップを含む請求項33又は34記載の方法。
  36. 前記第1及び第2の画像の組を処理するステップは、前記第1の画像の組及び前記第2の画像の組の少なくとも一部を相互相関させるステップを含む請求項33乃至35何れか1項記載の方法。
  37. 前記第1及び第2の画像の組を処理するステップは、3次元画像データを処理するステップを含む請求項33乃至36何れか1項記載の方法。
  38. 前記第2のイメージング方式は、OCT、血管造影、血管内視鏡、NIR分光法、Raman分光法、IVUS、無線周波数IVUS、エラストグラフィ、ソノルミネッセントイメージング、マイクロバブル増強IVUS、標的マイクロバブル増強IVUS、蛍光分光法及び光音響イメージングからなるグループから選択される請求項32乃至37何れか1項記載の方法。
  39. 前記第2の画像の組を実時間で処理して前記第2の画像の組の品質を判定し、前記媒体置換動作を制御して前記品質を向上させるステップを更に有する請求項32乃至38何れか1項記載の方法。
  40. 前記第2のイメージング方式を用いて最適ではないイメージングデータが取得されたことを特定し、誤りが発生したことを判定するステップとを更に有する請求項32乃至39何れか1項記載の方法。
  41. 前記誤りに対応する領域を横断するまで、前記イメージングプローブの機能的部品の平行移動の方向を反転するステップと、
    前記誤りに対応する領域に亘って更なる平行移動動作を実行しながら、更なる媒体置換動作を行うステップと、
    前記更なる媒体置換動作を実行しながら前記第2のイメージング方式によって取得された更なる画像を記録するステップとを有し、前記更なる画像は、前記イメージングプローブの相対的位置と空間的に相関される請求項40記載の方法。
  42. 前記媒体置換動作は、造影剤を含むフラッシュ液を供給するステップを含み、
    前記方法は、外部のイメージング方式を用いて、前記媒体置換動作の妥当性を判定するステップを更に有する請求項1乃至41何れか1項記載の方法。
  43. 前記外部のイメージング方式は、血管造影を含む請求項42記載の方法。
  44. 前記第1のイメージング方式及び前記第2のイメージング方式は、同じ形式のイメージングエネルギを使用する請求項32乃至41何れか1項記載の方法。
  45. 前記第1の平行移動動作及び前記第2の平行移動動作の少なくとも1つは、後退動作を含む請求項1乃至44何れか1項記載の方法。
  46. 前記第1の平行移動動作及び前記第2の平行移動動作の少なくとも1つは、前進動作を含む請求項1乃至45何れか1項記載の方法。
  47. 前記第1の平行移動動作及び前記第2の平行移動動作の1つ以上の速度は、関連するイメージング方式に応じて設定される請求項1乃至46何れか1項記載の方法。
  48. 前記第2の平行移動動作の速度は、前記第1の平行移動動作の速度より速い請求項47記載の方法。
  49. 前記イメージングプローブは、管腔内に配置される請求項1乃至48何れか1項記載の方法。
  50. 前記管腔は、血管の内部である請求項49記載の方法。
  51. 前記低侵襲処置を実行している間、前記第1のイメージング方式を停止するステップを更に有する請求項1乃至50何れか1項記載の方法。
  52. 前記第1の平行移動動作及び前記第2の平行移動動作の1つ以上の間に、外部イメージング装置による画像の取得を前記イメージングプローブの機能的部品の関連する位置に関連付ける画像取得トリガ信号を前記外部イメージング装置に供給するステップを更に有する請求項1乃至50何れか1項記載の方法。
  53. 前記画像取得トリガ信号は、予め選択された時間間隔に基づいて供給される請求項52記載の方法。
  54. 前記画像取得トリガ信号は、媒体置換動作の開始、媒体置換動作の終了、前記イメージングプローブが関心領域をイメージングしている時点のうちの1つ以上に関連する時間間隔で供給される請求項52記載の方法。
  55. 前記イメージングプローブの機能的部品は、イメージングアセンブリである請求項1乃至54何れか1項記載の方法。
  56. 管腔又は空洞内で低侵襲イメージング処置を実行するために媒体置換動作を行う方法において、
    (a)イメージングプローブの第1のイメージング方式によって1つ以上の画像を取得するステップであり、前記第1のイメージング方式は置換可能な媒体の存在に適合性がある、ステップと、
    (b)前記1つ以上の画像を処理して関心領域を特定するステップと、
    (c)関心領域が特定された場合、媒体置換動作を行い、前記媒体置換動作を実行しながら、低侵襲処置を実行するステップとを有する方法。
  57. 前記低侵襲処置は、前記媒体置換動作によって向上される請求項56記載の方法。
  58. 前記1つ以上の画像を前記イメージングプローブの相対的位置と空間的に相関させるステップを更に有する請求項56又は57記載の方法。
  59. 前記1つ以上の画像を記録するステップは、前方視方向における前方視画像を取得するステップを含み、前記1つ以上の画像を処理するステップは、前記前方視画像を処理して、前記イメージングプローブの前方視方向の位置が関心領域であるか否かを判定するステップを更に含む請求項56乃至58何れか1項記載の方法。
  60. 前記媒体置換動作を行い、前記低侵襲処置を実行するステップの前に、前記イメージングプローブの機能的部品を前記前方視方向の位置に平行移動するステップを更に有する請求項59記載の方法。
  61. 前記低侵襲処置は、前方視方向において、更なる前方視イメージング方式によって1つ以上の画像を取得するステップを含む請求項59記載の方法。
  62. 前記第1のイメージング方式及び前記更なる前方視イメージング方式の一方又は両方に基づいて、前記前方視方向における1つ以上の画像を取得するステップは、前記イメージングプローブのイメージングアセンブリ内の可動部材の向きを制御して、前記前方視方向におけるイメージングエネルギを偏向することによって実行される請求項61記載の方法。
  63. (d)前記イメージングプローブの機能的部品を新たな位置に平行移動するステップと、
    (e)ステップ(a)からステップ(c)を繰り返すステップとを更に有する請求項56乃至62何れか1項記載の方法。
  64. 前記新たな位置は、現在位置に隣接する請求項63記載の方法。
  65. 所与の位置が関心領域であると判定された場合、前記媒体置換動作は、後続する位置が関心領域ではないと判定されるまで継続される請求項63又は64記載の方法。
  66. 前記イメージングプローブの機能的部品を平行移動するステップは、前記イメージングプローブの機能的部品を前方に移動させるステップを含む請求項63乃至65何れか1項記載の方法。
  67. 前記イメージングプローブの機能的部品は、前記ステップ(a)、ステップ(b)及びステップ(c)の何れか1つ以上を実行している間に平行移動される請求項56乃至62何れか1項記載の方法。
  68. 前記ステップ(a)からステップ(c)を1回以上繰り返すステップを更に有する請求項67記載の方法。
  69. 前記イメージングプローブは、置換可能な媒体の存在に適合性がある更なるイメージング方式を含み、
    前記方法は、
    前記更なるイメージング方式によって取得された更なる画像の組を記録するステップと、
    前記更なる画像の組を処理して関心領域を特定するステップとを更に有する請求項56乃至68何れか1項記載の方法。
  70. 前記低侵襲処置は、治療処置である請求項56乃至69何れか1項記載の方法。
  71. 前記イメージングプローブの機能的部品を新たな位置に平行移動する前に前記媒体置換動作を終了するステップを更に有する請求項56乃至70何れか1項記載の方法。
  72. 前記媒体置換動作を行うステップは、前記媒体置換動作を自動化するステップを含む請求項56乃至71何れか1項記載の方法。
  73. 前記媒体置換動作は、前記媒体置換動作を許可する入力をユーザから受信した後に自動化される請求項72記載の方法。
  74. 前記媒体置換動作を自動化するステップは、媒体置換装置を制御して、前記媒体置換動作を実行するステップを含む請求項72記載の方法。
  75. 前記媒体置換装置は、流体輸送装置を含む請求項74記載の方法。
  76. 前記流体輸送装置は、自動注入器、圧力注入バッグ、蠕動ポンプ、シリンジポンプ、ピストンポンプ、バルブシステム、重力加圧システム、外部加圧手段からなるグループから選択される部品を更に備える請求項75記載の方法。
  77. 前記媒体置換動作に関連するパラメータを監視するステップを更に有する請求項56乃至76何れか1項記載の方法。
  78. 前記パラメータが事前に定めた値の範囲に含まれない場合、施術者に警告を発し、又は媒体置換動作を終了するステップを更に有する請求項77記載の方法。
  79. 前記第1のイメージング方式によって取得された前記1つ以上の画像を処理するステップは、前記イメージングプローブの現在位置に先行する空間的領域において取得された画像を処理するステップを含む請求項56乃至78何れか1項記載の方法。
  80. 前記第1のイメージング方式によって取得された前記1つ以上の画像を処理するステップは、3次元画像データを処理するステップを含む請求項56乃至79何れか1項記載の方法。
  81. 前記関心領域を特定するステップは、前記第1のイメージング方式によって取得された前記1つ以上の画像を既知の又は予想される特性と比較するステップを含む請求項56乃至80何れか1項記載の方法。
  82. 前記第1のイメージング方式によって取得された前記1つ以上の画像を既知の又は予想される特性と比較するステップは、比較メトリックを算出し、前記比較メトリックを閾値と比較するステップを含む請求項81記載の方法。
  83. 前記閾値は、施術者によって構成可能である請求項82記載の方法。
  84. 前記既知の又は予想される特性は、正常な解剖学的特徴、病理上の解剖学的特徴及び医療用インプラントの1つ以上の空間的プロファイル及び/又は組織タイプである請求項81記載の方法。
  85. 前記第1のイメージング方式によって取得された前記1つ以上の画像を処理するステップは、検出された境界の空間的プロファイル、組織タイプ及び温度プロフィルの1つを判定するステップを含む請求項56乃至84何れか1項記載の方法。
  86. 前記組織タイプを判定するステップは、グレースケール画素解析、無線周波解析、組織解析及び発見的解析からなるグループから選択される解析方法を実行するステップを含む請求項85記載の方法。
  87. 前記第1のイメージング方式は、IVUSであり、前記組織タイプを判定するステップは、後方散乱超音波信号の無線周波数プロパティを解析するステップを含む請求項85記載の方法。
  88. 前記第1のイメージング方式によって取得された前記1つ以上の画像を処理するステップは、パターン認識アルゴリズムを実行するステップを含む請求項56乃至87何れか1項記載の方法。
  89. 前記関心領域は、プラーク、血栓、分岐点、病巣、石灰化領域、ステント、近接照射療法インプラント、狭窄部、血管壁の肥厚領域、脂質コア、壊死領域、線維性被膜、解離部、マイクロバブル、標的マイクロバブル、血管病巣及びこれらの組合せからなるグループから選択される物質又は特徴を含む請求項56乃至88何れか1項記載の方法。
  90. 前記関心領域は、前記第1のイメージング方式によって取得された前記1つ以上の画像を処理するステップによって得られる不確定な結果に関連している請求項56乃至89何れか1項記載の方法。
  91. 前記第1のイメージング方式は、グレースケールIVUS、無線周波数IVUS、Virtual Histology(商標)、統合後方散乱、iMap(商標)、エラストグラフィ、NIR分光法、ソノルミネッセントイメージング、マイクロバブル増強IVUS、標的マイクロバブル増強IVUS、光音響イメージング、蛍光分光法、バイオセンサ及びイオン選択電界効果トランジスタからなるグループから選択される請求項56乃至90何れか1項記載の方法。
  92. 前記低侵襲処置は、第2のイメージング方式によって1つ以上の画像を取得することを含む請求項56乃至71何れか1項記載の方法。
  93. 前記第1のイメージング方式から取得された1つ以上の画像と、前記第2のイメージング方式から取得された1つ以上の画像とを処理し、前記第1のイメージング方式から取得された1つ以上の画像を前記第2のイメージング方式から取得された1つ以上の画像に空間的に相関させるステップを更に有する請求項92記載の方法。
  94. 前記第1のイメージング方式から取得された1つ以上の画像と、前記第2のイメージング方式から取得された1つ以上の画像とを処理するステップは、前記第1のイメージング方式から取得された1つ以上の画像及び前記第2のイメージング方式から取得された1つ以上の画像内で、病理学的目印、解剖学的目印、解剖学的特徴のサイズ、管腔の直径、脈管解剖学上の分岐部、血管境界の形状及びこれらの組合せからなるグループから選択される特徴を特定するステップを含む請求項93記載の方法。
  95. 前記第1のイメージング方式から取得された1つ以上の画像と、前記第1のイメージング方式から取得された1つ以上の画像とを処理するステップは、前記第1のイメージング方式から取得された1つ以上の画像及び前記第2のイメージング方式から取得された1つ以上の画像の少なくとも一部を相互相関させるステップを含む請求項93記載の方法。
  96. 前記第1のイメージング方式から取得された1つ以上の画像と、前記第2のイメージング方式から取得された1つ以上の画像とを処理するステップは、3次元画像データを処理するステップを含む請求項93乃至95何れか1項記載の方法。
  97. 前記第2のイメージング方式は、OCT、血管造影、血管内視鏡、NIR分光法、Raman分光法、IVUS、無線周波数IVUS、エラストグラフィ、ソノルミネッセントイメージング、マイクロバブル増強IVUS、標的マイクロバブル増強IVUS、蛍光分光法及び光音響イメージングからなるグループから選択される請求項92乃至96何れか1項記載の方法。
  98. 前記第2のイメージング方式によって取得された1つ以上の画像を実時間で処理して、前記第2のイメージング方式によって取得された1つ以上の画像の品質を判定するステップを更に有する請求項92乃至97何れか1項記載の方法。
  99. 前記媒体置換動作を制御して前記品質を向上させるステップを更に有する請求項98記載の方法。
  100. 前記第1のイメージング方式及び前記第2のイメージング方式は、同じ形式のイメージングエネルギを使用する請求項92記載の方法。
  101. 前記イメージングプローブは、管腔内に配置される請求項56乃至100何れか1項記載の方法。
  102. 前記管腔は、血管の内部である請求項101記載の方法。
  103. 前記第2のイメージング方式を用いて最適ではないイメージングデータが取得されたことを特定し、誤りが発生したことの通知を提供するステップと、
    前記第2のイメージング方式を用いて更なる画像の組を取得するステップとを更に有する請求項98記載の方法。
  104. 第1の平行移動動作及び第2の平行移動動作の1つ以上の間に、外部イメージング装置による画像の取得を上記イメージングプローブの相対的位置に関連付ける画像取得トリガ信号を前記外部イメージング装置に供給するステップを更に有する請求項56乃至103何れか1項記載の方法。
  105. 前記画像取得トリガ信号は、予め選択された時間間隔に基づいて供給される請求項104記載の方法。
  106. 前記画像取得トリガ信号は、前記媒体置換動作の開始、前記媒体置換動作の終了、前記イメージングプローブが関心領域をイメージングした時点のうちの1つ以上に関連する時間間隔で供給される請求項104記載の方法。
  107. プローブによって、管腔又は空洞内で低侵襲イメージング処置を実行するために媒体置換動作を行う方法において、
    外部イメージング装置によって、前記低侵襲処置を実行する領域の1つ以上の画像を取得するステップと、
    前記1つ以上の画像内で関心領域を特定するステップと、
    前記外部イメージング装置によって1つ以上の更なる画像を取得しながら、前記プローブの機能的部品を関心領域に平行移動し、前記機能的部品の位置が前記1つ以上の更なる画像によって特定可能であるステップと、
    前記関心領域内で前記プローブの機能的部品に関連する平行移動動作を実行しながら、媒体置換動作を行うステップとを有する方法。
  108. 前記媒体置換動作の間に前記関心領域内で前記低侵襲処置を実行するステップを更に有する請求項107記載の方法。
  109. 前記プローブの機能的部品は、前記外部イメージング装置によって特定可能な基準マーカを含む請求項107又は108記載の方法。
  110. 前記外部イメージング装置のイメージング方式は、蛍光透視であり、前記基準マーカは、X線不透過マーカである請求項109記載の方法。
  111. 前記外部イメージング装置によって1つ以上の画像を取得している間、更なる媒体置換動作を行うステップを更に有する請求項107乃至110何れか1項記載の方法。
  112. 前記イメージングプローブは、管腔内に配置される請求項107乃至111何れか1項記載の方法。
  113. 前記管腔は、血管の内部である請求項112記載の方法。
  114. 管腔又は空洞内で低侵襲イメージング処置を実行するために媒体置換動作を行う方法において、
    プローブの機能的部品の第1の平行移動動作を実行した際、非イメージング方式から取得された測定値の組を記録するステップと、
    前記非イメージング方式は、置換可能な媒体の存在に適合性があり、前記測定値の組を前記プローブの機能的部品の関連する位置と空間的に相関させるステップと、
    前記測定値の組を処理して、関心領域を特定するステップと、
    前記関心領域に亘って前記プローブの機能的部品の第2の平行移動動作を実行しながら、媒体置換動作を行うステップとを有し、
    前記低侵襲処置は、前記媒体置換動作の間に前記関心領域内で実行される方法。
  115. 管腔又は空洞内で低侵襲イメージング処置を実行するために媒体置換動作を行う方法において、
    (a)置換可能な媒体の存在に適合性がある、プローブの非イメージング方式によって1つ以上の測定値を取得するステップと、
    (b)前記1つ以上の測定値を処理して関心領域を特定するステップと、
    (c)関心領域が特定された場合、媒体置換動作を行い、前記媒体置換動作を実行しながら、低侵襲処置を実行するステップとを有する方法。
  116. 前記非イメージング方式は、サーモグラフィ及び生物学的検体の感知からなるグループから選択される請求項115記載の方法。
  117. (d)前記プローブの機能的部品を新たな位置に平行移動するステップと、
    (e)前記ステップ(a)からステップ(c)を繰り返すステップとを更に有する請求項115記載の方法。
  118. 前記非イメージング方式は、サーモグラフィ及び生物学的検体の感知からなるグループから選択される請求項117記載の方法。
  119. 前記新たな位置は、現在位置に隣接する請求項117記載の方法。
  120. 所与の位置が関心領域であると判定された場合、前記媒体置換動作は、後続する位置が関心領域ではないと判定されるまで継続される請求項117乃至119何れか1項記載の方法。
  121. 前記プローブの機能的部品を平行移動するステップは、前記プローブの機能的部品を前方に移動させるステップを含む請求項117乃至120何れか1項記載の方法。
  122. 前記プローブの機能的部品は、前記ステップ(a)、ステップ(b)及びステップ(c)の何れか1つ以上を実行している間に平行移動される請求項115乃至121何れか1項記載の方法。
  123. 前記ステップ(a)からステップ(c)を1回以上繰り返すステップを更に有する請求項122記載の方法。
JP2020037727A 2010-11-08 2020-03-05 イメージングシステムの動作を制御する方法及びイメージを取得するシステム Active JP7069236B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022076012A JP2022106900A (ja) 2010-11-08 2022-05-02 イメージングシステムの動作を制御する方法及びイメージを取得するシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US41122510P 2010-11-08 2010-11-08
US61/411,225 2010-11-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018131974A Division JP6673985B2 (ja) 2010-11-08 2018-07-12 イメージングシステムの動作を制御する方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022076012A Division JP2022106900A (ja) 2010-11-08 2022-05-02 イメージングシステムの動作を制御する方法及びイメージを取得するシステム

Publications (2)

Publication Number Publication Date
JP2020103935A true JP2020103935A (ja) 2020-07-09
JP7069236B2 JP7069236B2 (ja) 2022-05-17

Family

ID=46050280

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2013536968A Pending JP2013541392A (ja) 2010-11-08 2011-11-08 低侵襲処置の間の改善された視覚化のためのシステム及び方法
JP2017000820A Active JP6371421B2 (ja) 2010-11-08 2017-01-06 イメージングシステムの動作を制御する方法
JP2018131974A Active JP6673985B2 (ja) 2010-11-08 2018-07-12 イメージングシステムの動作を制御する方法
JP2020037727A Active JP7069236B2 (ja) 2010-11-08 2020-03-05 イメージングシステムの動作を制御する方法及びイメージを取得するシステム
JP2022076012A Pending JP2022106900A (ja) 2010-11-08 2022-05-02 イメージングシステムの動作を制御する方法及びイメージを取得するシステム

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2013536968A Pending JP2013541392A (ja) 2010-11-08 2011-11-08 低侵襲処置の間の改善された視覚化のためのシステム及び方法
JP2017000820A Active JP6371421B2 (ja) 2010-11-08 2017-01-06 イメージングシステムの動作を制御する方法
JP2018131974A Active JP6673985B2 (ja) 2010-11-08 2018-07-12 イメージングシステムの動作を制御する方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022076012A Pending JP2022106900A (ja) 2010-11-08 2022-05-02 イメージングシステムの動作を制御する方法及びイメージを取得するシステム

Country Status (5)

Country Link
US (3) US9076202B2 (ja)
EP (2) EP2637555B1 (ja)
JP (5) JP2013541392A (ja)
CA (2) CA2815580C (ja)
WO (1) WO2012061940A1 (ja)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10343283B2 (en) * 2010-05-24 2019-07-09 Intouch Technologies, Inc. Telepresence robot system that can be accessed by a cellular phone
CA2815580C (en) * 2010-11-08 2020-09-08 Colibri Technologies Inc. Systems and methods for improved visualization during minimally invasive procedures
CA2824955C (en) 2011-01-31 2020-09-01 Sunnybrook Health Sciences Centre Ultrasonic probe with ultrasonic transducers addressable on common electrical channel
EP2765907B1 (en) 2011-10-14 2016-05-18 Acist Medical Systems, Inc. Device for measuring an anatomical structure
US10213187B1 (en) 2012-01-25 2019-02-26 Mubin I. Syed Method and apparatus for percutaneous superficial temporal artery access for carotid artery stenting
US10292807B2 (en) 2012-02-07 2019-05-21 Intervene, Inc. Systems and methods for endoluminal valve creation
US9877699B2 (en) 2012-03-26 2018-01-30 Teratech Corporation Tablet ultrasound system
US10667790B2 (en) 2012-03-26 2020-06-02 Teratech Corporation Tablet ultrasound system
US10064595B2 (en) * 2012-04-24 2018-09-04 Siemens Healthcare Gmbh System for coregistration of optical coherence tomography and angiographic X-ray image data
US9549679B2 (en) 2012-05-14 2017-01-24 Acist Medical Systems, Inc. Multiple transducer delivery device and method
CN104379065B (zh) * 2012-05-25 2018-07-13 阿西斯特医疗系统有限公司 流体流量测量系统和方法
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
CA2887360A1 (en) 2012-10-05 2014-04-10 Nathaniel J. Kemp Methods and systems for establishing parameters, playback, and artifact removal three-dimensional imaging
US20140100454A1 (en) * 2012-10-05 2014-04-10 Volcano Corporation Methods and systems for establishing parameters for three-dimensional imaging
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
ES2978868T3 (es) * 2012-11-19 2024-09-23 Lightlab Imaging Inc Dispositivos de interfaz, sistemas y métodos para sondas multimodales
US10639179B2 (en) 2012-11-21 2020-05-05 Ram Medical Innovations, Llc System for the intravascular placement of a medical device
EP2934324B1 (en) 2012-12-21 2020-05-06 Volcano Corporation Display control for a multi-sensor medical device
US9615878B2 (en) * 2012-12-21 2017-04-11 Volcano Corporation Device, system, and method for imaging and tissue characterization of ablated tissue
CA2896016A1 (en) * 2012-12-21 2014-06-26 Paul Hoseit System and method for flush-triggered imaging
CA2896718A1 (en) * 2012-12-28 2014-07-03 Volcano Corporation Intravascular ultrasound imaging apparatus, interface architecture, and method of manufacturing
JP6112861B2 (ja) * 2012-12-28 2017-04-12 キヤノン株式会社 被検体情報取得装置、信号処理装置および表示装置
CN103054563B (zh) * 2013-01-06 2016-02-24 深圳先进技术研究院 一种血管壁图像纹理特征的量化和提取方法
WO2014110460A1 (en) 2013-01-10 2014-07-17 Intervene, Inc. Systems and methods for endoluminal valve creation
GB2512077B (en) * 2013-03-19 2019-10-23 Univ Erasmus Med Ct Rotterdam Intravascular optical imaging system
EP3015068A4 (en) * 2013-08-01 2017-06-21 Sogang University Research Foundation Device and method for acquiring fusion image
US10231613B2 (en) 2013-09-27 2019-03-19 Intervene, Inc. Visualization devices, systems, and methods for informing intravascular procedures on blood vessel valves
US9377291B2 (en) 2013-12-05 2016-06-28 Bioptigen, Inc. Image registration, averaging, and compounding for high speed extended depth optical coherence tomography
US10147189B2 (en) * 2013-12-06 2018-12-04 The Johns Hopkins University Gross feature recognition of anatomical images based on atlas grid
EP3092479A4 (en) * 2014-01-06 2017-11-22 Body Vision Medical Ltd. Surgical devices and methods of use thereof
EP3117775B1 (en) * 2014-03-12 2024-08-14 Terumo Kabushiki Kaisha Control device and diagnosis system for same
EP3122266B1 (en) 2014-03-24 2018-06-06 Intervene, Inc. Devices and systems for controlled hydrodissection of vessel walls
US9579502B2 (en) 2014-04-19 2017-02-28 Medtronic, Inc. Implantable medical leads, systems, and related methods for creating a high impedance within a conduction path in the presence of a magnetic field of a given strength
JP6254907B2 (ja) * 2014-05-30 2017-12-27 株式会社モリタ製作所 レーザ光導光システム
EP3166500B1 (en) * 2014-07-11 2018-09-26 Acist Medical Systems, Inc. Intravascular imaging
US10675003B2 (en) 2014-07-11 2020-06-09 Acist Medical Systems, Inc. Intravascular imaging
JP6395504B2 (ja) * 2014-08-20 2018-09-26 キヤノン株式会社 放射線撮影装置の評価方法、及び評価方法に用いるファントム
JP2016042922A (ja) * 2014-08-20 2016-04-04 プレキシオン株式会社 光音響画像化装置
JP6315816B2 (ja) * 2014-09-25 2018-04-25 テルモ株式会社 画像処理装置、画像処理装置の作動方法、プログラムおよび記憶媒体
DE102014015225A1 (de) * 2014-10-02 2016-04-07 Carl Zeiss Meditec Ag Verfahren zur Kontrastmittel-basierten, multimodalen Fundus-Bildgebung
JP6452410B2 (ja) * 2014-11-28 2019-01-16 キヤノン株式会社 光音響装置
JP6824896B2 (ja) * 2014-12-12 2021-02-03 ライトラボ・イメージング・インコーポレーテッド 血管内の特徴を検出し且つ表示するためのシステム及び方法
US10603018B2 (en) 2014-12-16 2020-03-31 Intervene, Inc. Intravascular devices, systems, and methods for the controlled dissection of body lumens
US10285760B2 (en) * 2015-02-04 2019-05-14 Queen's University At Kingston Methods and apparatus for improved electromagnetic tracking and localization
US9636244B2 (en) 2015-04-09 2017-05-02 Mubin I. Syed Apparatus and method for proximal to distal stent deployment
CN107530047B (zh) * 2015-04-10 2020-06-12 核通运营有限公司 短距离放射疗法系统
US9436993B1 (en) * 2015-04-17 2016-09-06 Clear Guide Medical, Inc System and method for fused image based navigation with late marker placement
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
US10839509B2 (en) 2015-07-10 2020-11-17 3Scan Inc. Spatial multiplexing of histological stains
JP6814811B2 (ja) 2015-10-22 2021-01-20 タイト ケア リミテッド 生理学的モニタのためのシステム、方法、及びコンピュータプログラム製品
US10327929B2 (en) 2015-10-30 2019-06-25 Ram Medical Innovations, Llc Apparatus and method for stabilization of procedural catheter in tortuous vessels
US10779976B2 (en) 2015-10-30 2020-09-22 Ram Medical Innovations, Llc Apparatus and method for stabilization of procedural catheter in tortuous vessels
US11020256B2 (en) 2015-10-30 2021-06-01 Ram Medical Innovations, Inc. Bifurcated “Y” anchor support for coronary interventions
US9980838B2 (en) 2015-10-30 2018-05-29 Ram Medical Innovations Llc Apparatus and method for a bifurcated catheter for use in hostile aortic arches
US10492936B2 (en) 2015-10-30 2019-12-03 Ram Medical Innovations, Llc Apparatus and method for improved access of procedural catheter in tortuous vessels
CN109068995B (zh) 2016-02-26 2022-05-13 新宁研究院 具有可旋转芯的成像探针
US10646247B2 (en) 2016-04-01 2020-05-12 Intervene, Inc. Intraluminal tissue modifying systems and associated devices and methods
US10173031B2 (en) 2016-06-20 2019-01-08 Mubin I. Syed Interchangeable flush/selective catheter
AU2017349568B2 (en) * 2016-10-31 2023-06-15 Body Vision Medical Ltd. Jigs for use in medical imaging and methods for using thereof
US10314491B2 (en) * 2017-02-11 2019-06-11 The General Hospital Corporation Optics for apodizing an optical imaging probe beam
EP3366221A1 (en) * 2017-02-28 2018-08-29 Koninklijke Philips N.V. An intelligent ultrasound system
JP6485491B2 (ja) 2017-06-08 2019-03-20 Tdk株式会社 磁気センサ及びカメラモジュール
US11259702B2 (en) 2017-08-29 2022-03-01 Canon U.S.A., Inc. Fiber optic imaging probe having cladding mode pullback trigger, and control method therefor
CN111065340B (zh) * 2017-09-28 2022-09-20 波士顿科学国际有限公司 基于频率调节沿血管内超声成像系统的信号路径的系统和方法
EP3461416A1 (en) * 2017-09-28 2019-04-03 Koninklijke Philips N.V. Guiding an intravascular us catheter
CA3077311A1 (en) 2017-09-29 2019-04-04 C. R. Bard, Inc. Apparatus and method for tracking a medical ultrasonic object
US11596313B2 (en) 2017-10-13 2023-03-07 Arizona Board Of Regents On Behalf Of Arizona State University Photoacoustic targeting with micropipette electrodes
US10857014B2 (en) 2018-02-18 2020-12-08 Ram Medical Innovations, Llc Modified fixed flat wire bifurcated catheter and its application in lower extremity interventions
US20200375605A1 (en) * 2018-02-20 2020-12-03 Bioq Devices Pty Ltd A collapsible and adjustable vessel treatment device and advanced cuff with independent and dynamically controlled charge and discharge modes for a vessel or sac wall treatment and a cardiac assist device
US20190282069A1 (en) * 2018-03-16 2019-09-19 Barbara Smith Deep brain stimulation electrode with photoacoustic and ultrasound imaging capabilities
US20210012546A1 (en) * 2018-03-26 2021-01-14 Koninklijke Philips N.V. Automatic fault detection in hybrid imaging
JP6945727B2 (ja) * 2018-04-06 2021-10-06 京セラ株式会社 カテーテルシステム
JP7541486B2 (ja) * 2018-04-19 2024-08-28 ザ ジェネラル ホスピタル コーポレイション 後方散乱コントラストを用いて血管内の血流を測定するための方法及び装置
EP3797399A1 (en) 2018-05-23 2021-03-31 ACIST Medical Systems, Inc. Flow measurement using image data
EP3613351A1 (en) * 2018-08-22 2020-02-26 Koninklijke Philips N.V. Coronary circulation using intra-cardiac echo
WO2020040181A1 (ja) * 2018-08-24 2020-02-27 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
US11596384B2 (en) * 2018-10-26 2023-03-07 Philips Image Guided Therapy Corporation Intraluminal ultrasound vessel border selection and associated devices, systems, and methods
US11768182B2 (en) 2019-04-26 2023-09-26 Arizona Board Of Regents On Behalf Of Arizona State University Photoacoustic and optical microscopy combiner and method of generating a photoacoustic image of a sample
US11975327B2 (en) 2019-06-19 2024-05-07 Arizona Board Of Regents On Behalf Of Arizona State University Integrated container adapter for photoacoustic microscopy
US20210113098A1 (en) * 2019-10-16 2021-04-22 Canon U.S.A., Inc. Image processing apparatus, method and storage medium to determine longitudinal orientation
US11250563B2 (en) 2019-10-31 2022-02-15 Tencent America LLC Hierarchical processing technique for lesion detection, classification, and segmentation on microscopy images
KR102119719B1 (ko) * 2019-12-05 2020-06-08 최석용 자궁경부 영상을 이용한 검사 장치 및 검사 방법
EP4142567A4 (en) * 2020-04-29 2024-06-26 Gentuity, LLC IMAGING SYSTEM
CN111667447A (zh) * 2020-06-05 2020-09-15 全景恒升(北京)科学技术有限公司 血管内图像融合方法、系统及图像采集装置
WO2021262785A1 (en) 2020-06-23 2021-12-30 Intervene, Inc. Endovascular valve formation system with imaging capability
US20230301519A1 (en) * 2020-07-24 2023-09-28 Koninklijke Philips N.V. Multi-modality medical system and associated devices and methods
US11944778B2 (en) 2020-08-06 2024-04-02 Canon U.S.A., Inc. Methods and systems for automatic pullback trigger
US12112488B2 (en) 2020-08-06 2024-10-08 Canon U.S.A., Inc. Methods and systems for image synchronization
US11972561B2 (en) 2020-08-06 2024-04-30 Canon U.S.A., Inc. Auto-pullback triggering method for intracoronary imaging apparatuses or systems using blood clearing
US11633534B2 (en) 2020-08-18 2023-04-25 Acist Medical Systems, Inc. Angiogram injections using electrocardiographic synchronization
JP7242621B2 (ja) * 2020-10-27 2023-03-20 ジーイー・プレシジョン・ヘルスケア・エルエルシー 超音波画像表示システム及びその制御プログラム
CN112370079B (zh) * 2020-11-18 2022-08-26 景德镇陶瓷大学 一种利用超声多普勒检测血栓的方法
EP4098205A1 (en) * 2021-05-31 2022-12-07 Koninklijke Philips N.V. Power reduction in ultrasound systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510586A (ja) * 2004-08-24 2008-04-10 ザ ジェネラル ホスピタル コーポレイション 血管セグメントを画像化する方法および装置
US20090299195A1 (en) * 2008-05-07 2009-12-03 Infraredx Multimodal Catheter System and Method for Intravascular Analysis
JP2010011964A (ja) * 2008-07-02 2010-01-21 Toshiba Corp 医用画像処理装置および医用画像処理プログラム
JP2010508973A (ja) * 2006-11-08 2010-03-25 ライトラブ イメージング, インコーポレイテッド 光−音響イメージングデバイスおよび方法
US20100249588A1 (en) * 2009-03-31 2010-09-30 Boston Scientific Scimed, Inc. Systems and methods for making and using intravascular imaging systems with multiple pullback rates

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1020808A (en) 1910-04-27 1912-03-19 Frederick William Dufwa Bottle and stopper.
US1020708A (en) 1911-06-10 1912-03-19 Thomas J Marshall Soap-bubble blower.
US4794931A (en) 1986-02-28 1989-01-03 Cardiovascular Imaging Systems, Inc. Catheter apparatus, system and method for intravascular two-dimensional ultrasonography
JP3296828B2 (ja) * 1991-01-18 2002-07-02 オリンパス光学工業株式会社 超音波画像解析装置
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US5203337A (en) * 1991-05-08 1993-04-20 Brigham And Women's Hospital, Inc. Coronary artery imaging system
US7074179B2 (en) * 1992-08-10 2006-07-11 Intuitive Surgical Inc Method and apparatus for performing minimally invasive cardiac procedures
GB9312327D0 (en) 1993-06-15 1993-07-28 British Tech Group Laser ultrasound probe and ablator
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US6019724A (en) * 1995-02-22 2000-02-01 Gronningsaeter; Aage Method for ultrasound guidance during clinical procedures
US5752158A (en) 1996-04-19 1998-05-12 M4 Environmental L.P. Thermal process for the conversion of uranium hexafluoride
US5908445A (en) 1996-10-28 1999-06-01 Ep Technologies, Inc. Systems for visualizing interior tissue regions including an actuator to move imaging element
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US5904651A (en) 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US5848969A (en) 1996-10-28 1998-12-15 Ep Technologies, Inc. Systems and methods for visualizing interior tissue regions using expandable imaging structures
US5722403A (en) 1996-10-28 1998-03-03 Ep Technologies, Inc. Systems and methods using a porous electrode for ablating and visualizing interior tissue regions
US7352339B2 (en) * 1997-08-26 2008-04-01 Philips Solid-State Lighting Solutions Diffuse illumination systems and methods
US6066096A (en) * 1998-05-08 2000-05-23 Duke University Imaging probes and catheters for volumetric intraluminal ultrasound imaging and related systems
US6178346B1 (en) 1998-10-23 2001-01-23 David C. Amundson Infrared endoscopic imaging in a liquid with suspended particles: method and apparatus
US6146357A (en) * 1999-05-07 2000-11-14 Embol-X, Inc. Balloon occlusion diameter and pressure measuring devices and methods of use
US20010007940A1 (en) * 1999-06-21 2001-07-12 Hosheng Tu Medical device having ultrasound imaging and therapeutic means
US6200268B1 (en) 1999-09-10 2001-03-13 The Cleveland Clinic Foundation Vascular plaque characterization
US7510536B2 (en) * 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
DE59900103D1 (de) 1999-10-01 2001-06-28 Storz Karl Gmbh & Co Kg Bildgebendes Verfahren zum Ermitteln des Zustands von Gewebe
US6692430B2 (en) 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
US7022077B2 (en) * 2000-11-28 2006-04-04 Allez Physionix Ltd. Systems and methods for making noninvasive assessments of cardiac tissue and parameters
AU2003205144B2 (en) 2002-01-15 2008-09-04 Board Of Regents, The University Of Texas System Methods and compositions to reduce scattering of light during therapeutic and diagnostic imaging procedures
US7359554B2 (en) 2002-08-26 2008-04-15 Cleveland Clinic Foundation System and method for identifying a vascular border
US20060265043A1 (en) * 2002-09-30 2006-11-23 Evgenia Mandrusov Method and apparatus for treating vulnerable plaque
US7074187B2 (en) * 2002-12-13 2006-07-11 Selzer Robert H System and method for improving ultrasound image acquisition and replication for repeatable measurements of vascular structures
US7620220B2 (en) * 2003-03-21 2009-11-17 Boston Scientific Scimed, Inc. Scan conversion of medical imaging data from polar format to cartesian format
US7241286B2 (en) 2003-04-25 2007-07-10 Lightlab Imaging, Llc Flush catheter with flow directing sheath
US8052701B1 (en) * 2003-06-02 2011-11-08 Abbott Cardiovascular Systems Inc. Method and apparatus for rupturing a vulnerable plaque
WO2005018459A1 (en) * 2003-08-20 2005-03-03 Hansen Medical, Inc. System and method for 3-d imaging
DE10343808B4 (de) * 2003-09-22 2017-06-01 Siemens Healthcare Gmbh Medizinisches Untersuchungs- und/oder Behandlungssystem
US20080051660A1 (en) * 2004-01-16 2008-02-28 The University Of Houston System Methods and apparatuses for medical imaging
US20080281205A1 (en) * 2004-01-16 2008-11-13 Morteza Naghavi Methods and Apparatuses For Medical Imaging
DE102004008367A1 (de) 2004-02-20 2005-09-22 Siemens Ag Verfahren zur Aufnahme zweidimensionaler Bilder im Inneren eines blutdurchflossenen Gefäßes mittels optischer Kohärenztomographie
US7397935B2 (en) 2004-05-10 2008-07-08 Mediguide Ltd. Method for segmentation of IVUS image sequences
GB2445322B (en) * 2004-08-13 2008-08-06 Stichting Tech Wetenschapp Intravasular ultrasound techniques
WO2006037001A1 (en) * 2004-09-24 2006-04-06 Lightlab Imaging, Inc. Fluid occluding devices and methods
DE102005045071A1 (de) * 2005-09-21 2007-04-12 Siemens Ag Kathetervorrichtung mit einem Positionssensorsystem zur Behandlung eines teilweisen und/oder vollständigen Gefäßverschlusses unter Bildüberwachung
DE102004058008B4 (de) 2004-12-01 2007-08-23 Siemens Ag Führungsdraht für Gefäßkatheter mit verbesserter Ortungs- und Navigiermöglichkeit
EP2417903A1 (en) * 2005-01-21 2012-02-15 Massachusetts Institute of Technology Methods and apparatus for optical coherence tomography scanning
US8137333B2 (en) * 2005-10-25 2012-03-20 Voyage Medical, Inc. Delivery of biological compounds to ischemic and/or infarcted tissue
JP4577504B2 (ja) * 2005-03-31 2010-11-10 富士フイルム株式会社 画像診断装置
WO2006121851A2 (en) 2005-05-05 2006-11-16 Volcano Corporation Capacitive microfabricated ultrasound transducer-based intravascular ultrasound probes
DE102005032961A1 (de) 2005-07-14 2007-01-18 Siemens Ag Verfahren und Vorrichtung zur Erzeugung eines Bildes mittels optischer Kohärenztomographie
US7312879B2 (en) * 2005-08-23 2007-12-25 University Of Washington Distance determination in a scanned beam image capture device
WO2007033379A2 (en) * 2005-09-14 2007-03-22 Neoguide Systems, Inc. Methods and apparatus for performing transluminal and other procedures
US7729746B2 (en) * 2005-11-04 2010-06-01 Siemens Aktiengesellschaft Three-dimensional co-registration between intravascular and angiographic data
US7674240B2 (en) 2005-12-20 2010-03-09 Abbott Cardiovascular Systems Inc. Method and apparatus for controlled vessel occlusion
US7627156B2 (en) * 2006-03-22 2009-12-01 Volcano Corporation Automated lesion analysis based upon automatic plaque characterization according to a classification criterion
US20090187108A1 (en) * 2006-09-29 2009-07-23 Cornova, Inc. Systems and methods for analysis and treatment of a body lumen
US8460195B2 (en) * 2007-01-19 2013-06-11 Sunnybrook Health Sciences Centre Scanning mechanisms for imaging probe
EP2111165B8 (en) 2007-01-19 2017-10-04 Sunnybrook Health Sciences Centre Imaging probe with combined ultrasound and optical means of imaging
US8172757B2 (en) * 2007-06-18 2012-05-08 Sunnybrook Health Sciences Centre Methods and devices for image-guided manipulation or sensing or anatomic structures
US20090234231A1 (en) * 2008-03-13 2009-09-17 Knight Jon M Imaging Catheter With Integrated Contrast Agent Injector
US8764666B2 (en) * 2008-10-28 2014-07-01 The Regents Of The University Of California Ultrasound guided optical coherence tomography, photoacoustic probe for biomedical imaging
WO2010065786A1 (en) * 2008-12-03 2010-06-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for determining the positioin of the tip of a medical catheter within the body of a patient
US20100198081A1 (en) * 2009-02-02 2010-08-05 John Harold Hanlin Scanning light imager
US8412312B2 (en) * 2009-09-23 2013-04-02 Lightlab Imaging, Inc. Apparatus, systems, and methods of in-vivo blood clearing in a lumen
CA2786141A1 (en) 2009-12-30 2011-07-07 Axcelon Biopolymers Corporation Transparent bacterial cellulose nanocomposite hydrogels
CA2815580C (en) * 2010-11-08 2020-09-08 Colibri Technologies Inc. Systems and methods for improved visualization during minimally invasive procedures
US10010206B1 (en) 2017-06-26 2018-07-03 David A Schuff Hanger organizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008510586A (ja) * 2004-08-24 2008-04-10 ザ ジェネラル ホスピタル コーポレイション 血管セグメントを画像化する方法および装置
JP2010508973A (ja) * 2006-11-08 2010-03-25 ライトラブ イメージング, インコーポレイテッド 光−音響イメージングデバイスおよび方法
US20090299195A1 (en) * 2008-05-07 2009-12-03 Infraredx Multimodal Catheter System and Method for Intravascular Analysis
JP2010011964A (ja) * 2008-07-02 2010-01-21 Toshiba Corp 医用画像処理装置および医用画像処理プログラム
US20100249588A1 (en) * 2009-03-31 2010-09-30 Boston Scientific Scimed, Inc. Systems and methods for making and using intravascular imaging systems with multiple pullback rates

Also Published As

Publication number Publication date
JP2019000651A (ja) 2019-01-10
JP6673985B2 (ja) 2020-04-01
EP2637555B1 (en) 2021-09-15
US20130216114A1 (en) 2013-08-22
CA3085777C (en) 2022-03-15
JP6371421B2 (ja) 2018-08-08
US9907536B2 (en) 2018-03-06
USRE49218E1 (en) 2022-09-27
EP3988011B1 (en) 2023-08-23
JP2013541392A (ja) 2013-11-14
CA3085777A1 (en) 2012-05-18
JP2017113576A (ja) 2017-06-29
EP3988011A1 (en) 2022-04-27
WO2012061940A1 (en) 2012-05-18
EP2637555A4 (en) 2015-10-07
JP2022106900A (ja) 2022-07-20
US9076202B2 (en) 2015-07-07
WO2012061940A4 (en) 2012-07-05
CA2815580A1 (en) 2012-05-18
US20150366536A1 (en) 2015-12-24
CA2815580C (en) 2020-09-08
JP7069236B2 (ja) 2022-05-17
EP2637555A1 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP7069236B2 (ja) イメージングシステムの動作を制御する方法及びイメージを取得するシステム
JP6353001B2 (ja) 撮像プローブ用の走査機構
EP2413805B1 (en) Intravascular imaging systems with multiple pullback rates
JP2021517033A (ja) 医療管腔内超音波イメージングにおける脈管内病巣及びステント配備のスコアリング
US20120130242A1 (en) Systems and methods for concurrently displaying a plurality of images using an intravascular ultrasound imaging system
JP2020032241A (ja) イメージング及び処理デバイス
JP2017500993A (ja) 腔内カテーテルのトラッキング
JP2022509392A (ja) 管腔内超音波イメージングのための速度決定、並びに関連するデバイス、システム、及び方法
US11344203B2 (en) Opto acoustic device system and method
US20230000321A1 (en) Optical imaging system

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7069236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150