JP2020043386A - ラダー型フィルタ及びマルチプレクサ - Google Patents

ラダー型フィルタ及びマルチプレクサ Download PDF

Info

Publication number
JP2020043386A
JP2020043386A JP2018166922A JP2018166922A JP2020043386A JP 2020043386 A JP2020043386 A JP 2020043386A JP 2018166922 A JP2018166922 A JP 2018166922A JP 2018166922 A JP2018166922 A JP 2018166922A JP 2020043386 A JP2020043386 A JP 2020043386A
Authority
JP
Japan
Prior art keywords
series
comb
electrode pair
resonators
piezoelectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018166922A
Other languages
English (en)
Other versions
JP7068974B2 (ja
Inventor
慎平 三浦
Shimpei Miura
慎平 三浦
今須 誠士
Seishi Imasu
誠士 今須
松田 隆志
Takashi Matsuda
隆志 松田
匡郁 岩城
Masafumi Iwaki
匡郁 岩城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2018166922A priority Critical patent/JP7068974B2/ja
Priority to US16/198,284 priority patent/US10700662B2/en
Priority to CN201811601855.4A priority patent/CN110022134B/zh
Publication of JP2020043386A publication Critical patent/JP2020043386A/ja
Application granted granted Critical
Publication of JP7068974B2 publication Critical patent/JP7068974B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】耐電力性を向上させること。【解決手段】圧電基板と、前記圧電基板上に設けられ、経路上に直列に接続され、第1櫛型電極対を有する1又は複数の第1直列共振器と、前記圧電基板上に設けられ、前記1又は複数の第1直列共振器に対し直列接続され、前記第1櫛型電極対よりも電極指の平均ピッチが大きく且つ前記第1櫛型電極対よりも速い音速の弾性波を励振する第2櫛型電極対を有する第2直列共振器と、前記圧電基板上に設けられ、一端が前記経路に電気的に接続され、他端が接地された1又は複数の並列共振器と、を備えるラダー型フィルタ。【選択図】図2

Description

本発明は、ラダー型フィルタ及びマルチプレクサに関する。
携帯電話を代表とする高周波通信用システムに用いられる高周波フィルタとして、弾性表面波共振器を用いたラダー型フィルタが知られている。弾性表面波共振器は、圧電基板上に1対の櫛型電極からなるIDT(Interdigital Transducer)が設けられている。IDTが励振する弾性表面波の音速を圧電基板内を伝播するバルク波よりも遅くすることで、損失を小さくできることが知られている(例えば、特許文献1)。
特開2016−136712号公報
しかしながら、IDTが励振する弾性表面波の音速が圧電基板内を伝播するバルク波よりも遅い弾性表面波共振器は横モードスプリアスが発生する。このため、このような弾性表面波共振器を用いてラダー型フィルタを構成した場合、ラダー型フィルタに大きな電力の高周波信号が印加されると、弾性表面波共振器が大きく発熱してIDTが損傷することがある。
本発明は、上記課題に鑑みなされたものであり、耐電力性を向上させることを目的とする。
本発明は、圧電基板と、前記圧電基板上に設けられ、経路上に直列に接続され、第1櫛型電極対を有する1又は複数の第1直列共振器と、前記圧電基板上に設けられ、前記1又は複数の第1直列共振器に対し直列接続され、前記第1櫛型電極対よりも電極指の平均ピッチが大きく且つ前記第1櫛型電極対よりも速い音速の弾性波を励振する第2櫛型電極対を有する第2直列共振器と、前記圧電基板上に設けられ、一端が前記経路に電気的に接続され、他端が接地された1又は複数の並列共振器と、を備えるラダー型フィルタである。
本発明は、圧電基板と、前記圧電基板上に設けられ、経路上に直列に接続され、第1櫛型電極対を有する1又は複数の第1直列共振器と、前記圧電基板上に設けられ、前記1又は複数の第1直列共振器に対し直列接続され、前記1又は複数の第1直列共振器よりも小さな共振周波数を有し、前記第1櫛型電極対よりも速い音速の弾性波を励振する第2櫛型電極対を有する第2直列共振器と、前記圧電基板上に設けられ、一端が前記経路に電気的に接続され、他端が接地された1又は複数の並列共振器と、を備えるラダー型フィルタである。
上記構成において、前記第2櫛型電極対の音響インピーダンスは、前記第1櫛型電極対の音響インピーダンスより小さい構成とすることができる。
上記構成において、前記1又は複数の第1直列共振器及び前記第2直列共振器のうち、前記第2直列共振器は最も共振周波数が小さい直列共振器である構成とすることができる。
上記構成において、前記経路は、入力端子と出力端子との間に接続される経路であり、前記1又は複数の第1直列共振器及び前記第2直列共振器のうち、前記第2直列共振器は最も前記入力端子側に位置する直列共振器である構成とすることができる。
上記構成において、前記第1櫛型電極対は、Ir、Mo、Pt、Re、Rh、Ru、Ta、及びWの少なくとも1つを主成分とする金属層を含む構成とすることができる。
上記構成において、前記第2櫛型電極対は、Alを主成分とする金属層を含む構成とすることができる。
上記構成において、前記第2櫛型電極対は、複数の金属層が積層された金属膜で形成され、前記第1櫛型電極対は、複数の結晶粒のうち半数以上の結晶粒が積層方向に長手方向を有する柱状の結晶粒である第1金属層と、前記第1金属層上に設けられ、前記第2櫛型電極対を形成する前記複数の金属層のうちの少なくとも1つと同じ金属で形成された第2金属層と、を有する構成とすることができる。
上記構成において、前記圧電基板上に前記経路を構成する配線を備え、前記第2櫛型電極対と前記配線は同じ膜構成である構成とすることができる。
上記構成において、前記圧電基板は、タンタル酸リチウム基板である構成とすることができる。
本発明は、上記記載のラダー型フィルタを含むマルチプレクサである。
本発明によれば、耐電力性を向上させることができる。
図1は、実施例1に係るラダー型フィルタの回路図である。 図2(a)は、実施例1に係るラダー型フィルタの平面図、図2(b)は、図2(a)のA−A間の断面図である。 図3は、比較例に係るラダー型フィルタの通過特性並びに直列共振器及び並列共振器の周波数特性を示す図である。 図4(a)及び図4(b)は、比較例に係るラダー型フィルタで生じる課題を説明するための図である。 図5は、実施例1に係るラダー型フィルタの通過特性及び直列共振器及び並列共振器の周波数特性を示す図である。 図6(a)は、実施例2における直列共振器S1の断面図、図6(b)は、実施例2における直列共振器S2及びS3並びに並列共振器P1及びP2の断面図である。 図7(a)から図7(e)は、実施例2における直列共振器S1からS3並びに並列共振器P1及びP2の製造方法を示す断面図である。 図8は、実施例2における直列共振器S2及びS3並びに並列共振器P1及びP2の電極指の断面図である。 図9は、実施例2の変形例1における直列共振器S2及びS3並びに並列共振器P1及びP2の電極指の断面図である。 図10は、実施例2における直列共振器S1及び配線の断面図である。 図11は、実施例3に係るデュプレクサの回路図である。
以下、図面を参照して、本発明の実施例について説明する。
図1は、実施例1に係るラダー型フィルタ100の回路図である。図1のように、実施例1のラダー型フィルタ100は、入力端子Tinと出力端子Toutとの間を接続する経路11上に、1又は複数の直列共振器S1からS3が直列に接続されている。入力端子Tinと出力端子Toutとの間に、1又は複数の並列共振器P1及びP2が並列に接続されている。並列共振器P1は、一端が直列共振器S1とS2の間の経路11に電気的に接続され、他端がグランドに接続されて接地されている。並列共振器P2は、一端が直列共振器S2とS3の間の経路11に電気的に接続され、他端がグランド間に接続されて接地されている。
図2(a)は、実施例1に係るラダー型フィルタ100の平面図、図2(b)は、図2(a)のA−A間の断面図である。図2(a)及び図2(b)のように、圧電基板10上に直列共振器S1からS3並びに並列共振器P1及びP2が設けられている。直列共振器S1からS3は、圧電基板10上に設けられた配線40を介して、入力端子Tinとなる入力パッド42と出力端子Toutとなる出力パッド44との間に直列に接続されている。配線40が図1の経路11を構成することになる。並列共振器P1及びP2は、圧電基板10上に設けられた配線40を介して、入力パッド42と出力パッド44との間に並列に接続されている。並列共振器P1は、直列共振器S1とS2の間を接続する配線40とグランドパッド46との間に接続されている。並列共振器P2は、直列共振器S2とS3の間を接続する配線40とグランドパッド46との間に接続されている。入力パッド42、出力パッド44、及びグランドパッド46上にはバンプ48が設けられている。
圧電基板10は、例えばタンタル酸リチウム基板であるが、ニオブ酸リチウム基板の場合でもよい。圧電基板10は、シリコン基板、サファイア基板、アルミナ基板、多結晶スピネル基板、単結晶スピネル基板、ガラス基板、又は水晶基板などの支持基板上に接合されていてもよい。配線40は、例えば銅層、アルミニウム層、又は金層などの金属層である。バンプ48は、例えば金バンプ、半田バンプ、又は銅バンプである。
直列共振器S1からS3並びに並列共振器P1及びP2は、弾性表面波共振器であり、櫛型電極指対であるIDT(Interdigital Transducer)22と反射器30とを有する。IDT22及び反射器30は、圧電基板10上に設けられている。IDT22は互いに対向する1対の櫛型電極28を有する。櫛型電極28は、複数の電極指24と、複数の電極指24を接続するバスバー26と、を有する。反射器30はIDT22の両側に設けられている。IDT22は圧電基板10に弾性表面波を励振する。反射器30は弾性表面波を反射する。同じ櫛型電極28内の電極指24のピッチλは、IDT22が励振する弾性表面波の波長に相当する。なお、IDT22及び反射器30を覆うように酸化シリコン膜又は窒化シリコン膜などの絶縁膜が設けられていてもよい。絶縁膜の膜厚は、IDT22及び反射器30の膜厚よりも厚くてもよいし薄くてもよい。
直列共振器S1のIDT22及び反射器30は、Ti(チタン)を主成分とする金属層とその上に設けられたAl(アルミニウム)を主成分とする金属層との積層で形成されている。Tiを主成分とする金属層は密着層として設けられており、IDT22が励振する弾性表面波の特性はAlを主成分とする金属層で決定される。直列共振器S2及びS3並びに並列共振器P1及びP2のIDT22及び反射器30は、Mo(モリブデン)を主成分とする金属層で形成されている。IDT22及び反射器30の膜厚は、例えば0.1λ程度である。
表1に、直列共振器S1からS3並びに並列共振器P1及びP2のピッチ、対数、開口長、電極材、膜厚、及び弾性表面波の音速の一例を示す。
Figure 2020043386
ここで、比較例に係るラダー型フィルタについて説明する。比較例のラダー型フィルタは、直列共振器S1からS3並びに並列共振器P1及びP2の全てにおいて、IDT22及び反射器30はMoを主成分とする金属層で形成されている。その他については、実施例1のラダー型フィルタと同じ構成をしている。
比較例において、直列共振器S1からS3並びに並列共振器P1及びP2の全てにおけるIDT22及び反射器30がMoを主成分とする金属層で形成されているのは以下の理由によるものである。
IDT22が励振する弾性表面波の音速が圧電基板10内を伝播するバルク波(例えば最も遅い横波バルク波)の音速よりも速い場合、弾性表面波はバルク波を放射しながら圧電基板10の表面を伝播する。よって、損失が生じる。特に、弾性表面波の1種であるSH(Shear Horizontal)波の音速はバルク波の音速よりも速い。このため、SH波を主モードとする弾性表面波共振器では損失が大きくなる。例えば、20°以上且つ48°以下のカット角を有するYカットX伝播タンタル酸リチウム基板ではSH波が主モードになる。
損失を小さくするためには、IDT22が励振する弾性表面波の音速が圧電基板10内を伝播するバルク波の音速よりも遅いことが望ましい。弾性表面波の音速を遅くするため、IDT22及び反射器30に音響インピーダンスの大きな金属を用いる。音響インピーダンスZは、密度をρ、ヤング率をE、ポアソン比をPrとすると、以下の式で表される。
Figure 2020043386
Moは密度が10.2g/cm、ヤング率が329GPa、ポアソン比が0.31であるため、Moの音響インピーダンスは35.9GPa・s/mである。例えば、IDT22及び反射器30がAlを主成分とする金属層で形成されている場合では、Alは密度が2.70g/cm、ヤング率が68GPa、ポアソン比が0.34であるため、Alの音響インピーダンスは8.3GPa・s/mである。
したがって、比較例では、弾性表面波の音速を遅くして損失が小さくなるよう、直列共振器S1からS3並びに並列共振器P1及びP2の全てのIDT22及び反射器30を音響インピーダンスの大きなMoを主成分とする金属層で形成している。しかしながら、IDT22及び反射器30にMoのような重い金属(密度の大きな金属)を用いた弾性表面波共振器は横モードスプリアスが発生する。
図3は、比較例に係るラダー型フィルタの通過特性並びに直列共振器及び並列共振器の周波数特性を示す図である。ラダー型フィルタの通過特性を実線、直列共振器S1からS3の周波数特性を点線、並列共振器P1及びP2の周波数特性を破線で示している。図3のように、ラダー型フィルタの通過特性は、高周波側が直列共振器S1からS3によって形成され、低周波側が並列共振器P1及びP2によって形成される。直列共振器S1からS3は、ラダー型フィルタの高周波側の減衰帯域を広げることを目的として、それぞれの共振周波数が少しずつずれていてもよい。例えば、直列共振器S1、S2、S3の順に共振周波数が大きくなっている。また、直列共振器S1からS3は、IDT22が励振する弾性表面波の音速が圧電基板10内を伝播するバルク波の音速よりも遅くなるよう、IDT22に重い金属であるMoが用いられている。IDT22にMoのような重い金属を用いると、異方性係数の絶対値が大きくなり、横モードスプリアス50が発生する。横モードスプリアス50は、共振周波数と反共振周波数の間で発生する。横モードスプリアス50が発生することで、ラダー型フィルタの通過帯域内にリップル(不図示)が発生する。なお、並列共振器P1及びP2の共振周波数は略同じである場合を例に示しているが、直列共振器S1からS3と同様に、低周波側の減衰帯域を広げることを目的として、それぞれの共振周波数が少しずつずれていてもよい。また、直列共振器S1からS3において、並列共振器P1及びP2と同様に、それぞれの共振周波数が略同じであってもよい。なお、並列共振器P1及びP2においても横モードスプリアスが発生するが、ここでは図の明瞭化のために図示を省略している。
図4(a)及び図4(b)は、比較例に係るラダー型フィルタで生じる課題を説明するための図である。図4(a)及び図4(b)では、ラダー型フィルタの通過特性を太実線、ラダー型フィルタの消費電力を細実線で示している。また、図4(a)では、直列共振器S1の周波数特性を点線で示している。図4(a)のように、ラダー型フィルタの消費電力は、通過帯域内の中央付近で最小となり、減衰極付近で最大となる。直列共振器S1の共振周波数から反共振周波数の間はラダー型フィルタの通過帯域内に存在して通過特性の高周波側を形成している。このため、直列共振器S1に横モードスプリアス50が発生していると、ラダー型フィルタに大きな電力の高周波信号が印加された場合に直列共振器S1は大きく発熱し易い。例えば、通過帯域内の高周波側の周波数f1の高周波信号が印加された場合、周波数f1で横モードスプリアス50が発生していると、直列共振器S1は大きく発熱し易い。直列共振器S1が発熱することでラダー型フィルタの温度が上昇し、図4(b)のように、通過特性及び消費電力が低周波側にシフトする。例えば、圧電基板10がタンタル酸リチウム基板又はニオブ酸リチウム基板である場合、通過特性及び消費電力は低周波側にシフトし易い。図4(b)では、シフト前の通過特性及び消費電力を一点鎖線で示し、シフト後の通過特性及び消費電力を実線で示している。このため、周波数f1の高周波信号がラダー型フィルタに印加される場合、ラダー型フィルタの消費電力が増大し、直列共振器S1は更に発熱し易くなる。これにより、直列共振器S1のIDT22に損傷(例えば溶断)が生じてしまうことがある。このように、比較例のラダー型フィルタでは耐電力性能が十分ではない。
なお、図4(b)のように、通過帯域内の低周波側は、ラダー型フィルタの温度上昇に伴い、消費電力は減少する方向となる。このため、ラダー型フィルタの通過特性の低周波側を形成する並列共振器P1及びP2では発熱量が大きくなり難いため、IDT22の損傷は起こり難い。
図5は、実施例1に係るラダー型フィルタ100の通過特性及び直列共振器及び並列共振器の周波数特性を示す図である。ラダー型フィルタの通過特性を実線、直列共振器S1からS3の周波数特性を点線、並列共振器P1及びP2の周波数特性を破線で示している。図5のように、実施例1では、直列共振器S1は横モードスプリアス50が抑えられている。これは、直列共振器S1では、IDT22が励振する弾性表面波の音速が圧電基板10内を伝播するバルク波よりも速くなるよう、IDT22に軽い金属であるAlを主成分とする金属が用いられているためである。IDT22にAlのような軽い金属を用いると、異方性係数の絶対値が小さくなり、その結果、横モードスプリアス50が抑えられる。例えば、圧電基板10がYカットX伝播のタンタル酸リチウム基板である場合、IDT22にMoのような重い金属を用いると異方性係数は正となって絶対値が大きくなるのに対し、Alのような軽い金属を用いると異方性係数の絶対値は小さくなる。このように、実施例1では、直列共振器S1での横モードスプリアス50が抑えられるため、直列共振器S1に大きな電力の高周波信号が印加された場合でも、直列共振器S1での発熱が抑えられてIDT22の損傷が抑制される。
低損失化のために直列共振器S2及びS3で励振される弾性表面波の音速は遅くし、横モードスプリアスの抑制のために直列共振器S1で励振される弾性表面波の音速は直列共振器S2及びS3で励振される弾性表面波の音速よりも速くする。直列共振器S1からS3におけるIDT22を構成する櫛型電極28の電極指の平均ピッチλが同じである場合、直列共振器S1で励振される弾性表面波の音速が直列共振器S2及びS3で励振される弾性表面波の音速よりも速いと、直列共振器S1の共振周波数は直列共振器S2及びS3の共振周波数よりも大きくなる。しかしながら、IDT22が損傷し易いのは、複数の直列共振器のうちの共振周波数が小さい直列共振器である。したがって、直列共振器S1のIDT22を構成する櫛型電極28の電極指24の平均ピッチλを直列共振器S2及びS3のIDT22を構成する櫛型電極28の電極指24の平均ピッチλよりも大きくして、直列共振器S1の共振周波数を直列共振器S2及びS3の共振周波数の同等以下にする。なお、電極指24の平均ピッチλとは、IDT22の電極指24の全てのピッチλを平均した値であり、例えば弾性表面波の伝播方向のIDT22の幅を電極指24の対数で除した値とすることができる。
以上のように、実施例1によれば、直列共振器S1は、直列共振器S2及びS3のIDT22よりも平均ピッチλが大きく且つ直列共振器S2及びS3のIDT22よりも速い音速の弾性表面波を励振するIDT22を有する。これにより、直列共振器S1の横モードスプリアス50が抑制される。よって、ラダー型フィルタ100に大電力の高周波信号が印加された場合でも、直列共振器S1での発熱が抑えられ、直列共振器S1のIDT22が損傷することを抑制できる。よって、耐電力性を向上させることができる。直列共振器S1のIDT22の電極指24の平均ピッチλは、直列共振器S2及びS3のIDT22の電極指24の平均ピッチλの1.1倍以上が好ましく、1.2倍以上がより好ましい。
また、実施例1では、直列共振器S1は、直列共振器S2及びS3よりも小さな共振周波数を有し、直列共振器S2及びS3のIDT22よりも速い音速の弾性表面波を励振するIDT22を有する。これにより、直列共振器S1の横モードスプリアス50が抑制されるため、耐電力性を向上させることができる。
直列共振器S1のIDT22の音響インピーダンスは、直列共振器S2及びS3のIDT22の音響インピーダンスよりも小さい。これにより、直列共振器S1での横モードスプリアスの抑制とラダー型フィルタ100の低損失化とを実現できる。直列共振器S1のIDT22の音響インピーダンスは、直列共振器S2のIDT22の音響インピーダンスの1/2以下であることが好ましく、1/3以下であることがより好ましい。
直列共振器S1は、複数の直列共振器S1からS3のうちの最も共振周波数が小さい直列共振器である場合が好ましい。共振周波数が最も小さい直列共振器は、ラダー型フィルタの通過帯域内に存在して通過特性の高周波側を形成するため、大きな電力が印加され易い。よって、共振周波数が最も小さい直列共振器に横モードスプリアスが生じている場合では大きく発熱してIDTが損傷し易い。したがって、複数の直列共振器S1からS3のうち直列共振器S1が最も共振周波数が小さい場合では、直列共振器S1の横モードスプリアス50を抑制することが望ましいためである。
図1のように、直列共振器S1は、複数の直列共振器S1からS3のうちの最も入力端子Tin側に位置する直列共振器である場合が好ましい。入力端子の近くに位置する直列共振器は、他の直列共振器に比べて大きな電力が印加され易い。したがって、複数の直列共振器S1からS3のうち直列共振器S1が最も入力端子Tin側に位置する場合では、直列共振器S1の横モードスプリアス50を抑制することが望ましいためである。
数1において、ポアソン比は金属材料では大きくならないため、音響インピーダンスの大きな金属は、密度×ヤング率の大きな金属となる。密度は原子番号が大きな金属が大きく、ヤング率は硬い金属が大きい。このような金属は、融点が高い高融点金属である。このように、IDT22及び反射器30を高融点金属で形成すると弾性表面波の音速が遅くなり損失が小さくなる。表2は、高融点金属の密度及び融点を示す表である。
Figure 2020043386
表2のように、Ir(イリジウム)、Mo、Pt(白金)、Re(レニウム)、Rh(ロジウム)、Ru(ルテニウム)、Ta(タンタル)、及びW(タングステン)の融点はAlの融点(660℃)よりも高い。密度はAlの密度(2.70g/cm)の4倍以上である。したがって、直列共振器S2及びS3並びに並列共振器P1及びP2のIDT22及び反射器30は、Ir、Mo、Pt、Re、Rh、Ru、Ta、及びWの少なくとも1つを主成分とする金属層を含む場合が好ましい。これにより、直列共振器S2及びS3並びに並列共振器P1及びP2のIDT22が励振する弾性表面波の音速が圧電基板10内を伝播するバルク波の音速よりも遅くなり、損失が小さくなる。
上述したように、Alは音響インピーダンスが小さく且つ軽い金属である。したがって、直列共振器S1のIDT22及び反射器30は、横モードスプリアスが抑制されるように、Alを主成分とする金属層を含む場合が好ましい。
なお、IDT22及び反射器30がある金属を主成分とする金属層を含むとは、弾性表面波の音速が圧電基板10内を伝播するバルク波の音速よりも遅くなる程度にある金属を含む又は横モードスプリアスが抑制される程度にある金属を含むことである。例えば、IDT22及び反射器30がある金属の原子濃度が50%以上、好ましくは80%以上、より好ましくは90%以上である金属層を含むことである。
実施例2に係るラダー型フィルタの回路図及び平面図は、図1及び図2(a)と同じであるため、図示及び説明を省略する。図6(a)は、実施例2における直列共振器S1の断面図、図6(b)は、実施例2における直列共振器S2及びS3並びに並列共振器P1及びP2の断面図である。図6(a)のように、実施例2における直列共振器S1では、IDT22及び反射器30はTiを主成分とする金属層60とその上に設けられたAlを主成分とする金属層62との積層で形成されている。図6(b)のように、実施例2における直列共振器S2及びS3並びに並列共振器P1及びP2では、IDT22及び反射器30はMoを主成分とする金属層64とその上に設けられたTiを主成分とする金属層60との積層で形成されている。直列共振器S1での金属層60と、直列共振器S2及びS3並びに並列共振器P1及びP2での金属層60とは、略同じ膜厚を有している。
図7(a)から図7(e)は、実施例2における直列共振器S1からS3並びに並列共振器P1及びP2の製造方法を示す断面図である。図7(a)のように、圧電基板10上に、真空蒸着法、イオンアシスト蒸着法、又はスパッタリング法を用いてMoを主成分とする金属膜を成膜した後、この金属膜に対してパターン化されたフォトレジストを用いてドライエッチング又はウエットエッチングを行う。これにより、直列共振器S2及びS3並びに並列共振器P1及びP2のIDT22及び反射器30を構成するMoを主成分とする金属層64が形成される。
図7(b)のように、圧電基板10上に、直列共振器S1からS3並びに並列共振器P1及びP2のIDT22及び反射器30が形成される領域に開口を有するフォトレジスト80を形成する。その後、真空蒸着法、イオンアシスト蒸着法、又はスパッタリング法を用いてフォトレジスト80の開口内に埋め込まれるようにTiを主成分とする金属膜82を成膜する。
図7(c)のように、フォトレジスト80をリフトオフ法によって除去する。これにより、直列共振器S1のIDT22及び反射器30を構成するTiを主成分とする金属層60が形成される。直列共振器S2及びS3並びに並列共振器P1及びP2においては、金属層64上にTiを主成分とする金属層60が形成されて、IDT22及び反射器30が形成される。
図7(d)のように、圧電基板10上に、直列共振器S1のIDT22及び反射器30が形成される領域に開口を有するフォトレジスト84を形成する。その後、真空蒸着法、イオンアシスト蒸着法、又はスパッタリング法を用いてフォトレジスト84の開口内に埋め込まれるようにAlを主成分とする金属膜86を成膜する。
図7(e)のように、フォトレジスト84をリフトオフ法によって除去する。これにより、直列共振器S1において、金属層60上にAlを主成分とする金属層62が形成されて、IDT22及び反射器30が形成される。
図8は、実施例2における直列共振器S2及びS3並びに並列共振器P1及びP2の電極指24の断面図である。図8では、金属層64に関しては電子顕微鏡写真を模式的に図示している。図8のように、金属層64は、結晶粒70が積層方向に延伸する柱状であり、粒界72が積層方向に延伸する。すなわち、金属層64は柱状結晶となっている。このような結晶構造は電極指24の断面をTEM(Transmission Electron Microscope)法又はSEM(Scanning Electron Microscope)法を用いて観察することにより確認できる。柱状の結晶粒は、TEM又はSEMで電極指24の断面を観察したときに積層方向が長手方向となる結晶粒である。金属層64は、TEM又はSEMで電極指24の断面を観察したときに外形が識別できた複数の結晶粒のうち半数以上が積層方向に長手方向を有する柱状の結晶粒を有する。さらに、金属層64は、外形が識別できた複数の結晶粒のうち80%以上が積層方向に長手方向を有する柱状の結晶粒を有することが好ましい。柱状結晶をした金属層64上にTiを主成分とした金属層60が設けられている。
圧電基板10上にPtを主成分とする金属層を形成すると、この金属層は柱状結晶となることが知られている。このことから、少なくともPtより融点の高い金属は柱状結晶となり易いと考えられる。表2のように、Ptの融点は1774℃であることから、融点が1774℃以上の高融点金属は柱状結晶になり易いと考えられる。したがって、Ir、Mo、Pt、Re、Rh、Ru、Ta、及びWを主成分とする金属層は柱状結晶になり易いと考えられる。
実施例1で説明したように、直列共振器S2及びS3並びに並列共振器P1及びP2において、IDT22が励振する弾性表面波の音速が圧電基板10内を伝播するバルク波の音速よりも遅くなるよう、IDT22及び反射器30は高融点金属からなる金属層64を含んで形成されている。この場合、金属層64は柱状結晶となる。柱状結晶では粒界72が鮮明である。これは結晶粒70の間の結合が弱い及び/又は結晶粒70の間に隙間があるためである。また、結晶粒70の大きさは揃っており且つ金属層64の積層方向に連続している。
直列共振器S2及びS3に大きな電力の高周波信号が印加されると、電極指24が弾性表面波により大きく振動することで電極指24に応力が加わる。直列共振器S2及びS3が金属層64のみで形成されている場合では、金属層64は柱状結晶となっているため、粒界72に沿って電極指24が断裂することが起こり得る。
一方、実施例2では、直列共振器S2及びS3のIDT22は、柱状の結晶粒70を有する金属層64と、金属層64上に設けられた金属層60と、有する。金属層64上に設けられた金属層60は、直列共振器S1のIDT22を形成する複数の金属層60及び62のうちの圧電基板10側に位置する金属層60と同じ金属で形成されている。このように、柱状の結晶粒70を有する金属層64上に金属層60が設けられていることで、直列共振器S2及びS3に大電力の高周波信号が入力されても、金属層64の粒界72に沿って電極指24が破損することを抑制できる。また、金属層64上に形成される金属層60を直列共振器S1のIDT22を形成する金属層60と同じ金属とすることで、製造工程の増加を抑制できる。
なお、実施例2において、直列共振器S2及びS3並びに並列共振器P1及びP2のIDT22及び反射器30に含まれる金属層64は、柱状結晶をした領域と、この領域よりも圧電基板10側及び圧電基板10とは反対側の少なくとも一方に設けられたアモルファスである領域と、を有する構造をしていてもよい。
図9は、実施例2の変形例1における直列共振器S2及びS3並びに並列共振器P1及びP2の電極指24の断面図である。図9では、図8と同様に、金属層64に関しては電子顕微鏡写真を模式的に図示している。図9のように、実施例2の変形例1では、金属層64上に金属層60と金属層62がこの順に設けられている。
実施例2の変形例1のように、直列共振器S2及びS3並びに並列共振器P1及びP2において、金属層64上に直列共振器S1のIDT22を形成する複数の金属層60及び62の全てと同じ金属からなる金属層60及び62が設けられていてもよい。この場合では、電極指24が破損することをより効果的に抑制できる。
実施例2及び実施例2の変形例1のように、直列共振器S2及びS3並びに並列共振器P1及びP2において、柱状の結晶粒70を有する金属層64上に直列共振器S1のIDT22を形成する複数の金属層のうちの少なくとも1つと同じ金属で形成された金属層が設けられていればよい。
図10は、実施例2における直列共振器S1及び配線40の断面図である。図10のように、配線40は、Tiを主成分とする金属層60とその上に設けられたAlを主成分とする金属層62との積層で形成されている。すなわち、配線40は、直列共振器S1のIDT22及び反射器30と同じ膜構成をしている。配線40は直列共振器S1のIDT22及び反射器30と同時に形成されるため、配線40の各層の厚さは直列共振器S1のIDT22及び反射器30の各層の厚さと略同じになっている。このように、直列共振器S1のIDT22及び反射器30の膜構成と配線40の膜構成とが同じであることで、直列共振器S1のIDT22及び反射器30と配線40とを同時に形成できるため、製造工程の増加を抑制できる。
図11は、実施例3に係るデュプレクサ300の回路図である。図11のように、実施例3のデュプレクサ300は、共通端子Antと送信端子Txとの間に送信フィルタ90が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ92が接続されている。送信フィルタ90は、送信端子Txから入力された高周波信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ92は、共通端子Antから入力された高周波信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ90及び受信フィルタ92の少なくとも一方を実施例1又は実施例2のラダー型フィルタとすることができる。
実施例3では、マルチプレクサとしてデュプレクサの場合を例に示したが、トリプレクサ又はクワッドプレクサであってもよい。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 圧電基板
11 経路
22 IDT
24 電極指
26 バスバー
28 櫛型電極
30 反射器
40 配線
42 入力パッド
44 出力パッド
46 グランドパッド
48 バンプ
50 横モードスプリアス
60〜64 金属層
70 結晶粒
72 粒界
80、84 フォトレジスト
82、86 金属膜
90 送信フィルタ
92 受信フィルタ
100 ラダー型フィルタ
300 デュプレクサ
S1〜S3 直列共振器
P1、P2 並列共振器

Claims (11)

  1. 圧電基板と、
    前記圧電基板上に設けられ、経路上に直列に接続され、第1櫛型電極対を有する1又は複数の第1直列共振器と、
    前記圧電基板上に設けられ、前記1又は複数の第1直列共振器に対し直列接続され、前記第1櫛型電極対よりも電極指の平均ピッチが大きく且つ前記第1櫛型電極対よりも速い音速の弾性波を励振する第2櫛型電極対を有する第2直列共振器と、
    前記圧電基板上に設けられ、一端が前記経路に電気的に接続され、他端が接地された1又は複数の並列共振器と、を備えるラダー型フィルタ。
  2. 圧電基板と、
    前記圧電基板上に設けられ、経路上に直列に接続され、第1櫛型電極対を有する1又は複数の第1直列共振器と、
    前記圧電基板上に設けられ、前記1又は複数の第1直列共振器に対し直列接続され、前記1又は複数の第1直列共振器よりも小さな共振周波数を有し、前記第1櫛型電極対よりも速い音速の弾性波を励振する第2櫛型電極対を有する第2直列共振器と、
    前記圧電基板上に設けられ、一端が前記経路に電気的に接続され、他端が接地された1又は複数の並列共振器と、を備えるラダー型フィルタ。
  3. 前記第2櫛型電極対の音響インピーダンスは、前記第1櫛型電極対の音響インピーダンスより小さい、請求項1または2記載のラダー型フィルタ。
  4. 前記1又は複数の第1直列共振器及び前記第2直列共振器のうち、前記第2直列共振器は最も共振周波数が小さい直列共振器である、請求項1から3のいずれか一項記載のラダー型フィルタ。
  5. 前記経路は、入力端子と出力端子との間に接続される経路であり、
    前記1又は複数の第1直列共振器及び前記第2直列共振器のうち、前記第2直列共振器は最も前記入力端子側に位置する直列共振器である、請求項1から4のいずれか一項記載のラダー型フィルタ。
  6. 前記第1櫛型電極対は、Ir、Mo、Pt、Re、Rh、Ru、Ta、及びWの少なくとも1つを主成分とする金属層を含む、請求項1から5のいずれか一項記載のラダー型フィルタ。
  7. 前記第2櫛型電極対は、Alを主成分とする金属層を含む、請求項6記載のラダー型フィルタ。
  8. 前記第2櫛型電極対は、複数の金属層が積層された金属膜で形成され、
    前記第1櫛型電極対は、複数の結晶粒のうち半数以上の結晶粒が積層方向に長手方向を有する柱状の結晶粒である第1金属層と、前記第1金属層上に設けられ、前記第2櫛型電極対を形成する前記複数の金属層のうちの少なくとも1つと同じ金属で形成された第2金属層と、を有する、請求項1から7のいずれか一項記載のラダー型フィルタ。
  9. 前記圧電基板上に前記経路を構成する配線を備え、
    前記第2櫛型電極対と前記配線は同じ膜構成である、請求項1から8のいずれか一項記載のラダー型フィルタ。
  10. 前記圧電基板は、タンタル酸リチウム基板である、請求項1から9のいずれか一項記載のラダー型フィルタ。
  11. 請求項1から10のいずれか一項に記載のラダー型フィルタを含むマルチプレクサ。
JP2018166922A 2017-12-28 2018-09-06 ラダー型フィルタ及びマルチプレクサ Active JP7068974B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018166922A JP7068974B2 (ja) 2018-09-06 2018-09-06 ラダー型フィルタ及びマルチプレクサ
US16/198,284 US10700662B2 (en) 2017-12-28 2018-11-21 Acoustic wave device, filter, and multiplexer
CN201811601855.4A CN110022134B (zh) 2017-12-28 2018-12-26 声波器件、滤波器以及复用器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018166922A JP7068974B2 (ja) 2018-09-06 2018-09-06 ラダー型フィルタ及びマルチプレクサ

Publications (2)

Publication Number Publication Date
JP2020043386A true JP2020043386A (ja) 2020-03-19
JP7068974B2 JP7068974B2 (ja) 2022-05-17

Family

ID=69798760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018166922A Active JP7068974B2 (ja) 2017-12-28 2018-09-06 ラダー型フィルタ及びマルチプレクサ

Country Status (1)

Country Link
JP (1) JP7068974B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008377B1 (ja) * 2021-05-24 2022-02-14 三安ジャパンテクノロジー株式会社 弾性波デバイスおよびその弾性波デバイスを備えるモジュール

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220353A (ja) * 1998-01-30 1999-08-10 Oki Electric Ind Co Ltd 弾性表面波フィルタ
JP2000068783A (ja) * 1998-08-25 2000-03-03 Oki Electric Ind Co Ltd 弾性表面波フィルタ
JP2003198323A (ja) * 2001-12-28 2003-07-11 Murata Mfg Co Ltd 弾性表面波装置
JP2005253034A (ja) * 2004-02-06 2005-09-15 Alps Electric Co Ltd 弾性表面波素子
JP2008508821A (ja) * 2004-08-04 2008-03-21 エプコス アクチエンゲゼルシャフト 損失の小さい電気音響素子
WO2012176455A1 (ja) * 2011-06-23 2012-12-27 パナソニック株式会社 ラダー型弾性波フィルタ及びこれを用いたアンテナ共用器
JP2016054393A (ja) * 2014-09-03 2016-04-14 株式会社村田製作所 ラダー型フィルタ及びデュプレクサ
JP2016136712A (ja) * 2015-01-20 2016-07-28 太陽誘電株式会社 弾性波デバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11220353A (ja) * 1998-01-30 1999-08-10 Oki Electric Ind Co Ltd 弾性表面波フィルタ
JP2000068783A (ja) * 1998-08-25 2000-03-03 Oki Electric Ind Co Ltd 弾性表面波フィルタ
JP2003198323A (ja) * 2001-12-28 2003-07-11 Murata Mfg Co Ltd 弾性表面波装置
JP2005253034A (ja) * 2004-02-06 2005-09-15 Alps Electric Co Ltd 弾性表面波素子
JP2008508821A (ja) * 2004-08-04 2008-03-21 エプコス アクチエンゲゼルシャフト 損失の小さい電気音響素子
WO2012176455A1 (ja) * 2011-06-23 2012-12-27 パナソニック株式会社 ラダー型弾性波フィルタ及びこれを用いたアンテナ共用器
JP2016054393A (ja) * 2014-09-03 2016-04-14 株式会社村田製作所 ラダー型フィルタ及びデュプレクサ
JP2016136712A (ja) * 2015-01-20 2016-07-28 太陽誘電株式会社 弾性波デバイス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008377B1 (ja) * 2021-05-24 2022-02-14 三安ジャパンテクノロジー株式会社 弾性波デバイスおよびその弾性波デバイスを備えるモジュール

Also Published As

Publication number Publication date
JP7068974B2 (ja) 2022-05-17

Similar Documents

Publication Publication Date Title
US10700662B2 (en) Acoustic wave device, filter, and multiplexer
JP6954378B2 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
JP7169083B2 (ja) 弾性波デバイスおよびマルチプレクサ
JP6479086B2 (ja) ラダー型弾性波フィルタと、これを用いたアンテナ共用器
KR102140089B1 (ko) 탄성파 공진기, 필터 및 멀티플렉서
US11764880B2 (en) Acoustic wave device, multiplexer, high-frequency front end circuit, and communication device
JPWO2007007476A1 (ja) 弾性境界波フィルタ装置
JP2020096226A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7403239B2 (ja) 弾性波デバイス、フィルタ、及びマルチプレクサ
WO2024077955A1 (zh) 一种多传输零点的声表面波滤波器及信号处理电路
JP6681380B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
US11469735B2 (en) Acoustic wave device, filter, and multiplexer
US11108375B2 (en) Acoustic wave device, method of fabricating the same, filter, and multiplexer
JP7068974B2 (ja) ラダー型フィルタ及びマルチプレクサ
JP2018196028A (ja) 弾性波フィルタおよびマルチプレクサ
CN115549639B (zh) 一种声波滤波器
JP7033010B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7261568B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
CN114070257A (zh) 声波装置、滤波器及多路复用器
JP7068835B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7061005B2 (ja) 弾性波共振器、フィルタおよびマルチプレクサ
JP2021027401A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7456734B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
WO2023080167A1 (ja) フィルタ装置及びマルチプレクサ
JP2019022093A (ja) 弾性波デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220502

R150 Certificate of patent or registration of utility model

Ref document number: 7068974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150