JP2020031313A - 画像処理装置、印刷装置および画像処理方法 - Google Patents

画像処理装置、印刷装置および画像処理方法 Download PDF

Info

Publication number
JP2020031313A
JP2020031313A JP2018155359A JP2018155359A JP2020031313A JP 2020031313 A JP2020031313 A JP 2020031313A JP 2018155359 A JP2018155359 A JP 2018155359A JP 2018155359 A JP2018155359 A JP 2018155359A JP 2020031313 A JP2020031313 A JP 2020031313A
Authority
JP
Japan
Prior art keywords
image
value
processing
halftone
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018155359A
Other languages
English (en)
Other versions
JP7127423B2 (ja
Inventor
角谷 繁明
Shigeaki Sumiya
繁明 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2018155359A priority Critical patent/JP7127423B2/ja
Priority to US16/544,947 priority patent/US10798266B2/en
Publication of JP2020031313A publication Critical patent/JP2020031313A/ja
Application granted granted Critical
Publication of JP7127423B2 publication Critical patent/JP7127423B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
    • H04N1/4051Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size
    • H04N1/4052Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size by error diffusion, i.e. transferring the binarising error to neighbouring dot decisions
    • H04N1/4053Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size by error diffusion, i.e. transferring the binarising error to neighbouring dot decisions with threshold modulated relative to input image data or vice versa
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • H04N1/405Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels
    • H04N1/4051Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size
    • H04N1/4052Halftoning, i.e. converting the picture signal of a continuous-tone original into a corresponding signal showing only two levels producing a dispersed dots halftone pattern, the dots having substantially the same size by error diffusion, i.e. transferring the binarising error to neighbouring dot decisions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K15/00Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers
    • G06K15/02Arrangements for producing a permanent visual presentation of the output data, e.g. computer output printers using printers
    • G06K15/18Conditioning data for presenting it to the physical printing elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/52Circuits or arrangements for halftone screening
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/58Edge or detail enhancement; Noise or error suppression, e.g. colour misregistration correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color, Gradation (AREA)
  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Image Processing (AREA)

Abstract

【課題】画像を分割した誤差拡散法によりハーフトーンを行なう場合の画質と処理速度の両立を図る。【解決手段】複数の分割画像に対応する複数の画像データのそれぞれを処理してドットの形成の有無を表すドットデータを生成するハーフトーン処理部を複数設ける。少なくとも2つのハーフトーン処理部に、少なくとも2つの画像データに対するハーフトーン処理の少なくとも一部を同時に行なわせる。このハーフトーン処理において、分割画像の各画素の誤差拡散済みの階調値に対して誤差拡散法によるハーフトーン処理を行なって得られるドットデータの少なくとも一部を、ディザ法による判断の結果に一致させる複合誤差拡散法処理を行なう。【選択図】図4

Description

本発明は、対象画像のハーフトーン処理を並列に行なう技術に関する。
多階調の画像を印刷する際に行なうハーフトーン処理の高速化を図るために、対象画像を分割して、並列処理することが提案されている。ハーフトーン処理として誤差拡散法を用いる場合、分割した画像の境界での画質の劣化が問題となる場合がある。これは、誤差拡散法では、着目した画素を量子化する際に生じる量子化誤差を周辺の未処理画素に分配するが、分割された画像のそれぞれについて、独立に誤差拡散を行なうと、分割された画像の境界を越えてむ適切に誤差を拡散できないからである。そこで、例えば下記特許文献1に示すように、分割された各画像の境界領域に重複領域を設け、両方の領域についての行なった誤差拡散の結果を用いて、ハーフトーン処理を完了する手法なども提案されている。
特開2005−12726号公報
しかしながら、こうした手法では、境界領域での画質の劣化に対する根本的な解決とはならない。境界領域に重複領域を設けても、誤差が完全に引継がれる訳ではないからである。また、重複領域を広くすれば、結局誤差拡散に時間を要してしまう。
本開示の画像処理装置は、以下の態様で実施可能である。即ち、第1の態様として、画像をハーフトーン処理する画像処理装置が提供される。この画像処理装置は、前記画像を分割した複数の分割画像に対応する複数の画像データを受け付ける画像受付部と、前記複数の画像データのそれぞれを処理してドットの形成の有無を表すドットデータを生成するハーフトーン処理を行なう複数のハーフトーン処理部であって、少なくとも2つのハーフトーン処理部が、前記少なくとも2つの画像データに対する処理の少なくとも一部を同時に行なう複数のハーフトーン処理部と、を備える。ここで、前記ハーフトーン処理部の各々は、前記分割画像の各画素の誤差拡散済みの階調値に対して誤差拡散法によるハーフトーン処理を行なって得られる前記ドットデータの少なくとも一部を、ディザ法による判断の結果に一致させる複合誤差拡散法処理を行なうものとしてよい。
本開示は、上記態様以外に、画像処理方法としての態様、印刷装置としての態様、更には、画像処理装置や印刷装置の制御装置としての構成や、画像処理装置や印刷装置の製造方法としての実施などが可能である。
第1実施形態の印刷装置としてのプリンターの概略構成図である。 プリンターにおける印刷処理の流れを示すフローチャートである。 画像の分割の様子とハーフトーンユニットとの関係を示す説明図である。 1つのハーフトーンユニットが実施するハーフトーン処理を示すフローチャートである。 画素位置とディザ寄与度係数との関係を例示する説明図である。 画素位置とディザ寄与度係数との他の関係を例示する説明図である。 ディザマスクの一部を例示する説明図である。 誤差拡散法閾値を画像データの階調値に応じて決定する一例を示す説明図である。 注目画素の周辺への誤差拡散の割合の一例を示す説明図である。 分割された画像におけるディザ一致度を例示する説明図である。 画像データの階調値とディザ寄与度係数との関係を例示する説明図である。 第2実施形態における複合誤差拡散法処理の内容を示すフローチャートである。 画像データの階調値と誤差拡散法閾値に設定される高位閾値及び低位閾値の一例を示す説明図である。 画像データの階調値と誤差拡散法閾値に設定される高位閾値及び低位閾値の他の例を示す説明図である。 画像分割の分割位置の他の一例を示す説明図である。 画像分割の分割位置のその他の一例を示す説明図である。 2つのハーフトーンユニットが処理する領域がオーバーラップしている場合を示す説明図である。
A.第1実施形態:
(1)ハードウェア構成:
図1は、第1実施形態の画像処理装置とこれを含む印刷装置としてのプリンター20の概略構成図である。プリンター20は、双方向印刷を行なうシリアル式インクジェットプリンタであり、図示するように、プリンター20は、紙送りモータ74によって印刷媒体Pを搬送する機構と、キャリッジモータ70によってキャリッジ80をプラテン75の軸方向に往復動させる機構と、キャリッジ80に搭載された印刷ヘッド90を駆動してインク滴の吐出及びドット形成を行なう機構と、これらの紙送りモータ74,キャリッジモータ70,印刷ヘッド90及び操作パネル99との信号のやり取りを司る制御ユニット30とから構成されている。
キャリッジ80をプラテン75の軸方向に往復動させる機構は、プラテン75の軸と平行に架設され、キャリッジ80を摺動可能に保持する摺動軸73と、キャリッジモータ70との間に無端の駆動ベルト71を張設するプーリ72等から構成されている。
キャリッジ80には、カラーインクとして、シアンインクC、マゼンタインクM、イエロインクY、ブラックインクK、ライトシアンインクLc、ライトマゼンタインクLmをそれぞれ収容したカラーインク用のインクカートリッジ82〜87が搭載される。キャリッジ80の下部の印刷ヘッド90には、上述の各色のカラーインクに対応するノズル列が形成されている。キャリッジ80にこれらのインクカートリッジ82〜87を上方から装着すると、各カートリッジから印刷ヘッド90へのインクの供給が可能となる。
制御ユニット30は、CPU40や、ROM51、RAM52、EEPROM60がバスで相互に接続されて構成されている。制御ユニット30は、ROM51やEEPROM60に記憶されたプログラムをRAM52に展開し、実行することにより、プリンター20の動作全般を制御するほか、入力部41、ハーフトーン処理部42、印刷部46としても機能する。ハーフトーン処理部42は、複合誤差拡散法処理部45としての機能を含んでいる。本実施形態で採用したCPU40は、マルチコアを備え、ハーフトーン処理部42を、同時に動作可能な複数のハーフトーンユニットとして実現している。ハーフトーンユニットは、以下、HTUと略記することがある。ハーフトーン処理部42を構成する複数のハーフトーンユニットの機能、特に複合誤差拡散法処理部45の動作については、図2、図4のフローチャートを参照して、後述する。
EEPROM60には、ディザマスク61と、誤差拡散閾値テーブル62とが記憶されている。ディザマスク61は、後述するハーフトーン処理において用いるものであり、ドットの形成について判断する閾値を配列したものである。ディザマスク61についても後述する。
EEPROM60に記憶された誤差拡散閾値テーブル62は、誤差拡散法におけるドットのON/OFFの判断に用いる閾値(誤差拡散法閾値)が記憶されたテーブルである。第1実施形態では、第2閾値に相当するこの誤差拡散法閾値は、比較する画像データに相関を有する値として記憶されている。他方、後述する第2実施形態では、誤差拡散法閾値は、値の異なる低位閾値THe_Lと高位閾値THe_Hとを含む。誤差拡散法閾値の値と役割については、後で詳述する。
制御ユニット30には、メモリカードスロット98が接続されており、メモリカードスロット98に挿入したメモリカードMCから画像データORGを読み込んで入力することができる。本実施例においては、メモリカードMCから入力する画像データORGは、レッド(R)、グリーン(G)、ブルー(B)の3色の色成分からなるデータである。
以上のようなハードウェア構成を有するプリンター20は、キャリッジモータ70を駆動することによって、印刷ヘッド90を印刷媒体Pに対して主走査方向に往復動させ、また、紙送りモータ74を駆動することによって、印刷媒体Pを副走査方向に移動させる。制御ユニット30は、キャリッジ80が往復動する動き(主走査)や、印刷媒体の紙送りの動き(副走査)に合わせて、印刷データに基づいて適切なタイミングでノズルを駆動することにより、印刷媒体P上の適切な位置に適切な色のインクドットを形成する。こうすることによって、プリンター20は、印刷媒体P上にメモリカードMCから入力したカラー画像を印刷することが可能となっている。
(2)印刷処理:
実施形態における印刷処理の概要を説明する。図2は、プリンター20における印刷処理の流れを示すフローチャートである。ここでの印刷処理は、ユーザが操作パネル99等を用いて、メモリカードMCに記憶された所定の画像の印刷指示操作を行なうことで開始される。印刷処理を開始すると、CPU40は、まず、画像受付部としての処理として、入力部41からメモリカードスロット98を介して、メモリカードMCに記憶された印刷対象であるRGB形式の画像データORGを読み込んで入力する(ステップS110)。
画像データORGを入力すると、CPU40は、EEPROM60に記憶されたルックアップテーブル(図示せず)を参照して、画像データORGについて、RGB形式をCMYKLcLm形式に色変換する(ステップS120)。色変換処理は周知のものなので、その説明は省略する。
その後、画像を分割する処理を行なう(ステップS130)。画像の分割は、本実施形態では、図3に例示するように、主走査方向に3つ、副走査方向に2つの計6つの領域に分割するものとした。もとより分割の数は2以上であれば、いくつでもよい。画像の分割は、ハーフトーン処理部42が備えるHTUの数に応じて行なわれる。本実施形態では、ハーフトーン処理部42は、同時に動作可能な6個のHTU11〜HTU23備える。各HTUは、主走査方向に何番目のユニットであるかをサフィックスiで、副走査方向に何番目のユニットであるかをサフィックスjで、それぞれ表わすものとする。従って、ハーフトーンユニットは、HTUijのように表記する。
印刷しようとする画像の主走査方向の画素数をM、副走査方向の画素数をNとし、主走査方向のユニット数をa、副走査方向のユニット数をbとすれば、各ユハーフトーンユニットが扱う画素数は、
M/a・N/b個である。なお、M/a、N/bは、割り切れるものとする。もとより割り切れない場合は、画像の画素数を擬似的に増やして割り切れるようにして扱えば良い。図3において、主走査方向を矢印PDで、副走査方向を矢印SDで、それぞれ示した。
また、各HTUijが処理を開始する画素OPijの座標は、次式(1)として表わすことができる。
OPij={(i−1)・M/a,(j−1)・N/b} …(1)
各HTUijは、画素OPijの座標を原点として、ここから主走査方向にx個の画素を処理し、副走査方向にy個の画素(ラスター)を処理する。
画像の分割(ステップS130)を行なった後、CPU40は、ハーフトーン処理部42の処理として、分割した各画像毎にHTUijを起動し、画像データを、各色のドットのON/OFFを画素毎に定めたドットデータに変換するハーフトーン処理を行なう(ステップS200)。ここでのハーフトーン処理の詳細については後述する。なお、本明細書では、「ハーフトーン処理」は、ドットのON/OFFの2値化処理に限らず、大小ドットや大中小ドットなどのON/OFFなど、多値化処理を含んだ階調数変換(低減)処理一般を意味している。また、ステップS200に供する画像データは、解像度変換処理やスムージング処理などの画像処理が施されたものであってもよい。
ハーフトーン処理(ステップS200)を分割した各画像ごとに行なうと、CPU40は、分轄された画像毎にハーフトーン処理されたドットデータを組み合わせて、元の画像に対応したドットデータとし、これに対して、プリンター20のノズル配置や紙送り量などに合わせて、1回の主走査単位で印画するドットパターンデータに並び替えるインターレース処理を行なう(ステップS150)。インターレース処理を行なうと、CPU40は、印刷部46の処理として、印刷ヘッド90、キャリッジモータ70、モータ74等を駆動させて、印刷を実行する(ステップS160)。
(3)ハーフトーン処理:
各HTUijが実行するハーフトーン処理(ステップS200)の詳細について、図4を用いて説明する。このハーフトーン処理は、分割した画像毎に、つまり並列に実行される。各HTUijは、上記式(1)に示したように、分割された画像の左上の画素OPijを開始点とし、主走査方向PDの座標をx、副走査方向の座標をyとして、順次処理を行なう。
図4に示したハーフトーン処理を開始すると、一つのHTUijが処理しようとしている分割画像について、注目画素位置n(x,y)と注目画素データDnを取得する(ステップS205)。注目画素位置n(x,y)は、処理対象の分割像の開始点である画素OPij、つまりn(x,y)=n(0,0)から開始され、主走査方向に座標xを順次インクリメントし、座標xが、分割した画像領域の端まで到達すると、座標xを値0にリセットし、副走査方向に座標yを順次インクリメントして、また主走査方向に座標xを順次インクリメントする、という処理を繰り返し、分割した画像領域の最後(図2では右下)まで移動される。
注目画素データDnは、その注目画素位置n(x,y)の画素の階調値である。もとよりカラー画像の場合、注目画素データDnは、色変換によってCMYKLcLmの6色のインクについての階調値から構成されているが、以下の処理は各色の階調値について同じように繰り返されるので、各色の階調値を区別せず、単に注目画素データDnとして扱う。
次に、この注目画素データDnに拡散誤差Ednを加えて、拡散済画像データDDnを求める処理を行なう(ステップS210)。拡散誤差とは、図4の処理を注目画素について行なってドットのON/OFFを決定してドットデータを求めることにより生じた濃度誤差を、周辺の画素に拡散したものである。この拡散誤差は、RAM52に用意された誤差拡散バッファに累積的に記憶されている。誤差拡散の詳細については、後のステップS240で詳しく説明する。
続いて、ディザ寄与度係数K1を取得する処理を行なう(ステップS220)。ディザ寄与度係数K1とは、第1寄与度係数に相当し、後述する複合誤差拡散法処理において、ディザ処理によるドット形成の判断結果を、誤差拡散処理によるドット形成の有無の最終的な判断にどの程度影響させるかを決定する係数である。第1実施形態では、このディザ寄与度係数K1は、図5に例示するように、主走査方向の画素位置と副走査方向の画素位置により変化するように設定されている。主走査方向にa個、副走査方向にb個の画像に分割されている場合、一つの分割画像の中で、開始位置に存在する画素OPijをn(0,0)とすると、主走査方向の最後の画素位置xはM/aであり、副走査方向の最後の画素位置yはN/bである。図5に示したように、主走査方向の画素位置0〜M/aの範囲において、ディザ寄与度係数K1は、隣接する分割画像の位置に近づくほど、値1に近づく。同様に、副走査方向の画素位置0〜N/bの範囲において、ディザ寄与度係数K1は、隣接する分割画像の位置に近づくほど、値1に近づく。主走査方向の画素位置から求めたK1と副走査方向の画素位置から求めたK1が異なる場合には、より大きいほうを採用することにすればよい。あるいは画像に含まれる縦横の成分の多寡に合わせて、優先して採用する方向に決めてもよい。ディザ寄与度係数K1は、画素位置に基づいて計算により求めても良いし、EEPROM60に予め記憶したテーブルを参照して取得するようにしてもよい。図5に示した例では、ディザ寄与度係数K1は、境界から遠ざかるにつれて連続的に値1より小さくなるように設定したが、ディザ寄与度係数K1は、連続的なものでなくてもよく、例えば分割画像の分割された境界に隣接する第1地点における値が、この第1地点よりも境界から離れた第2地点における値より高い値となるよう予め設定されていればよい。
ここでは、画素位置n(x,y)とディザ寄与度係数K1とを直接対応付けるものとしたが、ディザ寄与度係数K1は、図6に例示したように、分割画像の境界からの距離、具体的には境界からの画素数に応じた値として規定しても良い。図6の実線J1で示した例は、ディザ寄与度係数K1は、境界から5画素以内では値1であり、境界から15画素以上離れれば値0.6で一定となり、その間は漸減するように設定されている。このほか、破線J2として例示したように、段階的に変化させたり、一点鎖線J3として例示したように、ディザ寄与度係数K1を値0.8から0.2程度に、つまりディザ寄与度係数K1を全体に小さくしたりしてもよい。
ディザ寄与度係数K1を取得した後、このディザ寄与度係数K1を、着目している画素の画像データDnに乗じて、ディザ判断用データDCnを求める(ステップS230)。寄与度係数K1は、ディザ法における判断において、各画素の階調値と第1閾値とを比較する際、各画素の階調値を、第1閾値に対して相対的に小さな値とする係数である。従って、
K1=DCn/DDn≦1
となるように設定されている。上記実施形態では、寄与度係数K1を画素の画像データDnに乗じたが、後述するディザ法の判断において比較する第1閾値THn_dを寄与度係数K1で除したり、あるいは値1以上の係数を乗じるものとしてもよい。以上の準備、即ち、拡散済画像データDDnとディザ判断用データDCnとを求めた後、複合誤差拡散法処理(ステップS300)を実行する。
第1実施形態における複合誤差拡散法処理(ステップS300)は、以下のように行なわれる。まず、ディザ判断用データDCnが、ディザマスクから読み出された第1閾値THn_d以上か否かの判断を行なう(ステップS301)。第1閾値THn_dは、EEPROM60に記憶されたディザマスク61を構成する複数の閾値のうちの、注目画素位置n(x,y)に対応する閾値である。ディザマスク61の一例を図7に示した。
EEPROM60に記憶されたこのディザマスク61は、既に説明したように、横(主走査方向)256×縦(副走査方向)64の大きさを有し、第1閾値に相当する複数の閾値THn_dが配列されている。第1の閾値THn_d(以下、単に閾値THn_dとも呼ぶ)は、本実施形態では、1〜255までの値をとる。各閾値THn_dは、この閾値との比較により形成されるドットの空間周波数が、いわゆるブルーノイズ特性となるように配置されている。
ディザマスクにおけるブルーノイズ特性は、高い周波数領域に最も大きな周波数成分を有するものとなっている。これは、高周波領域において感度が低いという人間の視覚特性を考慮して、高周波領域に最も大きな周波数成分が発生するように閾値の格納位置が調整されていることを意味する。こうしたブルーノイズ特性を備えたディザマスクを用いてドットを発生させると、ドットの分散性に優れた画像が得られる。
ディザマスクにおけるブルーノイズ特性については、周知のものなので、詳しく説明は省略する。なお、ブルーノイズ特性に代えて、グリーンノイズ特性を採用してもよい。グリーンノイズ特性は、ブリーノイズ特性よりやや低周波側に最も大きな周波数成分を有するもので、画素サイズが十分に小さければグリーンノイズ特性でも粒状感の感じられない良好な画像が得られる。ディザマスク61は、こうしたブルーノイズ特性やグリーンノイズ特性などの所定の空間周波数特性を有するように作成されている。
ステップS301では、ディザマスク61から注目画素位置n(x,y)に対応する位置の閾値THn_dを取り出し、これをディザ判断用データDCnと比較する。ディザ判断用データDCnをディザマスクから読み出した閾値THn_dと比較するこの判断を、以下、仮ディザとも言う。図7では、仮ディザの判断において用いられる閾値THn_dとして、値166が取り出される様子を示している。仮ディザの判断の結果、注目画素についてのディザ判断用データDCnの階調値が閾値THn_dの値未満であれば(ステップS301:NO)、CPU40は、続いて拡散済画像データDDnと、第2の閾値に相当する誤差拡散法閾値THeとを比較する(ステップS305)。ここで誤差拡散法閾値THeは、図8Aに示したように、注目画素データDnに応じた値として定められる。図8Aに示した例では、誤差拡散法閾値THeは、画素データDnが大きくなるに従って、大きくなるような特性THe_Nとして設定されている。誤差拡散法閾値THeに、このような特性を持たせるのは、誤差拡散法による2値化の際に、2値化誤差を早めに解消して、いわゆるドット形成遅延や尾曳きなどの発生を抑制するためである。
ステップS305の判断の結果、拡散済画像データDDnが誤差拡散法閾値THe以上であれば(ステップS305:YES)、注目画素のドットをON(ドットを形成する)に決定し(ステップS307)、拡散済画像データDDnの階調値が誤差拡散法閾値THe未満であれば(ステップS305:NO)、注目画素のドットをOFF(ドットを形成しない)に決定する(ステップS308)。
他方、ステップS301の仮ディザの判断において、ディザ判断用データDCnの階調値が閾値THn_dの値以上であれば(ステップS301:YES)、拡散済画像データDDnが誤差拡散法閾値THe以上である場合(ステップS305:YES)と同様、ドットをONに決定する(ステップS307)。
以上説明したステップS301〜S308までの処理、即ち複合誤差拡散法処理(ステップS300)を実行することにより、注目画素にドットを形成するか形成しないかの判断がなされる。この処理は、複合誤差拡散法処理部45の処理として実行される。この処理を受けて、CPU40は、2値化誤差Enと拡散誤差Ednとを算出する(ステップS240)。2値化誤差Enとは、拡散済画像データDDnとドットのON/OFF結果実現される階調値RSLT(ここでは値255または0)との差分である。数式で表せば、次式(2)として表される。
En=DDn(x,y)−RSLT(255 or 0) … (2)
一般にドットが形成されなければ2値化誤差Enは正の方向に変化し、ドットが形成されれば2値化誤差は負の方向に変化する。
この結果、以下に説明する誤差拡散の処理により、2値化の処理によって負の誤差が発生すればその周辺の画素ではドットが形成されにくくなり、正の誤差が発生すればその周辺の画素ではドットが形成されやすくなる。誤差拡散は、以下の式(3)により拡散誤差Ednを求めて、着目画素において発生した誤差を周辺の画素の配分する処理である。配分された誤差は累積され、上記ステップS210において注目画素データDnの階調値に加算される。本実施形態では、2値化誤差Enを、ドットのON/OFFが未決定の周辺画素である4つの画素に、図8Bに示した重み付けで、配分している。即ち、図8Bに「*」印で示した注目画素の主走査方向に隣接する位置(右隣)の画素に対して7/16、副走査方向に隣接しかつ主走査方向反対側の位置(左下)の画素に対して3/16、副走査方向に隣接する直下の画素に対して5/16、主走査方向および副走査方向に隣接する位置(右下)の画素に対して1/16の割合で、拡散誤差Ednとして配分するものとした。こうして算出された拡散誤差Ednは、RAM52に用意された誤差バッファに格納される。
Edn(x+1,y )=Edn(x+1,y )+En×(7/16)
Edn(x−1,y+1)=Edn(x−1,y+1)+En×(3/16)
Edn(x ,y+1)=Edn(x ,y+1)+En×(5/16)
Edn(x+1,y+1)=Edn(x+1,y+1)+En×(1/16)
… (3)
上記の複合誤差拡散法処理(ステップS300)と2値化誤差および拡散誤差の演算(ステップS240)を行なった後、CPU40は、上記式(3)により求めた拡散誤差Ednを、注目画素の周辺の各画素に拡散する処理を行なう(ステップS245)。その上で、CPU40は、各ハーフトーンユニットHTUijがハーフトーン処理を行なっている画像、つまり図3に示した各分割画像内の全画素に関して、2値化の処理が終了したかを判断し、全画素についての処理が終了するまで、注目画素位置(x,y)をインクリメントしつつ、ステップS205に戻って、上述したハーフトーン処理を継続する。分割画像内の全画素に対して処理が終了していれば(ステップS250:「YES」)、「RETURN」に抜けてハーフトーン処理を終了する。
以上説明したハーフトーン処理は、図2に示したように、複数のハーフトーンユニットHTUijにより、並列処理される。並列処理とは、CPU40がマルチコアを利用して実現する複数のハーフトーン処理部42の各々において、各分割画像に対応する画像データに対する誤差拡散法を含むハーフトーン処理の少なくとも一部を同時に行なうことを言う。
以上説明した処理によれば、複合誤差拡散法処理部45において、各ハーフトーンユニットHTUijが誤差拡散法によるハーフトーン処理を行なって得られるドットデータの少なくとも一部が、ディザ法による判断の結果に一致される。即ち、各ハーフトーンユニットHTUijによるドットデータの生成結果(ドットのON/OFF)が、複数の閾値からなるディザマスクに配列された閾値との比較の結果、即ちディザ法を用いた場合の結果に一致する割合を高めることができる。ディザ法では画像を分割して処理しても、境界領域での画質劣化は生じないので、ディザ法を用いた場合の結果に一致する割合を高めることで分割画像に対してハーフトーン処理しても、誤差拡散法による境界やその近くでの擬似輪郭の発生などの画質の乱れを抑制でき、かつ少なくとも2つのハーフトーン処理部が、前記少なくとも2つの画像データに対する処理の少なくとも一部を同時に行なうので、ハーフトーン処理を全体として高速化することができる。
具体的には、第1実施形態によれば、仮ディザの判断(ステップS301)により、着目画素の拡散済画像データDDnがディザマスク61の対応する位置から取得した閾値THn_d以上であれば、誤差拡散による判断を待たずにドットを形成する。従って、仮ディザの判断結果がONであれば、必ずドットが形成されることになる。ここで、ディザ寄与度係数K1が値1の場合とディザ寄与度係数K1が値1未満の場合とを比較すると、後者の場合、仮ディザの判断結果、つまりステップS301の判断結果が「YES」となる割合は、前者の場合より低くなる。その割合は、ディザ寄与度係数K1が、仮に0.8ならば、ディザ寄与度係数K1が値1の場合の8割ということになる。残り2割のうちには、ステップS305の判断で、拡散済画像データDDnと誤差拡散法閾値THeとを比較してドットONと決定される画素とドットOFFと決定される画素とが存在するが、そのON/OFFは、ディザ寄与度係数K1が値1の場合のステップS301の判断と必ずしも一致する訳ではない。このため、ディザ寄与度係数K1が値1に近いほど、全体として、ステップS301での判断結果と、最終的なハーフトーン処理結果、つまりドットのON/OFFとが一致する割合は高くなる。
ディザ寄与度係数K1は、画素位置によらず一定の値としてもかまわないが、第1実施形態では、ディザ寄与度係数K1を、各ハーフトーンユニットHTUijが処理する分割画像の境界に近いほど、値1に近い値に設定している(図5、図6参照)。従って、第1実施形態のプリンター20によれば、各ハーフトーンユニットHTUijが行なうハーフトーン処理によるドット形成のON/OFFと仮ディザの判断結果(ステップS301)とが一致する割合は、図9に示したように、分割画像の境界に近づくほどに高くなる。このため、各分割画像が隣接する箇所では、ディザ法によりドット形成の有無が決定されることになり、疑似輪郭などが生じることがない。他方、分割画像の境界から離れると、ハーフトーン処理による最終的なドット形成のON/OFFと仮ディザの判断結果との一致の程度は低下する。このため、各分割画像の境界以外では、誤差拡散法によりドット形成の有無が決定される割合が高まる。つまり、一つの画素についてのドット形成の有無の決定により生じた濃度誤差は、周辺の画素に拡散され、画像全体の濃度誤差は解消され、形成されるドットの分布は原画像の階調値を反映したもとのとなり、高い画質を実現できる。しかも、分割画像の境界から遠ざかるにつれて、ディザ寄与度係数K1を漸減させているので、ディザ法による判断と誤差拡散法による判断とが、徐々に遷移していくことになり、切替による画像の乱れなども生じない。このため、画像を分割し、各画像を複数のハーフトーンユニットHTUijの各々に処理させて、画像処理の高速化を図りつつ、原画像が分割された境界での擬似輪郭の発生などの画像の乱れも十分に抑制される。
上記の実施形態では、ディザ寄与度係数K1は、分割された画像の境界に近いほど値1に近付くように設定した。こうした実施形態において、画素データDnの大きさにより設定するもう一つのディザ寄与度係数K2を設け、図4のステップS230において、ディザ判断用データDCnを求める際、次式(4)を用いて求めるものとしてもよい。ディザ寄与度係数K2は、第2寄与度係数に相当する。
DCn←K1・K2・Dn …(4)
もう一つのディザ寄与度係数K2の一例を図10に示した。こうすれば、第1実施形態に示した複合誤差拡散法処理(図4、ステップS300)であっても、画素データDnの階調値に応じて、ディザマスク61の閾値との比較結果がドットのON/OFFに反映される度合いを調整することが可能となる。なお、ディザ寄与度係数K1・K2の代わりに、分割画像内の位置x、yや画素データDnとの組み合わせに対応して任意に設定可能な関数、K3(x,y,Dn)を用いれば、より自由度の高い寄与度係数設定が可能となる。関数に代えて、ルックアップテーブルを用いても、同様に、寄与度係数を自由に設定することができる。第2寄与度係数K2は、第1寄与度係数K1と共に用いる必要はなく、単独で用いても良い。この場合、分割画像の境界との距離とは関係なく、入力階調値が大きくなるほど、ディザ法の判断結果に近付くことになる。なお、図10では、ディザ寄与度係数K2は、階調値に応じて連続的に変化するものとしたが、ディザ寄与度係数K2は、連続的なものでなくてもよく、例えば分割画像の画素の第1階調値におけるディザ寄与度係数K2が、第1階調値よりも階調値の高い第2階調値における値より低い値となるよう予め設定されていればよい。また,図10では、画素データDnが値0の時のディザ寄与度係数K2は、値0から始まるものとしたが、画素データDnが値0付近の時に、並列処理の境界での擬似輪郭が問題となる場合には、画素データDnが値0の時のディザ寄与度係数K2を、値0.5程度から始まって、半分の傾きでなだらかに増加して値1に達するよう設定する、などとすればよい。こうすれば、画素データDnが値0付近での仮ディザとの一致率を、図10よりも高めることができ、擬似輪郭の発生などを抑制できる。
B.第2実施形態:
第2実施形態について説明する。第2実施形態のプリンター20は、第1実施形態と同様の装置構成を備え、複合誤差拡散法処理部45の処理が相違する。第2実施形態におげる複合誤差拡散法処理部45の処理を図11に示した。第1実施形態と同様に、画像データの入力(ステップS110)、色変換処理(ステップS120)、画像分割(ステップS130)の処理を行なった後、分割された各分割画像の画像データに対して、複数のハーフトーンユニットHTUijが並列的に、ハーフトーン処理を実行する。この概要は図4に示したものであり、第2実施形態では、複合誤差拡散法処理(ステップS300)の内容が異なっている。
第2実施形態では、複合誤差拡散法処理として、以下の処理を行なう。まず、CPU40は、第1実施形態と同様、仮ディザ処理を行なう(ステップS311)。即ち、ディザ判断用データDCnと、EEPROM60に記憶されたディザマスク61を構成する複数の閾値のうちの、注目画素の画素位置n(x,y)に対応する閾値THn_dの値との大小関係を比較する。
仮ディザ処理の結果、注目画素データDnの階調値が閾値THn_dの値以上であれば(ステップS311:YES)、誤差拡散法に用いる誤差拡散法閾値THeを低位閾値THe_Lに設定する(ステップS312)。一方、注目画素のディザ判断用データDCnが閾値THn_dの値未満であれば(ステップS311:NO)、誤差拡散法に用いる誤差拡散法閾値THeを高位閾値THe_Hに設定する(ステップS313)。このように、本実施例においては、誤差拡散法に用いる誤差拡散法閾値THe(以下、単に閾値THeとも呼ぶ)を仮ディザ処理の結果に基づいて変化させる。かかる閾値THeの設定は、EEPROM60に記憶された誤差拡散閾値テーブル62を参照して行なわれる。
誤差拡散閾値テーブル62の具体例を概念的に図12に示す。図12は、ステップS312,S313で、誤差拡散法閾値THeに設定される高位閾値THe_H及び低位閾値THe_Lの例である。図12に実線で示した誤差拡散法閾値THe_Nは、第1実施形態で用いられたものと同じである。また、図12に二点鎖線で示したのは、高位閾値THe_Hと低位閾値THe_Lとの差分(以下、ΔTHeとも言う)である。注目画素データDnの階調値が0〜16の範囲では、閾値差分ΔTHeは値0であり、高位閾値THe_H及び低位閾値THe_Lの値は、閾値THe_Nと一致している。階調値が16〜192の範囲では、高位閾値THe_Hを閾値THe_Nよりも大きく、低位閾値THe_Lを閾値THe_Nよりも小さくして、階調値が大きくなるに従って閾値差分ΔTHeが大きくなるように、高位閾値THe_H及び低位閾値THe_Lを設定している。階調値が192〜255の範囲では、閾値差分ΔTHeを値255で一定となるように高位閾値THe_H及び低位閾値THe_Lを設定している。
誤差拡散法閾値THeを高位閾値THe_Hまたは低位閾値THe_Lに競っていた後、CPU40は、拡散済画像データDDnと、ステップS312またはステップS313で設定した誤差拡散法閾値THeとを比較する(ステップS136)。その結果、拡散済画像データDDnが誤差拡散法閾値THe以上であれば(ステップS136:YES)、注目画素のドットをONに決定し(ステップS317)、拡散済画像データDDnが誤差拡散法閾値THe未満であれば(ステップS136:NO)、注目画素のドットをOFFに決定する(ステップS318)。
第2実施形態における複合誤差拡散法処理(ステップS300)は、上記の通りである。これらの処理を終了すると、図4のステップS240以下の処理を行ない、各分割画像の全ての画素についてのハーフトーン処理を、並列的に実行する。
上述した複合誤差拡散法処理を含むハーフトーン処理について、以下に説明する。上述したように、ステップS311〜S313の処理においては、ディザ判断用データDCnがディザマスク61から取得した閾値THn_dの値以上であれば、誤差拡散法閾値THeは、低位閾値THe_Lに設定され、注目画素データDnの階調値が閾値THn_dの値未満であれば、閾値THeは、高位閾値THe_Hに設定される。このとき、両閾値の差分ΔTHe(=THe_H−THe_L)は0以上の値となる。
ここで、閾値差分ΔTHeが値0である場合(THe_H=THe_L)を考える。この場合、仮ディザ処理の結果は、閾値THeに影響を与えないことになり、ステップS311〜S313の処理は、最終的なドットのON/OFFの決定に影響を与えない。つまり、この場合には、複合誤差拡散法処理(ステップS300)において、最終的なドットのON/OFFが、誤差拡散法的のみによって決定されていることを意味する。
次に、閾値の差分ΔTHeが値0より大きい場合(THe_H>THe_L)を考える。この場合、CPU40は、ディザ判断用データDCnが閾値THn_dの値以上であると判断すると、誤差拡散法閾値THeを相対的に小さい低位閾値THe_Lに設定する。一方、ディザ判断用データDCnが閾値THn_dの値未満であると判断すると、誤差拡散法閾値THeを相対的に大きい高位閾値THe_Hに設定する。この結果、差分ΔTHeが大きくなるほど、ステップS311の判断結果とステップS315での判断結果は一致しやすくなる。しかも、第2実施形態でも、第1実施形態同様、ディザ寄与度係数K1により、注目画素データDnを修正しているので(図4、ステップS230)、最終的にドットが形成されるか否かは、次のように制御される。
(A)図5.図6に例示した関係を採用していれば、分割領域の境界に近付くと、ディザマスクの閾値との比較結果が最終的なドットのON/OFFに反映される度合いが高くなり、
(B)図12に例示した関係を採用すると、注目画素の階調値が低い場合には、ドットのON/OFFが誤差拡散法による判断結果に近付き、注目画素の階調値が高くなるに従って、ディザマスク61の階調値との比較の結果に近付く。また、第2実施形態では、係数K1を値1に固定するなどして、第1寄与度係数K1による寄与度制御を省略することもできる。省略すると画素位置に応じて寄与度を可変とすることはできなくなるが、第1実施形態で係数K1を画素位置に依存しない一定値とした場合と同様の効果を、第1寄与度係数K1を用いずに実現できる。
このため、第2実施形態によれば、第1実施形態と同様の効果を奏する上、更に、低階調領域では、誤差拡散法によりドット形成がなされやすくなり、ドットの分散性に優れた画像の形成を実現することができる。また、本実施形態では、印刷結果において、ディザ法的要素と誤差拡散法的要素との寄与度係数の変化が視認されにくいので、同一の印刷画像におけるディザ法的要素と誤差拡散法的要素の寄与度係数の変化に伴う印刷画質の低下を抑制することができる。特に、本実施例では、ディザマスク61に、印刷画質の粒状性に優れたブルーノイズ特性を有するものを採用していることから、同じく印刷画質の粒状性に優れた誤差拡散法的要素との寄与度係数の変化をよりスムーズに見せることができる。なお、ディザマスク61がブルーノイズ特性を有していない場合であっても、階調値の大きさに基づいて、誤差拡散法によるドットの形成のされやすさの制御の程度を段階的に変化させれば、ディザ法的要素と誤差拡散法的要素との寄与度係数を画像データの階調値に応じて滑らかに変化させることは可能である。
誤差拡散閾値テーブル62は、図12に示した特性に限るものではなく、例えば、画素データDnが値0近辺でもΔTHeが値0より大きい値を維持するようにしてもよい。また、図13に示すような特性を持たせてもよい。図13に示した例では、階調値の増加に伴う高位閾値THe_Hの増加率と、低位閾値THe_Lの減少率とが大きく、階調値が所定値以上で一定となっている点が図12と異なる。
この点を閾値の差分ΔTHeとして見れば、差分ΔTHeは、階調値が0の場合に値0であり、階調値が大きくなるに従って大きくなって、階調値が128で値255となり、その後、階調値が255となるまで、値255で一定推移する。
かかる特性を誤差拡散閾値テーブル62が有する場合には、注目画素の画像データDnの階調値が0より大きければ、差分ΔTHeは有意の値をとり、かつその変化量が大きくなるので、全階調値においてディザ法的要素が現れる。特に、階調値が128以上の範囲では、ディザ法的要素が極めて強くなる。図13の例では、閾値の差分ΔTHeが値255の場合に、ほぼディザ法的要素のみで最終的なドットのON/OFFを決定することになる。なお、低位閾値THe_Lをマイナスの値にするなどして、閾値の差分ΔTHeをさらに大きくすれば、完全にディザ法的要素のみで最終的なドットのON/OFFを決定することも可能である。
C.他の実施形態:
(1)画像分割のバリエーション:
上述した実施形態では、画像を、主走査方向にa個、副走査方向にb個に分割したが、分割の個数は複数であれば幾つでよい。また、分割した個数に対応した数の複合誤差拡散法処理部45を用意して並列に処理すれば、ハーフトーン処理の高速化を図ることができるが、分割の数とハーフトーンユニットHTUijの数とは必ずしも一致しなくてもよい。分割した画像の数だけハーフトーンユニットHTUijがなくても、全体の処理に要する時間は短縮することができる。また、並列に動作するハーフトーンユニットHTUijは同時に処理を終了しなくてもよい。また同時に処理を開始しなくてもよい。
分割する画像の形状は、全ての分割画像において同一である必要はなく、例えば図14や図15に例示するように、異なる形状であってもよい。特に画像同士の境界は、主走査方向、副走査方向に平行である必要はなく、図14に例示したように、斜めであっても良いし、図15に例示したように、ラスター毎にずれていても良い。後者の場合、ラスター毎に境界の位置がずれているので、擬似輪郭などが視認されにくくなる。画像の分割を矩形に限らない場合、各ラスターにおける処理の開始点の画素OPijの座標を、予めテーブル等に用意して、これを参照して処理を開始すれば良い。
また、上記実施形態では、処理する画像を入力して、これをプリンター20の内部で分割したが、外部のコンピューター等で、画像の分割を済ませ、分割済みの画像の画像データを入力するようにしても良い。
(2)ハーフトーンユニットHTUijの処理範囲:
複合誤差拡散法処理を含むハーフトーン処理を行なうハーフトーンユニットHTUijは、分割画像の範囲を超えてハーフトーン処理を行なっても良い。この例を図16に示した。この例では、分割画像は矩形形状をしており、各ハーフトーンユニットHTUijはこの分割画像の境界を越える範囲に亘ってハーフトーン処理を行なう。この場合、2つのハーフトーンユニットHTUijの境界では、両方のハーフトーンユニットHTUijにより処理が行なわれるオーバーラップ領域OVAが存在することになるが、各ハーフトーンユニットHTUijが担当する分割画像からはみ出した範囲については、ハーフトーン処理に伴って誤差拡散を行なうに留め、ドットのON/OFFについては、係わらないものとすればよい。こうすれば、分割画像の範囲についての誤差の拡散をより適切に行なうことができる。
上記実施形態では、第2閾値に相当する誤差拡散法閾値THeは、図8A他に示したように、注目画素データDnの関数として与えたが、値127などの固定値として扱っても差し支えない。
(3)ディザ寄与度係数のバリエーション:
上記実施形態では、ディザ寄与度係数として、第1寄与度係数に相当する寄与度係数K1と、第2寄与度係数に相当する寄与度係数K2とを示したが、ディザ寄与度係数としては、他の寄与度係数を採用しても良い。例えば第2実施形態では閾値の差分ΔTHeを大きくするほど、ディザ寄与度係数を高くすることができる。この場合、所望の寄与度係数K2に相当する差分ΔTHeとするには、実際にドットデータを生成し、所望の割合でドットが形成されているかを測定して寄与度係数を調整すればよい。あるいは、寄与度係数を位置や画素データDnに対してランダムに変更するようなものを採用しても良い。またこれらを複合して用いても良い。更に、ディザ寄与度係数は、処理するインク色に応じて異なる値としてもよい。
寄与度係数は、上記実施形態では、例えば図4ステップS220−S230に示したように画素データDnに寄与度係数K1を乗じたが、これに代えて、ディザマスク61から取得した閾値を寄与度係数K1で除算するようにしても同じ結果が得られる。また判断用データDCnを求める際に,負の値に設定した寄与度係数を画素データDnに加算することとしてもよい。これによっても、寄与度係数が値0に近いほど判断用データDCnが大きくなりディザとの一致率を高められる。また、同じ寄与度係数を、第1閾値を調整する数値として与えて、これを第1閾値から減算するようにしてもよい。
(4)印刷装置としての利用:
上記実施形態では、プリンター20は自らハーフトーン処理を行なう、いわゆる複合機として示したが、コンピューターのドライバにおいて上述の複合誤差拡散法処理を含むハーフトーン処理を行ない、得られたドットデータをプリンター20に送信して印刷を行なう態様として実現しても良い。プリンター20としては、上述のいわゆるシリアルプリンターに限れず、ラインプリンターやページブリンタなどであっても差し支えない。また、印刷方式は、インクジェット方式に限られず、熱転写やレーザープリンタなどであっても差し支えない。印刷するインク色は、カラーでなくてもよく、モノクロプリンターのように、単色を印刷するものであってもよい。印刷する媒体は、用紙に限られず、フィルムやシート、瓶やボルトなどの曲面のものであってもよい。もとより、印刷まで必ずしも行なう必要はなく、画像処理方法単独で実施するものとしてもよい。
D.その他の態様:
[1]本開示の画像処理装置は、画像をハーフトーン処理する画像処理装置であり、前記画像を分割した複数の分割画像に対応する複数の画像データを受け付ける画像受付部と、前記複数の画像データのそれぞれを処理してドットの形成の有無を表すドットデータを生成するハーフトーン処理を行なう複数のハーフトーン処理部であって、少なくとも2つのハーフトーン処理部が、前記少なくとも2つの画像データに対する処理の少なくとも一部を同時に行なう複数のハーフトーン処理部と、を備え、前記ハーフトーン処理部の各々は、前記分割画像の各画素の誤差拡散済みの階調値に対して誤差拡散法によるハーフトーン処理を行なって得られる前記ドットデータの少なくとも一部を、ディザ法による判断の結果に一致させる複合誤差拡散法処理を行なうことを特徴とする。こうすれば、画像のハーフトーン処理の少なくとも一部を並列に行なうことができ、しかもその処理において、各画素の誤差拡散済みの階調値に対して誤差拡散法によるハーフトーン処理を行なって得られるドットデータの少なくとも一部を、ディザ法による判断の結果に一致させるので、ディザ法による判断結果を優先する利点を得ることができる。こうした利点としては、分割画像の境界付近での擬似輪郭の発生を抑制などを挙げることができる。
[2]こうした画像処理装置において、前記複合誤差拡散法処理は、複数の閾値からなるディザマスクに配列された第1閾値と、前記分割画像に対応する画像データに含まれる各画素の階調値とを順次比較し、前記第1閾値との比較において、前記画素の階調値の方が高い場合には、ドットを形成するものとして前記ドットデータを生成し、前記第1閾値との比較において、前記画素の階調値の方が高くない場合には、前記誤差拡散済みの階調値を、予め定めた第2閾値と比較した結果に応じて、前記ドットデータを生成する処理としてもよい。こうすれば、誤差拡散法による比較の結果が、ディザ法による比較結果と一致する割合を容易に高められる。
[3]また、上記の画像処理装置において、前記複合誤差拡散法処理は、複数の閾値からなるディザマスクに配列された第1閾値と、前記分割画像に対応する画像データに含まれる各画素の階調値とを順次比較し、前記画素の前記階調値が前記第1閾値以上の場合には、前記誤差拡散法による前記ハーフトーン処理で用いられる第2閾値を、前記画素の前記階調値が前記第1閾値未満の場合と比べて、小さな値に設定し、前記誤差拡散法による前記ハーフトーン処理では、前記誤差拡散済みの階調値を前記設定された前記第2閾値と比較して、前記ドットデータを生成するものとしてもよい。こうすることによっても、誤差拡散法による比較の結果が、ディザ法による比較結果と一致する割合を容易に高められる。
[4]こうした画像処理装置において、前記ディザ法における前記判断において、前記分割画像の各画素の階調値と前記第1閾値とを比較する際、前記各画素の階調値を、前記第1閾値に対して相対的に小さな値とする寄与度係数を設けてもよい。こうすれば、ディザ法による判断において画素の階調値が第1閾値以上となる割合を寄与度係数により相対的に小さくできるので、誤差拡散法による比較の結果が、ディザ法による比較結果と一致する割合を、寄与度係数により設定することができる。
[5]こうした画像処理装置において、前記寄与度係数を、前記分割画像の分割された境界に隣接する第1地点における値が、前記第1地点よりも前記境界から離れた第2地点における値より高い値となるよう予め設定してもよい。こうすれば、寄与度係数を用いて、分割画像の分割された境界からの隔たりにより、ドットデータの生成結果が、第1閾値との比較の結果に一致する割合を調整することができる。
[6]こうした画像処理装置において、前記寄与度係数を、前記分割画像の前記画素の第1階調値における値が、前記第1階調値よりも階調値の高い第2階調値における値より低い値となるよう予め設定してもよい。こうすれば、寄与度係数を用いて、分割画像の画素の階調値に応じて、ドットデータの生成結果が、第1閾値との比較の結果に一致する割合を調整することができる。
[7]上記の画像処理装置において、前記寄与度係数を、前記分割画像の分割された境界に隣接する第1地点における値が、前記第1地点よりも前記境界から離れた第2地点における値より高い値となるよう予め設定した第1寄与度係数と、前記分割画像の前記画素の第1階調値における値が、前記第1階調値よりも階調値の高い第2階調値における値より低い値となるよう予め設定した第2寄与度係数とを乗じた値としてもよい。こうすれば、分割画像の分割された境界からの隔たりと、割画像の画素の階調値とに応じて、ドットデータの生成結果が、第1閾値との比較の結果に一致する割合を調整することができる。
[8]こうした画像処理装置において、前記画像受付部は、前記画像の画像データを入力し、前記入力した画像の前記複数の分割画像に対応した複数の画像データに分割するものとしてもよい。
[9]こうた画像処理装置であって、分割画像の境界形状は、(1)前記分割画像についての前記ハーフトーン処理を行なう方向およびこれに交差する方向にそれぞれ平行な方向に沿った形状、(2)前記分割画像についての前記ハーフトーン処理を行なう方向およびこれに交差する方向の少なくとも一方に対して斜行する方向に沿った形状、(3)前記分割画像についての前記ハーフトーン処理を行なう方向において、ランダムに変化する形状、のうちの一つとしてもよい。これらのいずれの分割でも、同じように処理することができるが、(2)や(3)であれば、境界の位置が変化するので、境界における擬似輪郭の発生などの画質の劣化が生じたとしても、視認しにくくなる。
[10]上記画像処理装置において、前記複数のハーフトーン処理部の一つが処理する範囲は、前記分割画像の大きさより広いものとしてもよい。こうすれば、複数のハーフトーン処理部処理がオーバーラップする領域が生じるので、誤差拡散法による誤差の拡散を分割画像の境界を越えて行なうことができ、誤差の偏りによる画質劣化などを生じにくくすることができる。
[11]本開示の多階調の画像を印刷する印刷装置は、前記画像を分割した複数の分割画像に対応する複数の画像データを受け付ける画像受付部と、前記複数の画像データのそれぞれを処理してドットの形成の有無を表すドットデータを生成するハーフトーン処理を行なう複数のハーフトーン処理部であって、少なくとも2つのハーフトーン処理部が、前記少なくとも2つの画像データに対する処理の少なくとも一部を同時に行なう複数のハーフトーン処理部と、前記ドットデータに応じて、印刷媒体上にインク滴を吐出して画像を形成する印刷部とを備える。ここで、ハーフトーン処理部の各々は、前記分割画像の各画素の誤差拡散済みの階調値に対して誤差拡散法によるハーフトーン処理を行なって得られる前記ドットデータの少なくとも一部を、ディザ法による判断の結果に一致させる複合誤差拡散法処理を行なうものとしてよい。
かかる印刷装置は、画像を分割して、その少なくとも一部を同時に処理して印刷を行なうので、画像の印刷に要する時間を短縮することができる。また、誤差拡散法による比較の結果が、ディザ法による比較結果と一致する割合を高められるので、誤差拡散の範囲が限られることに起因する画質劣化を抑制することができる。
[12]本開示の画像処理方法は、画像をハーフトーン処理する画像処理方法である。この画像処理方法は、前記画像を分割した複数の分割画像に対応する複数の画像データを受け付け、前記複数の画像データのそれぞれを処理してドットの形成の有無を表すドットデータを生成するハーフトーン処理部を設け、少なくとも2つのハーフトーン処理部に、前記少なくとも2つの画像データに対するハーフトーン処理の少なくとも一部を同時に行なわせる。ここで、前記ハーフトーン処理は、前記分割画像の各画素の誤差拡散済みの階調値に対して誤差拡散法によるハーフトーン処理を行なって得られる前記ドットデータの少なくとも一部を、ディザ法による判断の結果に一致させる複合誤差拡散法処理としてよい。かかる画像処理方法によっても、上述した画像処理装置と同様の作用効果を奏することができる。
本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した各形態中の技術的特徴に対応する実施形態の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。例えば、上記実施形態においてハードウェアにより実現した構成の一部は、ソフトウェアにより実現することができる。また、ソフトウェアにより実現している構成の少なくとも一部は、ディスクリートな回路構成により実現することも可能である。
20…プリンター、30…制御ユニット、40…CPU、41…入力部、42…ハーフトーン処理部、45…複合誤差拡散法処理部、46…印刷部、51…ROM、52…RAM、60…EEPROM、61…ディザマスク、62…誤差拡散閾値テーブル、70…キャリッジモータ、71…駆動ベルト、73…摺動軸、74…モータ、75…プラテン、80…キャリッジ、82…インクカートリッジ、90…印刷ヘッド、98…メモリカードスロット、99…操作パネル、DCn…ディザ判断用データ、DDn…拡散済画像データ、Dn…注目画素データ、Edn…拡散誤差、HTUij…ハーフトーンユニット、K1,K2…ディザ寄与度係数、MC…メモリカード、OPij…画素、ORG…画像データ、OVA…オーバーラップ領域、THe…誤差拡散法閾値、THe_H…高位閾値、THe_L…低位閾値、THe_N…誤差拡散法閾値、THn_d…第1閾値

Claims (12)

  1. 画像をハーフトーン処理する画像処理装置であって、
    前記画像を分割した複数の分割画像に対応する複数の画像データを受け付ける画像受付部と、
    前記複数の画像データのそれぞれを処理してドットの形成の有無を表すドットデータを生成するハーフトーン処理を行なう複数のハーフトーン処理部であって、少なくとも2つのハーフトーン処理部が、前記少なくとも2つの画像データに対する処理の少なくとも一部を同時に行なう複数のハーフトーン処理部と、
    を備え、
    前記ハーフトーン処理部の各々は、前記分割画像の各画素の誤差拡散済みの階調値に対して誤差拡散法によるハーフトーン処理を行なって得られる前記ドットデータの少なくとも一部を、ディザ法による判断の結果に一致させる複合誤差拡散法処理を行なう
    画像処理装置。
  2. 請求項1記載の画像処理装置であって、
    前記複合誤差拡散法処理は、
    複数の閾値からなるディザマスクに配列された第1閾値と、前記分割画像に対応する画像データに含まれる各画素の階調値とを順次比較し、
    前記第1閾値との比較において、前記画素の階調値の方が高い場合には、ドットを形成するものとして前記ドットデータを生成し、
    前記第1閾値との比較において、前記画素の階調値の方が高くない場合には、前記誤差拡散済みの階調値を、予め定めた第2閾値と比較した結果に応じて、前記ドットデータを生成する処理である
    画像処理装置。
  3. 請求項1記載の画像処理装置であって、
    前記複合誤差拡散法処理は、
    複数の閾値からなるディザマスクに配列された第1閾値と、前記分割画像に対応する画像データに含まれる各画素の階調値とを順次比較し、
    前記画素の前記階調値が前記第1閾値以上の場合には、前記誤差拡散法による前記ハーフトーン処理で用いられる第2閾値を、前記画素の前記階調値が前記第1閾値未満の場合と比べて、小さな値に設定し、
    前記誤差拡散法による前記ハーフトーン処理では、前記誤差拡散済みの階調値を前記設定された前記第2閾値と比較して、前記ドットデータを生成する
    画像処理装置。
  4. 請求項2または請求項3に記載の画像処理装置であって、
    前記ディザ法における前記判断において、前記分割画像の各画素の階調値と前記第1閾値とを比較する際、前記各画素の階調値を、前記第1閾値に対して相対的に小さな値とする寄与度係数を設けた画像処理装置。
  5. 請求項4に記載の画像処理装置であって、
    前記寄与度係数を、前記分割画像の分割された境界に隣接する第1地点における値が、前記第1地点よりも前記境界から離れた第2地点における値より高い値となるよう予め設定した画像処理装置。
  6. 請求項4に記載の画像処理装置であって、
    前記寄与度係数を、前記分割画像の前記画素の第1階調値における値が、前記第1階調値よりも階調値の高い第2階調値における値より低い値となるよう予め設定した画像処理装置。
  7. 請求項4に記載の画像処理装置であって、
    前記寄与度係数を、
    前記分割画像の分割された境界に隣接する第1地点における値が、前記第1地点よりも前記境界から離れた第2地点における値より高い値となるよう予め設定した第1寄与度係数と、
    前記分割画像の前記画素の第1階調値における値が、前記第1階調値よりも階調値の高い第2階調値における値より低い値となるよう予め設定した第2寄与度係数と
    を乗じた値とする画像処理装置。
  8. 前記画像受付部は、
    前記画像の画像データを入力し、
    前記入力した画像の前記複数の分割画像に対応した複数の画像データに分割する請求項1から請求項7のいずれか一項に記載の画像処理装置。
  9. 請求項1から請求項8のいずれか一項に記載の画像処理装置であって、
    分割画像の境界形状は、
    (1)前記分割画像についての前記ハーフトーン処理を行なう方向およびこれに交差する方向にそれぞれ平行な方向に沿った形状、
    (2)前記分割画像についての前記ハーフトーン処理を行なう方向およびこれに交差する方向の少なくとも一方に対して斜行する方向に沿った形状、
    (3)前記分割画像についての前記ハーフトーン処理を行なう方向において、ランダムに変化する形状
    のうちの一つである画像処理装置。
  10. 前記複数のハーフトーン処理部の一つが処理する範囲は、前記分割画像の大きさより広い請求項1から請求項9のいずれか一項に記載の画像処理装置。
  11. 多階調の画像を印刷する印刷装置であって、
    前記画像を分割した複数の分割画像に対応する複数の画像データを受け付ける画像受付部と、
    前記複数の画像データのそれぞれを処理してドットの形成の有無を表すドットデータを生成するハーフトーン処理を行なう複数のハーフトーン処理部であって、少なくとも2つのハーフトーン処理部が、前記少なくとも2つの画像データに対する処理の少なくとも一部を同時に行なう複数のハーフトーン処理部と、
    前記ドットデータに応じて、印刷媒体上にインク滴を吐出して画像を形成する印刷部と
    を備え、
    前記ハーフトーン処理部の各々は、前記分割画像の各画素の誤差拡散済みの階調値に対して誤差拡散法によるハーフトーン処理を行なって得られる前記ドットデータの少なくとも一部を、ディザ法による判断の結果に一致させる複合誤差拡散法処理を行なう
    印刷装置。
  12. 画像をハーフトーン処理する画像処理方法であって、
    前記画像を分割した複数の分割画像に対応する複数の画像データを受け付け、
    前記複数の画像データのそれぞれを処理してドットの形成の有無を表すドットデータを生成するハーフトーン処理を行なう複数のハーフトーン処理部を設け、少なくとも2つのハーフトーン処理部に、前記少なくとも2つの画像データに対する処理の少なくとも一部を同時に行なわせ、
    前記ハーフトーン処理は、前記分割画像の各画素の誤差拡散済みの階調値に対して誤差拡散法によるハーフトーン処理を行なって得られる前記ドットデータの少なくとも一部を、ディザ法による判断の結果に一致させる複合誤差拡散法処理である
    画像処理方法。
JP2018155359A 2018-08-22 2018-08-22 画像処理装置、印刷装置および画像処理方法 Active JP7127423B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018155359A JP7127423B2 (ja) 2018-08-22 2018-08-22 画像処理装置、印刷装置および画像処理方法
US16/544,947 US10798266B2 (en) 2018-08-22 2019-08-20 Image processing apparatus, printing apparatus, and image processing method for performing halftone processing on divided images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018155359A JP7127423B2 (ja) 2018-08-22 2018-08-22 画像処理装置、印刷装置および画像処理方法

Publications (2)

Publication Number Publication Date
JP2020031313A true JP2020031313A (ja) 2020-02-27
JP7127423B2 JP7127423B2 (ja) 2022-08-30

Family

ID=69586667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018155359A Active JP7127423B2 (ja) 2018-08-22 2018-08-22 画像処理装置、印刷装置および画像処理方法

Country Status (2)

Country Link
US (1) US10798266B2 (ja)
JP (1) JP7127423B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11388312B2 (en) 2020-07-28 2022-07-12 Seiko Epson Corporation Image processing apparatus and image processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095545B2 (ja) * 2018-10-15 2022-07-05 セイコーエプソン株式会社 画像処理装置、画像処理方法、および印刷装置
CN117156064B (zh) * 2023-08-31 2024-05-24 江南大学 一种基于数字半调的图片生成方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278933A (ja) * 2009-05-29 2010-12-09 Sharp Corp 画像処理装置、画像形成装置、画像処理方法、プログラムおよび記録媒体
JP2012050015A (ja) * 2010-08-30 2012-03-08 Canon Inc 画像処理装置、画像処理方法、及びプログラム
JP2014236460A (ja) * 2013-06-05 2014-12-15 セイコーエプソン株式会社 印刷装置、印刷方法、プログラム、および画像処理装置
JP2016171491A (ja) * 2015-03-13 2016-09-23 セイコーエプソン株式会社 画像処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005012726A (ja) 2003-06-23 2005-01-13 Konica Minolta Business Technologies Inc 画像処理装置および画像処理方法
JP2010244098A (ja) 2009-04-01 2010-10-28 Seiko Epson Corp 画像処理装置、印刷システム、画像処理方法およびプログラム
JP5428696B2 (ja) 2009-09-16 2014-02-26 セイコーエプソン株式会社 印刷装置、印刷用データ生成装置、印刷方法及びそのプログラム
JP6175914B2 (ja) 2013-06-05 2017-08-09 セイコーエプソン株式会社 印刷装置、印刷方法、および画像処理装置
US20160163212A1 (en) * 2013-12-10 2016-06-09 Scott Edward Stuckey Active Learner Multi-media Assessment System
JP6464826B2 (ja) * 2015-03-03 2019-02-06 セイコーエプソン株式会社 画像処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010278933A (ja) * 2009-05-29 2010-12-09 Sharp Corp 画像処理装置、画像形成装置、画像処理方法、プログラムおよび記録媒体
JP2012050015A (ja) * 2010-08-30 2012-03-08 Canon Inc 画像処理装置、画像処理方法、及びプログラム
JP2014236460A (ja) * 2013-06-05 2014-12-15 セイコーエプソン株式会社 印刷装置、印刷方法、プログラム、および画像処理装置
JP2016171491A (ja) * 2015-03-13 2016-09-23 セイコーエプソン株式会社 画像処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11388312B2 (en) 2020-07-28 2022-07-12 Seiko Epson Corporation Image processing apparatus and image processing method
JP7452309B2 (ja) 2020-07-28 2024-03-19 セイコーエプソン株式会社 画像処理装置および画像処理方法

Also Published As

Publication number Publication date
JP7127423B2 (ja) 2022-08-30
US10798266B2 (en) 2020-10-06
US20200068091A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
JP5750969B2 (ja) 画像処理装置、印刷装置、画像処理方法および画像処理プログラム
US20080259361A1 (en) High quality halftone process
US8363251B2 (en) Image forming apparatus, print data generation method and computer program for forming an image with halftone processing that uses constraint data
US8542409B2 (en) Printing apparatus, printing method and method of generating dither mask
JP2000333010A (ja) 階調依存型誤差拡散ハーフトーン化方法
US10798266B2 (en) Image processing apparatus, printing apparatus, and image processing method for performing halftone processing on divided images
US8482792B2 (en) Image forming apparatus and control method thereof
JP6175915B2 (ja) 印刷装置、印刷方法、プログラム、および画像処理装置
JP2006264301A (ja) 印刷装置、印刷プログラム、印刷方法、および画像処理装置、画像処理プログラム、画像処理方法、ならびに前記プログラムを記録した記録媒体
JP6175914B2 (ja) 印刷装置、印刷方法、および画像処理装置
US8599430B2 (en) Image processing device producing reduced image
JP6252003B2 (ja) 印刷装置、印刷方法、画像処理装置およびプログラム
US20160173724A1 (en) Printing apparatus, printing method, program, and image processing apparatus
US9118861B2 (en) Quantization method, image processing apparatus, and recording medium
JP5597966B2 (ja) 印刷装置、印刷プログラムおよび印刷方法
JP2007068202A (ja) 印刷装置、印刷プログラム、印刷方法、および画像処理装置、画像処理プログラム、画像処理方法、ならびに前記プログラムを記録した記録媒体
US11388312B2 (en) Image processing apparatus and image processing method
JP5504858B2 (ja) 印刷装置、印刷方法、コンピュータープログラム
JP2010131841A (ja) 印刷装置及びディザマスク
JP7242272B2 (ja) ディザマトリクスの生成装置、生成方法、当該ディザマトリクスを用いた画像処理装置、画像処理方法、及びプログラム
JP2017121786A (ja) 制御装置、および、コンピュータプログラム
JP7491070B2 (ja) 画像処理装置、印刷装置、印刷システムおよび画像処理方法
JP5720764B2 (ja) 印刷装置、および印刷方法
JP4710775B2 (ja) 高画質ハーフトーン処理
JP2007129695A (ja) 印刷装置、印刷プログラム、印刷方法、および画像処理装置、画像処理プログラム、画像処理方法、並びに前記プログラムを記録した記録媒体、表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220801

R150 Certificate of patent or registration of utility model

Ref document number: 7127423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150