JP2020021631A - 非水電解液二次電池 - Google Patents

非水電解液二次電池 Download PDF

Info

Publication number
JP2020021631A
JP2020021631A JP2018144813A JP2018144813A JP2020021631A JP 2020021631 A JP2020021631 A JP 2020021631A JP 2018144813 A JP2018144813 A JP 2018144813A JP 2018144813 A JP2018144813 A JP 2018144813A JP 2020021631 A JP2020021631 A JP 2020021631A
Authority
JP
Japan
Prior art keywords
active material
electrode active
positive electrode
mass
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018144813A
Other languages
English (en)
Other versions
JP6813008B2 (ja
Inventor
亮 花▲崎▼
Akira Hanazaki
亮 花▲崎▼
章浩 落合
Akihiro Ochiai
章浩 落合
慶一 高橋
Keiichi Takahashi
慶一 高橋
福本 友祐
Yusuke Fukumoto
友祐 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018144813A priority Critical patent/JP6813008B2/ja
Publication of JP2020021631A publication Critical patent/JP2020021631A/ja
Application granted granted Critical
Publication of JP6813008B2 publication Critical patent/JP6813008B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】電池抵抗の増加を抑制しつつ、短絡時の発熱を抑制すること。【解決手段】非水電解液二次電池は正極活物質層12、中間層40、セパレータ30、負極活物質層22および電解液を少なくとも含む。中間層40は正極活物質層12とセパレータ30との間に配置されている。中間層40は、30質量%以上95質量%以下のバインダと、残部の無機フィラーとを含む。電解液に特定ホスファゼン化合物が0.1質量%以上3質量%以下添加されている。【選択図】図3

Description

本開示は非水電解液二次電池に関する。
特開2007−080651号公報(特許文献1)は、電解液にホスファゼン化合物を添加することを開示している。
特開2007−080651号公報
一般に非水電解液二次電池(以下「電池」と略記され得る)のセパレータおよび電解液は可燃物である。例えば内部短絡が発生した際、セパレータおよび電解液が燃焼することにより、電池の発熱が大きくなると考えられる。
燃焼反応を抑制するために、電解液にホスファゼン化合物を添加することが提案されている。しかしホスファゼン化合物の添加により、電池抵抗が増加する傾向がある。
本開示の目的は、電池抵抗の増加を抑制しつつ、短絡時の発熱を抑制することである。
以下、本開示の技術的構成および作用効果が説明される。ただし本開示の作用メカニズムは推定を含んでいる。作用メカニズムの正否により、特許請求の範囲が限定されるべきではない。
非水電解液二次電池は正極活物質層、中間層、セパレータ、負極活物質層および電解液を少なくとも含む。中間層は正極活物質層とセパレータとの間に配置されている。中間層は、30質量%以上95質量%以下のバインダと、残部の無機フィラーとを含む。電解液にホスファゼン化合物が0.1質量%以上3質量%以下添加されている。ホスファゼン化合物は、下記式(1)または(2)で表される化合物からなる群より選択される少なくとも1種である。
Figure 2020021631

(式中、Xはハロゲン原子を示し、Yはアルコキシ基を示す。)
例えば導電性の異物を通じて正極と負極とが短絡すると、正極活物質層が発熱する。すなわち熱源が発生する。熱源により可燃物(セパレータおよび電解液)が加熱され、燃焼反応が生起すると考えられる。
電解液にホスファゼン化合物が添加されていることにより、短絡時、セパレータおよび電解液の燃焼反応が抑制されることが期待される。ただし電解液に添加されたホスファゼン化合物は、正極活物質層にも分配される。これにより正極活物質層の反応抵抗が増加し、電池抵抗が増加すると考えられる。
本開示では、正極活物質層とセパレータとの間に中間層が配置されている。中間層はバインダを含む。さらに本開示では上記式(1)または(2)で表されるホスファゼン化合物が使用される。以下本明細書では、上記式(1)または(2)で表されるホスファゼン化合物が「特定ホスファゼン化合物」とも記される。
特定ホスファゼン化合物は、中間層に含まれるバインダとの相互作用(例えば水素結合)により、中間層に吸着しやすいと考えられる。よって特定ホスファゼン化合物が中間層に集まりやすいと考えられる。特定ホスファゼン化合物が中間層に集まることにより、正極活物質層に分配される特定ホスファゼン化合物が相対的に減少すると考えられる。これにより電池抵抗の増加が抑制されることが期待される。
さらに中間層は正極活物質層よりもセパレータに近接している。セパレータおよび電解液は可燃物である。セパレータは多孔質膜である。セパレータの空孔には多量の電解液が含浸されている。中間層に特定ホスファゼン化合物が吸着していることにより、セパレータおよび電解液の燃焼反応が効率的に抑制されることが期待される。
以上より、本開示によれば、電池抵抗の増加が抑制されつつ、短絡時の発熱が抑制されると考えられる。
なお特定ホスファゼン化合物の類似化合物として、下記式(3)で表されるホスファゼン化合物が考えられる。
Figure 2020021631
しかし上記式(3)で表されるホスファゼン化合物では、発熱抑制効果が小さいと考えられる。特定ホスファゼン化合物〔上記式(1)または(2)〕は1個または2個のアルコキシ基(Y)を有する。上記式(3)で表されるホスファゼン化合物は3個のアルコキシ基(Y)を有する。アルコキシ基(Y)の数が2個を超えると、立体障害が大きくなり、相互作用が弱くなると考えられる。
また特定ホスファゼン化合物の添加量は0.1質量%以上3質量%以下である。添加量が0.1質量%未満であると、発熱抑制効果が不十分となる可能性がある。添加量が3質量%を超えると、電池抵抗の増加が抑制できない可能性がある。
中間層のバインダ含量は30質量%以上95質量%以下である。バインダ含量が30質量%未満であると、特定ホスファゼン化合物との相互作用が弱く、発熱抑制効果が不十分となる可能性がある。バインダ含量が95質量%を超えると、電池抵抗の増加が抑制できない可能性がある。リチウムイオンの移動が阻害されるためと考えられる。
図1は本実施形態の非水電解液二次電池の構成の一例を示す概略図である。 図2は本実施形態の電極群の構成の一例を示す概略図である。 図3は本実施形態の電極群の構成の一例を示す概略断面図である。 図4は、釘刺し試験時の到達温度と中間層のバインダ含量との関係、ならびに電池抵抗と中間層のバインダ含量との関係を示すグラフである。
以下、本開示の実施形態(本明細書では「本実施形態」と記される)が説明される。ただし以下の説明は特許請求の範囲を限定するものではない。
<非水電解液二次電池>
図1は本実施形態の非水電解液二次電池の構成の一例を示す概略図である。
電池100は非水電解液二次電池である。電池100はケース101を含む。ケース101は、例えばアルミニウム(Al)合金製であってもよい。ケース101は密閉されている。ケース101は角形(扁平直方体)である。ただしケース101は例えば円筒形であってもよい。ケース101は例えばアルミラミネートフィルム製のパウチ等であってもよい。すなわち電池100はラミネート電池であってもよい。
ケース101は容器102および蓋103を含む。蓋103は例えばレーザ溶接により容器102と接合されている。蓋103には正極端子91および負極端子92が設けられている。蓋103には、注液口、ガス排出弁、CID(current interrupt device)等がさらに設けられていてもよい。ケース101は電極群50および電解液(不図示)を収納している。
図2は本実施形態の電極群の構成の一例を示す概略図である。
電極群50は巻回型である。電極群50は、正極10、セパレータ30、負極20およびセパレータ30がこの順序で積層され、さらにこれらが渦巻状に巻回されることにより形成されている。
電極群50は積層(スタック)型であってもよい。すなわち電極群50は、正極10および負極20が交互にそれぞれ1枚以上積層されることにより形成されていてもよい。正極10および負極20の各間にはセパレータ30がそれぞれ配置される。
図3は本実施形態の電極群の構成の一例を示す概略断面図である。
電極群50は、正極10、中間層40、セパレータ30および負極20を含む。電極群50には電解液(不図示)が含浸されている。正極10は正極活物質層12を含む。負極20は負極活物質層22を含む。すなわち電池100は、正極活物質層12、中間層40、セパレータ30、負極活物質層22および電解液を少なくとも含む。
正極活物質層12と負極活物質層22とは互いに対向している。セパレータ30は正極活物質層12と負極活物質層22との間に配置されている。中間層40は正極活物質層12とセパレータ30との間に配置されている。電解液に特定ホスファゼン化合物が添加されている。本実施形態では、特定ホスファゼン化合物と、中間層40のバインダとの相互作用により、特定ホスファゼン化合物が中間層40に吸着しやすいと考えられる。その結果、電池抵抗の増加が抑制されつつ、短絡時の発熱が抑制されると考えられる。
《中間層》
中間層40は正極活物質層12とセパレータ30との間に配置されている。中間層40は、例えば正極活物質層12の表面に形成されていてもよい。中間層40は、例えばセパレータ30の表面に形成されていてもよい。
(組成)
中間層40は、30質量%以上95質量%以下のバインダと、残部の無機フィラーとを含む。バインダは高分子化合物である。バインダは、分子鎖内に水素原子を豊富に含むことが望ましい。特定ホスファゼン化合物の窒素原子(N)またはハロゲン原子(F、Cl等)と、バインダの水素原子(H)との間に水素結合が形成され得るためである。水素結合により、中間層40に特定ホスファゼン化合物が留まると考えられる。
バインダは単独重合体であってもよい。バインダは共重合体であってもよい。バインダは、例えばアクリル系バインダ、ポリエチレン(PE)、ポリプロピレン(PP)、ポリアクリル酸(PAA)、ポリフッ化ビニリデン(PVdF)、および、これらの変性体等であってもよい。アクリル系バインダは、アクリル酸エステル、メタクリル酸エステルおよびアクリロニトリルからなる群より選択される少なくとも1種の単量体が重合することにより形成された高分子化合物を示す。中間層40に1種のバインダが単独で含まれていてもよい。中間層40に2種以上のバインダが含まれていてもよい。例えばバインダは、アクリル系バインダ、PAAおよびPVdFからなる群より選択される少なくとも1種であってもよい。
中間層40におけるバインダ含量は30質量%以上95質量%以下である。バインダ含量が30質量%未満であると、特定ホスファゼン化合物との相互作用が弱く、発熱抑制効果が不十分となる可能性がある。バインダ含量が95質量%を超えると、電池抵抗の増加が抑制できない可能性がある。バインダ含量は例えば50質量%以上80質量%以下であってもよい。
中間層40において、バインダを除いた残部には無機フィラーが含まれている。残部は実質的に無機フィラーのみからなっていてもよい。残部に例えば導電材(カーボンブラック、黒鉛等)が含まれていてもよい。残部に例えば充放電反応に関与し得る物質が含まれていてもよい。
無機フィラーは特に限定されるべきではない。無機フィラーは例えばアルミナ、シリカ、ベーマイト、チタニア、マグネシア、ジルコニア等であってもよい。中間層40に1種の無機フィラーが単独で含まれていてもよい。中間層40に2種以上の無機フィラーが含まれていてもよい。無機フィラーは例えば0.5μm以上2μm以下のD50を有していてもよい。D50は体積基準の粒度分布において微粒側からの積算粒子体積が全粒子体積の50%になる粒径を示す。D50は例えばレーザ回折式粒度分布測定装置等により測定され得る。
(多孔度)
中間層40は多孔質である。中間層40の多孔度は、例えばバインダ含量、無機フィラーの粒子サイズ等により調整され得る。中間層40の多孔度が高い程、多くの電解液が中間層40に含浸され得る。すなわち、より多くの特定ホスファゼン化合物が中間層40に分配され得る。これにより短絡時の発熱抑制効果が大きくなることが期待される。多孔度が過度に高くなると、中間層40の構造維持が困難であると考えられる。中間層40は例えば20%以上80%以下の多孔度を有していてもよい。中間層40は例えば50%以上80%以下の多孔度を有していてもよい。
《電解液》
(Li塩)
電解液はリチウム(Li)塩および溶媒を少なくとも含む。Li塩は溶媒に溶解している。Li塩の濃度は例えば0.5mоl/L以上2mоl/L以下(0.5M以上2M以下)であってもよい。Li塩は、例えばLiPF6、LiBF4、LiN(FSO22、LiN(CF3SO22等であってもよい。電解液に1種のLi塩が単独で含まれていてもよい。電解液に2種以上のLi塩が含まれていてもよい。
(溶媒)
溶媒は非プロトン性である。溶媒は例えば環状カーボネートおよび鎖状カーボネートの混合物であってもよい。混合比は例えば「環状カーボネート:鎖状カーボネート=1:9〜5:5(体積比)」であってもよい。
環状カーボネートは、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、フルオロエチレンカーボネート(FEC)等であってもよい。溶媒に1種の環状カーボネートが単独で含まれていてもよい。溶媒に2種以上の環状カーボネートが含まれていてもよい。
鎖状カーボネートは、例えばジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)等であってもよい。溶媒に1種の鎖状カーボネートが単独で含まれていてもよい。溶媒に2種以上の鎖状カーボネートが含まれていてもよい。
溶媒は、例えばラクトン、環状エーテル、鎖状エーテル、カルボン酸エステル等を含んでいてもよい。ラクトンは、例えばγ−ブチロラクトン(GBL)、δ−バレロラクトン等であってもよい。環状エーテルは、例えばテトラヒドロフラン(THF)、1,3−ジオキソラン、1,4−ジオキサン等であってもよい。鎖状エーテルは、例えば1,2−ジメトキシエタン(DME)等であってもよい。カルボン酸エステルは、例えばメチルホルメート(MF)、メチルアセテート(MA)、メチルプロピオネート(MP)等であってもよい。
(特定ホスファゼン化合物)
本実施形態では、電解液に特定ホスファゼンが0.1質量%以上3質量%以下添加されている。特定ホスファゼン化合物の添加量が0.1質量%未満であると、発熱抑制効果が不十分となる可能性がある。添加量が3質量%を超えると、電池抵抗の増加が抑制できない可能性がある。特定ホスファゼン化合物の添加量は、例えば0.5質量%以上1質量%以下であってもよい。
特定ホスファゼン化合物は上記式(1)または(2)で表される。
上記式(1)または(2)において、ハロゲン原子(X)は、例えばフッ素原子(F)および塩素原子(Cl)からなる群より選択される少なくとも1種であってもよい。
上記式(1)において、アルコキシ基(Y)は、フェノキシ基(OPh)またはエトキシ基(OEt)であってもよい。
上記式(2)において、アルコキシ基(Y)は、例えばフェノキシ基(OPh)およびエトキシ基(OEt)からなる群より選択される少なくとも1種であってもよい。
(その他の添加剤)
電解液に特定ホスファゼン化合物が添加されている限り、電解液にその他の添加剤が含まれていてもよい。その他の添加剤としては、例えばガス発生剤(「過充電添加剤」とも称されている)、SEI(solid electrolyte interface)膜形成剤等が考えられる。ガス発生剤は、例えばシクロヘキシルベンゼン(CHB)、ビフェニル(BP)等であってもよい。SEI膜形成剤は、例えばビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、LiB(C242、LiPO22、プロパンサルトン(PS)、エチレンサルファイト(ES)等であってもよい。その他の添加剤の添加量は、例えば0.1質量%以上5質量%以下であってもよい。
《正極》
正極10はシートである。正極10は正極集電体11および正極活物質層12を含む。正極活物質層12は正極集電体11の表面に形成されている。正極活物質層12は正極集電体11の片面のみに形成されていてもよい。正極活物質層12は正極集電体11の表裏両面に形成されていてもよい。
正極集電体11は例えばAl箔等であってもよい。正極集電体11は例えば5μm以上50μm以下の厚さを有していてもよい。
正極活物質層12は例えば10μm以上200μm以下の厚さを有していてもよい。正極活物質層12は正極活物質を少なくとも含む。正極活物質層12は、例えば導電材およびバインダをさらに含んでいてもよい。
正極活物質は典型的には粒子群である。正極活物質は例えば1μm以上30μm以下のD50を有していてもよい。正極活物質は特に限定されるべきではない。正極活物質は例えばコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(例えばLiMnO2、LiMn24等)、ニッケルコバルトマンガン酸リチウム(例えばLiNi1/3Co1/3Mn1/32、LiNi0.5Co0.2Mn0.32等)、ニッケルコバルトアルミン酸リチウム(例えばLiNi0.82Co0.15Al0.032等)、リン酸鉄リチウム(LiFePO4)等であってもよい。正極活物質層12に1種の正極活物質が単独で含まれていてもよい。正極活物質層12に2種以上の正極活物質が含まれていてもよい。
正極活物質層12は導電材をさらに含んでいてもよい。導電材は特に限定されるべきではない。導電材は例えばカーボンブラック(例えばアセチレンブラック、ファーネスブラック、サーマルブラック等)、炭素短繊維等であってもよい。正極活物質層12に1種の導電材が単独で含まれていてもよい。正極活物質層12に2種以上の導電材が含まれていてもよい。導電材の含量は100質量部の正極活物質に対して、例えば0.1質量部以上10質量部以下であってもよい。
正極活物質層12はバインダをさらに含んでいてもよい。バインダは特に限定されるべきではない。バインダは例えばPVdF等であってもよい。正極活物質層12に1種のバインダが単独で含まれていてもよい。正極活物質層12に2種以上のバインダが含まれていてもよい。バインダの含量は100質量部の正極活物質に対して、例えば0.1質量部以上10質量部以下であってもよい。
《セパレータ》
セパレータ30は正極10および負極20の間に配置されている。正極10および負極20はセパレータ30によって互いに隔離される。セパレータ30は多孔質膜である。セパレータ30は電気絶縁性である。セパレータ30は例えば5μm以上50μm以下の厚さを有していてもよい。セパレータ30は例えばポリオレフィン製であってもよい。
セパレータ30は例えばポリエチレン(PE)製であってもよい。セパレータ30は例えばポリプロピレン(PP)製であってもよい。セパレータ30は例えば単層構造を有していてもよい。セパレータ30は例えばPE製の多孔質膜のみからなっていてもよい。セパレータ30は例えば多層構造を有していてもよい。セパレータ30は例えばPP製の多孔質膜、PE製の多孔質膜およびPP製の多孔質膜がこの順序で積層されることにより形成されていてもよい。
《負極》
負極20はシートである。負極20は負極集電体21および負極活物質層22を含む。負極活物質層22は負極集電体21の表面に形成されている。負極活物質層22は負極集電体21の片面のみに形成されていてもよい。負極活物質層22は負極集電体21の表裏両面に形成されていてもよい。
負極集電体21は例えば銅(Cu)箔等であってもよい。負極集電体21は例えば5μm以上50μm以下の厚さを有していてもよい。
負極活物質層22は例えば10μm以上200μm以下の厚さを有していてもよい。負極活物質層22は負極活物質を少なくとも含む。負極活物質層22は例えばバインダをさらに含んでいてもよい。
負極活物質は典型的には粒子群である。負極活物質は例えば1μm以上30μm以下のD50を有していてもよい。負極活物質は特に限定されるべきではない。負極活物質は例えば黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、珪素、酸化珪素、珪素基合金、錫、酸化錫、錫基合金、リチウム(単体)、リチウム合金(例えばLi−Al合金等)等であってもよい。負極活物質層22に1種の負極活物質が単独で含まれていてもよい。負極活物質層22に2種以上の負極活物質が含まれていてもよい。
バインダも特に限定されるべきではない。バインダは例えばカルボキシメチルセルロース(CMC)およびスチレンブタジエンゴム(SBR)等であってもよい。バインダの含量は100質量部の負極活物質に対して、例えば0.1質量部以上10質量部以下であってもよい。
以下、本開示の実施例が説明される。ただし以下の説明は特許請求の範囲を限定するものではない。
<非水電解液二次電池の製造>
《実施例1》
1.正極の製造
以下の材料が準備された。
正極活物質:ニッケルコバルトマンガン酸リチウム(層状岩塩型の結晶構造を有するもの)
導電材:アセチレンブラック(粉状品)
バインダ:PVdF
溶媒:N−メチル−2−ピロリドン
正極集電体:Al箔
正極活物質、導電材、バインダおよび溶媒が混合されることにより、スラリーが調製された。スラリーが正極集電体11の表面(表裏両面)に塗布され、乾燥されることにより正極活物質層12が形成された。これにより正極10が製造された。正極10は帯状のシートである。圧延ローラにより正極10が圧縮された。
正極活物質層12は「正極活物質:導電材:バインダ=98:1:1(質量比)」の組成を有する。正極活物質層12の目付(単位面積あたりの質量)は40mg/cm2である。正極活物質層12の幅寸法(図2のx軸方向の寸法)は110mmである。
2.負極の製造
以下の材料が準備された。
負極活物質:天然黒鉛
バインダ:CMCおよびSBR
溶媒:イオン交換水
負極集電体:Cu箔(厚さ 10μm)
負極活物質、バインダおよび溶媒が混合されることにより、スラリーが調製された。スラリーが負極集電体21の表面(表裏両面)に塗布され、乾燥されることにより負極活物質層22が形成された。負極活物質層22の目付は30mg/cm2である。負極活物質層22の幅寸法(図2のx軸方向の寸法)は112mmである。以上より負極20が製造された。負極20は帯状のシートである。
3.セパレータの準備
セパレータ30としてPE製の多孔質膜(幅寸法 120mm、厚さ 15μm)が準備された。セパレータ30は多層構造を有する。
4.中間層の形成
以下の材料が準備された。
無機フィラー:アルミナ(D50 2μm)
バインダ:アクリル系バインダ
無機フィラー、バインダおよび溶媒が混合されることにより、スラリーが調製された。スラリーがセパレータ30の表面(片面)に塗布され、乾燥されることにより、中間層40が形成された。中間層40は10μmの厚さを有する。中間層40は50%の多孔度を有する。中間層は、50質量%のバインダと、50質量%(残部)の無機フィラーとからなる。
5.電解液の準備
電解液が準備された。電解液は以下の成分からなる。
Li塩:LiPF6(濃度 1mоl/L)
溶媒:[EC:EMC:DEC=3:4:3(体積比)]
ホスファゼン化合物:ペンタフルオロ(フェノキシ)シクロトリホスファゼン
ホスファゼン化合物の添加量:3質量%
ペンタフルオロ(フェノキシ)シクロトリホスファゼンは、上記式(1)において、XがFであり、YがOPhである化合物を示す。
6.組み立て
正極10、セパレータ30、負極20およびセパレータ30がこの順序で積層され、さらにこれらが渦巻状に巻回された。これにより電極群50が形成された。中間層40は正極活物質層12とセパレータ30との間に配置された。
ケース101が準備された。ケース101は角形である。ケース101は、高さ寸法(75mm)×幅寸法(120mm)×奥行寸法(15mm)の外形寸法を有する。高さ寸法は図1のz軸方向の寸法である。幅寸法は図1のx軸方向の寸法である。奥行寸法は図1のy軸方向の寸法である。ケース101は1mmの肉厚を有する。
電極群50に正極端子91および負極端子92が接続された。ケース101に電極群50が収納された。ケース101に電解液が注入された。ケース101が密閉された。以上より電池100(非水電解液二次電池)が製造された。電池100は3.0〜4.1Vの範囲で5Ahの定格容量を有するように設計されている。
7.仕上げ充放電
25℃の温度環境下において、1Cの電流レートにより電池100が4.2Vまで充電された。「1C」の電流レートでは定格容量が1時間で充電される。5分間の休止を挟んで、1Cの電流レートにより電池100が3.0Vまで放電された。
さらに以下の定電流−定電圧(CC−CV)方式充電およびCC−CV方式放電により、電池100の初期容量が確認された。
CC−CV方式充電:CC=1C、CV=4.1V、0.01Cカット
CC−CV方式放電:CC=1C、CV=3.0V、0.01Cカット
《実施例2〜13、比較例1〜7》
下記表1に示されるように各部の構成が変更されることを除いては、実施例1と同様に電池100が製造された。
<評価>
《釘刺し試験》
電池100のSOC(state of charge)が100%に調整された。釘が準備された。釘は3mmの胴部径および1mmの先端部Rを有する。釘が1mm/secの速度で電池100に刺し込まれた。電池100の到達温度が測定された。到達温度は釘が刺し込まれてから、1秒後の電池100の表面温度を示す。到達温度は下記表1に示される。釘刺し試験時の到達温度が低い程、短絡時の発熱が抑制されていると考えられる。
《電池抵抗》
電池100のSOCが50%に調整された。10Cの電流レートにより電池100が10秒間放電された。放電開始から10秒後の電圧降下量が測定された。電圧降下量と電流レートとの関係から電池抵抗が算出された。電池抵抗は下記表1に示される。電池抵抗が小さい程、ホスファゼン化合物の添加に伴う電池抵抗の増加が抑制されていると考えられる。
《ホスファゼン化合物の分布》
電池100が2.5Vまで放電された。放電終了直後に電池100が解体された。正極10、中間層40(セパレータ30)および負極20が回収された。各部材がそれぞれ王水に溶解された。これによりICP測定試料がそれぞれ準備された。ICP測定により、窒素(N)含量が測定された。N含量がホスファゼン化合物含量に換算された。結果は下記表1に示される。
Figure 2020021631
<結果>
《実施例1〜5、比較例1〜3》
実施例1〜5は、電池抵抗が低く、なおかつ釘刺し試験時の到達温度が低い。すなわち実施例1〜5では、電池抵抗の増加が抑制されつつ、短絡時の発熱が抑制されている。実施例1〜5では、中間層40のバインダ含量が30質量%以上95質量%以下である。
比較例1は短絡時の発熱が大きい。比較例1では、中間層40のバインダ含量が30質量%未満である。そのため中間層40へのホスファゼン化合物の分配量が少なくなっていると考えられる。
比較例2は電池抵抗が高い。比較例2では、中間層40のバインダ含量が95質量%を超えている。そのため中間層40の多孔度が低くなっている。リチウムイオンの移動が阻害されることにより、電池抵抗が高くなっていると考えられる。
実施例1〜5、比較例1〜3の結果から、中間層40の多孔度は、中間層40のバインダ含量と無機フィラーの粒子サイズ(D50)とにより、調整され得ると考えられる。
図4は、釘刺し試験時の到達温度と中間層のバインダ含量との関係、ならびに電池抵抗と中間層のバインダ含量との関係を示すグラフである。
バインダ含量が50質量%以上80質量%以下の範囲において、電池抵抗と、発熱抑制効果とのバランスが向上する傾向が認められる。
《実施例6、7》
バインダの種類が変わることにより、釘刺し試験時の到達温度も変化している。バインダの種類が変わることにより(例えば水素原子の量が変化することにより)、相互作用(例えば水素結合)の形態に変化が生じ、中間層40におけるホスファゼン化合物の吸着量が変化していると考えられる。
《実施例1、8〜10、比較例4、5》
ホスファゼン化合物の添加量が0.1質量%未満であると、発熱抑制効果が十分ではない(比較例4)。ホスファゼン化合物の添加量が3質量%超であると、電池抵抗の増加が抑制できていない(比較例5)。実施例では、ホスファゼン化合物の添加量が0.1質量%以上3質量%以下である(実施例1、8〜10)。
《実施例1、11〜13、比較例6、7》
ホスファゼン化合物においてアルコキシ基(Y)の数が1個から2個に増加すると、発熱抑制効果が大きくなっている(実施例1、11)。しかしアルコキシ基(Y)が3個になると、発熱抑制効果が小さくなっている(比較例6)。立体障害が生じるためと考えられる。
ハロゲン原子(X)およびアルコキシ基(Y)の種類が変わることにより、発熱抑制効果が変化している(実施例1、12、13)。置換基の種類により、ホスファゼン化合物から生成されるラジカルの形態が変化するためと考えられる。
今回開示された実施形態および実施例はすべての点で例示であって制限的なものではない。特許請求の範囲の記載によって確定される技術的範囲は、特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含む。
10 正極、11 正極集電体、12 正極活物質層、20 負極、21 負極集電体、22 負極活物質層、30 セパレータ、40 中間層、50 電極群、91 正極端子、92 負極端子、100 電池(非水電解液二次電池)、101 ケース、102 容器、103 蓋。

Claims (1)

  1. 正極活物質層、中間層、セパレータ、負極活物質層および電解液を少なくとも含み、
    前記中間層は前記正極活物質層と前記セパレータとの間に配置されており、
    前記中間層は、30質量%以上95質量%以下のバインダと、残部の無機フィラーとを含み、
    前記電解液にホスファゼン化合物が0.1質量%以上3質量%以下添加されており、
    前記ホスファゼン化合物は、下記式(1)または(2)で表される化合物からなる群より選択される少なくとも1種である、
    Figure 2020021631

    (式中、XはFハロゲン原子を示し、Yはアルコキシ基を示す。)
    非水電解液二次電池。
JP2018144813A 2018-08-01 2018-08-01 非水電解液二次電池 Active JP6813008B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018144813A JP6813008B2 (ja) 2018-08-01 2018-08-01 非水電解液二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018144813A JP6813008B2 (ja) 2018-08-01 2018-08-01 非水電解液二次電池

Publications (2)

Publication Number Publication Date
JP2020021631A true JP2020021631A (ja) 2020-02-06
JP6813008B2 JP6813008B2 (ja) 2021-01-13

Family

ID=69589942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018144813A Active JP6813008B2 (ja) 2018-08-01 2018-08-01 非水電解液二次電池

Country Status (1)

Country Link
JP (1) JP6813008B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122519A (zh) * 2021-11-23 2022-03-01 东莞新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050075A (ja) * 2008-07-24 2010-03-04 Hitachi Chem Co Ltd 電気化学素子用セパレータ、及びそれを用いた電気化学素子、リチウム系電池
JP2015026590A (ja) * 2013-07-29 2015-02-05 富士フイルム株式会社 非水電解液および非水二次電池
WO2015098626A1 (ja) * 2013-12-27 2015-07-02 新神戸電機株式会社 リチウムイオン二次電池
JP2015128017A (ja) * 2013-12-27 2015-07-09 新神戸電機株式会社 非水系電解液、リチウムイオン二次電池用電解液、及びリチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010050075A (ja) * 2008-07-24 2010-03-04 Hitachi Chem Co Ltd 電気化学素子用セパレータ、及びそれを用いた電気化学素子、リチウム系電池
JP2015026590A (ja) * 2013-07-29 2015-02-05 富士フイルム株式会社 非水電解液および非水二次電池
WO2015098626A1 (ja) * 2013-12-27 2015-07-02 新神戸電機株式会社 リチウムイオン二次電池
JP2015128017A (ja) * 2013-12-27 2015-07-09 新神戸電機株式会社 非水系電解液、リチウムイオン二次電池用電解液、及びリチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122519A (zh) * 2021-11-23 2022-03-01 东莞新能源科技有限公司 一种电化学装置及包含该电化学装置的电子装置

Also Published As

Publication number Publication date
JP6813008B2 (ja) 2021-01-13

Similar Documents

Publication Publication Date Title
US20230275323A1 (en) Electrode plate and electrochemical apparatus and electronic device containing same
JP6743755B2 (ja) リチウムイオン二次電池の製造方法
US10784515B2 (en) Positive electrode plate and non-aqueous electrolyte secondary battery
JP2011198747A (ja) 非水電解質二次電池
US10886569B2 (en) Non-aqueous electrolyte secondary battery and method of producing the same
CN110739448B (zh) 非水电解质二次电池、负极合材层的评价方法和非水电解质二次电池的制造方法
US8999589B2 (en) Nonaqueous secondary battery
JP6973244B2 (ja) 非水電解質二次電池、および、非水電解質二次電池の製造方法
JP6988584B2 (ja) 正極、非水電解質二次電池、および正極の製造方法
JP2024519936A (ja) リチウム二次電池用非水電解液およびそれを含むリチウム二次電池
JP2010015719A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
KR102143976B1 (ko) 리튬 이온 이차 전지 및 그 제조 방법
CN110380055B (zh) 正极、非水电解质二次电池以及正极的制造方法
US9960459B2 (en) Method of manufacturing nonaqueous electrolyte secondary battery
KR102246845B1 (ko) 부극, 비수 전해액 이차전지, 및 부극의 제조 방법
JP5556554B2 (ja) 非水電解質二次電池
JP6813008B2 (ja) 非水電解液二次電池
JP6911744B2 (ja) リチウムイオン二次電池
JP6953991B2 (ja) セパレータ、非水電解質二次電池、およびセパレータの製造方法
JP6729642B2 (ja) 非水電解質二次電池
JP7020208B2 (ja) 電解液およびリチウムイオン電池
JP6702345B2 (ja) リチウムイオン二次電池
KR102183188B1 (ko) 비수 전해질 이차전지
JP7092525B2 (ja) リチウムイオン二次電池用電解液組成物およびリチウムイオン二次電池
WO2010147106A1 (ja) 非水電解液二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R151 Written notification of patent or utility model registration

Ref document number: 6813008

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250