JP2019516314A - 時間インタリーブ型逐次比較アナログ−デジタル変換器のための非同期クロック生成 - Google Patents

時間インタリーブ型逐次比較アナログ−デジタル変換器のための非同期クロック生成 Download PDF

Info

Publication number
JP2019516314A
JP2019516314A JP2018555489A JP2018555489A JP2019516314A JP 2019516314 A JP2019516314 A JP 2019516314A JP 2018555489 A JP2018555489 A JP 2018555489A JP 2018555489 A JP2018555489 A JP 2018555489A JP 2019516314 A JP2019516314 A JP 2019516314A
Authority
JP
Japan
Prior art keywords
clock signal
signal
adc
transistor
comparator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018555489A
Other languages
English (en)
Other versions
JP6938538B2 (ja
Inventor
ジョウ レイ,
ジョウ レイ,
ヒヴァ ヘダヤティ,
ヒヴァ ヘダヤティ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xilinx Inc
Original Assignee
Xilinx Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xilinx Inc filed Critical Xilinx Inc
Publication of JP2019516314A publication Critical patent/JP2019516314A/ja
Application granted granted Critical
Publication of JP6938538B2 publication Critical patent/JP6938538B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/15Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors
    • H03K5/15013Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs
    • H03K5/15026Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors with more than two outputs with asynchronously driven series connected output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter
    • H03M1/462Details of the control circuitry, e.g. of the successive approximation register
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/121Interleaved, i.e. using multiple converters or converter parts for one channel
    • H03M1/1215Interleaved, i.e. using multiple converters or converter parts for one channel using time-division multiplexing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/38Analogue value compared with reference values sequentially only, e.g. successive approximation type
    • H03M1/46Analogue value compared with reference values sequentially only, e.g. successive approximation type with digital/analogue converter for supplying reference values to converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

クロック発生器(500)は、グローバルクロック信号(216)を受信するための第1の入力部(502)と、完了信号(516)を受信するための第2の入力部(504)と、変換サイクルにおいて比較器(212)から差動出力(116、312、314)を受信するための第3の入力部(506)とを含む。クロック発生器(500)は、グローバルクロック信号(216)および差動出力(116、312、314)に少なくとも部分的に基づいて制御クロック信号(226)を生成し、次の変換サイクルのために制御クロック信号(226)を比較器(212)に提供するように構成された論理回路(508)も含む。論理回路(508)は、変換段階における必要な変換サイクルの完了を示す完了信号(516)に応答して制御クロック信号(226)を無効にするようにも構成される。【選択図】図5−2

Description

本明細書で説明される実施形態は、一般には、クロック発生器に関し、詳細には、アナログ−デジタル変換器のための非同期クロック発生器に関する。
アナログ−デジタル変換器(ADC)は、デジタルデータ処理のためにアナログ信号を変換するために電子デバイスにおいて使用される。具体的には、ADCは、アナログ信号を、アナログ信号の近似値であるデジタル信号に変換する。様々な性能、パワー、コスト、およびサイズの要件を満たすために、多くのタイプのADCが開発されている。近年、商用デバイスは、より高い速度とより高い分解能とを要求している。結果として、より高いサンプリングレート(たとえば、毎秒ギガサンプルのサンプリングレート)を有するADCを有することが望ましい。
ADCは、比較器とクロック発生器とを含んでもよい。より高いサンプリングレートを有するADC用の比較器およびクロック発生器は、それらがより高い速度でスイッチングするので、より多くの電力を消費する。したがって、比較器およびクロック発生器によって生じる電力消費は、高速かつ電力効率の良いADCの開発において重要な設計上の考慮事項になる。
クロック発生器は、グローバルクロック信号を受信するための第1の入力部と、完了信号を受信するための第2の入力部と、変換サイクルにおいて比較器から差動出力を受信するための第3の入力部と、グローバルクロック信号および差動出力に少なくとも部分的に基づいて制御クロック信号を生成し、次の変換サイクルのために制御クロック信号を比較器に提供するように構成された論理回路とを含み、論理回路は、変換段階における必要な変換サイクルの完了を示す完了信号に応答して制御クロック信号を無効にするようにも構成される。
任意選択で、クロック発生器は、逐次比較レジスタアナログ−デジタル変換器(SAR ADC)の一部を形成するか、またはそれに結合された非同期クロック発生器である。
任意選択で、グローバルクロック信号は、SAR ADCの変換レートを制御するためのものであり、グローバルクロック信号の第1のエッジは、入力信号のサンプリングをトリガするように構成され、グローバルクロック信号の第2のエッジは、サンプリングされた入力信号の、対応するデジタル出力信号へのビット単位の変換をトリガするように構成される。
任意選択で、制御クロック信号の第1のエッジは、比較器による比較をトリガするように構成され、制御クロック信号の第2のエッジは、比較器のリセットをトリガするように構成される。
任意選択で、クロック発生器は、ORゲートをさらに含み、第1の入力部および第2の入力部は、ORゲートの入力部である。
逐次比較レジスタアナログ−デジタル変換器(SAR ADC)は、クロック発生器を含む。
任意選択で、論理回路は、第1のトランジスタと、第2のトランジスタであって、第1のトランジスタのドレインが第2のトランジスタのドレインに結合された、第2のトランジスタと、差動出力の第1の出力を受信するように構成された第3のトランジスタと、差動出力の第2の出力を受信するように構成された第4のトランジスタとを備え、第3のトランジスタおよび第4のトランジスタは、第1のトランジスタとグランドとの間に結合される。
任意選択で、論理回路は、第1のトランジスタのソースに結合された第5のトランジスタと、第5のトランジスタのゲートに結合されたORゲートとをさらに備える。
クロック発生器によって実行される方法は、グローバルクロック信号を受信することと、比較器から差動出力を受信することと、比較器への入力のための制御クロック信号を生成することであって、制御クロック信号がグローバルクロック信号および差動出力に基づいてクロック発生器によって生成され、制御クロック信号が次の変換サイクルの開始を制御するためのものである、ことと、変換段階における必要な変換サイクルの完了を示す完了信号に応答して制御クロック信号を無効にすることとを含む。
任意選択で、方法は、グローバルクロック信号の第1のエッジに基づいて入力信号のサンプリングをトリガすることと、グローバルクロック信号の第2のエッジに基づいて、サンプリングされた入力信号の、対応するデジタル出力信号へのビット単位の変換をトリガすることとをさらに含む。
任意選択で、クロック発生器は、グローバルクロック信号および差動出力を受信する動作と、制御クロック信号を生成する動作と、制御クロック信号を無効にする動作とを実行する非同期クロック発生器である。
任意選択で、方法は、制御クロック信号の第1のエッジに基づいて比較器による比較をトリガすることと、制御クロック信号の第2のエッジに基づいて比較器のリセットをトリガすることとをさらに含む。
アナログ−デジタル変換器(ADC)は、変換サイクルにおいて差動出力を提供するように構成された比較器と、比較器から差動出力を受信し、Nビット二値出力を提供するように構成された逐次比較レジスタ(SAR)と、比較器から差動出力を受信するための入力部を有するクロック発生器とを含み、クロック発生器は、次の変換サイクルの開始のための制御クロック信号を生成するように構成され、クロック発生器は、変換段階におけるN変換サイクルの完了を示す完了信号に応答して制御クロック信号を無効にするように構成される。
任意選択で、ADCは、グローバルクロック信号を受信するためのクロック入力部をさらに含み、グローバルクロック信号は、ADCの変換レートを制御するように構成される。
任意選択で、グローバルクロック信号の第1のエッジは、入力信号のサンプリングをトリガするように構成され、グローバルクロック信号の第2のエッジは、サンプリングされた入力信号の、対応するデジタル出力信号へのビット単位の変換をトリガするように構成される。
任意選択で、クロック発生器は、グローバルクロック信号と比較器からの差動出力とに基づいて制御クロック信号を生成するように構成される。
任意選択で、クロック発生器は、グローバルクロック信号を受信するための第1の入力部と完了信号を受信するための第2の入力部とを有するORゲートを備える。
任意選択で、クロック発生器によって生成される制御クロック信号は、非同期クロック信号である。
任意選択で、制御クロック信号の第1のエッジは、比較器による比較をトリガするように構成され、制御クロック信号の第2のエッジは、比較器のリセットをトリガするように構成される。
時間インタリーブ型SAR ADCアーキテクチャは、ADCと追加のADCとを含み、ADCは、追加のADCと時間インタリーブされる。
他の特徴、実施形態、および利点について、詳細な説明において説明する。
図面は、いくつかの特徴の設計および有用性を示し、同様の要素は、共通の参照番号によって参照される。これらの図面は、必ずしも一定の比率で描かれてはいない。上記および他の利点および目的がどのように得られるのかをより良く理解するために、添付図面に示されたより具体的な説明が与えられる。これらの図面は、特許請求の範囲における限定とみなされるべきではない。
逐次比較レジスタ(SAR)アナログ−デジタル変換器(ADC)を示すブロック図である。 複数のSAR ADCを有する高速時間インタリーブ型SAR ADCアーキテクチャを示す図である。 図2−1におけるSAR ADCのうちの1つの例を示す図である。 非同期クロック発生器を示す回路図である。 図3−1の非同期クロック発生器を有するSAR ADCを示す図である。 図3のクロック発生器に関連する例示的な波形を示すタイミング図である。 非同期クロック発生器を示す回路図である。 図5−1の非同期クロック発生器を有するSAR ADCを示す図である。 図5のクロック発生器に関連する例示的な波形を示すタイミング図である。 クロック発生器によって実行される方法を示す図である。
以下、様々な特徴について、図を参照して説明する。図は、一定の比率で描かれておらず、同様の構造または特徴の要素は、図を通して同様の参照番号によって表されていることに留意すべきである。図は、説明を容易にすることのみを意図していることに留意すべきである。それらは、特許請求された発明の網羅的な説明として、または特許請求される発明の範囲に対する限定として意図されていない。加えて、示されている項目は、図示された態様または利点のすべてを有する必要はない。特定の項目と関連して説明された態様または利点は、必ずしもその項目に限定されず、そのように示されていない場合であっても、任意の他の項目において実施され得る。
アナログ−デジタルコンバータ(ADC)の1つのタイプは、二分検索アルゴリズムをアナログ−デジタル変換に適用する逐次比較レジスタ(SAR)ADCである。具体的には、各変換期間内に、SAR ADCは、入力電圧をサンプリングし、それを複数の閾値電圧と比較し、対応するデジタル出力をビット単位で生成する。各変換器について単一の比較器のみが使用されるので、SAR ADCは、比較的低い電力とより小さいフォームファクタとを必要とする。SAR ADCの分解能は、毎秒約数メガサンプル(Msps)のサンプリングレートで8ビットから16ビットの範囲である。より高いサンプリングレートを達成するために、時間インタリーブ型SAR ADCを構築するために複数のSAR ADCが用いられてもよい。このアーキテクチャでは、SAR ADCの各々は、後続のサンプリングイベント間の時間間隔が短縮されるように、入力信号のサンプリングを交替ですることができる。各SAR ADCの出力は、さらなるデジタル処理のためにデジタル出力信号を生成するためにインタリーブされる。
図1は、アナログ電圧比較器110と、SAR120と、デジタル−アナログ変換器(DAC)130とを備えるSAR ADC100を示す。使用中、SAR ADC100は、アナログ入力電圧111を受信し、サンプラ140は、サンプリングされた電圧112を比較器110に提供するためにアナログ入力電圧111をサンプリングする。アナログ電圧比較器110は、サンプリングされた入力電圧112を、DAC130の出力114(たとえば、近似または閾値電圧)と比較し、二値比較の結果116(たとえば、比較器の差動出力)をSAR120に出力する。SAR120は、比較器110から比較器の出力116を受信し、二進値を記憶する。SAR120は、記憶された二進値が入力電圧112よりも低いかまたは大きいかを見るために比較器の出力116を監視し、それに応じて二進値を調整する。SAR120は、この二進値118をDAC130に提供し、DAC130は、次に、この二進値(すなわち、DAC130の出力114)のアナログ等価物を、近似検索におけるサンプリングされた入力電圧112との比較のために比較器110に供給する。DAC130の出力114がサンプリングされた入力電圧112を超える場合、比較器110は、SAR120に二進値118を変更させる。この二分検索は、すべてのビットが比較されるまで続く。変換の最後に、SAR120は、さらなるデジタル処理のための入力電圧のデジタル近似であるSAR出力122を提供する。
SAR ADC100は、SAR ADC100の変換レートを制御する外部クロック発生器からのクロック信号も受信する。グローバルクロック信号の各周期内で、SAR ADC100は、サンプリング段階と変換段階とを有する。サンプリング段階において、SAR ADC100は、アナログ入力電圧111をサンプリングし、サンプリングされた電圧112を比較器110に提供する。各変換段階において、比較器110は、サンプリングされた電圧112をDAC130の出力114と比較し、比較結果をSAR120に提供する。変換段階の終わりに、SAR120は、SAR ADC100によって受信された入力電圧111(たとえば、Nビットデジタル出力)を表すために、対応するデジタルSAR出力122をビット単位で生成する。
クロック信号の変換段階において、NビットSAR ADCに対してN回の連続する変換サイクルが必要とされる。各ビットのための変換サイクルを開始するために、制御クロック発生器からの制御クロック信号が利用され得る。そのような制御クロックを提供するための1つの手法は、SAR ADC内のロジックを制御クロックで駆動するためにクロック信号発生器が外部から提供される同期クロッキングを使用する。しかしながら、高速クロックを分配およびバッファリングすることは、特に、超高速時間インタリーブ型SAR ADCの場合、同期クロッキング方式の消費電力が非常に大きくなる。別の手法は、SAR ADC内の対応するロジックを駆動するために制御クロック信号が非同期式に内部で生成される非同期クロッキングを使用する。超高速クロックの分配および再ルーティングを必要としないので、非同期クロッキングは、同期クロッキングと比較して電力効率が良い。したがって、超高速時間インタリーブ型ADCにおいて非同期クロッキングを用いることが望ましい場合がある。
図2−1は、高速時間インタリーブ型ADCアーキテクチャ200を示す。高速時間インタリーブ型ADCアーキテクチャ200は、32の同一のSAR ADC210を組み込む。場合によっては、各SAR ADCは、図1のSAR ADC100に示す同じまたは同様の構成要素を有してもよい。具体的には、図1のSAR ADC100と同様に、各SAR ADC210は、比較器212と、SARと、DACとを備える。SARおよびDACは、説明を簡単にするために図2−1におけるSAR ADC210には示されていないことに留意されたい。加えて、図1に記載された構成要素と同様のこれらの構成要素の詳細な説明は、簡潔さの目的のために繰り返されない。アーキテクチャ200におけるクロッキングに関して、SAR ADC210の各々は、各SAR ADC210が入力信号を交替でサンプリングするように、対応するグローバルクロック信号216(adc_clk[x](x=0,...,31))によってクロックされる。グローバルクロック信号216は、多相クロックによって提供され得る。加えて、変換段階における各ビット変換のための変換サイクルの開始を制御するために非同期制御クロック信号を生成するために、各SAR ADC210の内部にローカル非同期制御クロック発生器214が設けられる。各非同期制御クロック信号は、グローバルクロック信号216を提供する対応するグローバルクロックと同期される。
32のSAR ADC210が示されているが、他の例では、ADCアーキテクチャ200は、他の数のSAR ADC210を有してもよい。たとえば、他の実施形態では、SAR ADC210の数は、32より多くてもよく、または32よりも少なくてもよい(たとえば、16、8、4、2など)。また、他の実施形態では、ADCアーキテクチャ200内のSAR ADC210は、同一である必要はない。代わりに、SAR ADC210のうちの1つまたは複数は、ADCアーキテクチャ200内の他のSAR ADC210とは異なる構成を有してもよい。
図2−2は、SAR ADC210のうちの1つの例を詳細に示す。SAR ADC210は、アナログ電圧比較器212と、ローカル非同期制御クロック発生器214と、SAR120と、DAC130とを備える。制御クロック発生器214は、比較器212とSAR120の両方のためのクロック信号を提供するように構成される。制御クロック信号214は、少なくともブロッククロック信号216と比較器212から受信された比較出力116とに応答して、制御クロック信号226を生成するように構成される。制御クロック発生器214からの制御クロック信号226は、(1)比較器の出力116を記憶するようにSAR120をトリガするためにSAR120に提供され、(2)次のビットとDAC130の出力114(たとえば、近似または閾値電圧)との比較を行うことによって新しい比較サイクルを開始するために比較器212に提供される。
グローバルクロック信号216がサンプリング段階にあるとき、SAR ADC210は、アナログ入力電圧111をサンプリングし、サンプリングされた電圧112を比較器212に提供する。グローバルクロック信号216が変換段階に入ると、アナログ電圧比較器212は、サンプリングされた入力電圧112をDAC130の出力114(たとえば、近似または閾値電圧)と比較し、二値比較結果116(たとえば、比較器の差動出力)をSAR120に出力する。1つの変換サイクルが完了すると、制御クロック信号226は、次の変換サイクルを開始し、比較器212は、次のビットのための比較を行う。変換サイクルは、グローバルクロック信号216の変換段階が終了するまで続く。
図3−1は、図2−1のアーキテクチャ200における各SAR ADC210における非同期制御クロック発生器214として実装され得る非同期制御クロック発生器300の例を示す回路図である。図3−2は、図3−1の非同期制御クロック発生器300を有するSAR ADCを示す。図4は、非同期制御クロック発生器300に関連する波形を示すタイミング図である。
図3−1および図3−2に示すように、非同期制御クロック発生器300は、変換サイクルを制御/開始する制御クロック信号226を生成するように構成された論理回路を備える。論理回路は、第1のトランジスタ302(たとえば、PMOSトランジスタ)と、そのドレイン端子が第1のトランジスタ302のドレイン端子に結合された第2のトランジスタ303(たとえば、NMOSトランジスタ)とを備える。第1のトランジスタ302のゲート端子および第2のトランジスタ303のゲート端子は、SAR ADC210の外部の主クロック発生器からグローバルクロック信号216を受信するように構成される。非同期クロック発生器300の論理回路はまた、第3のトランジスタ304(たとえば、NMOSトランジスタ)と、第1のトランジスタ302のドレイン端子とグランドとの間に結合された第4のトランジスタ305(たとえば、NMOSトランジスタ)とを備える。第3および第4のトランジスタ304、305のゲートは、それぞれ、比較器の差動出力312、314を受信するように構成される。加えて、非同期クロック発生器300の論理回路は、インバータ318、319と、切替え可能キャパシタ308、309と、ORゲート307と、第5のトランジスタ306(たとえば、PMOSトランジスタ)とをさらに備える。図に示すように、第5のトランジスタ306は、第1のトランジスタ302のソースに結合され、ORゲート307は、第5のトランジスタ306のゲートに結合される。非同期クロック発生器300内のトランジスタ302、303、305、306(たとえば、トランジスタ302、306は、PMOSトランジスタであってもよく、トランジスタ303、304、305は、NMOSトランジスタであってもよい)は、スイッチとして作用するように構成される。PMOSトランジスタについて、トランジスタは、トランジスタのゲート電圧がロー(たとえば、閾値電圧未満)のときにオンになり、トランジスタは、トランジスタのゲート電圧がハイ(たとえば、閾値電圧を超える)のときにオフになる。NMOSトランジスタについて、トランジスタは、ゲート電圧がハイのときにオンになり、トランジスタは、ゲート電圧がローのときにオフになる。加えて、インバータ318、319ならびに切替え可能キャパシタ308および309は、次の変換サイクルを開始する前の遅延の量を制御するように構成される。
図3−2および図4を参照すると、第1のトランジスタ302および第2のトランジスタ303において受信されたグローバルクロック信号216は、SAR ADC210の変換レートを制御する。グローバルクロック信号216がハイ状態にあるとき、SAR ADC210は、サンプリング段階にある。グローバルクロック信号216がロー状態にあるとき、SAR ADC210は、変換段階にある。具体的には、グローバルクロック信号216がハイ(すなわち、サンプリング段階)にあるとき、第1のトランジスタ302は、オフであり、第2のトランジスタ303は、オンである。第2のトランジスタ303がオンになると、制御クロック信号226は、グランドに接続される。したがって、制御クロック信号226は、ローである。グローバルクロック信号216がハイからローになる(すなわち、変換段階に入る)と、第1のトランジスタ302は、オンになり、第2のトランジスタ303は、オフになる。制御クロック信号226は、第1のトランジスタ302および第5のトランジスタ306を介してVccに接続される。したがって、制御クロック信号226は、ローからハイになる。制御クロック信号226は、比較器212に提供される。制御クロック信号226のハイ状態は、比較を行う(すなわち、変換サイクルを開始する)ように比較器212をトリガする。サンプリングされた信号112がDAC130からの出力114よりも大きいとき、比較器の差動出力312は、ハイ状態になる。サンプリングされた信号112がDAC130からの出力114よりも小さいとき、比較器の差動出力314は、ハイ状態になる。比較器の差動出力312および314の一方がローからハイになると、対応するトランジスタ304/305は、オンになる。制御クロック信号226は、トランジスタ304/305を介してグランドに接続され、したがって、制御クロック信号226は、ハイからローになる。一定の遅延(すなわち、制御クロック信号226が2つのインバータ318、319を通過した)後、ORロジック307は、ロー状態を出力し、第5のトランジスタ306は、オンになる。結果として、制御クロック信号226は、第1および第5のトランジスタ302、306を介してVccに接続される。制御クロック信号226のアサートに応答して次の変換サイクルが開始される。
図4に関連して、SAR ADC210の外部の主クロック発生器から生成されたグローバルクロック信号216は、各期間においてサンプリング段階320aと変換段階320bとを有する。グローバルクロック信号216がハイ状態にあるとき、SAR ADC210は、入力信号をサンプリングするサンプリング段階320aにある。グローバルクロック信号216がハイからローになると、SAR ADC210は、変換段階320bに入る。各変換段階320bにおいて、非同期制御クロック発生器300によって生成される非同期制御クロック信号226(図4に示す)によって制御される複数の変換サイクル(たとえば、8ビットSAR ADCについて8変換サイクル)が存在する。
図4に示すように、各変換サイクル(たとえば、C1)内で、SAR ADC210は、比較段階330aとリセット段階330bとを有する。比較段階330aにおいて(すなわち、制御クロック信号226がハイ状態にあるとき)、SAR ADC210の比較器212は、比較を実行し、比較器差動出力312および314を非同期制御クロック発生器300に提供する。比較器差動出力312および314の一方がハイになると、非同期制御クロック信号226は、(制御クロック信号226がNMOSロジック304/305を介してグランドに接続するので)プルダウンされ、リセット段階330bに入る。リセット段階330bにおいて(すなわち、制御クロック226がローのとき)、比較器212は、リセットされる。図3−1の切替え可能キャパシタ308、309ならびに2つのインバータ318および319によって制御される一定の遅延の後、非同期制御クロック信号226は、次の変換サイクルを開始するためにハイに引かれる。8ビットSAR ADCについて、すべてのビットを解決するために、少なくとも8つの連続するサイクルが必要とされる。
各変換サイクルのための時間(すなわち、非同期制御クロック信号226の周期)は、一定であってもなくてもよく、サンプリングされた入力に依存する。比較器212に提供されたサンプリングされた入力電圧および閾値電圧が近いとき、比較のための時間は、より長くなる可能性がある。これに関して、すべてのビットの変換のために必要な合計時間は、変化する場合がある。したがって、グローバルクロック信号216の変換段階320bは、SAR ADCがすべてのビットを解決することを可能にするために、通常、より大きいままにされる。図4に示すように、非同期制御クロック信号226は、すべてのビットの変換(たとえば、サイクルC1〜C8における8サイクル)が完了した後であっても、変換段階320bにおいて動作し続ける(すなわち、サイクルCXとして)。そのような動作は、電力消費を引き起こし、SAR ADC210の電力効率を低下させる可能性がある。
比較器および非同期制御クロック発生器は、それらがより高速(たとえば、10GHz以上)でスイッチすると、より多くの電力を消費する。電力消費は、動作している複数のADCが存在する場合、より顕著になる。たとえば、32のSAR ADCを組み込む図2−1の高速時間インタリーブ型ADCアーキテクチャ200は、32のローカル非同期制御クロック発生器を用いなければならない。したがって、非同期制御クロック発生器によって引き起こされる電力消費を低減することが望ましい場合がある。
図5−1は、クロック発生器500を示す回路図である。クロック発生器500は、電力効率の良い非同期制御クロック発生器であり得る。また、場合によっては、クロック発生器500は、図2−1のアーキテクチャ200において、および同様に図2−2におけるSAR ADCにおいて、非同期制御クロック発生器214として実装され得る。図5−2は、図5−1のクロック発生器500を有するSAR ADCを示す。図6は、非同期クロック発生器500に関連する波形を示すタイミング図である。図3−1における要素と同一である図5−1における要素は、同一の参照番号を有し、したがって、それらの説明は、ここでは繰り返されないことに留意されたい。同様に、図3−2における要素と同一である図5−2における要素は、同一の参照番号を有し、したがって、それらの説明は、ここでは繰り返されない。
図5−1および図5−2に示すように、クロック発生器500は、グローバルクロック信号216を受信するための第1の入力部502と、完了信号516を受信するための第2の入力部504と、比較器212から変換サイクルにおいて差動出力312、314を受信するための第3の入力部506とを備える。クロック発生器500は、制御クロック信号226を生成するための論理回路508も含む。図3−1における要素に加えて、クロック発生器500は、(1)SAR ADC変換レートを制御するグローバルクロック信号216と、(2)完了信号516を受信するためのORロジック(ORゲート)510をさらに備える。グローバルクロック信号216は、SAR ADC210の外部の主クロック発生器から提供される。完了信号516は、すべてのビットに関する変換が完了したかどうかを示す信号である。完了信号516は、解決されたビットを追跡するためにシフトレジスタを使用することによって生成され得る。別の例では、完了信号516は、解決されるべき最後のビットからのラッチ出力を使用することによって生成され得る。したがって、いくつかの実施形態では、SAR ADCは、解決されたビットを追跡するための、または解決されたビットを示すための、1つもしくは複数のシフトレジスタおよび/または1つもしくは複数のラッチを含んでもよい。1つもしくは複数のシフトレジスタおよび/または1つもしくは複数のラッチは、完了信号516を提供するように構成され得る。
図3−1および図3−2に関連して論じたのと同様に、ORロジック510の出力は、第1のトランジスタ302および第2のトランジスタ303のゲート端子に提供される。第1のトランジスタ302のドレイン端子は、第2のトランジスタ303のドレイン端子に結合される。第2のトランジスタ303は、第1のトランジスタ302とグランドとの間に結合される。クロック発生器500は、第1のトランジスタ302のドレイン端子とグランドとの間に結合された第3および第4のトランジスタ304、305も備える。第3および第4のトランジスタ304、305は、それぞれ、比較器の差動出力312、314を受信するように構成される。非同期制御クロック発生器300と同様に、クロック発生器500は、インバータ318、319と、可変キャパシタ308、309と、ORゲート307と、第5のトランジスタ306とをさらに備える。
図5−2および図6を参照すると、使用中、クロック発生器500は、グローバルクロック信号216と完了信号516とを受信する。グローバルクロック信号216は、SAR ADC210がサンプリング段階320aにあるときにハイ状態にあり、SAR ADC210が変換段階320bにあるときにロー状態にある。完了信号516は、すべてのビットに関する変換サイクルが完了するまで、ローのままである。すべてのビットが解決されると、完了信号は、ハイに構成される。受信されたグローバルクロック信号216がハイである(すなわち、サンプリング段階320aにある)とき、ORロジック510の出力は、完了信号516の状態にかかわらず、常にハイである。結果として、第1のトランジスタ302は、オフであり、第2のトランジスタ303は、オンである。制御クロック信号226は、第2のトランジスタ303がオンになると、グランドに接続される。受信されたグローバルクロック信号216がハイからローになり(変換段階320bに入り)、完了信号516がローであるとき、ORロジック510の出力は、ローである。次いで、第1のトランジスタ302は、オンになり、第2のトランジスタ303は、オフになる。制御クロック信号226は、PMOSロジック302および306を介してVccに接続される。制御クロック信号226は、比較器212に提供される。制御クロック信号226のハイ状態は、比較を行う(すなわち、変換サイクルを開始する)ように比較器212をトリガする。サンプリングされた信号112がDAC130からの出力114よりも大きいとき、差動出力312は、ハイ状態になる。サンプリングされた信号112がDAC130からの出力114よりも小さいとき、差動出力314は、ハイ状態になる。比較器の差動出力312および314の一方がローからハイになると、対応するトランジスタ304/305は、オンになる。制御クロック信号226は、グランドに接続され、したがって、制御クロック信号226は、ハイからローになる。2つのインバータ318、319ならびに切替え可能キャパシタ308および309によって制御される一定の遅延後、ORロジック307は、ロー状態を出力し、第5のトランジスタ306は、オンになる。結果として、制御クロック信号226は、第1のトランジスタ302および第5のトランジスタ306を介してVccに接続される。制御クロック信号226のハイ状態に応答して次の変換サイクルが開始される。最後のビットが解決される(すなわち、比較器の差動出力312/314が最後のビットについてローからハイになる)と、完了信号514がアサートされる。ORロジック510の出力は、ハイである。第1のトランジスタ302は、オフであり、第2のトランジスタ303は、オンである。したがって、制御クロック信号226は、第2のトランジスタ303を介してグランドに接続され、ローに維持される。結果として、クロック発生器500は、変換段階320bの終わりまで無効化される。変換サイクルをトリガする制御クロック信号がそれ以上存在しないので、比較器212は、比較を行うことも停止する。
図6のタイミング図に示すように、最後のビットを解決して(すなわち、サイクルC8)変換が終了すると、完了信号516は、ハイに構成され、ORロジック510は、非同期クロックの生成を無効にする信号を出力する。結果として、SAR変換が正常に完了すると、非同期制御クロック信号226は、もはやトグリングしない。
クロック発生器500をシャットダウンするための完了信号の導入は、速度およびジッタのような非同期クロック性能とトレードオフしない。これに関して、それは、高速ADCのための高速かつ低電力のクロッキング回路において有用である。本開示の実施形態は、時間インタリーブADCのための非同期クロック生成に限定されないことに留意されたい。それは、ローカル非同期クロッキングを伴う高速マルチコアシステムのための電力を節約することにも適用可能である。
図7は、クロック発生器によって実行される方法700を示す。方法700は、グローバルクロック信号を受信すること(項目702)と、比較器から差動出力を受信すること(項目704)とを含む。場合によっては、項目702は、図5−2に関連して説明したクロック発生器500のようなクロック発生器によって実行されてもよい。また、場合によっては、差動出力は、比較器212によって提供される差動出力312、314であってもよく、入力部506を介してクロック発生器500によって受信されてもよい。
図7に戻ると、方法700は、比較器への入力のための制御クロック信号を生成すること(項目706)も含む。いくつかの実施形態では、制御クロック信号は、グローバルクロック信号216と差動出力312、314とに基づいて、図5−2のクロック発生器500によって生成され、制御クロック信号は、次の変換サイクルの開始を制御するためのものである。また、場合によっては、項目706は、図5−1および図5−2に関連して論じた論理回路508によって実行されてもよい。
図7に戻ると、方法700は、変換段階において必要な変換サイクルの完了を示す完了信号に応答して制御クロック信号を無効にすること(項目708)も含む。いくつかの実施形態では、完了信号は、図5−1および図5−2に関連して説明した完了信号516であってもよい。完了信号は、すべてのビットに関する変換が完了したかどうかを示すためのものである。完了信号は、解決されたビットを追跡するためにシフトレジスタを使用することによって生成されてもよい。別の例では、完了信号は、解決されるべき最後のビットからのラッチ出力を使用して生成されてもよい。したがって、いくつかの実施形態では、方法は、解決されたビットを追跡するため、または解決されたビットを示すための、1つもしくは複数のシフトレジスタおよび/または1つもしくは複数のラッチを提供することを含んでもよい。1つもしくは複数のシフトレジスタおよび/または1つもしくは複数のラッチは、完了信号を提供するように構成されてもよい。
場合によっては、方法700は、グローバルクロック信号の第1のエッジに基づいて入力信号のサンプリングをトリガすることと、グローバルクロック信号の第2のエッジに基づいて、サンプリングされた入力信号の、対応するデジタル出力信号へのビット単位の変換をトリガすることとをさらに含んでもよい。加えて、場合によっては、方法700は、制御クロック信号の第1のエッジに基づいて比較器による比較をトリガすることと、制御クロック信号の第2のエッジに基づいて比較器のリセットをトリガすることとをさらに含んでもよい。場合によっては、制御クロック信号のハイ状態は、比較を行う(すなわち、変換サイクルを開始する)ように比較器をトリガするために用いられてもよい。サンプリングをトリガし、比較をトリガし、比較器のリセットをトリガする技法は、図3−2、図4、図5−1、図5−2、および図6に関連して上記で説明しており、ここでは繰り返さない。
また、いくつかの実施形態では、方法700において、クロック発生器は、グローバルクロック信号および差動出力を受信する動作と、制御クロック信号を生成する動作と、制御クロック信号を無効にする動作とを実行する非同期クロック発生器であってもよい。
本開示の実施形態は、超高速SAR ADCのための電力効率の良い非同期クロック発生器を提供する。非同期制御クロック発生器の電力消費を低減するための方法は、変換が完了したときにローカル制御クロックを自動的にシャットダウンすることによって提供される。ローカル非同期制御クロックが無効化されると、それは、次の比較を開始せず、したがって、比較器が別の比較を行わないようにする。場合によっては、上記の技法を用いて、電力の少なくとも10%、より好ましくは少なくとも15%、さらにより好ましくは少なくとも20%、または、約25%(たとえば、25%±3%)など、それよりも多くが、図5−1に関連して説明したアーキテクチャを使用して節約され得る。
特定の特徴が示され、説明されているが、それらは、特許請求された発明を限定することを意図されていないことが理解され、特許請求された発明の要旨および範囲から逸脱することなく、様々な変更および修正が行われ得ることが当業者には明らかであろう。したがって、明細書および図面は、限定的な意味ではなく、例示的な意味で考慮されるべきである。特許請求された発明は、代替物、改変物、および等価物をカバーすることが意図される。

Claims (15)

  1. グローバルクロック信号を受信するための第1の入力部と、
    完了信号を受信するための第2の入力部と、
    変換サイクルにおいて比較器から差動出力を受信するための第3の入力部と、
    前記グローバルクロック信号および前記差動出力に少なくとも部分的に基づいて制御クロック信号を生成し、次の変換サイクルのために前記制御クロック信号を前記比較器に提供するように構成された論理回路と
    を備え、
    前記論理回路が、変換段階における必要な変換サイクルの完了を示す前記完了信号に応答して前記制御クロック信号を無効にするようにも構成される、クロック発生器。
  2. 前記クロック発生器が、逐次比較レジスタアナログ−デジタル変換器(SAR ADC)の一部を形成するか、またはそれに結合する非同期クロック発生器である、請求項1に記載のクロック発生器。
  3. 前記グローバルクロック信号が、前記SAR ADCの変換レートを制御するためのものであり、前記グローバルクロック信号の第1のエッジが、入力信号のサンプリングをトリガするように構成され、前記グローバルクロック信号の第2のエッジが、前記サンプリングされた入力信号の、対応するデジタル出力信号へのビット単位の変換をトリガするように構成される、請求項2に記載のクロック発生器。
  4. 前記制御クロック信号の第1のエッジが、前記比較器による比較をトリガするように構成され、前記制御クロック信号の第2のエッジが、前記比較器のリセットをトリガするように構成される、請求項1に記載のクロック発生器。
  5. ORゲートをさらに備え、前記第1の入力部および前記第2の入力部が前記ORゲートの入力部である、請求項1に記載のクロック発生器。
  6. 前記論理回路が、
    第1のトランジスタと、
    第2のトランジスタであって、前記第1のトランジスタのドレインが前記第2のトランジスタのドレインに結合された、第2のトランジスタと、
    前記差動出力の第1の出力を受信するように構成された第3のトランジスタと、
    前記差動出力の第2の出力を受信するように構成された第4のトランジスタと
    を備え、
    前記第3のトランジスタおよび前記第4のトランジスタが、前記第1のトランジスタとグランドとの間に結合される、請求項1に記載のクロック発生器。
  7. 前記論理回路が、前記第1のトランジスタのソースに結合された第5のトランジスタと、前記第5のトランジスタのゲートに結合されたORゲートとをさらに備える、請求項6に記載のクロック発生器。
  8. 変換サイクルにおいて差動出力を提供するように構成された比較器と、
    前記比較器から前記差動出力を受信し、Nビット二値出力を提供するように構成された逐次比較レジスタ(SAR)と、
    前記比較器から前記差動出力を受信するための入力部を有するクロック発生器と
    を備えるアナログ−デジタル変換器(ADC)であって、前記クロック発生器が、次の変換サイクルの開始のための制御クロック信号を生成するように構成され、前記クロック発生器が、変換段階におけるN変換サイクルの完了を示す完了信号に応答して前記制御クロック信号を無効にするように構成される、アナログ−デジタル変換器(ADC)。
  9. グローバルクロック信号を受信するためのクロック入力部をさらに備え、前記グローバルクロック信号が前記ADCの変換レートを制御するように構成される、請求項8に記載のADC。
  10. 前記グローバルクロック信号の第1のエッジが、入力信号のサンプリングをトリガするように構成され、前記グローバルクロック信号の第2のエッジが、前記サンプリングされた入力信号の、対応するデジタル出力信号へのビット単位の変換をトリガするように構成される、請求項9に記載のADC。
  11. 前記クロック発生器が、前記グローバルクロック信号と前記比較器からの前記差動出力とに基づいて前記制御クロック信号を生成するように構成される、請求項9に記載のADC。
  12. 前記クロック発生器が、前記グローバルクロック信号を受信するための第1の入力部と前記完了信号を受信するための第2の入力部とを有するORゲートを備える、請求項9に記載のADC。
  13. 前記クロック発生器によって生成される前記制御クロック信号が非同期クロック信号である、請求項8に記載のADC。
  14. 前記制御クロック信号の第1のエッジが、前記比較器による比較をトリガするように構成され、前記制御クロック信号の第2のエッジが、前記比較器のリセットをトリガするように構成される、請求項8に記載のADC。
  15. 請求項8に記載のADCと追加のADCとを備え、前記ADCが前記追加のADCと時間インタリーブされる、時間インタリーブ型SAR ADCアーキテクチャ。
JP2018555489A 2016-04-21 2017-04-11 時間インタリーブ型逐次比較アナログ−デジタル変換器のための非同期クロック生成 Active JP6938538B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/135,073 US9584144B1 (en) 2016-04-21 2016-04-21 Asynchronous clock generation for time-interleaved successive approximation analog to digital converters
US15/135,073 2016-04-21
PCT/US2017/027061 WO2017184386A1 (en) 2016-04-21 2017-04-11 Asynchronous clock generation for time-interleaved successive approximation analog to digital converters

Publications (2)

Publication Number Publication Date
JP2019516314A true JP2019516314A (ja) 2019-06-13
JP6938538B2 JP6938538B2 (ja) 2021-09-22

Family

ID=58056825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018555489A Active JP6938538B2 (ja) 2016-04-21 2017-04-11 時間インタリーブ型逐次比較アナログ−デジタル変換器のための非同期クロック生成

Country Status (6)

Country Link
US (1) US9584144B1 (ja)
EP (1) EP3446405A1 (ja)
JP (1) JP6938538B2 (ja)
KR (1) KR102292560B1 (ja)
CN (1) CN109314521B (ja)
WO (1) WO2017184386A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040260B (zh) * 2016-02-03 2020-09-08 中芯国际集成电路制造(上海)有限公司 异步逐次逼近型模数转换电路
EP3324590B1 (en) 2016-07-12 2019-12-18 Shenzhen Goodix Technology Co., Ltd. Signal demodulating device and method applying to closed communication system
KR102519562B1 (ko) * 2016-09-01 2023-04-11 에스케이하이닉스 주식회사 Sar 아날로그-디지털 변환 장치 및 시스템과 그에 따른 씨모스 이미지 센서 및 그 동작 방법
US10116318B1 (en) * 2017-09-05 2018-10-30 Infinera Corporation Method and system for asynchronous clock generation for successive approximation analog-to-digital converter (SAR ADC)
TWI659620B (zh) * 2018-02-07 2019-05-11 瑞昱半導體股份有限公司 循序漸進式類比數位轉換電路與相關方法
US10432209B1 (en) 2018-10-10 2019-10-01 Globalfoundries Inc. Linear feedback shift register-based clock signal generator, time domain-interleaved analog to digital converter and methods
CN111193513A (zh) * 2018-11-15 2020-05-22 珠海格力电器股份有限公司 一种adc电路
US10530379B1 (en) 2019-02-22 2020-01-07 Xilinx, Inc. Circuit to calibrate chopping switch mismatch in time interleaved analog-to-digital converter
US10707889B1 (en) 2019-05-13 2020-07-07 Analog Devices International Unlimited Company Interleaving method for analog to digital converters
CN110855293B (zh) * 2019-11-29 2024-05-03 湖南国科微电子股份有限公司 一种sar adc
US11888498B2 (en) * 2022-01-18 2024-01-30 Analog Devices International Unlimited Company Elimination of probability of bit errors in successive approximation register (SAR) analog-to-digital converter (ADC) logic

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20050307A1 (it) * 2005-05-06 2006-11-07 St Microelectronics Srl Circuito di commutazione fra segnali di clock e relativo procedimento
US7646185B2 (en) * 2006-08-25 2010-01-12 Micrel, Inc. Automatic external switch detection in synchronous switching regulator controller
US7834793B2 (en) * 2008-11-26 2010-11-16 Analog Devices, Inc. Self-timed clocked analog to digital converter
CN101599701B (zh) * 2009-07-02 2011-09-28 成都芯源系统有限公司 一种具有故障保护功能的开关电源及其控制方法
JP5407685B2 (ja) * 2009-09-11 2014-02-05 富士通株式会社 逐次比較型ad変換器及び逐次比較型ad変換器の動作クロック調整方法
US8344925B1 (en) * 2011-05-26 2013-01-01 Cadence Design Systems, Inc. System and method for adaptive timing control of successive approximation analog-to-digital conversion
KR101681948B1 (ko) * 2011-09-05 2016-12-06 한국전자통신연구원 클럭 딜레이를 이용한 아날로그-디지털 변환장치 및 변환방법
US8754800B2 (en) * 2012-09-29 2014-06-17 Intel Corporation Methods and arrangements for high-speed analog-to-digital conversion
CN102832941B (zh) * 2012-10-07 2016-03-30 复旦大学 一种可预检测比较器输入范围的逐次逼近型模数转换器
KR102000544B1 (ko) * 2012-12-27 2019-10-21 삼성전자주식회사 아날로그 디지털 변환장치 및 방법
US8896476B2 (en) * 2013-01-25 2014-11-25 Technische Universiteit Eindhoven Data-driven noise reduction technique for analog to digital converters
KR101993139B1 (ko) * 2013-07-24 2019-06-27 한국전자통신연구원 연속 근사 레지스터 아날로그 디지털 컨버터 및 이를 테스트하기 위한 bist 장치의 동작 방법
CN104113338B (zh) * 2013-12-03 2017-11-07 西安电子科技大学 异步逐次逼近型模数转换器
KR101524982B1 (ko) * 2014-07-31 2015-06-03 중앙대학교 산학협력단 비동기식 연속 근사 레지스터 아날로그 디지털 변환기 및 그에 포함되는 내부 클럭 발생기
CN104617957B (zh) * 2015-01-30 2017-08-15 中国电子科技集团公司第二十四研究所 异步逐次逼近型模数转换器

Also Published As

Publication number Publication date
US9584144B1 (en) 2017-02-28
CN109314521A (zh) 2019-02-05
WO2017184386A1 (en) 2017-10-26
CN109314521B (zh) 2022-08-12
JP6938538B2 (ja) 2021-09-22
KR102292560B1 (ko) 2021-08-20
EP3446405A1 (en) 2019-02-27
KR20180137532A (ko) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6938538B2 (ja) 時間インタリーブ型逐次比較アナログ−デジタル変換器のための非同期クロック生成
US9479190B2 (en) Successive approximation register-based analog-to-digital converter with increased time frame for digital-to-analog capacitor settling
EP2296280B1 (en) Asynchronous SAR ADC
JP5561010B2 (ja) 逐次比較型ad変換器及び逐次比較型ad変換器の動作クロック調整方法
US8198921B2 (en) Dynamic comparator with background offset calibration
Wei et al. A 0.024 mm 2 8b 400MS/s SAR ADC with 2b/cycle and resistive DAC in 65nm CMOS
JP5009919B2 (ja) A/d変換器
EP2255262B1 (en) Analog-to-digital converter timing circuits
Tsai et al. A 1-V, 8b, 40MS/s, 113µW charge-recycling SAR ADC with a 14µW asynchronous controller
US8497795B2 (en) Differential successive approximation analog to digital converter
US9473163B1 (en) Preamplifier circuit and SAR ADC using the same
CN110545104A (zh) 实施异步时钟生成的电路和方法
CN108599770B (zh) 一种适用于2-bit-per-cycle SAR ADC的异步时钟产生电路
US9083375B1 (en) Asynchronous successive approximation register ADC
WO2013163564A1 (en) Method and apparatus for analog-to-digital converter
CN110235372B (zh) 一种具有降低回扫噪声的双倍数据速率时间内插量化器
US8736309B2 (en) Non-overlapping clock generator circuit and method
US8766844B2 (en) Analog-digital converter
KR101570112B1 (ko) Sr 래치의 준안정성 탐지 및 보정 회로
KR102588939B1 (ko) 이미지 센서용 아날로그-디지털 컨버터
US20230155603A1 (en) Ad converter
US20240120935A1 (en) Successive approximation register based time-to-digital converter using a time difference amplifier
US10644717B1 (en) Phase accumulation digital-to-analog converter (DAC)
US20230208431A1 (en) Sar adc and electronic device
US20230327680A1 (en) Multi-phase analog to digital converter (adc)

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20181213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210901

R150 Certificate of patent or registration of utility model

Ref document number: 6938538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150