JP2019212934A - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
JP2019212934A
JP2019212934A JP2019172254A JP2019172254A JP2019212934A JP 2019212934 A JP2019212934 A JP 2019212934A JP 2019172254 A JP2019172254 A JP 2019172254A JP 2019172254 A JP2019172254 A JP 2019172254A JP 2019212934 A JP2019212934 A JP 2019212934A
Authority
JP
Japan
Prior art keywords
wiring
layer
semiconductor device
lsi chip
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019172254A
Other languages
English (en)
Other versions
JP2019212934A5 (ja
Inventor
工藤 寛
Hiroshi Kudo
寛 工藤
貴正 高野
Takamasa Takano
貴正 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2019172254A priority Critical patent/JP2019212934A/ja
Publication of JP2019212934A publication Critical patent/JP2019212934A/ja
Publication of JP2019212934A5 publication Critical patent/JP2019212934A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】高性能且つ高信頼性の半導体装置を提供する。【解決手段】複数のトランジスタ及び前記複数のトランジスタ上に配置されたLSI多層配線層を含むLSIチップと、各々が引っ張り応力を有する複数の配線層、各々が複数の配線層を絶縁する、複数の有機絶縁層、及び各々が複数の配線層を被覆する複数の無機絶縁層を含み、LSIチップの上方に配置される再配線層とを備える半導体装置である。【選択図】図1

Description

本発明は半導体装置に関し、開示される一実施形態は半導体装置が有する再配線層の構造に関する。
近年、著しい電子機器の小型化、軽量化及び高性能化に伴い、それらに搭載される半導体パッケージについても小型化、軽量化及び高性能化が要求されている。そこで、半導体パッケージのサイズがLSIチップのサイズに近い、所謂チップサイズパッケージ(CSP)が望まれている。
CSPの一つとして、ウエハレベルパッケージ(WLP)と呼ばれる半導体パッケージ技術が注目されている。WLPは、その製造工程において、ウェハ上にLSIの形成、再配線層の形成、基板との接続のためのバンプの形成、そして検査工程を経た後に、各LSIチップに個片化されて完成する。つまり、個片化された後のLSIチップのサイズがパッケージのサイズに相当するため、究極のCSPとも言える。
例えば、特許文献1には、表面に少なくとも第1の電極パッドと第2の電極パッドが形成された第1の半導体チップと、前記第1の半導体チップの表面にフリップチップで前記第2の電極パッドと接続して搭載された第2の半導体チップと、前記第1の半導体チップの前記第1の電極パッド上に設けられた突起電極と、前記第1の半導体チップの表面を覆い、少なくとも前記第1の半導体チップと第2の半導体チップとの間隙を封止した樹脂とよりなる半導体装置であって、前記第2の半導体チップの裏面は研削により薄厚加工されているとともに、前記突起電極の表面も研削され、前記第2の半導体チップの裏面の面と前記突起電極の表面の面とが略同一面に構成されていることを特徴とする半導体装置が開示されている。
特開2002−353402号公報
しかしながら、WLPで形成される再配線層は、積層数が高々1〜3層であり、これ以上の多層化は困難である。そのため、配線デザイン、配線幅、配線密度等に制限が課されることになる。このことから、再配線層は、例えば安定した電源を供給する電源層、信号層等の、複数の役割を果たすことが困難であり、更なる高性能化のための課題となっている。
更に、LSI多層配線に用いられる低誘電率膜は機械的強度が低いため、例えばインターポーザ基板等に半田バンプ、Cu(銅)ピラー、Auスタッドバンプを介してLSIチップを実装する際に両者の熱膨張率の不整合によって生じる残留応力や、ワイヤボンディング、Cuピラー、Auスタッドの接続の際に、LSIチップへ伝わる圧力と衝撃によって当該低誘電率膜にクラックが発生することが懸念され、更なる高信頼性化のための課題となっている。
本発明は上記問題に鑑み、高性能且つ高信頼性の半導体装置を提供することを目的の一つとする。
本発明の一態様は、複数のトランジスタ及び前記複数のトランジスタ上に配置されたLSI多層配線層を含むLSIチップと、複数の配線層、各々が複数の配線層を絶縁する複数の有機絶縁層、及び各々が複数の配線層を被覆する複数の無機絶縁層を含み、LSIチップの上方に配置される再配線層とを備える半導体装置である。
このような構成を有することによって、ウェハの反りを補正しながら再配線層の多層化が可能になる。これによって、配線デザイン、配線幅、配線密度等の制限が緩和される。
有機絶縁層は、引っ張り応力を有する。
このような構成を有することによって、ウェハの反りを補正しながら再配線層の多層化が可能になる。これによって、配線デザイン、配線幅、配線密度等の制限が緩和される。
無機絶縁層は、圧縮応力を有する。
このような構成を有することによって、ウェハの反りを補正しながら再配線層の多層化が可能になる。これによって、配線デザイン、配線幅、配線密度等の制限が緩和される。
再配線層は、複数の配線層の内、互いに隣接する配線層を接続し、平面視において重畳する複数のビアを更に含む。
このような構成を有することによって、設計の自由度が高く、平面方向の占有面積が小さい多層配線層を形成することができる。
再配線層上に配置され、平面視においてLSIチップ内に配置された電極パッドを更に備える。
このような構成を有することによって、LSIチップの面積を十分に生かすことができるため、集積化の阻害要因とならない。
インターポーザ基板と、電極パッド及びインターポーザ基板を接続する半田バンプとを更に備える。
このような構成を有することによって、バンプを介したインターポーザ基板とLSIチップ間の距離を再配線層によって十分に取ることができ、再配線層が熱膨張率の不整合を緩和して、残留応力を軽減することができるため、LSIチップにおける低誘電率膜のクラックの発生を抑制することができる。
インターポーザ基板と、電極パッド及びインターポーザ基板を接続するワイヤを更に備える。
このような構成を有することによって、インターポーザ基板とLSIチップ間の距離を再配線層によって十分に確保することができ、ワイヤボンディング時にLSIチップへ伝わる圧力と衝撃を緩和することができる。これによって、例えば電極パッドの直下にトランジスタを配置することができる等、自由なレイアウトが可能となる。
複数の無機絶縁層の各々は、酸化珪素膜を含む。
このような構成を有することによって、酸化珪素膜が有する圧縮応力により、ウェハの反りを補正しながら再配線層の多層化が可能になる。これによって、配線デザイン、配線幅、配線密度等の制限が緩和される。
複数の無機絶縁層の各々は、酸化珪素膜及び窒化珪素膜の積層構造を含む。
このような構成を有することによって、窒化珪素膜が配線層に対するバリア性を有するため、配線層材料が酸化珪素膜に拡散することを防止することができる。これによって、配線層間でショートする問題を回避することができる。
複数の有機絶縁層の各々は、ポリイミドを含む。
このような構成を有することによって、ポリイミドが有する引っ張り応力により、ウェハの反りを補正しながら再配線層の多層化が可能になる。これによって、配線デザイン、配線幅、配線密度等の制限が緩和される。
前記複数の配線層の内少なくとも1層は、ベタ配線又はメッシュ配線を含む。
このような構成を有することによって、電圧降下を制御することができ、電源の安定化を図ることができる。また、電磁波のシールド効果を得ることができるため、ノイズ起因の電源変動を更に安定化させることができる。
再配線層は、マイクロストリップライン構造及びストリップライン構造の少なくとも一方を含む。
このような構成を有することによって、モジュール間の高速伝送が可能となる。また、インピーダンス整合をとすことができ、LSIチップを最適な状態で動作させることができる。
本発明の一実施形態に係る半導体装置の構成を説明する断面図である。 本発明の一実施形態に係る半導体装置が含む再配線層の構成を説明する平面図である。 本発明の一実施形態に係る半導体装置が含む再配線層の構成を説明する断面図である。 本発明の一実施形態に係る半導体装置の構成を説明する断面図である。 本発明の一実施形態に係る半導体装置の構成を説明する断面図である。 本発明の一実施形態に係る半導体装置の構成を説明する断面図である。 本発明の一実施形態に係る半導体装置の構成を説明する断面図である。 本発明の一実施形態に係る半導体装置の構成を説明する断面図である。
以下、本発明の実施の形態を、図面等を参照しながら説明する。但し、本発明は多くの異なる態様で実施することが可能であり、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。また、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して前述したものと同様の要素には、同一の符号を付して、詳細な説明を適宜省略することがある。
本明細書において、ある部材又は領域が、他の部材又は領域の「上に(又は下に)」あるとする場合、特段の限定がない限り、これは他の部材又は領域の直上(又は直下)にある場合のみでなく、他の部材又は領域の上方(又は下方)にある場合を含み、すなわち、他の部材又は領域の上方(又は下方)において間に別の構成要素が含まれている場合も含む。
<第1実施形態>
本実施形態に係る半導体装置100の構成を、図1を参照して説明する。図1は、本実施形態に係る表示装置100の構成を示す断面図である。
本実施形態に係る半導体装置100は、LSIチップ102と、再配線層104とを備える。更に、電極パッド117を備えてもよい。
LSIチップ102は、複数のトランジスタ106及び当該複数のトランジスタ106上に配置されたLSI多層配線層108を含む。
LSI多層配線層108は、下層から、例えばローカル配線層108a、インターメディエイト配線層108b、セミグローバル配線層108c、グローバル配線層108dと呼ばれる各々の領域に分類される。各々の配線層を電気的に絶縁する層間絶縁膜としては、配線間に生じる寄生容量を可能な限り低く抑えるため、低誘電率(low−k)材料が用いられる。low−k材料としては、例えば酸化炭化珪素(SiOC)を用いることができる。
再配線層104は、複数の配線層110、複数の有機絶縁層112、及び無機絶縁層114を含み、LSIチップ102の上方に配置されている。また、再配線層104は、複数のビア116を含んでもよい。
尚、図1においては、本実施形態に係る半導体装置100の再配線層104として8層である態様を示したが、これに限定されるものではない。後述する理由により、再配線層104は、何層もの多層化が可能である。
複数の配線層110の各々は、複数種の導電層の積層構造であってもよく、単層構造であってもよい。本実施形態においては、複数の配線層110の各々は、第1導電層110a及び第2導電層110bを有する2層構造としている。複数の配線層110の各々は、一般に、引っ張り応力を有する。
第1導電層110aは、第2導電層110bの上に配置されている。第1導電層110aの材料としては、電気抵抗が低い金属材料が好ましい。例えば、銅(Cu)、銀(Ag)、金(Au)、アルミニウム(Al)などを用いることができる。また、アルミニウム−ネオジウム合金(Al−Nd)やアルミニウム−銅合金(Al−Cu)などのアルミニウム合金を使用することができる。
第2導電層110bは、第1導電層110aの下に配置されている。第2導電層110bの材料としては、密着性や、第1導電層110aに対するバリア性を有する材料を使用することが好ましい。例えば、第1導電層としてCuを使用した場合、第2導電層としては、チタン(Ti)、窒化チタン(TiN)、タンタル(Ta)、窒化タンタル(TaN)、Cr(クロム)等を使用することができる。
複数の有機絶縁層112の各々は、複数の配線層110を絶縁する。有機絶縁層112の材料としては、引っ張り応力を有する有機絶縁層112が好ましい。本実施形態においては、有機絶縁層112としてポリイミドを用いる。
有機絶縁層112は、複数の配線層110の各々によって形成された段差を緩和または平坦化し、また、誘電率が無機絶縁層114よりも低い材料であることが好ましく、例えば感光性ポリイミドなどの樹脂材料で形成されるとよい。有機絶縁層112の膜厚は、少なくとも配線層110によって形成される段差以上の膜厚であることが好ましく。また、配線層110間の寄生容量を小さくするために、塗布工程の可能な限り厚く形成することが好ましい。具体的には、有機絶縁層112の膜厚は、好ましくは4μm以上24μm以下であるとよい。また、より好ましくは8μm以上20μm以下であるとよい。また、感光性ポリイミドの代わりに、感光性アクリルや感光性シロキサンなどを使用することができる。その他にも、誘電率が低く、Cuに対するバリア性を有するベンゾシクロブテンを使用してもよい。また、感光性樹脂に限らず、非感光性樹脂を使用してもよい。
非感光性樹脂としては、エポキシ樹脂、ポリイミド樹脂、ベンゾシクロブテン樹脂、ポリアミド、フェノール樹脂、シリコーン樹脂、フッ素樹脂、液晶ポリマー、ポリアミドイミド、ポリベンゾオキサゾール、シアネート樹脂、アラミド、ポリオレフィン、ポリエステル、BTレジン、FR−4、FR−5、ポリアセタール、ポリブチレンテレフタレート、シンジオタクチック・ポリスチレン 、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、ポリエーテルニトリル、ポリカーボネート、ポリフェニレンエーテルポリサルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルイミドなどを用いることができる。上記の樹脂は単体で用いられてもよく、2種類以上の樹脂を組み合わせて用いられてもよい。また、上記の樹脂に、ガラス、タルク、マイカ、シリカ、アルミナ等 、無機フィラーを併用して用いてもよい。
複数の無機絶縁層114の各々は、複数の配線層110の各々を被覆する。無機絶縁層114としては、圧縮応力を有する無機絶縁層114が好ましい。無機絶縁層114の材料としては、例えば酸化珪素(SiOx)、窒化珪素(SiNx)等、又はそれらを複数組み合わせた積層を用いることができる。本実施形態においては、複数の無機絶縁層の各々は、第1無機絶縁層114a及び第2無機絶縁層114bを有する2層構造としている。複数の無機絶縁層114の各々は、圧縮応力を有する。
第1無機絶縁層114aは、第2無機絶縁層114bおよびその上に形成される有機絶縁層112との密着性がよい材料を使用することが好ましい。例えば、第1無機絶縁層114aとしては、酸化珪素(SiOx)、酸化アルミニウム(Al23)などを使用することができる。また、第1無機絶縁層114aは被覆性の良い成膜条件で成膜することが好ましい。また、SiOx膜は、基板の反りを調整及び信頼性向上のために一定以上の膜厚であることが好ましく、膜厚が厚すぎると有機絶縁層112の応力との釣り合いが取れなくなるため一定以下の膜厚であることが好ましい。具体的には、SiOx膜の膜厚は、好ましくは1μm以上8μm以下であるとよい。また、より好ましくは2μm以上5μm以下であるとよい。
第1無機絶縁層114aは、配線層110によって形成された段差部において、ひび割れや、膜が粗な領域が発生しないようにすることが好ましい。例えば、第1無機絶縁層114aは、成膜温度が高い条件で成膜することが望ましく、好ましくは200℃以上であるとよい。より好ましくは、300℃以上であるとよい。
第2無機絶縁層114bは、第2導電層110bに対するバリア性を有している材料を使用することが好ましい。換言すると、第2無機絶縁層114bは、第1無機絶縁層114aや有機絶縁層112に比べて、第1導電層の拡散速度が遅い材料であることが好ましい。例えば、第1導電層としてCuを使用した場合、第2無機絶縁層114bとしては、窒化珪素(SiNx)、酸化アルミニウム(Al23)、窒化アルミニウム(AlN)、炭化珪素(SiC)、窒化炭化珪素(SiCN)、炭素添加酸化珪素(SiOC)等を使用することができる。また、第2無機絶縁層114bは被覆性の良い成膜条件で成膜することが好ましい。また、第1導電層としてCuを使用し、第2無機絶縁層114bとしてSiNxを使用した場合、Cuの拡散防止機能を得るために一定以上の膜厚であることが好ましく、SiNxは比誘電率が7.5と高いため配線層110間の寄生容量を抑制するために一定以下の膜厚にすることが好ましい。具体的には、SiNx膜の膜厚は、好ましくは10nm以上200nm以下であるとよい。また、より好ましくは、50nm以上100nm以下であるとよい。
複数のビア116は、複数の配線層110の内、互いに隣接する配線層110を接続する。複数のビア116は、それぞれ同じ平面座標で積層された、所謂スタックビア構造を有している。換言すると、複数のビア116は、平面視において互いに重畳する。ここで、重畳するビア116は平面視において完全に重畳する構造に限定されず、例えば、ビア116の一部が重畳した構造を含む。図1に示すスタックビア構造において、積層された全てのビア116が平面視において互いに重畳した構造を例示したが、この構造に限定されず、少なくともある配線層110の上下に形成されたビア116が平面視においた互いに重畳していればよい。
電極パッド117は、再配線層104上に配置され、平面視においてLSIチップ102内に配置されている。本実施形態においては、電極パッド117は、平面視において重畳する複数のビア116の直上に配置されているが、これに限られない。電極パッドは、LSIチップ102上の平面座標における配置に制約は無い。換言すると、LSIチップ102のレイアウトは、電極パッドの配置による制約を受けない。
このような構成を有することによって、ウェハの反りを補正しながら再配線層104の多層化が可能になる。これによって、配線デザイン、配線幅、配線密度等の制限が緩和される。更に、このような構成を有することによって、設計の自由度が高く、平面方向の占有面積が小さい多層配線層を形成することができる。
従来のウェハレベルパッケージ(WLP)等に設けられる再配線層は、積層数が高々1〜3層であり、これ以上の多層化は困難である。これは、従来のWLPの再配線層は、配線層110としてCu、層間絶縁膜としてポリイミドといった引っ張り応力を有する材料のみから構成されることによる。そのため、積層数が増えるとウェハの反り量が大きくなる。
ウェハの反り量が大きくなると、例えば、フォトリソグラフィー工程において露光時の焦点深度がウェハの面内で合わなくなる問題が生じる。また、ウェハの反り量が大きくなると、例えば有機膜の塗布やスパッタ装置内でウェハがステージに置かれたとき、ウェハに対するバキューム吸着や静電チャック吸着ができなくなる問題が生じる。以上のように、ウェハの反り量が大きくなると、後のウェハプロセスを進行させることができなくなる。
本実施形態によれば、圧縮応力を有する無機絶縁層114を各々の配線層100に介在させるため、有機絶縁層112及び配線層110の引っ張り応力を相殺することができる。これによって、ウェハの反りを補正しながら、何層にも及ぶ再配線層104の多層化が可能になる。何層にも及ぶ再配線層104の多層化が可能になると、従来のWLPに課されていた配線デザイン、配線幅、配線密度等の制約が緩和され、それらの配置についての自由度が増し、半導体装置100の高性能化に繋がる。
<第2実施形態>
本実施形態に係る半導体装置200の構成を、図2を参照して説明する。図2は、本実施形態に係る表示装置200が含む再配線層104の構成を説明する平面図である。尚、本実施形態に係る半導体装置200は、その断面構造が第1実施形態に係る半導体装置100の断面構造と殆ど同様であるため、その図示は省略する。
本発明に係る半導体装置は、複数の配線層110の内少なくとも1層は、ベタ配線又はメッシュ配線を含んでもよい。本実施形態に係る半導体装置200と第1実施形態に係る半導体装置100とを比較すると、本実施形態に係る半導体装置200は、ベタ配線又はメッシュ配線を含むことを特徴としている。
ベタ配線とは、LSIチップ102の平面方向に亘って、2次元的に配置された導電層から成る配線であり、LSIチップ102面積の大部分を占有してもよい。よって、通常の、信号を伝送するための線状の配線に比べて配線抵抗は十分小さい。
メッシュ配線とは、ベタ配線と同様に、LSIチップ102の平面方向に亘って、2次元的に配置された導電層から成る配線であり、LSIチップ102面積の大部分を占有してもよい。メッシュ配線は、更に、複数の開口部110cを有する。複数の開口部110cは周期的に配列されてもよい。図2においては、開口部110cの形状を正方形としたが、これに限られない。これによって、通常の、信号を伝送するための線状の配線に比べて配線抵抗は十分小さい。
このような構成を有することによって、配線抵抗による電圧降下を制御することができ、電源の安定化を図ることができる。また、電磁波のシールド効果を得ることができるため、ノイズ起因の電源変動を更に安定化させることができる。
従来のウェハレベルパッケージ(WLP)等に設けられる再配線層は、積層数が高々1〜3層であり、配線デザインに制約があった。そこで、配線を並列に配置して実効的に配線幅を太くしたり、複数層に亘って電源配線を設ける等の対策が取られてきたが、LSIチップ面積の増加に伴い、十分な機能を果たすことができなくなってきた。
例えば、System on chip(SOC)に代表されるLSIは、チップ内に複数のモジュールを含み、各モジュール間で電源の分配と信号の送受信が行われる。近年はLSIの高性能化に伴い、チップサイズが増大し、2cmを超え、インターポーザ基板と同等のスケールに達している。このため、電源供給の大容量化に伴い、電圧の安定化が重要な課題となっている。更に電源電圧が1.0Vまで低下していることも電圧の不安定化の要因となっている。
また、チップサイズの増大に伴い、モジュール間を結ぶ信号線も長くなり、信号の伝送が集中から分散モデルに変化することから、インターポーザ基板と同様の設計手法、構造が必要となる。
本実施形態によれば、何層にも及ぶ再配線層104の多層化が可能になるため、従来のWLPに課されていた配線デザインの制約が緩和され、それらの配置についての自由度が増す。これによって、複数の配線層110の内のいずれかに、ベタ配線やメッシュ配線を配置することができる。これによって、電圧降下を制御することができ、電源の安定化を図ることができる。また、電磁波のシールド効果を得ることができるため、ノイズ起因の電源変動を更に安定化させることができる。
<第3実施形態>
本実施形態に係る半導体装置300の構成を、図3を参照して説明する。図3は、本実施形態に係る表示装置300が含む再配線層104の構成を説明する断面図である。尚、本実施形態に係る半導体装置300は、その断面構造が第1実施形態に係る半導体装置100の断面構造と殆ど同様であるため、その図示は省略する。
本発明に係る半導体装置は、マイクロストリップライン構造及びストリップライン構造の少なくとも一方を含んでもよい。本実施形態に係る半導体装置300と第1実施形態に係る半導体装置100とを比較すると、本実施形態に係る半導体装置300は、再配線層104にストリップライン構造を含むことを特徴としている。つまり、本実施形態においては、連続する3層の配線層110の内、上下の2層の配線層がベタ配線であり、中間の配線層が信号伝達のための配線として用いられる。上下の2層の配線層は、例えばグランドに接続されてもよい。
このような構成を有することによって、モジュール間において信号の高速伝送が可能となる。また、インピーダンス整合を取ることができ、LSIチップ102を最適な状態で動作させることができる。
従来のウェハレベルパッケージ(WLP)等に設けられる再配線層は、積層数が高々1〜3層であり、配線デザインに制約があった。また、LSIチップサイズの増加に伴い、CPU、メモリ等のモジュール間の距離が長くなると、モジュール間の信号伝送速度がLSIチップ全体の動作速度を支配するようになってきた。従来の配線デザインでは、それに課される制約によって、高速の信号伝送ができず、インピーダンス整合が取れないことから、LSIチップ全体を最適な状態で動作させることが困難になってきた。
本実施形態によれば、何層にも及ぶ再配線層104の多層化が可能になるため、従来のWLPに課されていた配線デザインの制約が緩和され、それらの配置についての自由度が増す。これによって、複数の配線層110の内のいずれかに、マイクロストリップライン構造又はストリップライン構造を配置することができる。これによって、モジュール間において、信号の高速伝送が可能となる。また、インピーダンス整合を取ることができ、LSIチップを最適な状態で動作させることができる。
尚、マイクロストリップライン構造の場合は、隣接する2層の配線層の内、一方がベタ配線であり、他方が信号伝送のための配線となる。当該ベタ配線は、例えばグランドに接続されてもよい。
<第4実施形態>
本実施形態に係る半導体装置400の構成を、図4を参照して説明する。図4は、本実施形態に係る表示装置400の構成を示す断面図である。
図4に示す本実施形態に係る半導体装置400は、第1実施形態乃至第3実施形態のいずれかに係る半導体装置を、半田バンプ120を介してインターポーザ基板118に実装した態様を示している。ここでの実装の形態は、所謂フリップチップ実装である。
従来のウェハレベルパッケージ(WLP)等において、半田バンプを介してLSIチップをプリント基板等のインターポーザ基板に実装する際、LSIチップとインターポーザ基板との熱膨張率の不整合により残留応力が発生し、LSI多層配線層108に用いられる低誘電率膜にクラックが入る等、信頼性の面で課題があった。具体的には、LSI多層配線層108における層間絶縁膜としては、寄生容量を抑えるために低誘電率材料を用いることが望ましいが、低誘電率の材料ほど機械的強度に劣り、クラックへの耐性が低いという二律背反の関係がある。
本実施形態によれば、上記のような構成を有することによって、半田バンプ120を介したプリント基板等のインターポーザ基板118とLSIチップ102間の距離を再配線層104によって十分に取ることができ、再配線層104が熱膨張率の不整合を緩和して、残留応力を軽減することができるため、LSIチップ102における低誘電率膜のクラックの発生を抑制することができる。これによって、インターポーザ基板118に実装された半導体装置400の信頼性が向上する。
<第5実施形態>
本実施形態に係る半導体装置500の構成を、図5を参照して説明する。図5は、本実施形態に係る表示装置500の構成を示す断面図である。
図5に示す本実施形態に係る半導体装置500は、第1実施形態乃至第3実施形態のいずれかに係る半導体装置を、ワイヤ122を介してインターポーザ基板118に実装した態様を示している。
従来のWLP等をワイヤボンディングにより実装する場合、ワイヤボンディング時に電極パッド部の直下に圧力や衝撃が加わる。電極パッド部の直下にトランジスタ106が配置されていると、トランジスタ106に物理的なダメージが入り、半導体装置の信頼性が低下する。このため、電極パッドが形成される領域の下にはトランジスタ106を配置しない等のレイアウト上の制限があり、LSIチップ領域全体を有効に使えない問題があった。これは、従来のウェハレベルパッケージ(WLP)等に設けられる再配線層は、積層数が高々1〜3層であり、電極パッドとトランジスタ106との距離を十分に確保できないことにも起因する。
本実施形態によれば、上記のような構成を有することによって、プリント基板等のインターポーザ基板118とLSIチップ102間の距離を再配線層104によって十分に確保することができ、ワイヤボンディング時にLSIチップ102へ伝わる圧力と衝撃を緩和することができる。これによって、例えば電極パッドの直下にトランジスタ106を配置することができる等、自由なレイアウトが可能となる。
<第6実施形態>
本実施形態に係る半導体装置600の構成を、図6を参照して説明する。図6は、本実施形態に係る表示装置600の構成を示す断面図である。
本実施形態に係る半導体装置600と第1実施形態に係る半導体装置600とを比較すると、本実施形態に係る半導体装置600は、LSI多層配線層108において、ローカル配線層108a及びインターメディエイト層108bが含まれ、セミグローバル配線層108c、グローバル配線層108dは省略されていることを特徴としている。
本実施形態によれば、設計自由度の比較的自由度の高い再配線層104によって、セミグローバル配線層108c及びグローバル配線層108dを代替することができる。これによって、半導体装置600の製造工程を簡略化することができる。
<第7実施形態>
本実施形態に係る半導体装置700の構成を、図7を参照して説明する。図7は、本実施形態に係る表示装置700の構成を示す断面図である。
半導体装置の集積化に伴うIOパッドの配置の高密度化(狭ピッチ化)に対応するため、Cu(銅)ピラーを用いた実装方法が注目されている。図7に示す本実施形態に係る半導体装置700は、第1実施形態乃至第3実施形態のいずれかに係る半導体装置を、バリアメタル123及びCuピラー121を介してインターポーザ基板118に実装した態様を示している。
従来のウェハレベルパッケージ(WLP)等において、Cuピラーを介してLSIチップ102をプリント基板等のインターポーザ基板に実装する際、LSIチップ102とインターポーザ基板118との熱膨張率の不整合により残留応力が発生し、LSI多層配線層108に用いられる低誘電率膜にクラックが入る等、信頼性の面で課題があった。具体的には、LSI多層配線層108における層間絶縁膜としては、寄生容量を抑えるために低誘電率材料を用いることが望ましいが、低誘電率の材料ほど機械的強度に劣り、クラックへの耐性が低いという二律背反の関係がある。
本実施形態によれば、上記のような構成を有することによって、Cuピラー121を介したプリント基板等のインターポーザ基板118とLSIチップ102間の距離を再配線層104によって十分に取ることができ、再配線層104が熱膨張率の不整合を緩和して、残留応力を軽減することができるため、LSIチップ102における低誘電率膜のクラックの発生を抑制することができる。
更に、Cuピラー上にSnAg(錫−銀の合金)等の半田バンプ120を配置し、インターポーザ基板118との接続の際、LSIチップ102全体に加重をかけながら、半田バンプ120をリフローしてもよい。これによって、LSIチップ102の反りによる接続不良を避けることができる。
本発明では、LSIチップ102の反りが再配線層104によって制御されているため、従来の1/10以下の加重で接続が可能となる。また、例え、従来と同様の加重をかけたとしても、再配線層104がその加重を吸収するため、LSIチップ102の層間絶縁膜にクラック等のダメージを与えることがなくなる。これによって、インターポーザ基板118に実装された半導体装置700の信頼性が向上する。
<第8実施形態>
本実施形態に係る半導体装置800の構成を、図8を参照して説明する。図8は、本実施形態に係る表示装置800の構成を示す断面図である。
半導体装置の集積化に伴うIOパッドの配置の高密度化(狭ピッチ化)に対応するため、Auスタッドバンプ124を用いた実装が可能である。図8に示す本実施形態に係る半導体装置800は、第1実施形態乃至第3実施形態のいずれかに係る半導体装置を、Auスタッドバンプ124を介してインターポーザ基板118に実装した態様を示している。
本実施形態によれば、上記のような構成を有することによって、Auスタッドバンプ124を介したプリント基板等のインターポーザ基板118とLSIチップ102間の距離を再配線層104によって十分に取ることができ、再配線層104が熱膨張率の不整合を緩和して、残留応力を軽減することができるため、LSIチップ102における低誘電率膜のクラックの発生を抑制することができる。
この実装方法は、インターポーザ基板118にLSIチップ102を非導電性接着剤(NCP)125を介して配置し、LSIチップ102に加重を加えてAuスタットバンプ124の先に加重を集中させることにより、インターポーザ基板上118のパッドと電気的な接続を図る。
本発明では、LSIチップ102の反りが再配線層104によって制御されているため、従来の1/10以下の加重で接続が可能となる。また、例え、従来と同様の加重をかけたとしても、再配線層104がその加重を吸収するため、LSIチップ102の層間絶縁膜にクラック等のダメージを与えることがなくなる。これによって、インターポーザ基板118に実装された半導体装置800の信頼性が向上する。
以上、本発明の好ましい態様を第1実施形態乃至第8実施形態によって説明した。しかし、これらは単なる例示に過ぎず、本発明の技術的範囲はそれらには限定されない。当業者であれば、本発明の要旨を逸脱することなく、種々の変更が可能であろう。よって、それらの変更も当然に、本発明の技術的範囲に属すると解されるべきである。
100、200、300、400、500:半導体装置
102:LSIチップ
104:再配線層
106:トランジスタ
108:LSI多層配線層
110:配線層
112:有機絶縁層
114:無機絶縁層
116:ビア
118:インターポーザ基板
120:半田バンプ
121:Cuピラー
122:ワイヤ
123:バリアメタル
124:Auスタッドバンプ
125:非導電性接着剤

Claims (1)

  1. 複数のトランジスタ及び前記複数のトランジスタ上に配置されたLSI多層配線層を含むLSIチップと、
    複数の配線層、各々が前記複数の配線層を絶縁する複数の有機絶縁層、及び各々が前記複数の配線層を被覆する複数の無機絶縁層を含み、前記LSIチップの上方に配置される再配線層とを備える半導体装置。
JP2019172254A 2019-09-20 2019-09-20 表示装置 Pending JP2019212934A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019172254A JP2019212934A (ja) 2019-09-20 2019-09-20 表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019172254A JP2019212934A (ja) 2019-09-20 2019-09-20 表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015154141A Division JP2017034155A (ja) 2015-08-04 2015-08-04 表示装置

Publications (2)

Publication Number Publication Date
JP2019212934A true JP2019212934A (ja) 2019-12-12
JP2019212934A5 JP2019212934A5 (ja) 2020-01-30

Family

ID=68847043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019172254A Pending JP2019212934A (ja) 2019-09-20 2019-09-20 表示装置

Country Status (1)

Country Link
JP (1) JP2019212934A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152014A (ja) * 2001-11-09 2003-05-23 Shinko Electric Ind Co Ltd 半導体装置の製造方法及び半導体装置
JP2005236128A (ja) * 2004-02-20 2005-09-02 Matsushita Electric Ind Co Ltd 半導体装置
JP2010050177A (ja) * 2008-08-20 2010-03-04 Sharp Corp 半導体装置
JP2010067647A (ja) * 2008-09-08 2010-03-25 Oki Semiconductor Co Ltd 半導体装置の製造方法
JP2012004505A (ja) * 2010-06-21 2012-01-05 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
WO2014069662A1 (ja) * 2012-11-05 2014-05-08 大日本印刷株式会社 配線構造体
JP2015138874A (ja) * 2014-01-22 2015-07-30 ルネサスエレクトロニクス株式会社 半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152014A (ja) * 2001-11-09 2003-05-23 Shinko Electric Ind Co Ltd 半導体装置の製造方法及び半導体装置
JP2005236128A (ja) * 2004-02-20 2005-09-02 Matsushita Electric Ind Co Ltd 半導体装置
JP2010050177A (ja) * 2008-08-20 2010-03-04 Sharp Corp 半導体装置
JP2010067647A (ja) * 2008-09-08 2010-03-25 Oki Semiconductor Co Ltd 半導体装置の製造方法
JP2012004505A (ja) * 2010-06-21 2012-01-05 Shinko Electric Ind Co Ltd 半導体装置及びその製造方法
WO2014069662A1 (ja) * 2012-11-05 2014-05-08 大日本印刷株式会社 配線構造体
JP2015138874A (ja) * 2014-01-22 2015-07-30 ルネサスエレクトロニクス株式会社 半導体装置の製造方法

Similar Documents

Publication Publication Date Title
US8227918B2 (en) Robust FBEOL and UBM structure of C4 interconnects
US8710639B2 (en) Semiconductor element-embedded wiring substrate
US8072073B2 (en) Semiconductor device and method of manufacturing same
JP4072523B2 (ja) 半導体装置
JP2005327984A (ja) 電子部品及び電子部品実装構造の製造方法
JP5387407B2 (ja) 半導体装置
US8304905B2 (en) Semiconductor device
JP5589601B2 (ja) 集積回路素子内蔵基板及び該集積回路素子内蔵基板に内蔵される集積回路素子
JP2001144204A (ja) 半導体装置及びその製造方法
US20150371971A1 (en) Semiconductor device
US10297547B2 (en) Semiconductor device including first and second wirings
JP4293563B2 (ja) 半導体装置及び半導体パッケージ
US9129966B2 (en) Semiconductor device
JP2017034155A (ja) 表示装置
US11217548B2 (en) Semiconductor device structure and manufacturing method
JP2019212934A (ja) 表示装置
US7791196B2 (en) Semiconductor device having a smaller electrostatic capacitance electrode
US20240096838A1 (en) Component-embedded packaging structure
US11728284B2 (en) Chip package structure and method for forming the same
US11335571B2 (en) Semiconductor device including a package substrate and a semiconductor chip
US20190273054A1 (en) Substrate structure and method for fabricating the same
JP4794507B2 (ja) 半導体装置
TW202347678A (zh) 積體電路裝置
JP2000311965A (ja) 半導体装置及びその製造方法
JP2010050266A (ja) 半導体装置及び電子装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201215