JP2019211670A - 蛍光発光素子 - Google Patents

蛍光発光素子 Download PDF

Info

Publication number
JP2019211670A
JP2019211670A JP2018108710A JP2018108710A JP2019211670A JP 2019211670 A JP2019211670 A JP 2019211670A JP 2018108710 A JP2018108710 A JP 2018108710A JP 2018108710 A JP2018108710 A JP 2018108710A JP 2019211670 A JP2019211670 A JP 2019211670A
Authority
JP
Japan
Prior art keywords
phosphor
fluorescent
fluorescent plate
fluorescence
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018108710A
Other languages
English (en)
Other versions
JP7119600B2 (ja
Inventor
井上 正樹
Masaki Inoue
正樹 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Ushio Inc
Original Assignee
Ushio Denki KK
Ushio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK, Ushio Inc filed Critical Ushio Denki KK
Priority to JP2018108710A priority Critical patent/JP7119600B2/ja
Publication of JP2019211670A publication Critical patent/JP2019211670A/ja
Application granted granted Critical
Publication of JP7119600B2 publication Critical patent/JP7119600B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Luminescent Compositions (AREA)

Abstract

【課題】発光面積を限定的にして高い輝度を実現することのできる蛍光発光素子を提供する。【解決手段】蛍光発光素子は、蛍光体と、前記蛍光体とは異なる材料からなるバインダと、を含んでなる板形状を呈した蛍光板を有する。バインダの材料の熱伝導率は、8W/(m・K)以上であり、蛍光体の材料とバインダの材料との屈折率差は、0.25以上である。蛍光板は、当該蛍光板の少なくとも一つの面上に、凹凸形状を呈するモスアイ構造を有する。【選択図】 図2

Description

本発明は、蛍光体を含む蛍光発光素子に関する。
従来、半導体レーザ素子からなる励起光源と、蛍光体を含有する蛍光発光素子とを備え、励起光源から出射される光(レーザ光)を蛍光体に照射して蛍光を発生させる蛍光光源装置が知られている(例えば、下記特許文献1参照)。このような蛍光光源装置において生成された蛍光は、例えばプロジェクタ用の光源として利用される。
特許第5900563号公報
近年、より小型で高輝度のプロジェクタに対する市場からの要求が高まっている。蛍光光源装置から放射される蛍光をプロジェクタ用の光源として利用する場合、蛍光光源装置において発生される蛍光の輝度を高める必要がある。蛍光の輝度を高める観点からは、蛍光体で生成される蛍光のスポット径を小さくすることが好ましい。
また、プロジェクタに含まれる光学系は、所定の範囲内のエタンデュを有する光束しか取り込めないように構成されることが一般的である。つまり、蛍光のスポット径が大きい場合、取り出された光の一部の光しか利用できないこととなってしまい、光の利用効率が低く、高輝度のプロジェクタを実現することが難しくなる。なお、この問題は、プロジェクタ用途に限られず、蛍光光源装置から取り出される蛍光を利用する一般的な光学部品に対して生じ得る。
本発明は、上記の課題に鑑み、発光面積を限定的にして高い輝度を実現することのできる蛍光発光素子を提供することを目的とする。
本発明者は、鋭意研究により、下記の構成を示す蛍光発光素子によれば、高輝度の蛍光発光素子が実現できることを見出した。
すなわち、本発明に係る蛍光発光素子は、
蛍光体と、前記蛍光体とは異なる材料からなるバインダと、を含んでなる板形状を呈した蛍光板を有し、
前記バインダの材料の熱伝導率は、8W/(m・K)以上であり、
前記蛍光体の材料と前記バインダの材料との屈折率差は、0.25以上であり、
前記蛍光板は、当該蛍光板の少なくとも一つの面上に、凹凸形状を呈するモスアイ構造を有することを特徴とする。
上記のように、バインダを、熱伝導率が8W/(m・K)以上の材料で構成することで、蛍光発光素子を光源装置の部材に固定して利用した場合においても、蛍光発光時に生じる熱を高効率で排熱することができ、温度消光の発現が抑制される。すなわち、蛍光発光素子を回転駆動機構を備えたホイールなどに取り付けて、冷却のために回転させる必要がない。
そして、上記のように、蛍光体の材料とバインダの材料との屈折率差を0.25以上としたことで、蛍光体で生成された光(蛍光)のうち、蛍光板の面に実質的に平行な方向に進行した光の進行方向を、蛍光板の光の取り出し面側へと容易に変化させることができる。つまり、蛍光板の光の取り出し面上における、蛍光のスポット径を縮小化することができ、前記光取り出し面上における輝度が高められる。
更に、上記のように、蛍光板の少なくとも一つの面上にモスアイ構造を形成したことで、蛍光体で生成された光が取り出し面側に導かれた際に、当該面上での反射が抑制されるため、光の取り出し効率が高められる。モスアイ構造が形成される面は、少なくとも蛍光板の光取り出し面であるものとして構わない。
より詳細には、前記蛍光発光素子は、基板と、前記基板の上層に形成された接合層とを含み、前記接合層を介して、前記基板上に前記蛍光板が固定的に接合されているものとすることができる。
前記蛍光発光素子は、前記蛍光板に含有される前記蛍光体の体積割合を50%以上としても構わない。かかる構成とすることで、蛍光発光素子で生成される蛍光強度を高めることができる。
前記蛍光発光素子は、前記蛍光板に含有される前記蛍光体の粒径を10μm以下としても構わない。なお、本明細書において、「蛍光体の粒径」とは、蛍光体を構成する一次粒子の平均粒径を指し、より詳細には、SEM又はTEMの電子顕微鏡による観察において、数十個の粒子の粒子径(長軸の長さ)の測定値の平均値を意味する。
前記蛍光板は、含有される体積割合が0.8%〜5%の範囲内の気孔を含むものとしても構わない。蛍光板に気孔を含有させることで、蛍光体と気孔、及びバインダと気孔との間で大きな屈折率差が生じるため、蛍光板の面に実質的に平行な方向に進行した蛍光(光)を、効率的に蛍光板の面(光取り出し面)に向かわせることができる。
前記蛍光発光素子において、
前記蛍光体は、La3Si611:Ce、又は(La,Y)3Si611:Ceからなり、
前記バインダは、フッ化物材料からなるものとしても構わない。
本明細書において、La3Si611:Ce、又は(La,Y)3Si611:Ceで規定される蛍光体を「LSN蛍光体」と表記することがある。なお、より詳細には、前記蛍光体は、La3Si611:Ce2+、又は(La,Y)3Si611:Ce2+で規定される材料とすることができる。また、バインダを構成するフッ化物材料としては、CaF2、BaF2などが挙げられる。例えば、La3Si611:CeからなるLSN蛍光体は、屈折率が2.0であり、CaF2からなるバインダは、屈折率が1.39である。このとき、両者の屈折率差は0.61である。
本発明の蛍光発光素子によれば、発光面積が限定的となり、スポット径の小さい高輝度の蛍光を生成することができる。
本発明の蛍光発光素子を含む、一実施形態の蛍光光源装置の構成を模式的に示す図面である。 蛍光発光素子の構成を模式的に示す断面図である。 蛍光板の構成を模式的に示す断面図である。 実施例1、比較例1、参考例1の各材料からなる蛍光発光素子におけるピーク蛍光強度と、蛍光体の体積含有率との関係を示すグラフである。 実施例1の材料からなる蛍光発光素子における、ピーク蛍光強度と、蛍光体の粒径との関係を示すグラフである。 実施例1、実施例2、実施例3、及び実施例4の各材料からなる蛍光板におけるピーク蛍光強度と、蛍光体の体積含有率との関係を示すグラフである。 実施例1、実施例5、実施例6、比較例2、及び参考例2の各材料からなる蛍光板におけるピーク蛍光強度と、蛍光体の体積含有率との関係を示すグラフである。
本発明の蛍光発光素子の構成につき、図面を参照して説明する。なお、以下の各図において、図面上の寸法比と実際の寸法比は必ずしも一致しない。
図1は、蛍光発光素子を含む、一実施形態の蛍光光源装置の構成を模式的に示す図面である。図1に示す蛍光光源装置1は、励起光源2と、ダイクロイックミラー3と、蛍光発光素子10とを備える。
励起光源2は、例えば波長が445nm以上465nm以下の青色領域の光を出射する半導体レーザ素子を含んで構成される。励起光源2は、必要に応じてコリメートレンズなどの光学系を備えることができる。
蛍光発光素子10は、後述する蛍光体及びバインダを含んでなる。励起光源2から出射された励起光21が蛍光発光素子10に照射されると、蛍光発光素子10に含まれる蛍光体が励起され、蛍光発光素子10から蛍光22が放射される。蛍光22は、励起光21よりも長波長の光であり、例えば、470nm以上700nm以下の波長を有する。
図1に示される蛍光光源装置1において、ダイクロイックミラー3は、励起光源2から出射される励起光21を透過し、蛍光発光素子10から出射される蛍光22を反射するように構成されている。ダイクロイックミラー3は、ミラー面が例えば励起光21の入射角度に対して45°の角度で傾斜するように配置されている。かかる構成とすることで、蛍光22が蛍光光源装置1の外部に取り出され、例えば、図示しない後段の光学系に入射される。
後述されるように、蛍光発光素子10は、熱伝導率の高いバインダを含むため、高い排熱性を有している。このため、蛍光発光素子10は、冷却のために別途の回転ホイールなどに設置する必要がなく、装置の所定の箇所に固定的に設置することができる。
図2は、蛍光発光素子10の構成を模式的に示す断面図である。蛍光発光素子10は、基板11と、接合層12と、反射層13と、蛍光板14とを有する。
(基板11)
基板11は、蛍光板14で発せられた熱を排熱するために設けられている。基板11は、例えば熱伝導率が90W/(m・K)以上、具体的には例えば230〜400W/(m・K)である材料で構成される。このような材料の例としては、Cu、銅化合物(MoCu、CuWなど)、Al、AlNなどが挙げられる。
基板11の厚みは、例えば0.5mm〜5mmである。また、排熱性などの観点から、基板11の表面における面積は、蛍光板14の面積よりも大きいことが好ましい。
(接合層12)
接合層12は、基板11と蛍光板14とを接合する層であり、例えばハンダ材料からなる。排熱性などの観点から、接合層12を構成する材料としては、例えば熱伝導率が40W/(m・K)以上であるものが用いられることが好ましい。より詳細には、例えば、Sn、Pbなどの材料にフラックスやその他の不純物を混ぜてクリーム状(ペースト状)の形態としたクリームハンダ、Sn−Ag−Cu系ハンダ、Au−Sn系ハンダなどを用いることができる。接合層12の厚みは、例えば20μm〜200μmである。
なお、図示していないが、基板11と接合層12との接合性を更に高める観点から、基板11と接合層12との間に、例えばメッキ法によって形成された、Ni/Au膜よりなる金属膜が形成されているものとしても構わない。この金属膜の厚みは、例えばNi/Au=1000nm〜5000nm/30nm〜1000nmとすることができる。
(反射層13)
反射層13は、蛍光板14の面のうちの、基板11側の面に形成されている。この反射層13は、蛍光板14で生成された蛍光22のうち、光取り出し面14aとは反対側(基板11側)に進行した蛍光22を反射させて、光取り出し面14aに導くために設けられている。反射層13は、例えば、Al、Ag等の金属膜や、前記金属膜上に誘電体多層膜を形成した増反射膜などで構成されることができる。
なお、図示していないが、蛍光板14と接合層12との接合性を更に高める観点から、蛍光板14の面のうちの、基板11側の面、より具体的には、反射層13と蛍光板14との間に、例えば蒸着によって形成されたNi/Pt/Au膜、Ni/Au膜よりなる金属膜が形成されているものとしても構わない。この金属膜の厚みは、例えばNi/Pt/Au=30nm/500nm/500nmとすることができる。
(蛍光板14)
蛍光板14は、反射層13の上層に形成されている。蛍光板14は、励起光源2から出射される励起光21が入射されると、蛍光22を放射する。蛍光板14は、一例として基板11の面に直交する方向から見たときに矩形平板状の構造を示す。蛍光板14の厚みは、例えば0.05mm〜1mmである。
図3は、蛍光板14の構成を模式的に示す断面図である。図3に示す蛍光板14は、蛍光体16、バインダ17、及び気孔18を含む。また、図2に示すように、蛍光板14は、基板11とは反対側に位置する面、すなわち光取り出し面14a側において、微細な凹凸加工が施されたモスアイ構造15を有している。
バインダ17は、図3に模式的に図示されるように、粒子状の蛍光体16同士の離間を埋めるように形成されている。バインダ17は、熱伝導率λ≧8W/(m・K)を示す材料からなる。このような材料の例としては、CaF2[λ=10W/(m・K)]、BaF2[λ=12W/(m・K)]、ZnS[λ=27W/(m・K)]、Al23[λ=40W/(m・K)]などが挙げられる。
蛍光体16は、当該蛍光体16の材料の屈折率n16と、バインダ17の材料の屈折率n17との差δn(=|n16−n17|)が、δn≧0.25を満たす材料から選択される。
例えば、バインダ17がCaF2[n17 =1.39]、BaF2[n17 =1.46]、又はZnS[n17 =2.2]である場合、蛍光体16としては、LSN(La3Si611:Ce2+,(La,Y)3Si611:Ce2+)[n16 =2.0]、βサイアロン(SrSiAlON:Eu2+)[n16 =2.0]、CSO(CaSc24:Ce3+)[n16 =1.9]、LuAG(Al512Lu3:Ce2+)[n16 =1.84]、YAG(Al5123:Ce2+)[n16 =1.83]、BOSS((Sr,Ba,Mg)2SiO4:Eu2+)[n16 =1.8]、及びBSS((Ba,Sr)SiO4:Eu2+)[n16 =1.8]からなる群から屈折率差δnが所定の範囲になるように適宜選択される1種又は2種以上とすることができる。
また、バインダ17がAl23[n17 =1.75]である場合、蛍光体16としては、LSN[n16 =2.0]、βサイアロン[n16 =2.0]、及びCSO[n16 =1.9]からなる群から屈折率差δnが所定の範囲になるように適宜選択される1種又は2種以上とすることができる。
蛍光体16は、粒径が30μm以下であり、好ましくは25μm以下であり、更に好ましくは20μm以下であり、特に好ましくは10μm以下である。蛍光体16の粒径の下限値は特に規定はないが、一般的には、1μm以上である。
蛍光板14に含まれる蛍光体16の体積割合は、好ましくは8%以上、98%以下であり、より好ましくは、30%以上、98%以下であり、更により好ましくは50%以上、98%以下である。なお、蛍光板14に含まれる蛍光体16の体積割合(体積含有率)とは、蛍光板14の全体の体積に対して、蛍光体16が占有する合計の体積の比率を指す。例えば、蛍光板14が、体積割合20%のバインダ17と、体積割合3%の気孔18とを含む場合、蛍光体16の体積割合は実質的に77%であるものとして構わない。ここでいう「実質的に」とは、含有される不純物を考慮しないという趣旨である。
図3に図示されるように、本実施形態においては、蛍光板14内には一部の気孔18が形成されている。蛍光板14に含まれる気孔18の体積割合は、好ましくは0.8%以上、5%以下である。
蛍光板14は、例えば以下の方法によって製造することができる。まず、蛍光体16を構成する粒子と、バインダ17を構成する粒子を、ボールミル、Vブレンダーなどの乾式混合法を用いて混合し、混合粉を得る。また、別の方法として、前記両粒子を所定の溶媒を加えてスラリー状態にし、ボールミル、ホモジナイザー、超音波ホモジナイザー、二軸混練機などを用いた湿式混合法を用いて混合させた後、得られたスラリーを、所定の温度で溶媒を揮発させて、混合粉を得る。
その後、得られた混合粉をプレス成形し、得られた成形体を焼結する。その後、得られた焼結体に対して熱間等方圧加圧加工(HIP:Hot Isostatic Pressing)を施す。加圧加工の条件によって、蛍光板14に含有される気孔18の含有率を制御することができる。その後、一方の面に対してエッチング処理を施すことで、微細な凹凸形状を有するモスアイ構造15を含む蛍光板14が生成される。
モスアイ構造15に含まれる微細な凹凸形状は、300nm以上、600nm以下の、ナノメートルオーダーの径を有する。
上述した実施形態の蛍光発光素子10によれば、従来の素子よりも輝度が向上する点につき、実施例を参照して説明する。実施例、比較例、及び参考例の蛍光板14に用いられた蛍光体及びバインダの材料は、以下の表1の通りである。なお、各実施例、比較例、及び参考例の蛍光板14としては、表1に記載された条件の範囲内で、蛍光体16の体積含有率、及び、蛍光体16の粒径を適宜変更して作成されたものが採用された。
Figure 2019211670
(実施例1)
実施例1の蛍光板14は、LSN(La3Si611:Ce2+)からなる蛍光体16と、CaF2からなるバインダ17と、体積含有率0.8%の気孔18とを含み、光取り出し面14a側にモスアイ構造15が形成されている。
(実施例2、実施例3、実施例7)
実施例2の蛍光板14は、気孔18の体積含有率を5%に変更した点を除き、実施例1の蛍光板14と同一の条件で作成されたものである。同様に、実施例3の蛍光板14は、気孔18の体積含有率を0%、すなわち気孔18を含まない構成に変更した点を除き、実施例1の蛍光板14と同一の条件で作成されたものである。同様に、実施例7の蛍光板14は、気孔18の体積含有率を10%に変更した点を除き、実施例1の蛍光板14と同一の条件で作成されたものである。
(実施例4、実施例5)
実施例4の蛍光板14は、バインダ17の材料をBaF2に変更した点を除き、実施例1の蛍光板14と同一の条件で作成されたものである。同様に、実施例5の蛍光板14は、バインダ17の材料をAl23に変更した点を除き、実施例1の蛍光板14と同一の条件で作成されたものである。
(実施例6)
実施例4の蛍光板14は、蛍光体16の材料をYAG(Al5123:Ce2+)に変更した点を除き、実施例1の蛍光板14と同一の条件で作成されたものである。
(比較例1、比較例2)
比較例1の蛍光板14は、YAG(Al5123:Ce2+)からなる蛍光体16と、Al23からなるバインダ17とを含み、気孔18を含まず、光取り出し面14a側にはモスアイ構造15が形成されていない。比較例2の蛍光板14は、体積含有率にして3%の気孔18を含めた点を除き、比較例1の蛍光板14と同一の条件で作成されたものである。
(参考例1、参考例2)
参考例1の蛍光板14は、気孔18の体積含有率を0%に変更し、すなわち気孔18を含まず、且つ光取り出し面14a側にモスアイ構造15が形成されていない点を除き、実施例1の蛍光板14と同一の条件で作成されたものである。参考例2の蛍光板14は、気孔18の体積含有率を3%に変更した点を除き、参考例1の蛍光板14と同一の条件で作成されたものである。
(各グラフの説明)
図4は、実施例1、比較例1、参考例1の各材料からなる蛍光板14から出射される蛍光22のピーク蛍光強度と、蛍光体16の体積含有率との関係を示すグラフであり、横軸については対数表記にて表示されている。
図4、及び後述される図5〜図7に図示される縦軸の値は、いずれも、表1を参照して上述した実施例、比較例、又は参考例に係る各蛍光板14に対して、同一の条件(波長及び強度)で励起光を照射したときの、蛍光板14から出射される蛍光22のピーク強度の値に対応する。なお、図4〜図7における縦軸の値(蛍光22のピーク強度)は、同一の基準値に対する相対値で表記されたものである。つまり、例えば、図4のグラフにおける強度100[a.u.]が示す値と、図5〜図7のグラフにおける強度100[a.u.]が示す値とは、同一値である。
図4は、実施例1に関しては、蛍光体16の粒径を5μm、10μm、20μm、25μm、及び30μmの5種類とし、比較例1及び参考例1においては、いずれも蛍光体16の粒径を5μmとしてシミュレーションを行った結果を示すグラフである。
図5は、図4において、実施例1の蛍光板14のデータのみを抽出し、横軸を蛍光体16の粒径とし、縦軸を蛍光強度としてグラフ化したものである。
図6は、実施例1、実施例2、実施例3、及び実施例4の各材料からなる蛍光板14から出射される蛍光22のピーク蛍光強度と、蛍光体16の体積含有率との関係を示すグラフであり、図4と同様に横軸については対数表記にて表示されている。なお図6には、実施例1に関しては、蛍光体16の粒径を5μm及び10μmの2種類とし、実施例2〜4においては、蛍光体16の粒径を10μmの1種類としてシミュレーションを行った結果が示されている。
図7は、実施例1、実施例5、実施例6、比較例2、及び参考例2の各材料からなる蛍光板14におけるピーク蛍光強度と、蛍光体16の体積含有率との関係を示すグラフであり、図4と同様に横軸については対数表記がされている。なお図7には、実施例1に関しては、蛍光体16の粒径を20μm及び25μmの2種類とし、実施例5、実施例6、比較例2、及び参考例2に関しては、蛍光体16の粒径を10μmの1種類としてシミュレーションを行った結果が示されている。
(結果に対する検証)
以下、図4〜図7に図示された結果に対して検証する。
《1》図4によれば、比較例1の蛍光板14は、蛍光体16の体積含有率が高まるにつれて、出射する蛍光22の強度は徐々に上昇するものの、その上昇の程度は実施例1及び参考例1よりも著しく小さい。これに対し、実施例1及び参考例1の蛍光発光素子においては、蛍光体16の粒径に関わらず、蛍光体16の体積含有率が高まると、蛍光強度が大きく上昇することが確認される。
実施例1及び参考例1は、いずれも蛍光体16とバインダ17の屈折率差δn(=|n16−n17|)が0.61と大きいのに対し、比較例1は、前記屈折率差δnが0.08と小さい。蛍光体16の粒径を同一とした場合において、蛍光板14に含まれる蛍光体16の体積割合(体積含有率)を高めることは、同一の領域内において、蛍光体16とバインダ17とが接触する頻度が高まることを意味する。
蛍光体16とバインダ17との屈折率差δnが大きい場合、蛍光体16の粒子から出射されてバインダ17内に進行する蛍光22、及び、バインダ17から再び近接する蛍光体16の粒子内に入射された蛍光22は、屈折率差に起因してその都度進行方向が変化する。この結果、仮に蛍光体16から蛍光板14の面に実質的に平行な方向に蛍光22が進行したとしても、すぐに進行方向が変化し、光取り出し面14a側に導かれる。すなわち、蛍光22が、光取り出し面14aに導かれるまでに、蛍光板14の面に平行な方向に移動する距離が短くなり、光取り出し面14aにおける蛍光22の径(スポット径)を小さくできると共に、光取り出し面14a上における輝度が高められる。
これに対し、蛍光体16とバインダ17との屈折率差δnが小さい場合には、蛍光体16の粒子から出射されてバインダ17内に進行する蛍光22、及び、バインダ17から再び近接する蛍光体16の粒子内に入射された蛍光22は、進行方向がほとんど変化しない。このため、蛍光体16から蛍光板14の面に実質的に平行な方向に進行した蛍光22は、そのまま同方向に進行し続けることになり、この結果、光取り出し面14a側に導かれにくくなる。このことは、比較例1において、蛍光体16の体積含有率を上昇させても、蛍光22の強度がほとんど変化していないことに現れている。
なお、比較例1と同様に、YAG(Al5123:Ce2+)からなる蛍光体16と、Al23からなるバインダ17とを含み、更に比較例1とは異なり気孔18を含んでなる比較例2の蛍光板14においても、図7に示すように、蛍光体16の体積含有率を上昇させても、蛍光22の強度がほとんど変化していないことが確認される。
また、図7に示す実施例5(粒径10μm、屈折率差δn=0.25)の結果によれば、図4に示す比較例1(粒径10μm、屈折率差δn=0.08)と比較すると、蛍光体16の体積含有率が高まるにつれて、出射する蛍光22の強度が上昇する傾向が高いものの、図4に示す実施例1(粒径10μm、屈折率差δn=0.61)と比較すると、その上昇傾向は低い。この結果からも、蛍光体16とバインダ17の屈折率差δnが大きいほど、蛍光体16の体積含有率を上昇させることで蛍光22の強度が高められることが分かる。すなわち、本発明者(ら)は、蛍光体16とバインダ17との屈折率差δnが0.08程度と小さい場合には、蛍光体16の体積含有率を高めても蛍光22の強度を高める効果があまり得られない一方、前記屈折率差δnを0.25以上とすることで、蛍光体16の体積含有率を高めることで蛍光22の強度を高めることができるという、新たな知見を見出した。
すなわち、上記の検証から、蛍光板14に含まれる蛍光体16とバインダ17との屈折率差δnを0.25以上とすることで、蛍光板14から取り出される蛍光22の強度を高める効果が得られることが分かる。
なお、図6に示す実施例4(粒径10μm、屈折率差δn=0.54)、及び図7に示す実施例6(粒径10μm、屈折率差δn=0.44)においても、蛍光体16の体積含有率が高まるにつれて、実施例5と同等程度、又はそれ以上に、出射する蛍光22の強度が上昇する傾向が示されている。かかる結果から、蛍光板14に含まれる蛍光体16とバインダ17との屈折率差δnを0.44以上とするのがより好ましく、0.54以上とするのが更に好ましく、0.61以上とするのが特に好ましい。
《2》図4において、実施例1(モスアイ構造15あり)と参考例1(モスアイ構造15なし)の結果を比較すると、蛍光体16の体積含有率の値にかかわらず、実施例1の蛍光板14から出射される蛍光22の強度は、参考例1の蛍光板14から出射される蛍光22の強度よりも高いことがわかる。上述したように、実施例1の蛍光板14と参考例1の蛍光板14とは、モスアイ構造15の有無以外は同一の条件で形成されたものである。この結果から、蛍光板14の光取り出し面14a側にモスアイ構造15を設けることで、取り出される蛍光22の強度を更に高める効果が得られることが分かる。
《3》図5によれば、実施例1の蛍光板14から出射される蛍光22の強度は、蛍光体16の体積含有率が8%以上である場合、蛍光体16の粒径が5μm〜30μmの全ての範囲内において、比較例1の蛍光板14から出射される蛍光22の最大強度を上回ることが示されている。更に、実施例1の蛍光板14から出射される蛍光22の強度は、蛍光体16の体積含有率を50%以上とすることで、蛍光体16の粒径が5μm〜30μmの全ての範囲内において、比較例1の蛍光板14から出射される蛍光22の最大強度を大きく上回ることが示されている。
また、図6によれば、実施例2、実施例3、及び実施例4の各蛍光板14から出射される蛍光22の強度は、蛍光体16の体積含有率を50%以上とすることで、いずれも比較例1の蛍光板14から出射される蛍光22の最大強度を大きく上回ることが示されている。更に、図7によれば、実施例5、実施例6、及び実施例7の各蛍光板14から出射される蛍光22の強度は、蛍光体16の体積含有率を50%以上とすることで、比較例1の蛍光板14から出射される蛍光22の最大強度を大きく上回ることが示されている。
《4》図5によれば、実施例1の蛍光板14は、蛍光体16の粒径が20μm以下の範囲内においては、粒径が小さいほど出射する蛍光22の強度が高く、20μmを超えると、蛍光体16の体積含有率によっては出射する蛍光22の強度にあまり変化が生じないことが示されている。このことから、蛍光板14から取り出される蛍光22の強度を高める観点からは、蛍光体16の粒径を20μm以下とするのが好ましく、10μm以下とするのがより好ましい。
《5》図6において、実施例1(蛍光体16の粒径:10μm、気孔率0.8%)と、実施例2(蛍光体16の粒径:10μm、気孔率5%)とを比較すると、実施例2の蛍光板14から出射される蛍光22の強度は、実施例1の蛍光板14から出射される蛍光22の強度よりも高いことがわかる。一方で、実施例1(蛍光体16の粒径:10μm、気孔率0.8%)と、実施例3(蛍光体16の粒径:10μm、気孔率0%)とを比較すると、実施例1の蛍光板14から出射される蛍光22の強度は、実施例3の蛍光板14から出射される蛍光22の強度よりも高いことがわかる。更に、図7に示す実施例7(蛍光体16の粒径:10μm、気孔率10%)の蛍光板14によれば、実施例1の蛍光板14よりも、高い強度で蛍光22を取り出すことができる。
この結果から、蛍光板14から取り出される蛍光22の強度を高める観点からは、蛍光板14内に気孔18を含めるのが好ましく、その体積含有率を0.8%以上、10%以下とするのがより好ましく、5%以上、10%以下とするのが更により好ましい。
蛍光板14内に気孔18を含有させることで、蛍光板14内において、蛍光体16と気孔18、及びバインダ17と気孔18とが接触する。気孔18の屈折率は実質的に1であり、蛍光体16やバインダ17とは異なる値である。このため、蛍光体16の粒子から出射された、又は、バインダ17内を進行した蛍光22は、気孔18に入射されると、その屈折率差に起因して進行方向が変化する。これにより、光取り出し面14a側に蛍光22を導く効果が高められる。
かかる観点からは、蛍光板14内に気孔18を多く含有させることが好ましい。しかしながら、一方で、気孔18を多く含有させ過ぎると、それに伴って蛍光板14に含有される蛍光体16の体積割合が低下してしまうため、蛍光板14内で生成される蛍光22の光量が低下する。かかる観点から、気孔18の体積含有率は10%以下とするのが好ましい。
《6》バインダ17として、高い熱伝導率を示す材料を用いながら、且つ、バインダ17と蛍光体16との間で大きな屈折率差を確保する観点からは、バインダ17をCaF2やBaF2等のフッ化物材料で構成し、蛍光体16をLSNで構成するのが好ましい。
1 : 蛍光光源装置
2 : 励起光源
3 : ダイクロイックミラー
10 : 蛍光発光素子
11 : 基板
12 : 接合層
13 : 反射層
14 : 蛍光板
14a : 波長変換層の光取り出し側の面
15 : モスアイ構造
16 : 蛍光体
17 : バインダ
18 : 気孔
21 : 励起光
22 : 蛍光

Claims (6)

  1. 蛍光体と、前記蛍光体とは異なる材料からなるバインダと、を含んでなる板形状を呈した蛍光板を有し、
    前記バインダの材料の熱伝導率は、8W/(m・K)以上であり、
    前記蛍光体の材料と前記バインダの材料との屈折率差は、0.25以上であり、
    前記蛍光板は、当該蛍光板の少なくとも一つの面上に、凹凸形状を呈するモスアイ構造を有することを特徴とする、蛍光発光素子。
  2. 基板と、前記基板の上層に形成された接合層とを含み、
    前記接合層を介して、前記基板上に前記蛍光板が固定的に接合されていることを特徴とする、請求項1に記載の蛍光発光素子。
  3. 前記蛍光板に含有される前記蛍光体の体積割合が50%以上であることを特徴とする、請求項1又は2に記載の蛍光発光素子。
  4. 前記蛍光板に含有される前記蛍光体の粒径が10μm以下であることを特徴とする、請求項1〜3のいずれか1項に記載の蛍光発光素子。
  5. 前記蛍光板は、含有される体積割合が0.8%〜5%の範囲内の気孔を含むことを特徴とする、請求項1〜4のいずれか1項に記載の蛍光発光素子。
  6. 前記蛍光体は、La3Si611:Ce、又は(La,Y)3Si611:Ceからなり、
    前記バインダは、フッ化物材料からなることを特徴とする、請求項1〜5のいずれか1項に記載の蛍光発光素子。
JP2018108710A 2018-06-06 2018-06-06 蛍光発光素子 Active JP7119600B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018108710A JP7119600B2 (ja) 2018-06-06 2018-06-06 蛍光発光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018108710A JP7119600B2 (ja) 2018-06-06 2018-06-06 蛍光発光素子

Publications (2)

Publication Number Publication Date
JP2019211670A true JP2019211670A (ja) 2019-12-12
JP7119600B2 JP7119600B2 (ja) 2022-08-17

Family

ID=68845163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018108710A Active JP7119600B2 (ja) 2018-06-06 2018-06-06 蛍光発光素子

Country Status (1)

Country Link
JP (1) JP7119600B2 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251252A1 (ja) * 2020-06-08 2021-12-16 日本特殊陶業株式会社 蛍光板、波長変換部材、および、光源装置
KR20220100649A (ko) * 2020-06-08 2022-07-15 니뽄 도쿠슈 도교 가부시키가이샤 형광판, 파장 변환 부재, 및, 광원 장치
KR20220100648A (ko) * 2020-06-08 2022-07-15 니뽄 도쿠슈 도교 가부시키가이샤 형광판, 파장 변환 부재, 및, 광원 장치
US11920068B2 (en) 2020-07-13 2024-03-05 Nichia Corporation Method of manufacturing wavelength conversion member and wavelength conversion member
WO2024047888A1 (ja) * 2022-08-31 2024-03-07 パナソニックIpマネジメント株式会社 蛍光体デバイス
JP7478362B2 (ja) 2021-01-08 2024-05-07 ウシオ電機株式会社 波長変換部材、プロジェクタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068465A (ja) * 2010-09-24 2012-04-05 Casio Comput Co Ltd 光源ユニット及びプロジェクタ
JP2016058619A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 発光装置
WO2017209152A1 (ja) * 2016-06-01 2017-12-07 キヤノン株式会社 波長変換素子、光源装置および画像投射装置
JP2018002762A (ja) * 2016-06-27 2018-01-11 日本電気硝子株式会社 波長変換部材及びそれを用いてなる発光デバイス
JP2018021193A (ja) * 2016-07-26 2018-02-08 三菱ケミカル株式会社 焼結蛍光体、発光装置、照明装置、画像表示装置および車両用表示灯
JP2018053227A (ja) * 2015-12-03 2018-04-05 セイコーエプソン株式会社 蛍光体、波長変換素子、光源装置およびプロジェクター

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012068465A (ja) * 2010-09-24 2012-04-05 Casio Comput Co Ltd 光源ユニット及びプロジェクタ
JP2016058619A (ja) * 2014-09-11 2016-04-21 パナソニックIpマネジメント株式会社 発光装置
JP2018053227A (ja) * 2015-12-03 2018-04-05 セイコーエプソン株式会社 蛍光体、波長変換素子、光源装置およびプロジェクター
WO2017209152A1 (ja) * 2016-06-01 2017-12-07 キヤノン株式会社 波長変換素子、光源装置および画像投射装置
JP2018002762A (ja) * 2016-06-27 2018-01-11 日本電気硝子株式会社 波長変換部材及びそれを用いてなる発光デバイス
JP2018021193A (ja) * 2016-07-26 2018-02-08 三菱ケミカル株式会社 焼結蛍光体、発光装置、照明装置、画像表示装置および車両用表示灯

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021251252A1 (ja) * 2020-06-08 2021-12-16 日本特殊陶業株式会社 蛍光板、波長変換部材、および、光源装置
JPWO2021251252A1 (ja) * 2020-06-08 2021-12-16
KR20220100649A (ko) * 2020-06-08 2022-07-15 니뽄 도쿠슈 도교 가부시키가이샤 형광판, 파장 변환 부재, 및, 광원 장치
KR20220100648A (ko) * 2020-06-08 2022-07-15 니뽄 도쿠슈 도교 가부시키가이샤 형광판, 파장 변환 부재, 및, 광원 장치
CN115103978A (zh) * 2020-06-08 2022-09-23 日本特殊陶业株式会社 荧光板、波长转换构件和光源装置
JP7387898B2 (ja) 2020-06-08 2023-11-28 日本特殊陶業株式会社 蛍光板、波長変換部材、および、光源装置
CN115103978B (zh) * 2020-06-08 2024-02-06 日本特殊陶业株式会社 荧光板、波长转换构件和光源装置
KR102665902B1 (ko) 2020-06-08 2024-05-13 니혼도꾸슈도교 가부시키가이샤 형광판, 파장 변환 부재, 및, 광원 장치
KR102665901B1 (ko) 2020-06-08 2024-05-13 니혼도꾸슈도교 가부시키가이샤 형광판, 파장 변환 부재, 및, 광원 장치
US11920068B2 (en) 2020-07-13 2024-03-05 Nichia Corporation Method of manufacturing wavelength conversion member and wavelength conversion member
JP7478362B2 (ja) 2021-01-08 2024-05-07 ウシオ電機株式会社 波長変換部材、プロジェクタ
WO2024047888A1 (ja) * 2022-08-31 2024-03-07 パナソニックIpマネジメント株式会社 蛍光体デバイス

Also Published As

Publication number Publication date
JP7119600B2 (ja) 2022-08-17

Similar Documents

Publication Publication Date Title
JP2019211670A (ja) 蛍光発光素子
US9952491B2 (en) Phosphor, wavelength conversion element, light source device, and projector
US9785039B2 (en) Wavelength conversion member, light emitting device, projector, and method of manufacturing wavelength conversion member
JP6253392B2 (ja) 発光装置及びそれを用いたプロジェクター用光源
JP2019066880A (ja) 蛍光体、波長変換素子、光源装置およびプロジェクター
US10865950B2 (en) Light source unit and projection-type display
JP6845372B2 (ja) 光波長変換装置
JPWO2017154413A1 (ja) 発光装置
TW201742270A (zh) 波長轉換構件及發光裝置
JP7363919B2 (ja) 蛍光発光素子、及びその製造方法
JP5781367B2 (ja) 光源装置および照明装置
WO2020054192A1 (ja) 波長変換部材及びそれを用いた光源装置、プロジェクタならびに車両
JP7188893B2 (ja) 光波長変換部材及び光波長変換装置
JP2015149217A (ja) 蛍光光源装置
JPWO2020162357A1 (ja) 波長変換素子、光源装置、車両用前照灯具、透過型照明装置、表示装置及び照明装置
JP6826691B2 (ja) 光学部品および照明装置
JP2021144062A (ja) 波長変換素子、光源装置、車両用前照灯具、表示装置、光源モジュール、投影装置
JP2015179599A (ja) 蛍光光源装置
WO2018179654A1 (ja) 蛍光体膜及び光源装置
JP6583400B2 (ja) 波長変換部材の製造方法
WO2019069699A1 (ja) 発光素子、蛍光光源装置
JP7307799B2 (ja) 波長変換部材、光源装置、および、波長変換部材の製造方法
JP6747285B2 (ja) 発光素子、蛍光光源装置
JP7244297B2 (ja) 光波長変換部品
JP7174290B2 (ja) 発光装置及び発光装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220718

R151 Written notification of patent or utility model registration

Ref document number: 7119600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151