JP2019204687A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2019204687A5 JP2019204687A5 JP2018099230A JP2018099230A JP2019204687A5 JP 2019204687 A5 JP2019204687 A5 JP 2019204687A5 JP 2018099230 A JP2018099230 A JP 2018099230A JP 2018099230 A JP2018099230 A JP 2018099230A JP 2019204687 A5 JP2019204687 A5 JP 2019204687A5
- Authority
- JP
- Japan
- Prior art keywords
- flat
- insulating film
- insulating
- powder
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000843 powder Substances 0.000 claims description 122
- PNEYBMLMFCGWSK-UHFFFAOYSA-N al2o3 Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 100
- 239000010419 fine particle Substances 0.000 claims description 80
- 229910052782 aluminium Inorganic materials 0.000 claims description 41
- -1 aluminum carboxylate compound Chemical class 0.000 claims description 38
- 238000004519 manufacturing process Methods 0.000 claims description 36
- 239000000203 mixture Substances 0.000 claims description 34
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 31
- 150000002736 metal compounds Chemical class 0.000 claims description 28
- 239000006185 dispersion Substances 0.000 claims description 22
- 239000007788 liquid Substances 0.000 claims description 18
- 239000011521 glass Substances 0.000 claims description 15
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 14
- 229910052582 BN Inorganic materials 0.000 claims description 12
- PZNSFCLAULLKQX-UHFFFAOYSA-N N#B Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 12
- CSJKPFQJIDMSGF-UHFFFAOYSA-K aluminum;tribenzoate Chemical compound [Al+3].[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1.[O-]C(=O)C1=CC=CC=C1 CSJKPFQJIDMSGF-UHFFFAOYSA-K 0.000 claims description 9
- 230000001133 acceleration Effects 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- VAROLYSFQDGFMV-UHFFFAOYSA-K di(octanoyloxy)alumanyl octanoate Chemical compound [Al+3].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O.CCCCCCCC([O-])=O VAROLYSFQDGFMV-UHFFFAOYSA-K 0.000 claims description 5
- 230000001376 precipitating Effects 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 3
- 239000010445 mica Substances 0.000 claims description 3
- 229910052618 mica group Inorganic materials 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 238000007792 addition Methods 0.000 claims description 2
- 230000001419 dependent Effects 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims description 2
- 238000000197 pyrolysis Methods 0.000 claims description 2
- 235000013312 flour Nutrition 0.000 claims 1
- 239000008187 granular material Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 147
- 239000010410 layer Substances 0.000 description 58
- 239000004020 conductor Substances 0.000 description 24
- 239000000463 material Substances 0.000 description 17
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 14
- 238000009413 insulation Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- 239000002585 base Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 10
- OZAIFHULBGXAKX-UHFFFAOYSA-N precursor Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 9
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 8
- 239000012298 atmosphere Substances 0.000 description 8
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 8
- 150000007524 organic acids Chemical class 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 229910052802 copper Inorganic materials 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 238000002788 crimping Methods 0.000 description 5
- 238000010894 electron beam technology Methods 0.000 description 5
- 238000005304 joining Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000005711 Benzoic acid Substances 0.000 description 4
- 235000010233 benzoic acid Nutrition 0.000 description 4
- 230000000875 corresponding Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 238000011068 load Methods 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 150000001298 alcohols Chemical class 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000005357 flat glass Substances 0.000 description 3
- 239000003317 industrial substance Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920001187 thermosetting polymer Polymers 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- PQDJYEQOELDLCP-UHFFFAOYSA-N Trimethylsilane Chemical compound C[SiH](C)C PQDJYEQOELDLCP-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 229940009827 aluminum acetate Drugs 0.000 description 2
- 230000027455 binding Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- WCOATMADISNSBV-UHFFFAOYSA-K diacetyloxyalumanyl acetate Chemical compound [Al+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WCOATMADISNSBV-UHFFFAOYSA-K 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 241001251094 Formica Species 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N Iron(III) oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 210000002381 Plasma Anatomy 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive Effects 0.000 description 1
- 238000007718 adhesive strength test Methods 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000003373 anti-fouling Effects 0.000 description 1
- 125000004429 atoms Chemical group 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 229910000460 iron oxide Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atoms Chemical group O* 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Description
本発明は、容器の底面全体に、絶縁性扁平粉の扁平面同士が重なり合うように配列し、扁平面同士の間隙に析出した酸化アルミニウム微粒子同士を摩擦熱で接合することで扁平面同士を接合し、容器の底面に絶縁膜を製造する製造方法に係わる。この製造方法に依れば、1018Ωに及ぶ絶縁抵抗の絶縁膜の製造が可能で、また、絶縁膜の表面積と形状とが容器の底面形状に応じて変えられる。さらに、部品や基材の導体に、絶縁膜を圧着によって絶縁層を形成する。なお、扁平粉をフレーク粉、鱗片粉、円板粉と呼ぶこともある。
導体への絶縁層の形成には様々な方法がある。
例えば、特許文献1に、ゾル−ゲル法に依るアルミナ絶縁膜の形成方法が記載されている。すなわち、アルミニウム化合物を含むゾルに、解膠剤を添加したアルミナ前駆体溶液を、電気泳動電着法によって基材上にアルミナ絶縁膜を形成する。つまり、第一に、アルミニウム化合物にエタノールなどの有機溶媒を添加し、更に、解膠剤として塩酸などを添加し撹拌してゾルを調製する。次に、ゾルを恒温槽に配置し、ゲル化しない40−60℃の温度範囲で1−3時間撹拌してアルミナ前駆体溶液を調製する。第三に、アルミナ前駆体溶液中で起きている加水分解・縮合反応を平衡状態にするため、アルミナ前駆体溶液を恒温槽で40−60℃の温度範囲で12時間以上保持する。第四に、被電着材料として、例えばシリコン基板の表面に白金膜を形成した電極を用意し、また、対向電極として、例えばシリコン基板の表面に白金膜を形成した電極を用意する。2枚の電極が形成されたシリコン基板をアルミナ前駆体溶液中にそれぞれ浸漬し、さらに、電荷の移動量が設定量に達するまで、両基板の電極間に直流電圧を印加し、正に帯電したアルミナ前駆体が陰極として使用したシリコン基板の電極上に析出させる。第五に、アルミナ前駆体が析出したシリコン基板をプレートの上に設置し、大気雰囲気中、100℃以上、3分以上の条件で加熱乾燥する。第六に、乾燥したシリコン基板の白金電極に析出したアルミナ前駆体を、ガスを酸素とした雰囲気中、昇温速度1−20℃/秒で室温から700℃まで昇温し、1分以上の間保持し、アルミナ前駆体を結晶化して絶縁膜を形成する。こうして白金電極の表面にアルミナの絶縁層が形成される。このように、絶縁層を形成する処理工程が複雑多岐にわたり、さらに、700℃の熱処理が必要なため、本絶縁層の形成方法は、汎用的な絶縁層を形成する方法ではない。
例えば、特許文献1に、ゾル−ゲル法に依るアルミナ絶縁膜の形成方法が記載されている。すなわち、アルミニウム化合物を含むゾルに、解膠剤を添加したアルミナ前駆体溶液を、電気泳動電着法によって基材上にアルミナ絶縁膜を形成する。つまり、第一に、アルミニウム化合物にエタノールなどの有機溶媒を添加し、更に、解膠剤として塩酸などを添加し撹拌してゾルを調製する。次に、ゾルを恒温槽に配置し、ゲル化しない40−60℃の温度範囲で1−3時間撹拌してアルミナ前駆体溶液を調製する。第三に、アルミナ前駆体溶液中で起きている加水分解・縮合反応を平衡状態にするため、アルミナ前駆体溶液を恒温槽で40−60℃の温度範囲で12時間以上保持する。第四に、被電着材料として、例えばシリコン基板の表面に白金膜を形成した電極を用意し、また、対向電極として、例えばシリコン基板の表面に白金膜を形成した電極を用意する。2枚の電極が形成されたシリコン基板をアルミナ前駆体溶液中にそれぞれ浸漬し、さらに、電荷の移動量が設定量に達するまで、両基板の電極間に直流電圧を印加し、正に帯電したアルミナ前駆体が陰極として使用したシリコン基板の電極上に析出させる。第五に、アルミナ前駆体が析出したシリコン基板をプレートの上に設置し、大気雰囲気中、100℃以上、3分以上の条件で加熱乾燥する。第六に、乾燥したシリコン基板の白金電極に析出したアルミナ前駆体を、ガスを酸素とした雰囲気中、昇温速度1−20℃/秒で室温から700℃まで昇温し、1分以上の間保持し、アルミナ前駆体を結晶化して絶縁膜を形成する。こうして白金電極の表面にアルミナの絶縁層が形成される。このように、絶縁層を形成する処理工程が複雑多岐にわたり、さらに、700℃の熱処理が必要なため、本絶縁層の形成方法は、汎用的な絶縁層を形成する方法ではない。
特許文献2には、プラズマディスプレイ装置において、前面板の表示電極を被覆してプラズマ放電を維持するベタ膜上の絶縁膜と、背面板に形成されたアドレス電極を被覆する絶縁膜との双方の絶縁層の形成に係わる記載がある。すなわち、熱重合開始剤と熱硬化性成分とガラス粒子とからなる絶縁ペーストを基板に塗布し、塗布膜を加熱して硬化率が30−95%になるように半硬化処理を行い、さらに過熱して絶縁層を形成する。つまり、塗布膜を95℃に加熱し、30分間放置した後に25℃に冷却し、半硬化膜を作成する。さらに、半硬化膜を380℃で10分間過熱し、有機成分を加熱除去した後に、600℃で10分間過熱し、ガラス粒子を焼結して絶縁層を形成する。つまり、基板上に電極が形成されているため、基板の凸部(電極形成部)の半硬化膜の焼成収縮率が、基板の凹部(電極非形成部)の半硬化膜の焼成収縮率を大きく上回ることで、全体として平滑性の高い絶縁膜を得ることができる。このため、半硬化膜を作成する必要がある。本絶縁膜が比較的大きな面積を持つため、平滑性に優れた絶縁膜を形成するには、前記のような複雑な熱処理が必要になる。また、熱重合開始剤と熱硬化性成分とからなる薬品は特殊な工業用薬品である。このように絶縁膜の形成方法は、特殊な薬品を用い、複雑で多岐にわたる熱処理を施し、さらに、600℃の熱処理が必要になる。このため、本絶縁層の形成方法も、汎用的な絶縁層を形成する方法ではない。
特許文献3には、高密度化された半導体装置に必要な低誘電率層間絶縁膜の形成方法に関する記載がある。耐吸湿性、及び、耐熱性が良い低誘電率層間絶縁膜の具体的な物質として、Si含有アルキル化合物ではトリメチルシラン(TMS)と、Si含有アルコキシ化合物ではテトラエチルオルソシリケート(TEOS)が挙げられている。しかし、TEOSの電気伝導度は3×10−6S/mであり、電気伝導度が59×106S/mである銅の5×10−13に過ぎず、電気絶縁性が十分でない。このため、電子回路が長時間稼働されると、絶縁層に流れる漏れ電流によって絶縁層が発熱し、導体に配置された電子部品が熱劣化する恐れがある。
次の5つの要件を満たす絶縁膜は汎用的な絶縁膜になる。本発明の課題は、これら5つの要件を満たす絶縁膜を製造する製造方法を実現することにある。
第一に、安価な材料を用い、極めて簡単な処理で絶縁膜が形成できる。これによって、安価な費用で絶縁膜が製造できる。
第二に、製造する絶縁膜の表面積と形状との各々が自在に変えられる。これによって、用途に応じた表面積と形状とからなる絶縁層が導体に形成できる。
第三に、絶縁膜の圧着によって導体の表面に絶縁層が形成できる。従って、熱処理を伴わずに導体に絶縁層が形成でき、耐熱性の低い部品や基材の導体に絶縁層が形成できる。
第四に、少量の絶縁材料を用いて、3μm前後の厚みの絶縁層が形成できる。これによって、安価な費用で極めて大きな絶縁抵抗からなる絶縁膜が形成できる。
第五に、絶縁抵抗が1018Ωに及ぶ値を持つ。従って、絶縁層に漏れ電流が流れず、絶縁層が発熱しないため、導体に接合された部品は、長期にわたって熱劣化しない。
第一に、安価な材料を用い、極めて簡単な処理で絶縁膜が形成できる。これによって、安価な費用で絶縁膜が製造できる。
第二に、製造する絶縁膜の表面積と形状との各々が自在に変えられる。これによって、用途に応じた表面積と形状とからなる絶縁層が導体に形成できる。
第三に、絶縁膜の圧着によって導体の表面に絶縁層が形成できる。従って、熱処理を伴わずに導体に絶縁層が形成でき、耐熱性の低い部品や基材の導体に絶縁層が形成できる。
第四に、少量の絶縁材料を用いて、3μm前後の厚みの絶縁層が形成できる。これによって、安価な費用で極めて大きな絶縁抵抗からなる絶縁膜が形成できる。
第五に、絶縁抵抗が1018Ωに及ぶ値を持つ。従って、絶縁層に漏れ電流が流れず、絶縁層が発熱しないため、導体に接合された部品は、長期にわたって熱劣化しない。
本発明の容器の底面に該底面の形状からなる絶縁膜を、絶縁性扁平紛の扁平面同士が重なり合った該扁平粉の集まりからなる絶縁膜として製造する該絶縁膜の製造方法は、
1014Ωcmの抵抗率を持つ第一の性質と、モース硬度が9である第二の性質と、1500℃を超える耐熱性を持つ第三の性質を兼備する酸化アルミニウムを熱分解で析出する金属化合物を、アルコールに分散し、該金属化合物が前記アルコールに分子状態となって分散されたアルコール分散液を作成する第一の工程と、前記アルコール分散液に絶縁性扁平粉の集まりを混合して混合物を作成する第二の工程と、前記混合物を混合機内で回転及び揺動させる第三の工程と、前記混合物中でホモジナイザー装置を稼働させ、該ホモジナイザー装置の稼働によって、前記混合物に連続して衝撃を発生させ、該衝撃を前記絶縁性扁平紛の扁平面同士の重なり合った部位に加え、該扁平面同士が重なり合った部位を分離させ、前記絶縁性扁平紛の全ての扁平面が前記アルコール分散液と接する状態にする第四の工程と、前記混合物を容器に充填する第五の工程と、前記容器に左右、前後、上下の3方向の振動加速度を繰り返し加え、前記絶縁性扁平粉の扁平面同士が前記アルコール分散液を介して重なり合った該扁平粉の集まりを、前記容器の底面の全体に該底面の形状として形成する第六の工程と、前記容器を前記金属化合物が熱分解する温度に昇温して該金属化合物を熱分解し、前記酸化アルミニウムからなる粒状の微粒子の集まりが、前記絶縁性扁平粉の集まりの最上部の扁平面と最下部の扁平面と、該扁平粉の扁平面同士の間隙とに析出する第七の工程と、前記容器の底面に形成された前記絶縁性扁平粉の集まりに圧縮応力を加え、前記酸化アルミニウムからなる粒状の微粒子同士の接触部位に摩擦熱を発生させ、該摩擦熱によって、前記粒状の微粒子同士が前記接触部位で接合し、該粒状の微粒子同士の接合によって、前記絶縁性扁平粉の扁平面同士が重なり合って接合され、該扁平面同士が重なり合って接合された前記絶縁性扁平粉の集まりからなる絶縁膜が、前記容器の底面に、該底面の形状として形成される第八の工程からなり、これら8つの処理を連続して実施することによって、前記容器の底面に、該底面の形状からなる絶縁膜が、絶縁性扁平紛の扁平面同士が重なり合った該扁平粉の集まりからなる絶縁膜として製造される、絶縁膜の製造方法である。
1014Ωcmの抵抗率を持つ第一の性質と、モース硬度が9である第二の性質と、1500℃を超える耐熱性を持つ第三の性質を兼備する酸化アルミニウムを熱分解で析出する金属化合物を、アルコールに分散し、該金属化合物が前記アルコールに分子状態となって分散されたアルコール分散液を作成する第一の工程と、前記アルコール分散液に絶縁性扁平粉の集まりを混合して混合物を作成する第二の工程と、前記混合物を混合機内で回転及び揺動させる第三の工程と、前記混合物中でホモジナイザー装置を稼働させ、該ホモジナイザー装置の稼働によって、前記混合物に連続して衝撃を発生させ、該衝撃を前記絶縁性扁平紛の扁平面同士の重なり合った部位に加え、該扁平面同士が重なり合った部位を分離させ、前記絶縁性扁平紛の全ての扁平面が前記アルコール分散液と接する状態にする第四の工程と、前記混合物を容器に充填する第五の工程と、前記容器に左右、前後、上下の3方向の振動加速度を繰り返し加え、前記絶縁性扁平粉の扁平面同士が前記アルコール分散液を介して重なり合った該扁平粉の集まりを、前記容器の底面の全体に該底面の形状として形成する第六の工程と、前記容器を前記金属化合物が熱分解する温度に昇温して該金属化合物を熱分解し、前記酸化アルミニウムからなる粒状の微粒子の集まりが、前記絶縁性扁平粉の集まりの最上部の扁平面と最下部の扁平面と、該扁平粉の扁平面同士の間隙とに析出する第七の工程と、前記容器の底面に形成された前記絶縁性扁平粉の集まりに圧縮応力を加え、前記酸化アルミニウムからなる粒状の微粒子同士の接触部位に摩擦熱を発生させ、該摩擦熱によって、前記粒状の微粒子同士が前記接触部位で接合し、該粒状の微粒子同士の接合によって、前記絶縁性扁平粉の扁平面同士が重なり合って接合され、該扁平面同士が重なり合って接合された前記絶縁性扁平粉の集まりからなる絶縁膜が、前記容器の底面に、該底面の形状として形成される第八の工程からなり、これら8つの処理を連続して実施することによって、前記容器の底面に、該底面の形状からなる絶縁膜が、絶縁性扁平紛の扁平面同士が重なり合った該扁平粉の集まりからなる絶縁膜として製造される、絶縁膜の製造方法である。
つまり、本製造方法に依れば、極めて簡単な8つの処理を連続して実施すると、安価な製造費で容器の底面に絶縁膜が形成される。この絶縁膜の表面積と形状とは、容器の底面形状になる。このため、絶縁膜の用途に応じて、製造する絶縁膜の表面積と形状とが自在に変えられる。
すなわち、本製造方法が次の4つの特徴を持つことによって、製造された絶縁膜に画期的な作用効果がもたらされる。
第一に、混合物を充填する容器の形状に制約がない。このため、製造される絶縁膜の表面積は、混合物を充填する容器の形状に応じて変わる。例えば、1mm2のスポット的な微小膜から100mm2を超える細長い短冊状の絶縁膜に至るまで、製造できる絶縁膜の形状の制約がない。
第二に、金属化合物のアルコール分散液の粘度はアルコールの粘度に近く、また、固体の扁平粉をアルコール分散液に混合しても、混合物の粘度が増大しない。従って、アルコール分散液に扁平粉を混合した混合物を容器に充填し、容器に3方向の振動を加えると、扁平粉の扁平面が重力方向に向けて容器の底面全体に分散し、扁平面同士が重なり合う。例えば、扁平粉の扁平面同士が3重に重なり合うように、容器の底面に扁平粉を配列させると、酸化アルミニウム微粒子の集まりが4層を形成し、扁平面の層が3層を形成し、両者が交互に重なり合って絶縁膜を形成する。この絶縁膜の絶縁抵抗は、アルミニウム微粒子の集まりからなる4つの絶縁抵抗層と、絶縁性扁平粉からなる3つの絶縁抵抗層とが、順番に重なり合って並列接続した絶縁抵抗を構成する。従って、抵抗率が1014Ωcmの扁平粉を用いると、厚みが3μmで幅が1cmで長さが10cmの絶縁層では、3×1018Ωの絶縁抵抗になる。つまり、抵抗率が大きい2種類の絶縁材料からなる絶縁層の各々が、1μmより薄い厚みで積み重なり合って絶縁層を形成し、これらの絶縁層が並列接続して絶縁抵抗を構成するため、絶縁膜の絶縁抵抗は極めて大きな値になる。
第三に、混合物を充填する容器の形状に制約がない。このため、絶縁膜の形状は、円、楕円、多角形に限らず、用途に応じて様々な形状の絶縁膜が製造できる。
第四に、金属化合物が熱分解すると、扁平面同士の間隙と絶縁膜の表面に、40−60nmの大きさの粒状の酸化アルミニウム微粒子の集まりが析出する。次に、容器の底面に形成された絶縁膜の表面に圧縮応力を加えると、酸化アルミニウムはモース硬度が9の極めて硬い物質であり、酸化アルミニウム微粒子同士が互いに接触する僅かな面積からなる接触部位に、過大な摩擦熱が集中して発生し、酸化アルミニウム微粒子が破壊されずに、摩擦熱によって酸化アルミニウム微粒子同士が接触部位で接合し、一定の機械的強度を持つ絶縁膜が容器の底面に形成される。従って、製造された絶縁膜の表面に、40−60nmの大きさの粒状の酸化アルミニウム微粒子の集まりが存在する。この酸化アルミニウム微粒子の集まりは、絶縁膜を部品や基材の導体に圧着する手段になる。このため、部品や基材の導体に絶縁膜を形成する際の熱処理が一切不要になり、耐熱性が低い部品や基材の導体にも絶縁膜が形成できる。
ここで、本製造方法を見出すに至る過程を説明する。絶縁性扁平粉は、長径と短径との平均値と厚さとの比率であるアスペクト比が大きい扁平面を有する。さらに、扁平面の大きさと厚みとにバラツキがある。このような扁平粉の集まりにおいては、扁平面同士が容易に重なり合う。扁平面同士が重なり合った扁平粉を接合した絶縁膜は、扁平面同士が重なり合った部位で破壊する。従って、扁平面同士が重なり合った部位を、分離させることが必要になる。いっぽう、大気中で扁平面の重なり合った部位を分離しようとすると、重なり合った部位に摩擦力が発生するため、分離は容易でない。しかしながら、粘度が低い液体に扁平粉の集まりを混合し、この液体内に衝撃を発生させると、衝撃が扁平面同士の重なり合った部位に伝わり、重なり合った部位が容易に分離する。このため、粘度の低い液体中で、扁平粉の集まりを処理することが必須になる。
さらに、扁平面同士で扁平粉が接合できれば、少量の扁平粉で広い表面積を持つ絶縁膜が形成できる。さらに、少量の扁平粉の集まりを容器の底面全体に分散させ、扁平面同士で重なり合うように配列させると、厚みが極めて薄い絶縁膜が容器の底面に形成され、この絶縁膜は大きな絶縁抵抗を持つ。例えば、扁平面同士が3重に重なり合うように配列させると、3μm前後の厚みの絶縁膜が形成でき、絶縁抵抗は絶縁膜の断面積に反比例するため、絶縁抵抗が極めて大きい。従って、扁平粉の集まりを容器の底面全体に分散させ、扁平粉の扁平面同士が重なり合うように配列させる処理が必要になる。
いっぽう、扁平面が一定の面積を持つため、扁平面同士の接合で形成された絶縁膜は、接合面が一定の面積を持つため、一定の機械的強度を持つ。従って、扁平粉の扁平面同士が重なり合うように、扁平粉を配列させる処理が必要になる。ところで、容器に充填された液体中で、扁平粉の集まりに3方向の振動を加えると、扁平面が重力方向に向いて液体中を移動し、重力方向に向いた扁平面の配列が繰り返され、振動を停止すると、扁平面同士が液体を介して重なり合う。このため、扁平粉の集まりを液体に混合し、この混合物を容器に充填し、容器に振動を加える処理が必要になる。
さらに、絶縁性扁平粉は、扁平面の長径と短径との平均値と厚みとにバラツキがある。こうした扁平粉を原料に用い、絶縁膜を製造する。しかしながら、扁平面同士を接合する物質が、扁平面より2桁以上小さい数十ナノの微粒子であれば、微粒子の集まりが扁平面に確実に析出する。また、面積が広い扁平面に優先して微粒子が析出する。さらに、扁平面の大きさにバラツキがあっても、扁平面が微粒子の大きさより2桁以上大きいため、扁平面に微粒子が確実に析出する。さらに、微粒子が粒状であれば、微粒子の集まりが析出する際に、微粒子同士が極狭い接触面積からなる接触部位で接触する。さらに、微粒子の硬度が高ければ、微粒子の集まりに圧縮応力を加えると、微粒子が破壊することなく、微粒子同士の接触部位に摩擦熱が集中して発生し、この摩擦熱で微粒子同士接合する。扁平面同士を接合する手段は、扁平面に硬度の高い粒状の微粒子の集まりを析出させ、微粒子の集まりに圧縮応力を加え、微粒子同士を摩擦熱で接合することを介して、扁平面同士を接合させる手段が有効になる。こうした微粒子を構成する物質として、1014Ωcmの高い抵抗率と、モース硬度が9である高い硬度と、摩擦熱で変質しない1500℃を超える高い耐熱性を持つ、酸化アルミニウム(アルミナとも言う)がある。
従って、絶縁膜を製造する製造方法は、第一に、酸化アルミニウム微粒子の原料を液相化し、この液体に少量の扁平粉を混合し混合物を作成する。第二に、扁平面同士が重なり合った部位を液体中で分離する。この結果、全ての扁平粉は液体と接する。第三に、混合物を容器に充填する。第四に、少量の扁平粉が容器の底面の全体にわたって分散し、扁平面同士が互いに重なり合う処理を行う。このため、容器に3方向の振動を繰り返し加え、容器の底面の全体に扁平粉を分散させ、扁平面同士が重なり合う処理を行う。第五に、容器を昇温し、酸化アルミニウム微粒子の原料を熱分解し、酸化アルミニウム微粒子の集まりを析出させる。つまり、熱分解によって酸化アルミニウムを析出させる手段が、最も簡便である。これによって、扁平粉の扁平面同士の間隙と絶縁膜の表面とに、40−60nmの大きさの粒状の酸化アルミニウム微粒子の集まりが析出する。最後に、容器の底面に形成された絶縁膜の表面に圧縮応力を加えると、酸化アルミニウム微粒子同士が接触する部位に、過大な摩擦熱が集中して発生し、この摩擦熱で酸化アルミニウム微粒子同士が接合し、一定の機械的強度を持つ絶縁膜が容器の底面に製造される。なお、絶縁膜に加えた圧縮応力によって、扁平粉が破断したとしても、破断した扁平粉同士が、抵抗体の並列接続を形成するため、破断した扁平粉の絶縁抵抗は低下しない。また、破断した扁平粉は、接合した酸化アルミニウム微粒子の集まりで覆われているため、絶縁膜から離脱しない。
こうした考えに基づき、7段落に記載した8つの処理を連続して実施することで、形状と表面積とが自在に変えられる絶縁膜を製造する製造方法を見出した。
第一工程は、酸化アルミニウムが熱分解で析出する金属化合物を、アルコールの重量に対して10重量%程度の割合で分散させ、アルコール分散液を作成する。これによって、金属化合物が液相化され、アルコールの粘度に近いアルコール分散液が作成される。つまり、金属化合物がアルコールに分子状態となって分散されるため、このアルコール分散液の粘度はアルコールの粘度に近い。なお、金属化合物は、汎用的な有機酸がアルミニウムと反応して合成された有機酸アルミニウム化合物で、汎用的な工業用薬品である。
第二の工程は、アルコール分散液に少量の扁平粉を混合して混合物を作成する。
第三の工程は、混合物を混合機内で回転及び揺動させる。これによって、扁平粉の集まりが、アルコール分散液中でランダムに混合される。しかし、混合機による回転と揺動だけでは、少量の扁平粉であっても、扁平粉が軽量であるため、扁平面同士が重なり合った部位が確実に分離しない。
第四の工程は、ホモジナイザー装置の稼働によって、混合物に連続して衝撃を発生させる。これによって、扁平面同士の重なり合った部位に衝撃が加わり、重なり合った部位が確実分離され、全ての扁平面が液体と接する状態になり、再度扁平面同士が重なり合うことはない。なお、ホモジナイザー装置として、超音波方式のホモジナイザー装置を用いると、扁平粉の扁平面よりさらに2桁以上小さい莫大な数の気泡の発生と気泡の消滅とが、混合物中で繰り返され(この現象をキャビテーションという)、気泡がはじける際の衝撃波が混合物の全体に繰り返し発生し、液体中では重なり合った扁平面に摩擦力が発生しないため、短時間で扁平面同士の重なった部位が、加えられた衝撃波によって分離する。
第五の工程は、処理した混合物を、底が浅い容器に充填する。
第六の工程は、容器に左右、前後、上下の3方向の振動加速度を加える。この際、低粘度のアルコール分散液と接している扁平粉は、扁平面を重力方向に向けて液体中を移動し、容器の底面の全体に扁平粉の集まりが分散するとともに、扁平面同士の間隙に、扁平面が小さい扁平粉が入り込む配列と、アルコール分散液を介して扁平面同士が重なり合う配列が、液体中で繰り返される。最後に、上下方向の振動を加え、容器への加振を停止すると、扁平面同士がアルコール分散液を介して重なり合った扁平粉の集まりが、容器の底面の全体に形成される。なお、容器に加える振動加速度は、軽量の扁平粉を液体中で移動させるため、0.5Gより小さい。
第七の工程は、容器を前記金属化合物が熱分解する温度に昇温する。この際、扁平面同士の間隙を埋めて、酸化アルミニウム微粒子の集まりが析出し、また、表面の扁平面が酸化アルミニウム微粒子で覆われる。
第八の工程は、容器の底面にある絶縁膜の表面に圧縮応力を加える。この際、酸化アルミニウム微粒子同士が互いに接触する極僅かな面積からなる接触部位に、過大な摩擦熱が集中して発生し、この摩擦熱で酸化アルミニウム微粒子同士が接合し、これによって、扁平粉同士が接合され、一定の機械的強度を持つ絶縁膜が容器の底面に製造される。
この絶縁膜は容器の底面の形状からなる。また、絶縁膜の表面に、粒状の酸化アルミニウム微粒子の集まりが存在する。従って、部品や基材の導体の表面に絶縁膜を配置し、絶縁膜に圧縮応力を加えると、部品や基材の導体の表面に酸化アルミニウム微粒子の集まりが食い込み、絶縁膜が部品や基材と一体化される。
ここで、金属化合物が熱分解する際の現象を、昇温温度に即して説明する。最初にアルコールが気化し、これによって、金属化合物の微細結晶の集まりが析出し、極薄い被膜となって、重なり合った扁平面同士の間隙を埋め、また、最上部と最下部の扁平面を、金属化合物の微細結晶の集まりが覆う。次に、金属化合物が熱分解を始める温度に達すると、金属化合物が有機酸と酸化アルミニウムとに分解する。有機酸の密度が酸化アルミニウムの密度より小さいため、有機酸が上層に、酸化アルミニウムが下層に析出し、上層の有機酸が気化熱を奪って気化した後に、40−60nmの粒状の酸化アルミニウム微粒子の集まりが、扁平面同士の間隙を埋めて析出し、また、最上部と最下部の扁平面に析出する。
この後、容器の底面に形成された絶縁膜に、圧縮応力を加える。いっぽう、酸化アルミニウム微粒子が粒状微粒子であるため、酸化アルミニウム微粒子同士は、極微小な接触面積で互いに接触する。この酸化アルミニウム微粒子の集まりに圧縮応力が加わると、酸化アルミニウムが極めて硬い物質であるため、酸化アルミニウム微粒子が破壊されることなく、極微小な接触部位に過大な摩擦熱が集中する。このため、酸化アルミニウム微粒子同士が、接触部位で互いに接合する。いっぽう、扁平面と接触する酸化アルミニウム微粒子は、扁平面に応力を加える。扁平面に加わった応力が、扁平面の破断強度より大きくなった際に、応力が加わった部位で扁平粉が破断する。しかし、扁平粉が破断しても、扁平粉が既に接合された酸化アルミニウム微粒子の集まりで覆われているため、破断した扁平粉は絶縁膜から離脱しない。また、扁平粉が破断しても、破断した扁平粉同士が接触し、破断した扁平粉が、抵抗体の並列接続を形成するため、扁平粉の絶縁抵抗は低下しない。この結果、接合した酸化アルミニウム微粒子が、全ての扁平粉を覆うとともに、酸化アルミニウム微粒子の接合によって扁平面が接合され、容器の底面に絶縁膜が形成される。
こうにして製造された絶縁膜は、次の性質を持つ。第一に、絶縁膜の表面は40−60nmの酸化アルミニウム微粒子の集まりで覆われ、表面は鏡面研磨より1桁小さい表面粗さを持ち、表面は撥水性、防汚性の性質を持つ。第二に、絶縁膜の表面を形成する酸化アルミニウム微粒子の集まりは、絶縁膜を部品や基材の導体の表面に圧着する手段になる。このため、熱処理を伴わず、耐熱性が低い部品や基材の導体に絶縁層が形成できる。第三に、絶縁膜が、極めて安定な物質である酸化アルミニウム微粒子で覆われ、絶縁膜は継時変化しない。第四に、1018Ωに及ぶ絶縁抵抗を持つ絶縁膜を製造することができる。
ここで、本絶縁膜の製造方法を、6段落に記載した5つの課題に即して説明する。
第一に、安価な材料を用い、極めて簡単な8つの処理を連続して実施することで絶縁膜が形成できる。これによって、安価な費用で絶縁膜が製造できる。
第二に、絶縁膜の表面積と形状とが、容器の底面形状によって自在に変わる。従って、用途に応じた絶縁層が導体に形成できる。
第三に、接触部位で互いに接合した酸化アルミニウム微粒子の集まりが、絶縁膜の表面を覆うため、絶縁膜を導体に圧着することで、導体の表面に絶縁層が形成できる。
第四に、少量の扁平粉を、容器の底面の全体にわたって扁平面同士が互いに重なり合うように配列させることができる。例えば、扁平面同士が3重に重なり合った絶縁膜では、3μm前後の厚みの絶縁層が容器の底面に形成される。
第五に、3μmの厚みからなる絶縁膜は、抵抗率が1014Ωcmの扁平粉を用い、幅が1cmで長さが10cmの絶縁膜では、絶縁抵抗が3×1018Ωになる。
この結果、5つの課題の全てが解決された。
すなわち、本製造方法が次の4つの特徴を持つことによって、製造された絶縁膜に画期的な作用効果がもたらされる。
第一に、混合物を充填する容器の形状に制約がない。このため、製造される絶縁膜の表面積は、混合物を充填する容器の形状に応じて変わる。例えば、1mm2のスポット的な微小膜から100mm2を超える細長い短冊状の絶縁膜に至るまで、製造できる絶縁膜の形状の制約がない。
第二に、金属化合物のアルコール分散液の粘度はアルコールの粘度に近く、また、固体の扁平粉をアルコール分散液に混合しても、混合物の粘度が増大しない。従って、アルコール分散液に扁平粉を混合した混合物を容器に充填し、容器に3方向の振動を加えると、扁平粉の扁平面が重力方向に向けて容器の底面全体に分散し、扁平面同士が重なり合う。例えば、扁平粉の扁平面同士が3重に重なり合うように、容器の底面に扁平粉を配列させると、酸化アルミニウム微粒子の集まりが4層を形成し、扁平面の層が3層を形成し、両者が交互に重なり合って絶縁膜を形成する。この絶縁膜の絶縁抵抗は、アルミニウム微粒子の集まりからなる4つの絶縁抵抗層と、絶縁性扁平粉からなる3つの絶縁抵抗層とが、順番に重なり合って並列接続した絶縁抵抗を構成する。従って、抵抗率が1014Ωcmの扁平粉を用いると、厚みが3μmで幅が1cmで長さが10cmの絶縁層では、3×1018Ωの絶縁抵抗になる。つまり、抵抗率が大きい2種類の絶縁材料からなる絶縁層の各々が、1μmより薄い厚みで積み重なり合って絶縁層を形成し、これらの絶縁層が並列接続して絶縁抵抗を構成するため、絶縁膜の絶縁抵抗は極めて大きな値になる。
第三に、混合物を充填する容器の形状に制約がない。このため、絶縁膜の形状は、円、楕円、多角形に限らず、用途に応じて様々な形状の絶縁膜が製造できる。
第四に、金属化合物が熱分解すると、扁平面同士の間隙と絶縁膜の表面に、40−60nmの大きさの粒状の酸化アルミニウム微粒子の集まりが析出する。次に、容器の底面に形成された絶縁膜の表面に圧縮応力を加えると、酸化アルミニウムはモース硬度が9の極めて硬い物質であり、酸化アルミニウム微粒子同士が互いに接触する僅かな面積からなる接触部位に、過大な摩擦熱が集中して発生し、酸化アルミニウム微粒子が破壊されずに、摩擦熱によって酸化アルミニウム微粒子同士が接触部位で接合し、一定の機械的強度を持つ絶縁膜が容器の底面に形成される。従って、製造された絶縁膜の表面に、40−60nmの大きさの粒状の酸化アルミニウム微粒子の集まりが存在する。この酸化アルミニウム微粒子の集まりは、絶縁膜を部品や基材の導体に圧着する手段になる。このため、部品や基材の導体に絶縁膜を形成する際の熱処理が一切不要になり、耐熱性が低い部品や基材の導体にも絶縁膜が形成できる。
ここで、本製造方法を見出すに至る過程を説明する。絶縁性扁平粉は、長径と短径との平均値と厚さとの比率であるアスペクト比が大きい扁平面を有する。さらに、扁平面の大きさと厚みとにバラツキがある。このような扁平粉の集まりにおいては、扁平面同士が容易に重なり合う。扁平面同士が重なり合った扁平粉を接合した絶縁膜は、扁平面同士が重なり合った部位で破壊する。従って、扁平面同士が重なり合った部位を、分離させることが必要になる。いっぽう、大気中で扁平面の重なり合った部位を分離しようとすると、重なり合った部位に摩擦力が発生するため、分離は容易でない。しかしながら、粘度が低い液体に扁平粉の集まりを混合し、この液体内に衝撃を発生させると、衝撃が扁平面同士の重なり合った部位に伝わり、重なり合った部位が容易に分離する。このため、粘度の低い液体中で、扁平粉の集まりを処理することが必須になる。
さらに、扁平面同士で扁平粉が接合できれば、少量の扁平粉で広い表面積を持つ絶縁膜が形成できる。さらに、少量の扁平粉の集まりを容器の底面全体に分散させ、扁平面同士で重なり合うように配列させると、厚みが極めて薄い絶縁膜が容器の底面に形成され、この絶縁膜は大きな絶縁抵抗を持つ。例えば、扁平面同士が3重に重なり合うように配列させると、3μm前後の厚みの絶縁膜が形成でき、絶縁抵抗は絶縁膜の断面積に反比例するため、絶縁抵抗が極めて大きい。従って、扁平粉の集まりを容器の底面全体に分散させ、扁平粉の扁平面同士が重なり合うように配列させる処理が必要になる。
いっぽう、扁平面が一定の面積を持つため、扁平面同士の接合で形成された絶縁膜は、接合面が一定の面積を持つため、一定の機械的強度を持つ。従って、扁平粉の扁平面同士が重なり合うように、扁平粉を配列させる処理が必要になる。ところで、容器に充填された液体中で、扁平粉の集まりに3方向の振動を加えると、扁平面が重力方向に向いて液体中を移動し、重力方向に向いた扁平面の配列が繰り返され、振動を停止すると、扁平面同士が液体を介して重なり合う。このため、扁平粉の集まりを液体に混合し、この混合物を容器に充填し、容器に振動を加える処理が必要になる。
さらに、絶縁性扁平粉は、扁平面の長径と短径との平均値と厚みとにバラツキがある。こうした扁平粉を原料に用い、絶縁膜を製造する。しかしながら、扁平面同士を接合する物質が、扁平面より2桁以上小さい数十ナノの微粒子であれば、微粒子の集まりが扁平面に確実に析出する。また、面積が広い扁平面に優先して微粒子が析出する。さらに、扁平面の大きさにバラツキがあっても、扁平面が微粒子の大きさより2桁以上大きいため、扁平面に微粒子が確実に析出する。さらに、微粒子が粒状であれば、微粒子の集まりが析出する際に、微粒子同士が極狭い接触面積からなる接触部位で接触する。さらに、微粒子の硬度が高ければ、微粒子の集まりに圧縮応力を加えると、微粒子が破壊することなく、微粒子同士の接触部位に摩擦熱が集中して発生し、この摩擦熱で微粒子同士接合する。扁平面同士を接合する手段は、扁平面に硬度の高い粒状の微粒子の集まりを析出させ、微粒子の集まりに圧縮応力を加え、微粒子同士を摩擦熱で接合することを介して、扁平面同士を接合させる手段が有効になる。こうした微粒子を構成する物質として、1014Ωcmの高い抵抗率と、モース硬度が9である高い硬度と、摩擦熱で変質しない1500℃を超える高い耐熱性を持つ、酸化アルミニウム(アルミナとも言う)がある。
従って、絶縁膜を製造する製造方法は、第一に、酸化アルミニウム微粒子の原料を液相化し、この液体に少量の扁平粉を混合し混合物を作成する。第二に、扁平面同士が重なり合った部位を液体中で分離する。この結果、全ての扁平粉は液体と接する。第三に、混合物を容器に充填する。第四に、少量の扁平粉が容器の底面の全体にわたって分散し、扁平面同士が互いに重なり合う処理を行う。このため、容器に3方向の振動を繰り返し加え、容器の底面の全体に扁平粉を分散させ、扁平面同士が重なり合う処理を行う。第五に、容器を昇温し、酸化アルミニウム微粒子の原料を熱分解し、酸化アルミニウム微粒子の集まりを析出させる。つまり、熱分解によって酸化アルミニウムを析出させる手段が、最も簡便である。これによって、扁平粉の扁平面同士の間隙と絶縁膜の表面とに、40−60nmの大きさの粒状の酸化アルミニウム微粒子の集まりが析出する。最後に、容器の底面に形成された絶縁膜の表面に圧縮応力を加えると、酸化アルミニウム微粒子同士が接触する部位に、過大な摩擦熱が集中して発生し、この摩擦熱で酸化アルミニウム微粒子同士が接合し、一定の機械的強度を持つ絶縁膜が容器の底面に製造される。なお、絶縁膜に加えた圧縮応力によって、扁平粉が破断したとしても、破断した扁平粉同士が、抵抗体の並列接続を形成するため、破断した扁平粉の絶縁抵抗は低下しない。また、破断した扁平粉は、接合した酸化アルミニウム微粒子の集まりで覆われているため、絶縁膜から離脱しない。
こうした考えに基づき、7段落に記載した8つの処理を連続して実施することで、形状と表面積とが自在に変えられる絶縁膜を製造する製造方法を見出した。
第一工程は、酸化アルミニウムが熱分解で析出する金属化合物を、アルコールの重量に対して10重量%程度の割合で分散させ、アルコール分散液を作成する。これによって、金属化合物が液相化され、アルコールの粘度に近いアルコール分散液が作成される。つまり、金属化合物がアルコールに分子状態となって分散されるため、このアルコール分散液の粘度はアルコールの粘度に近い。なお、金属化合物は、汎用的な有機酸がアルミニウムと反応して合成された有機酸アルミニウム化合物で、汎用的な工業用薬品である。
第二の工程は、アルコール分散液に少量の扁平粉を混合して混合物を作成する。
第三の工程は、混合物を混合機内で回転及び揺動させる。これによって、扁平粉の集まりが、アルコール分散液中でランダムに混合される。しかし、混合機による回転と揺動だけでは、少量の扁平粉であっても、扁平粉が軽量であるため、扁平面同士が重なり合った部位が確実に分離しない。
第四の工程は、ホモジナイザー装置の稼働によって、混合物に連続して衝撃を発生させる。これによって、扁平面同士の重なり合った部位に衝撃が加わり、重なり合った部位が確実分離され、全ての扁平面が液体と接する状態になり、再度扁平面同士が重なり合うことはない。なお、ホモジナイザー装置として、超音波方式のホモジナイザー装置を用いると、扁平粉の扁平面よりさらに2桁以上小さい莫大な数の気泡の発生と気泡の消滅とが、混合物中で繰り返され(この現象をキャビテーションという)、気泡がはじける際の衝撃波が混合物の全体に繰り返し発生し、液体中では重なり合った扁平面に摩擦力が発生しないため、短時間で扁平面同士の重なった部位が、加えられた衝撃波によって分離する。
第五の工程は、処理した混合物を、底が浅い容器に充填する。
第六の工程は、容器に左右、前後、上下の3方向の振動加速度を加える。この際、低粘度のアルコール分散液と接している扁平粉は、扁平面を重力方向に向けて液体中を移動し、容器の底面の全体に扁平粉の集まりが分散するとともに、扁平面同士の間隙に、扁平面が小さい扁平粉が入り込む配列と、アルコール分散液を介して扁平面同士が重なり合う配列が、液体中で繰り返される。最後に、上下方向の振動を加え、容器への加振を停止すると、扁平面同士がアルコール分散液を介して重なり合った扁平粉の集まりが、容器の底面の全体に形成される。なお、容器に加える振動加速度は、軽量の扁平粉を液体中で移動させるため、0.5Gより小さい。
第七の工程は、容器を前記金属化合物が熱分解する温度に昇温する。この際、扁平面同士の間隙を埋めて、酸化アルミニウム微粒子の集まりが析出し、また、表面の扁平面が酸化アルミニウム微粒子で覆われる。
第八の工程は、容器の底面にある絶縁膜の表面に圧縮応力を加える。この際、酸化アルミニウム微粒子同士が互いに接触する極僅かな面積からなる接触部位に、過大な摩擦熱が集中して発生し、この摩擦熱で酸化アルミニウム微粒子同士が接合し、これによって、扁平粉同士が接合され、一定の機械的強度を持つ絶縁膜が容器の底面に製造される。
この絶縁膜は容器の底面の形状からなる。また、絶縁膜の表面に、粒状の酸化アルミニウム微粒子の集まりが存在する。従って、部品や基材の導体の表面に絶縁膜を配置し、絶縁膜に圧縮応力を加えると、部品や基材の導体の表面に酸化アルミニウム微粒子の集まりが食い込み、絶縁膜が部品や基材と一体化される。
ここで、金属化合物が熱分解する際の現象を、昇温温度に即して説明する。最初にアルコールが気化し、これによって、金属化合物の微細結晶の集まりが析出し、極薄い被膜となって、重なり合った扁平面同士の間隙を埋め、また、最上部と最下部の扁平面を、金属化合物の微細結晶の集まりが覆う。次に、金属化合物が熱分解を始める温度に達すると、金属化合物が有機酸と酸化アルミニウムとに分解する。有機酸の密度が酸化アルミニウムの密度より小さいため、有機酸が上層に、酸化アルミニウムが下層に析出し、上層の有機酸が気化熱を奪って気化した後に、40−60nmの粒状の酸化アルミニウム微粒子の集まりが、扁平面同士の間隙を埋めて析出し、また、最上部と最下部の扁平面に析出する。
この後、容器の底面に形成された絶縁膜に、圧縮応力を加える。いっぽう、酸化アルミニウム微粒子が粒状微粒子であるため、酸化アルミニウム微粒子同士は、極微小な接触面積で互いに接触する。この酸化アルミニウム微粒子の集まりに圧縮応力が加わると、酸化アルミニウムが極めて硬い物質であるため、酸化アルミニウム微粒子が破壊されることなく、極微小な接触部位に過大な摩擦熱が集中する。このため、酸化アルミニウム微粒子同士が、接触部位で互いに接合する。いっぽう、扁平面と接触する酸化アルミニウム微粒子は、扁平面に応力を加える。扁平面に加わった応力が、扁平面の破断強度より大きくなった際に、応力が加わった部位で扁平粉が破断する。しかし、扁平粉が破断しても、扁平粉が既に接合された酸化アルミニウム微粒子の集まりで覆われているため、破断した扁平粉は絶縁膜から離脱しない。また、扁平粉が破断しても、破断した扁平粉同士が接触し、破断した扁平粉が、抵抗体の並列接続を形成するため、扁平粉の絶縁抵抗は低下しない。この結果、接合した酸化アルミニウム微粒子が、全ての扁平粉を覆うとともに、酸化アルミニウム微粒子の接合によって扁平面が接合され、容器の底面に絶縁膜が形成される。
こうにして製造された絶縁膜は、次の性質を持つ。第一に、絶縁膜の表面は40−60nmの酸化アルミニウム微粒子の集まりで覆われ、表面は鏡面研磨より1桁小さい表面粗さを持ち、表面は撥水性、防汚性の性質を持つ。第二に、絶縁膜の表面を形成する酸化アルミニウム微粒子の集まりは、絶縁膜を部品や基材の導体の表面に圧着する手段になる。このため、熱処理を伴わず、耐熱性が低い部品や基材の導体に絶縁層が形成できる。第三に、絶縁膜が、極めて安定な物質である酸化アルミニウム微粒子で覆われ、絶縁膜は継時変化しない。第四に、1018Ωに及ぶ絶縁抵抗を持つ絶縁膜を製造することができる。
ここで、本絶縁膜の製造方法を、6段落に記載した5つの課題に即して説明する。
第一に、安価な材料を用い、極めて簡単な8つの処理を連続して実施することで絶縁膜が形成できる。これによって、安価な費用で絶縁膜が製造できる。
第二に、絶縁膜の表面積と形状とが、容器の底面形状によって自在に変わる。従って、用途に応じた絶縁層が導体に形成できる。
第三に、接触部位で互いに接合した酸化アルミニウム微粒子の集まりが、絶縁膜の表面を覆うため、絶縁膜を導体に圧着することで、導体の表面に絶縁層が形成できる。
第四に、少量の扁平粉を、容器の底面の全体にわたって扁平面同士が互いに重なり合うように配列させることができる。例えば、扁平面同士が3重に重なり合った絶縁膜では、3μm前後の厚みの絶縁層が容器の底面に形成される。
第五に、3μmの厚みからなる絶縁膜は、抵抗率が1014Ωcmの扁平粉を用い、幅が1cmで長さが10cmの絶縁膜では、絶縁抵抗が3×1018Ωになる。
この結果、5つの課題の全てが解決された。
7段落に記載した絶縁膜の製造方法は、前記絶縁性扁平粉が、ガラス、マイカ、アルミナ、シリカまたは窒化ホウ素からなるいずれか1種類の材質の扁平粉であり、該扁平粉を7段落に記載した絶縁性扁平粉として用い、7段落に記載した絶縁膜の製造方法に従って絶縁膜を製造する、7段落に記載した絶縁膜の製造方法である。
つまり、こうした扁平粉を構成する絶縁物の電気抵抗率は、いずれも1014Ωcm以上の高い絶縁性を持つ。絶縁膜の絶縁抵抗は、扁平粉の電気抵抗率に比例するため、極めて大きな絶縁抵抗を持つ絶縁膜が製造される。なお、ガラス扁平粉では、ソーダ石灰ガラスのみが1012Ωcmの電気抵抗率を持つ。また、絶縁性の扁平粉としてヘマタイト(酸化第二鉄Fe2O3のアルファ相からなる物質)の扁平粉が存在するが、電気抵抗率は108Ωcmと低い。いっぽう、上記の絶縁物のモース硬度は、窒化ホウ素が2で、マイカが2.8−3.0で、ガラスが5で、シリカが7で、いずれもアルミナ(酸化アルミニウムを意味する)の9より低い。従って、8段落で説明したように、容器の底面に形成された絶縁膜を圧縮した際に、硬度が低い絶縁物からなる扁平粉ほど、酸化アルミニウム微粒子による応力で破断する恐れがある。しかし、破断した扁平粉が抵抗の並列接続を形成し、絶縁膜の抵抗は低下しない。また、破断した扁平粉は、接合した酸化アルミニウム微粒子の集まりで覆われ、絶縁膜から離脱しない。
以上に説明したように、ガラス、マイカ、アルミナ、シリカまたは窒化ホウ素からなるいずれか1種類の扁平粉を、7段落に記載した絶縁膜の製造方法における絶縁性扁平粉として用い、7段落に記載した製造方法に従って絶縁膜を製造すると、容器の底面に絶縁抵抗が極めて大きい絶縁膜が製造される。
以上に説明したように、ガラス、マイカ、アルミナ、シリカまたは窒化ホウ素からなるいずれか1種類の扁平粉を、7段落に記載した絶縁膜の製造方法における絶縁性扁平粉として用い、7段落に記載した製造方法に従って絶縁膜を製造すると、容器の底面に絶縁抵抗が極めて大きい絶縁膜が製造される。
7段落に記載した絶縁膜の製造方法は、前記酸化アルミニウムを熱分解で析出する金属化合物が、カプリル酸アルミニウム、安息香酸アルミニウム、ナフテン酸アルミニウムからなるいずれか1種類のカルボン酸アルミニウム化合物であり、該カルボン酸アルミニウム化合物を7段落に記載した熱分解で酸化アルミニウムを析出する金属化合物として用い、7段落に記載した絶縁膜の製造方法に従って絶縁膜を製造する、7段落に記載した絶縁膜の製造方法である。
つまり、こうしたカルボン酸アルミニウム化合物は、熱分解で酸化アルミニウムを析出する。従って、7段落に記載した絶縁膜の製造方法において、酸化アルミニウムを熱分解で析出する金属化合物として、上記のカルボン酸アルミニウム化合物を用い、7段落に記載した製造方法に従って絶縁膜を製造すると、容器の底面に絶縁膜が製造される。いっぽう、酸化アルミニウムは、熱伝導率が40W/mKで、金属酸化物の中では優れた熱伝導性を持つ。また、1014Ωcm以上の抵抗率を持つ絶縁体で、化学的に安定な酸化物で耐食性に優れ、モース硬度が9からなる硬い物質で、耐熱温度が1500℃である。このため、絶縁膜の表面は、電気絶縁性と熱伝導性と耐食性と耐熱性の性質を持つ。従って、絶縁膜の表面は硬く、絶縁膜を部品や基材の導体の表面に配置し、絶縁膜に圧縮応力を加えると、絶縁膜の表面の酸化アルミニウム微粒子が導体の表面に食い込み、絶縁膜が導体に圧着し、導体の表面が絶縁化される。
つまり、カルボン酸のカルボキシル基を構成する酸素イオンが配位子になって、アルミニウムイオンに配位結合するカルボン酸アルミニウム化合物は、熱分解によって酸化アルミニウムを析出する。このため、7段落に記載した絶縁膜の製造方法において、酸化アルミニウムを熱分解で析出する金属化合物として、カルボン酸アルミニウム化合物を用い、7段落に記載した製造方法に従って絶縁膜を製造すると、絶縁膜が容器の底面に製造される。なお、カルボン酸アルミニウム化合物の熱分解温度は、ナフテン酸アルミニウムが330℃で熱分解する温度が最も高い。また、カルボン酸アルミニウム化合物の大気雰囲気での熱分解は、窒素雰囲気での熱分解より30−50℃低いため、大気雰囲気での熱分解は、熱処理費用が安価で済む。また、これらのカルボン酸アルミニウム化合物は、メタノールに10重量%近くまで分散する。
すなわち、カルボキシル基を構成する酸素イオンが配位子になって、アルミニウムイオンに近づいて配位結合するカルボン酸アルミニウム化合物は、最も大きいイオンであるアルミニウムイオンに酸素イオンが近づいて配位結合するため、両者の距離は短くなる。このため、アルミニウムイオンに配位結合する酸素イオンが、アルミニウムイオンの反対側で共有結合するイオンとの距離が最も長くなる。こうした分子構造上の特徴を持つカルボン酸アルミニウム化合物は、カルボン酸アルミニウム化合物を構成するカルボン酸の沸点を超えると、カルボキシル基を構成する酸素イオンがアルミニウムイオンの反対側で共有結合するイオンとの結合部が最初に分断され、アルミニウムイオンと酸素イオンとの化合物である酸化アルミニウムとカルボン酸とに分解する。さらに昇温すると、カルボン酸が気化熱を奪って気化し、カルボン酸の気化が完了した時点で、酸化アルミニウムが析出する。こうしたカルボン酸アルミニウム化合物として、酢酸アルミニウム、カプリル酸アルミニウム、安息香酸アルミニウム、ナフテン酸アルミニウムなどがある。
なお、酢酸アルミニウムは、熱分解でアモルファス化した酸化アルミニウムを析出し、アモルファス化した酸化アルミニウムの組成は、Al2O3の組成からずれ、抵抗率は1014Ωcmより著しく低い。このため、熱分解で酸化アルミニウムを析出するカルボン酸アルミニウム化合物は、カプリル酸アルミニウム、安息香酸アルミニウム、ナフテン酸アルミニウムからなるいずれか1種類のカルボン酸アルミニウム化合物が望ましい。
また、前記したカルボン酸アルミニウム化合物は、いずれも容易に合成できる安価な工業用薬品である。すなわち、汎用的なカルボン酸を強アルカリと反応させるとカルボン酸アルカリ金属化合物が生成される。この後、カルボン酸アルカリ金属化合物を、無機アルミニウム化合物と反応させると、カルボン酸アルミニウム化合物が合成される。また、原料となるカルボン酸は、有機酸の沸点の中で相対的に低い沸点を有する有機酸であり、大気雰囲気においては330℃程度の低い熱処理温度で、酸化アルミニウムが析出する。
以上に説明したように、7段落に記載した絶縁膜の製造方法において、酸化アルミニウムが熱分解で析出する金属化合物として、カプリル酸アルミニウム、安息香酸アルミニウム、ナフテン酸アルミニウムからなるいずれか1種類のカルボン酸アルミニウム化合物を用い、7段落に記載した製造方法に従って絶縁膜を製造すると、絶縁抵抗が大きい絶縁膜が容器の底面に製造される。
つまり、カルボン酸のカルボキシル基を構成する酸素イオンが配位子になって、アルミニウムイオンに配位結合するカルボン酸アルミニウム化合物は、熱分解によって酸化アルミニウムを析出する。このため、7段落に記載した絶縁膜の製造方法において、酸化アルミニウムを熱分解で析出する金属化合物として、カルボン酸アルミニウム化合物を用い、7段落に記載した製造方法に従って絶縁膜を製造すると、絶縁膜が容器の底面に製造される。なお、カルボン酸アルミニウム化合物の熱分解温度は、ナフテン酸アルミニウムが330℃で熱分解する温度が最も高い。また、カルボン酸アルミニウム化合物の大気雰囲気での熱分解は、窒素雰囲気での熱分解より30−50℃低いため、大気雰囲気での熱分解は、熱処理費用が安価で済む。また、これらのカルボン酸アルミニウム化合物は、メタノールに10重量%近くまで分散する。
すなわち、カルボキシル基を構成する酸素イオンが配位子になって、アルミニウムイオンに近づいて配位結合するカルボン酸アルミニウム化合物は、最も大きいイオンであるアルミニウムイオンに酸素イオンが近づいて配位結合するため、両者の距離は短くなる。このため、アルミニウムイオンに配位結合する酸素イオンが、アルミニウムイオンの反対側で共有結合するイオンとの距離が最も長くなる。こうした分子構造上の特徴を持つカルボン酸アルミニウム化合物は、カルボン酸アルミニウム化合物を構成するカルボン酸の沸点を超えると、カルボキシル基を構成する酸素イオンがアルミニウムイオンの反対側で共有結合するイオンとの結合部が最初に分断され、アルミニウムイオンと酸素イオンとの化合物である酸化アルミニウムとカルボン酸とに分解する。さらに昇温すると、カルボン酸が気化熱を奪って気化し、カルボン酸の気化が完了した時点で、酸化アルミニウムが析出する。こうしたカルボン酸アルミニウム化合物として、酢酸アルミニウム、カプリル酸アルミニウム、安息香酸アルミニウム、ナフテン酸アルミニウムなどがある。
なお、酢酸アルミニウムは、熱分解でアモルファス化した酸化アルミニウムを析出し、アモルファス化した酸化アルミニウムの組成は、Al2O3の組成からずれ、抵抗率は1014Ωcmより著しく低い。このため、熱分解で酸化アルミニウムを析出するカルボン酸アルミニウム化合物は、カプリル酸アルミニウム、安息香酸アルミニウム、ナフテン酸アルミニウムからなるいずれか1種類のカルボン酸アルミニウム化合物が望ましい。
また、前記したカルボン酸アルミニウム化合物は、いずれも容易に合成できる安価な工業用薬品である。すなわち、汎用的なカルボン酸を強アルカリと反応させるとカルボン酸アルカリ金属化合物が生成される。この後、カルボン酸アルカリ金属化合物を、無機アルミニウム化合物と反応させると、カルボン酸アルミニウム化合物が合成される。また、原料となるカルボン酸は、有機酸の沸点の中で相対的に低い沸点を有する有機酸であり、大気雰囲気においては330℃程度の低い熱処理温度で、酸化アルミニウムが析出する。
以上に説明したように、7段落に記載した絶縁膜の製造方法において、酸化アルミニウムが熱分解で析出する金属化合物として、カプリル酸アルミニウム、安息香酸アルミニウム、ナフテン酸アルミニウムからなるいずれか1種類のカルボン酸アルミニウム化合物を用い、7段落に記載した製造方法に従って絶縁膜を製造すると、絶縁抵抗が大きい絶縁膜が容器の底面に製造される。
実施例1
本実施例では、ガラス扁平粉を酸化アルミニウム微粒子の集まりで接合して絶縁膜を製造する。ガラス扁平粉(日本板硝子株式会社のMEG−160)は、鱗片形状で無アルカリガラス(Eガラスとも言う)からなり、抵抗率が1016Ωcmで、軟化点が840℃で、平均厚みが0.7μmで、平均粒径が160μmである。また、酸化アルミニウム微粒子の原料は、熱分解温度が310℃の安息香酸アルミニウムAl(C6H5COO)3(三津和化学薬品株式会社の製品)を用いた。
最初に、安息香酸アルミニウムを10重量%の割合でメタノールに分散させた。このアルコール分散液の100ccに、3gのガラス扁平粉を混合した。この混合物を、回転による拡散混合と揺動による移動混合とを同時に行う装置(愛知電機株式会社のロッキングミキサーRMH−HT)に充填し、回転と揺動を繰り返して混合物を作成した。この混合物をビーカーに充填し、超音波ホモジナイザー装置(ヤマト科学株式会社の製品LUH300)によって、20kHzの超音波振動をビーカーに1分間加えた。この後、混合物を10mm×100mm×5mmの細長い短冊状の容器に充填し、この容器を小型加振機の加振台の上に載せ、左右、前後、上下の3方向に、0.3Gの振動加速度を5秒間ずつ3回繰り返し、最後に、上下方向に0.3Gの振動加速度を10秒間加えた。この後、容器を大気雰囲気の熱処理炉に入れ、メタノールを気化させた後に、310℃で2分間熱処理し、短冊状の厚みが極薄い試料を容器の底面に作成した。なお、メタノールと安息香酸とは沸点が異なるため、気化したメタノールと安息香酸とは、回収機で個別に回収した。この後、試料の表面に3kgに相当する荷重を加えた。さらに、絶縁抵抗計で試料の抵抗を測定したところ、針が振り切れ、抵抗値は100MΩより大きい値であった。
この後、試料を試料と同じ幅の銅板の上に配置し、試料の表面に5kgに相当する荷重を加え、銅板に圧着させた。圧着した試料を、JISK6854−1の剥離接着強さ試験方法による剥離試験で、試料は800g重の引っ張り力に耐えられたため、絶縁層は、導体表面に対し十分な密着力を持つ。
この後、剥離試験に用いた試料の表面を電子顕微鏡で観察と分析を行なった。さらに、試料の中央部で幅方向に試料を切断し、断面を電子顕微鏡で観察と分析を行なった。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は、100ボルトからの極低加速電圧による観察が可能で、試料に導電性の被膜を形成せずに直接試料が観察できる。
最初に、試料の表面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の表面は、40−60nmの大きさからなる微粒子の集まりで覆われていた。次に、試料の表面からの反射電子線について、900−1000ボルトの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡で粒状微粒子の材質を分析した。いずれの粒状微粒子にも濃淡が認められたので、複数原子から構成されていることが分かった。さらに、特性エックス線のエネルギーとその強度を画像処理し、粒子を構成する元素の種類を分析した。アルミニウム原子と酸素原子とで構成されていたため、微粒子は酸化アルミニウム微粒子である。
さらに、試料の断面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の厚みは3μmであり、酸化アルミニウム微粒子の集まりを介して、扁平面が3層をなして扁平面同士で重なり合って接合し、試料を形成していた。図1は、試料の断面の一部を模式的に拡大した図である。1は酸化アルミニウム微粒子で、2はガラス扁平粉である。
なお、作成した試料が形成する絶縁抵抗の理論値は、厚みが0.3μmの酸化アルミニウム層が4層をなし、ガラス層が3層をなし、これらの絶縁層が交互に積層して並列接続して電気抵抗を構成すると、絶縁膜の絶縁抵抗は8.1×1018Ωになる。この絶縁膜の抵抗値は、2種類の絶縁層同士が並列接続するため、相対的に抵抗値が小さい酸化アルミニウムの絶縁層の抵抗値が、絶縁膜の抵抗値に大きく寄与する、つまり、酸化アルミニウムの絶縁層の厚みが、絶縁膜の抵抗値に大きく寄与する。
本実施例では、ガラス扁平粉を酸化アルミニウム微粒子の集まりで接合して絶縁膜を製造する。ガラス扁平粉(日本板硝子株式会社のMEG−160)は、鱗片形状で無アルカリガラス(Eガラスとも言う)からなり、抵抗率が1016Ωcmで、軟化点が840℃で、平均厚みが0.7μmで、平均粒径が160μmである。また、酸化アルミニウム微粒子の原料は、熱分解温度が310℃の安息香酸アルミニウムAl(C6H5COO)3(三津和化学薬品株式会社の製品)を用いた。
最初に、安息香酸アルミニウムを10重量%の割合でメタノールに分散させた。このアルコール分散液の100ccに、3gのガラス扁平粉を混合した。この混合物を、回転による拡散混合と揺動による移動混合とを同時に行う装置(愛知電機株式会社のロッキングミキサーRMH−HT)に充填し、回転と揺動を繰り返して混合物を作成した。この混合物をビーカーに充填し、超音波ホモジナイザー装置(ヤマト科学株式会社の製品LUH300)によって、20kHzの超音波振動をビーカーに1分間加えた。この後、混合物を10mm×100mm×5mmの細長い短冊状の容器に充填し、この容器を小型加振機の加振台の上に載せ、左右、前後、上下の3方向に、0.3Gの振動加速度を5秒間ずつ3回繰り返し、最後に、上下方向に0.3Gの振動加速度を10秒間加えた。この後、容器を大気雰囲気の熱処理炉に入れ、メタノールを気化させた後に、310℃で2分間熱処理し、短冊状の厚みが極薄い試料を容器の底面に作成した。なお、メタノールと安息香酸とは沸点が異なるため、気化したメタノールと安息香酸とは、回収機で個別に回収した。この後、試料の表面に3kgに相当する荷重を加えた。さらに、絶縁抵抗計で試料の抵抗を測定したところ、針が振り切れ、抵抗値は100MΩより大きい値であった。
この後、試料を試料と同じ幅の銅板の上に配置し、試料の表面に5kgに相当する荷重を加え、銅板に圧着させた。圧着した試料を、JISK6854−1の剥離接着強さ試験方法による剥離試験で、試料は800g重の引っ張り力に耐えられたため、絶縁層は、導体表面に対し十分な密着力を持つ。
この後、剥離試験に用いた試料の表面を電子顕微鏡で観察と分析を行なった。さらに、試料の中央部で幅方向に試料を切断し、断面を電子顕微鏡で観察と分析を行なった。電子顕微鏡は、JFEテクノリサーチ株式会社の極低加速電圧SEMを用いた。この装置は、100ボルトからの極低加速電圧による観察が可能で、試料に導電性の被膜を形成せずに直接試料が観察できる。
最初に、試料の表面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の表面は、40−60nmの大きさからなる微粒子の集まりで覆われていた。次に、試料の表面からの反射電子線について、900−1000ボルトの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡で粒状微粒子の材質を分析した。いずれの粒状微粒子にも濃淡が認められたので、複数原子から構成されていることが分かった。さらに、特性エックス線のエネルギーとその強度を画像処理し、粒子を構成する元素の種類を分析した。アルミニウム原子と酸素原子とで構成されていたため、微粒子は酸化アルミニウム微粒子である。
さらに、試料の断面からの反射電子線の900−1000ボルトの間にある2次電子線を取り出して画像処理を行った。試料の厚みは3μmであり、酸化アルミニウム微粒子の集まりを介して、扁平面が3層をなして扁平面同士で重なり合って接合し、試料を形成していた。図1は、試料の断面の一部を模式的に拡大した図である。1は酸化アルミニウム微粒子で、2はガラス扁平粉である。
なお、作成した試料が形成する絶縁抵抗の理論値は、厚みが0.3μmの酸化アルミニウム層が4層をなし、ガラス層が3層をなし、これらの絶縁層が交互に積層して並列接続して電気抵抗を構成すると、絶縁膜の絶縁抵抗は8.1×1018Ωになる。この絶縁膜の抵抗値は、2種類の絶縁層同士が並列接続するため、相対的に抵抗値が小さい酸化アルミニウムの絶縁層の抵抗値が、絶縁膜の抵抗値に大きく寄与する、つまり、酸化アルミニウムの絶縁層の厚みが、絶縁膜の抵抗値に大きく寄与する。
実施例2
本実施例では、窒化ホウ素の扁平粉を、酸化アルミニウム微粒子の集まりで接合して絶縁膜を製造する。窒化ホウ素扁平粉(昭和電工株式会社のUHP−2)は、鱗片形状の窒化ホウ素粉で、抵抗率が1014Ωcmで、平均粒径が11μmで、BET比表面積が3−5m2/gである。また、アルミニウム微粒子の原料は、実施例1の安息香酸アルミニウムを用いた。
最初に、安息香酸アルミニウムを10重量%の割合でメタノールに分散させた。このアルコール分散液の100ccに、4gの窒化ホウ素の扁平粉を混合した。この混合物に、実施例1と同様に、回転と揺動を繰り返して混合物を作成した。この混合物をビーカーに充填し、実施例1と同様に、ビーカーに20kHzの超音波振動を1分間加えた。この後、混合物を実施例1で用いた細長い短冊状の容器に充填し、この容器を小型加振機の加振台の上に載せ、実施例1と同じ条件で容器に振動を加えた。この後、容器を大気雰囲気の熱処理炉に入れ、実施例1と同じ条件で熱処理した。なお、メタノールと安息香酸とは沸点が異なるため、気化したメタノールと安息香酸とは、回収機で個別に回収した。この後、試料の表面に2kgに相当する荷重を加えた。また、絶縁抵抗計で試料の抵抗を測定したところ、針が振り切れ、抵抗値は100MΩより大きい値であった。
この後、実施例1と同様に、試料を試料と同じ幅の銅板の上に配置し、試料の表面に3kgに相当する荷重を加え、銅板に圧着させた。圧着した試料は600g重の引っ張り力に耐えられたため、導体表面への絶縁層の十分な接着力を持つ。
この後、剥離試験に用いた試料の表面を、実施例1と同様に、電子顕微鏡で観察と分析を行なった。さらに、試料の中央部で幅方向に試料を切断し、断面を電子顕微鏡で観察と分析を行なった。
試料の表面は、酸化アルミニウムの40−60nmの粒状微粒子で覆われていた。試料の断面の観察から、試料の厚みは3.2μmであり、酸化アルミニウム微粒子の集まりを介して、扁平面が3層をなして扁平面同士で重なり合って接合し、試料を形成していた。
なお、作成した試料が形成する絶縁抵抗の理論値は、厚みが0.3μmの酸化アルミニウム層が4層をなし、窒化ホウ素層が3層をなし、これらの絶縁層が交互に積層して並列接続して電気抵抗を構成すると、絶縁膜の抵抗は3.1×1018Ωになる。実施例1と比べると、窒化ホウ素の電気抵抗率が、Eガラスの電気抵抗率より2桁小さいため、窒化ホウ素の絶縁層の抵抗値が、酸化アルミニウムの絶縁層の抵抗値に近づく。このため、両者が形成する絶縁抵抗によって、絶縁膜の絶縁抵抗が決まる。
本実施例では、窒化ホウ素の扁平粉を、酸化アルミニウム微粒子の集まりで接合して絶縁膜を製造する。窒化ホウ素扁平粉(昭和電工株式会社のUHP−2)は、鱗片形状の窒化ホウ素粉で、抵抗率が1014Ωcmで、平均粒径が11μmで、BET比表面積が3−5m2/gである。また、アルミニウム微粒子の原料は、実施例1の安息香酸アルミニウムを用いた。
最初に、安息香酸アルミニウムを10重量%の割合でメタノールに分散させた。このアルコール分散液の100ccに、4gの窒化ホウ素の扁平粉を混合した。この混合物に、実施例1と同様に、回転と揺動を繰り返して混合物を作成した。この混合物をビーカーに充填し、実施例1と同様に、ビーカーに20kHzの超音波振動を1分間加えた。この後、混合物を実施例1で用いた細長い短冊状の容器に充填し、この容器を小型加振機の加振台の上に載せ、実施例1と同じ条件で容器に振動を加えた。この後、容器を大気雰囲気の熱処理炉に入れ、実施例1と同じ条件で熱処理した。なお、メタノールと安息香酸とは沸点が異なるため、気化したメタノールと安息香酸とは、回収機で個別に回収した。この後、試料の表面に2kgに相当する荷重を加えた。また、絶縁抵抗計で試料の抵抗を測定したところ、針が振り切れ、抵抗値は100MΩより大きい値であった。
この後、実施例1と同様に、試料を試料と同じ幅の銅板の上に配置し、試料の表面に3kgに相当する荷重を加え、銅板に圧着させた。圧着した試料は600g重の引っ張り力に耐えられたため、導体表面への絶縁層の十分な接着力を持つ。
この後、剥離試験に用いた試料の表面を、実施例1と同様に、電子顕微鏡で観察と分析を行なった。さらに、試料の中央部で幅方向に試料を切断し、断面を電子顕微鏡で観察と分析を行なった。
試料の表面は、酸化アルミニウムの40−60nmの粒状微粒子で覆われていた。試料の断面の観察から、試料の厚みは3.2μmであり、酸化アルミニウム微粒子の集まりを介して、扁平面が3層をなして扁平面同士で重なり合って接合し、試料を形成していた。
なお、作成した試料が形成する絶縁抵抗の理論値は、厚みが0.3μmの酸化アルミニウム層が4層をなし、窒化ホウ素層が3層をなし、これらの絶縁層が交互に積層して並列接続して電気抵抗を構成すると、絶縁膜の抵抗は3.1×1018Ωになる。実施例1と比べると、窒化ホウ素の電気抵抗率が、Eガラスの電気抵抗率より2桁小さいため、窒化ホウ素の絶縁層の抵抗値が、酸化アルミニウムの絶縁層の抵抗値に近づく。このため、両者が形成する絶縁抵抗によって、絶縁膜の絶縁抵抗が決まる。
ガラスの扁平粉と窒化ホウ素の扁平粉を用いて、絶縁膜を製造する2つの実施例を説明した。絶縁膜を構成する絶縁性扁平粉は、これら2種類の扁平粉に制限されず、10段落に説明した他の材質からなる絶縁性扁平粉を用いることができる。また、絶縁膜の形状は、2つの実施例の短冊状の絶縁膜に制限されず、アルコール分散液と絶縁性扁平粉との混合物を充填する容器に応じて、自在に変えることができる。
1 酸化アルミニウム微粒子 2 ガラス扁平粉
Claims (3)
- 容器の底面に該底面の形状からなる絶縁膜を、絶縁性扁平紛の扁平面同士が重なり合った該扁平粉の集まりからなる絶縁膜として製造する該絶縁膜の製造方法は、
1014Ωcmの抵抗率を持つ第一の性質と、モース硬度が9である第二の性質と、1500℃を超える耐熱性を持つ第三の性質を兼備する酸化アルミニウムを、熱分解で析出する金属化合物を、アルコールに分散し、該金属化合物が前記アルコールに分子状態となって分散されたアルコール分散液を作成する第一の工程と、前記アルコール分散液に絶縁性扁平粉の集まりを混合して混合物を作成する第二の工程と、前記混合物を混合機内で回転及び揺動させる第三の工程と、前記混合物中でホモジナイザー装置を稼働させ、該ホモジナイザー装置の稼働によって、前記混合物に連続して衝撃を発生させ、該衝撃を前記絶縁性扁平紛の扁平面同士の重なり合った部位に加え、該扁平面同士が重なり合った部位を分離させ、前記絶縁性扁平紛の全ての扁平面が前記アルコール分散液と接する状態にする第四の工程と、前記混合物を容器に充填する第五の工程と、前記容器に左右、前後、上下の3方向の振動加速度を繰り返し加え、前記絶縁性扁平粉の扁平面同士が前記アルコール分散液を介して重なり合った該扁平粉の集まりを、前記容器の底面の全体に該底面の形状として形成する第六の工程と、前記容器を前記金属化合物が熱分解する温度に昇温して該金属化合物を熱分解し、前記酸化アルミニウムからなる粒状の微粒子の集まりが、前記絶縁性扁平粉の集まりの最上部の扁平面の表面と最下部の扁平面の表面と、該扁平粉の扁平面同士の間隙とに析出する第七の工程と、前記容器の底面に形成された前記絶縁性扁平粉の集まりに圧縮応力を加え、前記酸化アルミニウムからなる粒状の微粒子同士の接触部位に摩擦熱を発生させ、該摩擦熱によって、前記粒状の微粒子同士が前記接触部位で接合し、該粒状の微粒子同士の接合によって、前記絶縁性扁平粉の扁平面同士が重なり合って接合され、該扁平面同士が重なり合って接合された前記絶縁性扁平粉の集まりからなる絶縁膜が、前記容器の底面に、該底面の形状として形成される第八の工程からなり、これら8つの処理を連続して実施することによって、前記容器の底面に、該底面の形状からなる絶縁膜が、絶縁性扁平紛の扁平面同士が重なり合った該扁平粉の集まりからなる絶縁膜として製造される絶縁膜の製造方法。 - 請求項1に記載した絶縁膜の製造方法は、前記絶縁性扁平粉が、ガラス、マイカ、アルミナ、シリカまたは窒化ホウ素からなるいずれか1種類の絶縁性の扁平粉であり、該絶縁性の扁平粉を請求項1に記載した絶縁性扁平粉として用い、請求項1に記載した絶縁膜の製造方法に従って絶縁膜を製造する、請求項1に記載した絶縁膜の製造方法。
- 請求項1に記載した絶縁膜の製造方法は、前記酸化アルミニウムを熱分解で析出する金属化合物が、カプリル酸アルミニウム、安息香酸アルミニウム、ナフテン酸アルミニウムからなるいずれか1種類のカルボン酸アルミニウム化合物であり、該カルボン酸アルミニウム化合物を請求項1に記載した熱分解で酸化アルミニウムを析出する金属化合物として用い、請求項1に記載した絶縁膜の製造方法に従って絶縁膜を製造する、請求項1に記載した絶縁膜の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018099230A JP7023035B2 (ja) | 2018-05-23 | 2018-05-23 | 容器の底面に該底面の形状からなる絶縁膜を、絶縁性扁平紛の扁平面同士が重なり合った該扁平粉の集まりからなる絶縁膜として製造する絶縁膜の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018099230A JP7023035B2 (ja) | 2018-05-23 | 2018-05-23 | 容器の底面に該底面の形状からなる絶縁膜を、絶縁性扁平紛の扁平面同士が重なり合った該扁平粉の集まりからなる絶縁膜として製造する絶縁膜の製造方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2019204687A JP2019204687A (ja) | 2019-11-28 |
JP2019204687A5 true JP2019204687A5 (ja) | 2021-02-04 |
JP7023035B2 JP7023035B2 (ja) | 2022-02-21 |
Family
ID=68727247
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018099230A Active JP7023035B2 (ja) | 2018-05-23 | 2018-05-23 | 容器の底面に該底面の形状からなる絶縁膜を、絶縁性扁平紛の扁平面同士が重なり合った該扁平粉の集まりからなる絶縁膜として製造する絶縁膜の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7023035B2 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7138394B2 (ja) * | 2019-06-09 | 2022-09-16 | 博 小林 | グラフェンの扁平面同士を重ね合わせて接合したグラフェン接合体の表面に、透明性の金属微粒子の集まりが金属結合した該金属微粒子の集まりを接合した構成からなる透明導電性フィルムを製造する製造方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63144163A (ja) * | 1986-12-05 | 1988-06-16 | 吉沢 正男 | 集成マイカシートの製造法 |
JP2000076944A (ja) | 1998-08-27 | 2000-03-14 | Takaoka Electric Mfg Co Ltd | 絶縁スペ−サおよびその製造方法 |
JP3519332B2 (ja) | 2000-01-31 | 2004-04-12 | 株式会社槌屋 | 無機系被膜形成用塗布液 |
US9005748B1 (en) | 2011-03-04 | 2015-04-14 | Insulating Coatings Of America, Inc. | Coating containing borosilicate flake glass |
DE102012005754A1 (de) | 2012-03-23 | 2013-09-26 | Merck Patent Gmbh | Pigment |
JP6385155B2 (ja) | 2014-06-03 | 2018-09-05 | 小林 博 | 熱伝導性ペーストの製造方法 |
JPWO2016104141A1 (ja) | 2014-12-22 | 2017-04-27 | 三菱電機株式会社 | 絶縁テープ及びその製造方法、並びに固定子コイル及びその製造方法、並びに発電機 |
JP6675130B2 (ja) | 2015-03-18 | 2020-04-01 | 小林 博 | 金属ないしは合金ないしは金属酸化物のいずれかの材質からなる微粒子が液相の有機化合物中に該有機化合物のモル数より多いモル数として分散されたペーストを製造する製造方法 |
JP6715450B2 (ja) | 2016-01-13 | 2020-07-01 | 小林 博 | 金属ないしは金属酸化物からなる個々のナノ粒子が、液体の有機化合物に囲まれて該有機化合物中に分散した懸濁体を製造する製造方法 |
-
2018
- 2018-05-23 JP JP2018099230A patent/JP7023035B2/ja active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Vasundhara et al. | Enhancement of dielectric permittivity and ferroelectricity of a modified cobalt nanoparticle and polyvinylidene fluoride based composite | |
WO2020032161A1 (ja) | 接合用組成物、並びに導電体の接合構造及びその製造方法 | |
JP7455114B2 (ja) | 接合材料及び接合構造 | |
TWI785319B (zh) | 加壓接合用組合物、以及導電體之接合構造及其製造方法 | |
Wang et al. | Noncovalent functionalization of boron nitride and its effect on the thermal conductivity of polycarbonate composites | |
Kumar et al. | Study on epoxy resin based thermal adhesive composite incorporated with expanded graphite/silver flake hybrids | |
US20200337119A1 (en) | Heating element, manufacturing method thereof, composition for forming heating element, and heating apparatus | |
JP7023035B2 (ja) | 容器の底面に該底面の形状からなる絶縁膜を、絶縁性扁平紛の扁平面同士が重なり合った該扁平粉の集まりからなる絶縁膜として製造する絶縁膜の製造方法 | |
JP6675130B2 (ja) | 金属ないしは合金ないしは金属酸化物のいずれかの材質からなる微粒子が液相の有機化合物中に該有機化合物のモル数より多いモル数として分散されたペーストを製造する製造方法 | |
Zhang et al. | Enhanced thermal conductivity and lower density composites with brick-wall microstructure based on highly oriented graphite nanoplatelet: towards manufacturable cooling substrates for high power density electronic devices | |
JP6476820B2 (ja) | 造粒粉、放熱用樹脂組成物、放熱シート、半導体装置、および放熱部材 | |
JP2019204687A5 (ja) | ||
JP2004111253A (ja) | 電子デバイスの電気的接続用導電性組成物および電子デバイス | |
Kong et al. | Interface modified Si@ SiO2/PVDF composite dielectrics with synchronously ameliorative dielectric and mechanical properties | |
Huang et al. | Enhanced dielectric properties of polyamide 11/multi‐walled carbon nanotubes composites | |
JP2013129810A (ja) | トリアジン環を含有する有機‐無機複合材料及びそれを用いた電気的装置 | |
JP2015229772A (ja) | 熱伝導性ペーストの製造と製造方法 | |
KR101527164B1 (ko) | 열전도성 고분자 복합체 및 이의 제조방법 | |
JP6831534B2 (ja) | 複合粒子、複合材料、及び複合粒子の製造方法 | |
Tan et al. | Effect of polar particles on polymer composite dielectrics | |
Nisha et al. | Effect of 4-Aminobutyltriethoxysilane Modified Al 2 O 3 Nanoparticles on the Dielectric Properties of Epoxy Nanocomposites for High Voltage Applications | |
JP7138394B2 (ja) | グラフェンの扁平面同士を重ね合わせて接合したグラフェン接合体の表面に、透明性の金属微粒子の集まりが金属結合した該金属微粒子の集まりを接合した構成からなる透明導電性フィルムを製造する製造方法 | |
WO2014091594A1 (ja) | 層状粘土鉱物、それを含むワニス及び有機-無機複合材料、当該有機-無機複合材料を用いた電気的装置、半導体装置及び回転機コイル | |
TW201937765A (zh) | 導電性膜及其製造方法 | |
JP3626512B2 (ja) | 電気絶縁性基板 |