JP2019199822A - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP2019199822A
JP2019199822A JP2018093500A JP2018093500A JP2019199822A JP 2019199822 A JP2019199822 A JP 2019199822A JP 2018093500 A JP2018093500 A JP 2018093500A JP 2018093500 A JP2018093500 A JP 2018093500A JP 2019199822 A JP2019199822 A JP 2019199822A
Authority
JP
Japan
Prior art keywords
engine
egr passage
exhaust gas
passage portion
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018093500A
Other languages
English (en)
Inventor
諒平 大野
Ryohei Ono
諒平 大野
圭佑 沖濱
Keisuke Okihama
圭佑 沖濱
晰遥 葛
Sekiyou Katsu
晰遥 葛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2018093500A priority Critical patent/JP2019199822A/ja
Publication of JP2019199822A publication Critical patent/JP2019199822A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】少なくともガソリンを含有する燃料が供給されるエンジンの運転時において、エンジンの燃焼促進要求時には、燃焼を促進できるようにする一方、エンジンの燃焼抑制要求時には、燃焼を抑制できるようにする。【解決手段】EGR通路41には、排気ガス中の少なくともNOを酸化させる酸化装置43が配設された第1EGR通路部41aと、酸化装置43が配設されていない第2EGR通路部41bとが互いに並列接続された状態で設けられ、弁制御手段が、エンジン1の運転時において、燃焼促進要求時には、第2EGR通路部41bによる排気還流量が第1EGR通路部41aによる排気還流量よりも多くなるように、制御弁46を制御する一方、燃焼抑制要求時には、第1EGR通路部41aによる排気還流量が第2EGR通路部41bによる排気還流量よりも多くなるように、制御弁46を制御する。【選択図】図1

Description

本発明は、少なくともガソリンを含有する燃料が供給されるエンジンの制御装置に関する技術分野に属する。
従来より、エンジンの排気通路を流れる排気ガスの一部を吸気系に還流させることはよく知られている。例えば特許文献1では、エンジンの排気通路に上流側から順に、排気ターボ過給機のタービン、酸化触媒及びDPFが設けられ、該エンジンは、排気通路におけるタービンよりも上流側の部分を流れる排気ガスの一部を吸気系に還流するための高圧EGR通路と、排気通路におけるDPFよりも下流側の部分を流れる排気ガスの一部を吸気系に還流するための低圧EGR通路とを有している。そして、特許文献1では、エンジンの運転状態が低負荷領域にあるときには、高圧EGR通路による還流を行う一方、エンジンの運転状態が高負荷領域にあるときには、低圧EGR通路による還流を行うことが開示されている。これは、トルクが必要な高負荷領域においては排気ガスをタービンに導いて過給させるためである。
特開2010−180804号公報
ところで、エンジンの排気通路を流れる排気ガスの一部を吸気系に還流させる目的は、一般的に、エンジンの燃焼室内における燃焼を抑制することである。
しかしながら、本願発明者らは、排気ガスの一部を吸気系に還流させた場合、還流しない場合に比べて燃焼が促進する(圧縮着火の場合には、着火時期が進角する)場合があることを発見した。本願発明者らは、この原因について鋭意研究を重ね、その結果、排気ガス中のNOが、燃焼を促進することを突き止めた。また、排気ガス中のNOが、燃焼を抑制することが分かった。これらのことを利用すれば、エンジンの燃焼を促進したり抑制したりすることが容易にできることが分かった。
本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、少なくともガソリンを含有する燃料が供給されるエンジンの運転時において、エンジンの燃焼促進要求時には、燃焼を促進できるようにする一方、エンジンの燃焼抑制要求時には、燃焼を抑制できるようにすることにある。
上記の目的を達成するために、本発明では、少なくともガソリンを含有する燃料が供給されるエンジンの制御装置を対象として、上記エンジンは、該エンジンの排気通路に設けられた排気浄化装置と、該排気通路における該排気浄化装置よりも上流側の部分と該エンジンの吸気通路とを連通するEGR通路とを有し、上記EGR通路には、排気ガス中の少なくともNOを酸化させる酸化装置が配設された第1EGR通路部と、該酸化装置が配設されていない第2EGR通路部とが互いに並列接続された状態で設けられており、上記第1EGR通路部及び上記第2EGR通路部による排気還流量を変化させる制御弁と、上記制御弁を制御する弁制御手段とを備え、上記弁制御手段は、上記エンジンの運転時において、該エンジンの燃焼促進要求時には、上記第2EGR通路部による排気還流量が上記第1EGR通路部による排気還流量よりも多くなるように、上記制御弁を制御する一方、該エンジンの燃焼抑制要求時には、上記第1EGR通路部による排気還流量が上記第2EGR通路部による排気還流量よりも多くなるように、上記制御弁を制御するよう構成されている、という構成とした。
上記の構成により、排気ガスが第1EGR通路部を流れる際には、酸化装置によって排気ガス中の少なくともNOが酸化されてNOとなり、このNOがエンジンの燃焼室に供給される。一方、排気ガスが第2EGR通路部を流れる際には、排気ガス中のNOは酸化されずそのままエンジンの燃焼室に供給される。そして、エンジンの燃焼促進要求時には、第2EGR通路部による排気還流量が第1EGR通路部による排気還流量よりも多くなるので、多くのNOがエンジンの燃焼室に供給され、NOにより燃焼を促進することができる。一方、エンジンの燃焼抑制要求時には、第1EGR通路部による排気還流量が第2EGR通路部による排気還流量よりも多くなるので、多くのNOがエンジンの燃焼室に供給され、NOにより燃焼を抑制することができる。
上記エンジンの制御装置の一実施形態において、上記排気浄化装置は、3元触媒を含む。
このことにより、EGR通路の上流端は、排気通路における該排気浄化装置よりも上流側の部分に接続されているので、排気ガス中のNOが三元触媒により窒素に還元される前に排気ガスの一部をEGR通路に流すことができる。また、EGR通路に流れなかった排気ガス中のNOを含むNOxは、三元触媒により窒素に還元される。
上記エンジンの制御装置の別の実施形態において、上記酸化装置は、オゾンガスを生成するオゾナイザーを有していて、該オゾンガスにより上記第1EGR通路部を流れる排気ガス中のNOを酸化してNOを生成するよう構成されている。
このことで、オゾナイザーによってオゾンガスを生成して、このオゾンガスによりNOを酸化してNOを生成することができ、このNOをエンジンの燃焼室に供給することができる。
或いは、上記酸化装置は、酸化触媒を含むものであってもよい。このことにより、酸化触媒によってNOを酸化してNOを生成することができ、このNOをエンジンの燃焼室に供給することができる。
上記エンジンの制御装置において、上記弁制御手段は、上記エンジンの運転状態が所定の低負荷領域にあるときには、上記燃焼促進要求時であるとして、上記第2EGR通路部による排気還流量が上記第1EGR通路部による排気還流量よりも多くなるように、上記制御弁を制御するよう構成されている、ことが好ましい。
このことで、エンジンの運転状態が所定の低負荷領域にあるときには、エンジンの燃焼室へのNOの供給により燃焼を促進して、燃焼を安定化させることができる。
上記エンジンの制御装置において、上記弁制御手段は、上記エンジンの運転状態が所定の高負荷領域にあるときには、上記燃焼抑制要求時であるとして、上記第1EGR通路部による排気還流量が上記第2EGR通路部による排気還流量よりも多くなるように、上記制御弁を制御するよう構成されている、ことが好ましい。
このことにより、エンジンの運転状態が所定の高負荷領域にあるときには、エンジンの燃焼室へのNOの供給により燃焼を抑制して、ノッキングのような異常燃焼を抑制することができる。
以上説明したように、本発明のエンジンの制御装置によると、エンジンの運転時において、エンジンの燃焼促進要求時には、多くのNOをエンジンの燃焼室に供給することができ、NOにより燃焼を促進することができる一方、エンジンの燃焼抑制要求時には、多くのNOをエンジンの燃焼室に供給することができ、NOにより燃焼を抑制することができる。
本発明の実施形態に係る制御装置が適用されたエンジンの概略構成を示す図である。 エンジンの制御系を示すブロック図である。 エンジンの運転領域マップを示す図である。 図3の運転領域マップのエンジン回転数N1における、エンジン負荷と、EGR弁開度、燃料噴射時期及び吸気弁の閉時期との関係を示すグラフである。 図3の運転領域マップの領域Cでの燃焼室内の燃料分布を示す図である。 NO及びNOをそれぞれエンジンの燃焼室に添加した場合において、それらの該燃焼室への添加濃度毎の、燃料が着火する直前の混合気の当量比と燃料着火時期との関係を計算により算出した結果を示すグラフである。 エンジンの全運転領域でリーン空燃比とした場合のエンジンの運転領域マップを示す図である。
以下、本発明の実施形態を図面に基づいて詳細に説明する。
図1は、本発明の実施形態に係る制御装置が適用されたエンジン1の概略構成を示す。本実施形態では、エンジン1は、燃料を空気と混合しつつ自着火させる圧縮着火式(予混合圧縮着火式)のエンジンであって、4つの気筒2が図1の紙面に垂直な方向に直列に配置された直列4気筒エンジンである。エンジン1は、車両に搭載されて、該車両の駆動源として利用される。エンジン1は、少なくともガソリンを含有する燃料の供給を受けて駆動される。燃料は、ガソリンに加えて、例えばバイオエタノール等が含有されていてもよい。
エンジン1(エンジン本体)は、4つの気筒2が設けられたシリンダブロック3と、このシリンダブロック3上に配設されたシリンダヘッド4とを有している。各気筒2内には、シリンダヘッド4との間に燃焼室6を区画するピストン5が往復動(上下動)可能にそれぞれ嵌挿されている。各気筒2のピストン5は、コンロッド8を介して、気筒列方向に延びる不図示のクランクシャフトと連結されている。
燃焼室6は、いわゆるペントルーフ型であり、シリンダヘッド4の下面で構成される、燃焼室6の天井面が、吸気側及び排気側の2つの傾斜面からなる三角屋根状をなしている。ピストン5の冠面には、該冠面の中心部をシリンダヘッド4とは反対側(下側)に凹ませたキャビティ5aが形成されている。
本実施形態では、エンジン1の幾何学的圧縮比、つまり、ピストン5が上死点にあるときの燃焼室6の容積に対して、ピストン5が下死点にあるときの燃焼室6の容積の比が、15以上35以下(より好ましくは、18以上30以下)に設定されている。エンジン1の幾何学的圧縮比は、例えば25に設定される。
シリンダヘッド4には、吸気通路20から供給される空気を気筒2(燃焼室6)内に導入するための吸気ポート9と、気筒2内で生成された排気ガスを排気通路30に導出するための排気ポート10とが形成されている。本実施形態では、吸気ポート9及び排気ポート10は、各気筒2毎にそれぞれ2つずつ形成されている。
また、シリンダヘッド4には、各吸気ポート9の燃焼室6側の開口をそれぞれ開閉する吸気弁11と、各排気ポート10の燃焼室6側の開口をそれぞれ開閉する排気弁12とが設けられている。
吸気弁11は、吸気動弁機構によって、所定のタイミングで開閉する。吸気動弁機構は、バルブタイミング及び/又はバルブリフトを可変にする可変動弁機構とされている。本実施形態では、この可変動弁機構は、吸気電動S−VT(Sequential-Valve Timing)17を有している。吸気電動S−VT17は、吸気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、吸気弁11の開弁時期及び閉弁時期は、連続的に変化する。尚、吸気動弁機構は、電動S−VTに代えて、油圧式のS−VTを有していてもよい。
排気弁12は、排気動弁機構によって、所定のタイミングで開閉する。排気動弁機構も、バルブタイミング及び/又はバルブリフトを可変にする可変動弁機構とされている。本実施形態では、この可変動弁機構は、排気電動S−VT18を有している。排気電動S−VT18は、排気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、排気弁12の開弁時期及び閉弁時期は、連続的に変化する。尚、排気動弁機構は、電動S−VTに代えて、油圧式のS−VTを有していてもよい。
さらに、シリンダヘッド4には、各気筒2毎に、上記燃料を燃焼室6内に直接噴射するインジェクタ14が設けられている。インジェクタ14は、気筒2の中心軸に沿って上下方向に延びていて、燃焼室6の天井面の中央を通って、燃焼室6に臨んでいる。インジェクタ14の、噴射口が形成された先端部は、燃焼室6の天井面に対して僅かに下側に位置している。
本実施形態では、インジェクタ14は、噴射口を開閉する外開弁を有する、外開弁式のインジェクタである。噴射口は、先端側ほど径が大きくなるテーパ状に形成されている。そして、インジェクタ14は、噴射口からピストン5の冠面に向かって、気筒2の中心軸を中心としたコーン状(詳しくはホローコーン状)に燃料を噴射する。そのコーンのテーパ角は、本実施形態では、90°〜100°である(内側の中空部のテーパ角は70°程度である)。インジェクタ14より噴射された燃料噴霧のペネトレーションは、燃焼室6の外周部にまでは届かないような長さとされている。尚、インジェクタ14は、外開弁式のインジェクタに限らず、先端部に複数(例えば、10個)の噴孔を有して該複数の噴孔から放射状に燃料を噴射する多噴孔型のインジェクタであってもよい。
また、シリンダヘッド4には、各気筒2毎に、燃焼室6内の混合気を点火するための点火プラグ13が設けられている。本実施形態では、後述の如くエンジン1の全運転領域で混合気を自着火させるので、基本的に、点火プラグ13は不要であるが、例えばエンジン1が冷間始動された直後のような自着火が困難な状況下において火花点火燃焼を実行したり、暖機後であっても燃焼の促進のためにいわゆるスパークアシストを実行したりすることがあり、そのような目的のために点火プラグ13が設けられている。
吸気ポート9には、吸気通路20が連通接続されている。この吸気通路20の上流側端部には、吸入空気を濾過するエアクリーナ21が配設されており、このエアクリーナ21で濾過した吸入空気が吸気通路20及び吸気ポート9を介して各気筒2の燃焼室6に供給される。
吸気通路20におけるエアクリーナ21の下流側近傍には、吸気通路20に吸入された吸入空気量を検出するエアフローセンサSN2が配設されている。また、吸気通路20における下流端の近傍には、サージタンク25が配設されている。このサージタンク25よりも下流側の吸気通路20は、各気筒2毎に分岐する独立通路とされ、これら各独立通路の下流端が各気筒2の吸気ポート9にそれぞれ接続されている。
さらに、吸気通路20におけるエアフローセンサSN2とサージタンク25との間には、上流側から順に、吸気通路20を開閉するためのスロットル弁22、及び、作動により吸入空気の過給を行う過給機23が配設されている。本実施形態では、スロットル弁22は、エンジン1の運転中、基本的に全開又はこれに近い開度に維持され、エンジン1を停止させるとき等の限られた運転条件のときにのみ閉弁されて吸気通路20を遮断する。過給機23は、本実施形態では、電動式の過給機であるが、これには限られず、例えば、エンジン1により駆動される機械式の過給機であってもよく、排気によって駆動されるターボ過給機であってもよい。
排気ポート10には、各気筒2の燃焼室6からの排気ガスを排出する排気通路30が連通接続されている。この排気通路30の上流側の部分は、各気筒2毎に分岐して排気ポート10に接続された独立通路と該各独立通路が集合する集合部とを有する排気マニホールドによって構成されている。
排気通路30(排気マニホールドよりも下流側の部分)には、排気を浄化する排気浄化装置31が設けられている。排気浄化装置31は、3元触媒を含む。尚、過給機23がターボ過給機である場合には、排気通路30における排気浄化装置31よりも上流側でかつ上記排気マニホールドよりも下流側の部分に、ターボ過給機のタービンが配設される。
エンジン1は、排気ガスの一部を排気通路30から吸気通路20にEGRガスとして還流するためのEGR通路41を有している。本実施形態では、EGR通路41は、排気通路30における排気浄化装置31よりも上流側でかつ上記排気マニホールドよりも下流側の部分と、吸気通路20における過給機23よりも上流側の部分とを連通するように、該両部分に接続されている。尚、過給機23がターボ過給機である場合には、EGR通路41の上流端は、排気通路30における上記タービンよりも上流側でかつ上記排気マニホールドよりも下流側の部分に接続される。
EGR通路41には、排気ガス中の少なくともNOを酸化させる酸化装置43が配設された第1EGR通路部41aと、該酸化装置43が配設されていない第2EGR通路部41bとが互いに並列接続された状態で設けられている。すなわち、EGR通路41は、その途中で第1EGR通路部41aと第2EGR通路部41bとに分岐した後、該分岐部分及び酸化装置43よりも下流側でかつ吸気通路20への接続部分よりも上流側で合流する。
酸化装置43は、本実施形態では、通電による無声放電によって、酸素からオゾンガスを生成するオゾナイザーを有している。このオゾナイザーにより生成されたオゾンガスは不安定であり、該オゾンガスは少なくともNOを酸化してNOを生成する(オゾンガスは酸素に変化する)。
オゾナイザーへの通電及び非通電を切り換える切換スイッチ44が設けられており、この切換スイッチ44は、後述のECU100からの制御信号を受けて、ON/OFFが電気的に切り換えられる。切換スイッチ44がONにされると、オゾナイザーに通電されて、該オゾナイザーによりオゾンガスが生成される。切換スイッチ44がOFFにされると、オゾナイザーに対し非通電とされる。
尚、酸化装置43は、オゾナイザーに代えて、酸化触媒を含んでいてもよい。この場合、切換スイッチ44は不要になる。酸化触媒によって、第1EGR通路部41aを流れる排気ガス中のNOを酸化してNOを生成することができる。但し、酸化触媒の温度が活性化温度以上になっている必要がある。
EGR通路41における第1EGR通路部41aと第2EGR通路部41bとの分岐部分よりも上流側の部分には、EGR通路41を開閉するEGR弁42が設けられており、このEGR弁42の開度が調整されることにより、EGR通路41による排気還流量が制御される。
また、EGR通路41における第1EGR通路部41aと第2EGR通路部41bとの分岐部分には、第1EGR通路部41a及び第2EGR通路部41bによる排気還流量を変化させる制御弁46が設けられている。制御弁46は、後述のECU100の制御によって、第1状態(図1の実線参照)と第2状態(図1の二点鎖線参照)とに切り換えられる。本実施形態では、制御弁46が上記第1状態にあるときには、第1EGR通路部41aの開度が100%とされ、第2EGR通路部41bの開度が0%とされる。一方、制御弁46が上記第2状態にあるときには、第2EGR通路部41bの開度が100%とされ、第1EGR通路部41aの開度が0%とされる。
尚、制御弁46が上記第1状態にあるときにおいて、第1EGR通路部41aの開度が100%でありかつ第2EGR通路部41bの開度が0%である必要はなく、第1EGR通路部41a及び第2EGR通路部41bの開度が、第1EGR通路部41aによる排気還流量が第2EGR通路部41bによる排気還流量よりも多くなるような開度とされてもよい。また、制御弁46が上記第2状態にあるときにおいて、第2EGR通路部41bの開度が100%でありかつ第1EGR通路部41aの開度が0%である必要はなく、第1EGR通路部41a及び第2EGR通路部41bの開度が、第2EGR通路部41bによる排気還流量が第1EGR通路部41aによる排気還流量よりも多くなるような開度とされてもよい。さらに、制御弁46は、EGR通路41における第1EGR通路部41aと第2EGR通路部41bとの分岐部分に設ける代わりに、第1EGR通路部41a及び第2EGR通路部41bにそれぞれ設けてもよい。
図2に示すように、エンジン1の制御装置は、エンジン1を運転するためのECU(Engine ControlUnit)100を備えている。ECU100は、周知のマイクロコンピュータをベースとするコントローラーである。ECU100は、CPU101、メモリ102、入出力バス103等を備えている。CPU101は、コンピュータプログラム(OS等の基本制御プログラム、及び、OS上で起動されて特定機能を実現するアプリケーションプログラムを含む)を実行する中央演算処理装置である。メモリ102は、RAM及びROMにより構成されている。ROMには、種々のコンピュータプログラム(特にエンジン1を制御するための制御プログラム)や、該コンピュータプログラムの実行時に用いられる後述の運転領域マップ及び制御マップを含むデータ等が格納されている。RAMは、CPU101が一連の処理を行う際に使用される処理領域が設けられるメモリである。入出力バス103は、ECU100に対して電気信号の入出力をするものである。
ECU100には、クランク角センサSN1、エアフローセンサSN2、アクセル開度センサSN3等の各種のセンサが電気的に接続されている。クランク角センサSN1は、シリンダブロック3に設けられていて、クランクシャフトの回転角を検出する。アクセル開度センサSN3は、車両のアクセルペダル機構に取り付けられていて、アクセルペダルの操作量に対応したアクセル開度を検出する。これらセンサSN1〜SN3等は、検知信号をECU100に出力する。
ECU100は、センサSN1〜SN3等からの入力信号に基づいて、エンジン1の運転状態を判断するとともに、点火プラグ13、インジェクタ14、吸気電動S−VT17、排気電動S−VT18、スロットル弁22、過給機23、EGR弁42、切換スイッチ44、制御弁46等といった、エンジン1の各デバイスに対して制御信号を出力して、各デバイスを制御する。ECU100は、制御弁46を制御する弁制御手段を構成することになる。
本実施形態では、エンジン1の全運転領域において、圧縮着火燃焼(CI燃焼)が実施される。具合的には、圧縮上死点よりも前にインジェクタ14から燃焼室6内に燃料が噴射され、この燃料と空気との混合気を圧縮することで昇温し、圧縮上死点付近で混合気を自着火させる。
図3は、エンジン1の運転領域マップを示す。この運転領域マップは、エンジン回転数とエンジン負荷とによって定められている。図4は、図3の運転領域マップのエンジン回転数N1における、エンジン負荷と、EGR弁開度、燃料噴射時期及び吸気弁11の閉時期との関係を示す。エンジン負荷と、EGR弁開度、燃料噴射時期及び吸気弁11の閉時期との関係は、エンジン回転数がN1よりも小さくても大きくても、基本的に図4と同様である。エンジン回転数毎の、エンジン負荷と、EGR弁開度、燃料噴射時期及び吸気弁11の閉時期との関係は、制御マップとして予め決められている。ECU100は、運転領域マップ及び制御マップに従って、各デバイスを制御する。
エンジン負荷が所定値L1よりも低い領域Aでは、混合気の空燃比(A/F)が、燃焼室6の全体において理論空燃比よりも大きくされる(リーン空燃比とされる)。つまり、燃焼室6の全体において、混合気の空気過剰率λが1を超える値(例えばλ=2〜3)とされる。領域Aでは、図4に示すように、エンジン負荷が低くなるほど、燃料噴射時期が圧縮上死点に近付く。
一方、エンジン負荷が所定値L1以上である領域Bでは、混合気の空燃比(A/F)が、理論空燃比とされる。つまり、混合気の空気過剰率λが1とされる。領域Bでは、図4に示すように、エンジン負荷に関係なく、燃料噴射時期が一定であって、吸気下死点付近、又は吸気行程で噴射される。これにより、燃料が自着火する直前(圧縮上死点付近)において、燃料が燃焼室6全体に均一に分散された状態になる。
図3において、領域Aの中の低負荷の領域C(破線で囲まれた領域)は、所定の低負荷領域に相当する領域であって、エンジン1としては、燃焼の促進が要求される領域である。領域Cでは、制御弁46は、第2EGR通路部41bの開度が100%となる第2状態とされる。これにより、EGR通路41に流入した排気ガスの全てが第2EGR通路部41bへと流れる。
領域Aの中の高負荷の領域と領域Bの全体とを含む領域D(一点鎖線で囲まれた領域)は、所定の高負荷領域に相当する領域であって、異常燃焼が生じ易いために、エンジン1としては、燃焼の抑制が要求される領域である。領域Dでは、制御弁46は、第1EGR通路部41aの開度が100%となる第1状態にされる。また、領域Dでは、切換スイッチ44がONにされる。切換スイッチ44は、領域DのみでONにされ、領域C、及び、領域Cと領域Dとの間の領域E(領域Aに含まれる)では、OFFにされる。
図3に示すように、領域Cと領域Eとの境界線は、エンジン回転数が高くなるほど、エンジン負荷が高くなるような直線で表される。すなわち、エンジン回転数が高くなると、燃料の自着火がその速さについてこれなくなるので、より高いエンジン負荷まで燃焼の促進が要求される。
また、領域Dと領域Eとの境界線も、エンジン回転数が高くなるほど、エンジン負荷が高くなるような直線(エンジン回転数が低くなるほど、エンジン負荷が低くなるような直線)で表される。すなわち、エンジン回転数が高くなると、異常燃焼が生じるよりも早期にピストン5が動くので、異常燃焼が生じ難くなる一方、エンジン回転数が低いと、異常燃焼が生じ易くなるので、より低いエンジン負荷まで燃焼の抑制が要求される。
領域Cでは、インジェクタ14から燃料が圧縮行程の後半(圧縮行程を2等分したときの後半)で噴射される。このように圧縮行程の後半でインジェクタ14から噴射された燃料は、ピストン5のキャビティ5a内に向かって飛翔し、その結果、燃料が自着火する直前(圧縮上死点付近)の燃焼室6の燃料分布として、図5に示すような分布が得られる。すなわち、キャビティ5aに集中的に供給された燃料が空気(新気)及びEGRガスと混じり合うことにより、燃焼室6の中央部に、比較的燃料リッチな混合気層51が成層化される。一方、混合気層51の周囲(燃焼室6の外周部)には、燃料が殆ど存在せず、空気(新気)とEGRガスとによって占められる。このように、領域Cでは、燃料が自着火する直前において、混合気層51が燃焼室6の中央部にのみ存在する状態が得られ、燃料分布の成層化(混合気層51の成層化)が達成される。尚、図5では、点火プラグ13の記載を省略している。
このように燃料分布の成層化が行われた場合、混合気の空燃比は、燃焼室6の全体としては、リーン空燃比であるが、燃焼室6の中央部の混合気層51では、燃焼室6全体の平均空燃比よりもリッチになっているため、混合気層51の燃焼によりNOx(NOがかなりの割合を占める)が発生し易い。
領域Cでは、EGR弁42が開かれるとともに、制御弁46が、第2EGR通路部41bの開度が100%となる第2状態にされる。これにより、領域Cでは、エンジン1の排気ガスがEGRガスとしてEGR通路41に流れ、このEGRガス(特にNO)が、第2EGR通路部41bを通って燃焼室6に供給されることになる。排気浄化装置31へと流れる排気ガス中のNOを含むNOxは、排気浄化装置31(三元触媒)により窒素に還元される。
領域Cでは、エンジン負荷が低いほど、EGR弁42の開度が大きくされる。この結果、エンジン負荷が低いほど、多くのNOが燃焼室6に供給されることになる。後に詳細に説明するように、NOは、燃焼を促進させる(着火時期を進角させる)効果があるので、このようにエンジン負荷が低いほど、多くのNOを燃焼室6に供給するようにしている。
領域Dでは、EGR弁42が開かれるとともに、制御弁46が、第1EGR通路部41aの開度が100%となる第1状態にされる。また、領域Dでは、切換スイッチ44がONにされて、オゾナイザーに通電される。領域Dでは、エンジン1の排気ガスがEGRガスとしてEGR通路41に流れ、このEGRガスが、第1EGR通路部41aを通って燃焼室6に供給されることになる。領域Dにおいても、NOx(特にNO)が発生し、EGRガスが第1EGR通路部41aを通る際、オゾナイザーにより発生したオゾンガスによって、そのEGRガス中のNOが酸化されて、NOが生成される。この結果、領域Dでは、NOが燃焼室6に供給されることになる。
領域Dでは、エンジン負荷が高いほど、EGR弁42の開度が大きくされる。この結果、エンジン負荷が高いほど、多くのNOが燃焼室6に供給されることになる。後に詳細に説明するように、NOは、燃焼を抑制する(着火時期を遅角させる)効果があるので、このようにエンジン負荷が高いほど、多くのNOを燃焼室6に供給するようにしている。領域Dでは、エンジン負荷が所定値L1よりも低い領域を除けば、燃料が自着火する直前(圧縮上死点付近)において、燃料が燃焼室6全体に均一に分散された状態になる。但し、エンジン負荷が所定値L1よりも低い領域においても、燃料が燃焼室6全体に均一に分散された状態になると考えられる。尚、領域Dでは、エンジン負荷が高いほど、過給機23による過給量が多くされるようになっており、これにより、EGR弁42の開度が大きくなっても、高くなるエンジン負荷に対応することができる。
領域Eでは、EGR弁42が閉じられるので、EGRガスは燃焼室6に供給されない。領域Eでは、制御弁46は、第1状態及び第2状態のいずれの状態にあってもよい。例えば、領域Eへの移行前が領域Cであれば、制御弁46は第2状態のままとし、領域Eへの移行前が領域Dであれば、制御弁46は第1状態のままとすればよい。領域Eでも、領域Cと同様に、燃料分布の成層化が行われるが、インジェクタ14から燃料が圧縮行程の前半に噴射されるため、混合気層51の周囲にも燃料が混じる。但し、中央部の混合気層51の混合気濃度の方がその周囲の混合気濃度よりも濃い。領域Eでは、領域Cよりも吸気弁11が遅閉じとされ、エンジン負荷が高くなるほど吸気弁11の閉じる時期が遅くなる。
尚、上記運転領域マップにおいて、上記のように領域C〜Eに区分しないで、領域Aのようにエンジン1がリーン空燃比で運転されるときには、燃焼促進要求時であるとして、制御弁46を第2状態にして、NOを燃焼室6に供給する一方、領域Bのようにエンジン1が理論空燃比で運転される場合、又は、リッチ空燃比で運転されるときには、燃焼抑制要求時であるとして、制御弁46を第1状態にして、NOを燃焼室6に供給するようにしてもよい。
NOが燃焼を促進させる理由、及び、NOが燃焼を抑制する理由は、以下の通りである。
すなわち、圧縮行程における燃料(ガソリンを含有する)の燃焼前の低温酸化反応においては、燃料からOH、HOといった活性種が発生し、これらの活性種と燃料の炭化水素とが反応して炭化水素から水素が分離する。NOは、以下の化学式で表されるように、活性種のHOと反応し、これによりOHが生成される。
NO+HO→NO+OH
OHは、上記活性種の中で比較的反応性に冨み、低温酸化反応の時間を短縮する。したがって、燃焼室6へのNOの供給により燃焼を促進させる(着火時期を進角させる)ことができる。尚、NOは、以下のように、安定した物質であるHONOを生成するが、OHが反応性に富んでいるため、低温酸化反応の時間を短縮する。
一方、NOは、以下の化学式で表されるように、活性種のHOと反応し、これによりHONOが生成される。
NO+HO→HONO+O
HONOは、安定した物質であるため、低温酸化反応の時間を長くする。したがって、燃焼室6へのNOの供給により燃焼を抑制する(着火時期を遅角させる)ことができる。
尚、ガソリンを含有する燃料に限らず、軽油等の、炭化水素を含む燃料であれば、NOの燃焼促進効果及びNOの燃焼抑制効果が得られる。
図6は、NO及びNOをそれぞれ燃焼室6に添加した場合において、それらの燃焼室6への添加濃度毎の、燃料が着火する直前の混合気の当量比(1/λ)と燃料着火時期(クランク角)との関係を計算により算出した結果を示す。この燃料着火時期は、NO及びNOを添加しない場合のクランク角を0°としており、これに対して進角する場合をマイナスで表し、遅角する場合をプラスで表している。尚、図6に記載の添加濃度は、EGRガスとして燃焼室6に添加可能な濃度である。
図6より、NOを添加すれば、着火時期が進角し、NOを添加すれば、着火時期が遅角することが分かる。
ここで、図3の運転領域マップでは、エンジン負荷が所定値L1以上である領域Bにおいて、混合気の空燃比(A/F)が理論空燃比とされていたが、図7の運転領域マップのように、エンジン1の全運転領域でリーン空燃比とされてもよい。この場合、過給機23による過給によって、高負荷に対応する。
図7の運転領域マップでは、領域Aと領域Bとの区別はない。領域C、領域D及び領域Eの区分けは、図3の運転領域マップと同様であり、また、図7の運転領域マップのエンジン回転数N1における、エンジン負荷と、EGR弁開度、燃料噴射時期及び吸気弁11の閉時期との関係は、図4と同様であり、エンジン回転数毎の、エンジン負荷と、EGR弁開度、燃料噴射時期及び吸気弁11の閉時期との関係を示す制御マップも、図3の運転領域マップに対応する制御マップと同様である。図7の運転領域マップの領域C、領域D及び領域Eでの、燃料が自着火する直前の燃料分布は、図3の運転領域マップの領域C、領域D及び領域Eでの、燃料が自着火する直前の燃料分布と同様になる。
図7の運転領域マップの領域Dにおいては、リーン空燃比ではあるが、エンジン負荷が高くなるほど燃焼室6内の温度が上昇するために、NOx(特にNO)が発生する。この領域Dでは、リーン空燃比であるために、着火時期が遅くなる傾向にあり、僅かな空燃比のずれで異常燃焼が生じ易い。したがって、全運転領域でリーン空燃比とされる場合には、特に異常燃焼抑制の要求が高く、本実施形態では、この要求を良好に満たすことができる。
したがって、本実施形態では、エンジン1の運転時において、エンジン1の運転状態が所定の低負荷領域(領域C)にあるときには、エンジン1の燃焼促進要求時であるとして、制御弁46が第2状態とされて、燃焼室6にNOを供給することができ、NOにより燃焼を促進することができる。一方、エンジン1の運転状態が所定の高負荷領域(領域D)にあるときには、エンジン1の燃焼抑制要求時であるとして、制御弁46が第1状態とされて、燃焼室6にNOを供給することができ、NOにより燃焼を抑制することができる。
本発明は、上記実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。
例えば、上記実施形態では、エンジン1が圧縮着火式のエンジンであるが、火花点火式のエンジンであってもよく、圧縮着火燃焼及び火花点火燃焼とを組み合わせた形態の燃焼(SPCCI(SPark Controlled Compression Ignition)燃焼)を実行するエンジンであってもよい。
上述の実施形態は単なる例示に過ぎず、本発明の範囲を限定的に解釈してはならない。本発明の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。
本発明は、少なくともガソリンを含有する燃料が供給されるエンジンの制御装置に有用であり、エンジンの運転時において、エンジンの燃焼を促進したり燃焼を抑制したりする場合に有用である。
1 エンジン
31 排気浄化装置
41 EGR通路(供給手段)
41a 第1EGR通路部
41b 第2EGR通路部
43 酸化装置
46 制御弁
100 ECU(弁制御手段)

Claims (6)

  1. 少なくともガソリンを含有する燃料が供給されるエンジンの制御装置であって、
    上記エンジンは、該エンジンの排気通路に設けられた排気浄化装置と、該排気通路における該排気浄化装置よりも上流側の部分と該エンジンの吸気通路とを連通するEGR通路とを有し、
    上記EGR通路には、排気ガス中の少なくともNOを酸化させる酸化装置が配設された第1EGR通路部と、該酸化装置が配設されていない第2EGR通路部とが互いに並列接続された状態で設けられており、
    上記第1EGR通路部及び上記第2EGR通路部による排気還流量を変化させる制御弁と、
    上記制御弁を制御する弁制御手段とを備え、
    上記弁制御手段は、上記エンジンの運転時において、該エンジンの燃焼促進要求時には、上記第2EGR通路部による排気還流量が上記第1EGR通路部による排気還流量よりも多くなるように、上記制御弁を制御する一方、該エンジンの燃焼抑制要求時には、上記第1EGR通路部による排気還流量が上記第2EGR通路部による排気還流量よりも多くなるように、上記制御弁を制御するよう構成されていることを特徴とするエンジンの制御装置。
  2. 請求項1記載のエンジンの制御装置において、
    上記排気浄化装置は、3元触媒を含むことを特徴とするエンジンの制御装置。
  3. 請求項1又は2記載のエンジンの制御装置において、
    上記酸化装置は、オゾンガスを生成するオゾナイザーを有していて、該オゾンガスにより上記第1EGR通路部を流れる排気ガス中のNOを酸化してNOを生成するよう構成されていることを特徴とするエンジンの制御装置。
  4. 請求項1又は2記載のエンジンの制御装置において、
    上記酸化装置は、酸化触媒を含むことを特徴とするエンジンの制御装置。
  5. 請求項1〜4のいずれか1つに記載のエンジンの制御装置において、
    上記弁制御手段は、上記エンジンの運転状態が所定の低負荷領域にあるときには、上記燃焼促進要求時であるとして、上記第2EGR通路部による排気還流量が上記第1EGR通路部による排気還流量よりも多くなるように、上記制御弁を制御するよう構成されていることを特徴とするエンジンの制御装置。
  6. 請求項1〜5のいずれか1つに記載のエンジンの制御装置において、
    上記弁制御手段は、上記エンジンの運転状態が所定の高負荷領域にあるときには、上記燃焼抑制要求時であるとして、上記第1EGR通路部による排気還流量が上記第2EGR通路部による排気還流量よりも多くなるように、上記制御弁を制御するよう構成されていることを特徴とするエンジンの制御装置。
JP2018093500A 2018-05-15 2018-05-15 エンジンの制御装置 Pending JP2019199822A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018093500A JP2019199822A (ja) 2018-05-15 2018-05-15 エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018093500A JP2019199822A (ja) 2018-05-15 2018-05-15 エンジンの制御装置

Publications (1)

Publication Number Publication Date
JP2019199822A true JP2019199822A (ja) 2019-11-21

Family

ID=68613034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018093500A Pending JP2019199822A (ja) 2018-05-15 2018-05-15 エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP2019199822A (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196462A (ja) * 1997-01-13 1998-07-28 Isuzu Motors Ltd ディーゼルエンジンのegr装置
FR2872861A1 (fr) * 2004-07-06 2006-01-13 Peugeot Citroen Automobiles Sa Systeme de controle de l'inflammation du melange dans un moteur a combustion interne
JP2006233947A (ja) * 2005-02-28 2006-09-07 Hino Motors Ltd Egr装置
JP2008138638A (ja) * 2006-12-05 2008-06-19 Toyota Motor Corp 内燃機関の排気還流装置
JP2008280868A (ja) * 2007-05-08 2008-11-20 Toyota Motor Corp 車両用内燃機関の排気再循環装置
JP2010071108A (ja) * 2008-09-16 2010-04-02 Mazda Motor Corp エンジンの排気還流装置
JP2010180804A (ja) * 2009-02-06 2010-08-19 Honda Motor Co Ltd 内燃機関の排気浄化装置
JP2014145299A (ja) * 2013-01-29 2014-08-14 Honda Motor Co Ltd 排気還流装置
WO2014148067A1 (ja) * 2013-03-21 2014-09-25 日産自動車株式会社 内燃機関の制御装置および制御方法
JP2015086754A (ja) * 2013-10-29 2015-05-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2017008839A (ja) * 2015-06-23 2017-01-12 トヨタ自動車株式会社 内燃機関の制御装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10196462A (ja) * 1997-01-13 1998-07-28 Isuzu Motors Ltd ディーゼルエンジンのegr装置
FR2872861A1 (fr) * 2004-07-06 2006-01-13 Peugeot Citroen Automobiles Sa Systeme de controle de l'inflammation du melange dans un moteur a combustion interne
JP2006233947A (ja) * 2005-02-28 2006-09-07 Hino Motors Ltd Egr装置
JP2008138638A (ja) * 2006-12-05 2008-06-19 Toyota Motor Corp 内燃機関の排気還流装置
JP2008280868A (ja) * 2007-05-08 2008-11-20 Toyota Motor Corp 車両用内燃機関の排気再循環装置
JP2010071108A (ja) * 2008-09-16 2010-04-02 Mazda Motor Corp エンジンの排気還流装置
JP2010180804A (ja) * 2009-02-06 2010-08-19 Honda Motor Co Ltd 内燃機関の排気浄化装置
JP2014145299A (ja) * 2013-01-29 2014-08-14 Honda Motor Co Ltd 排気還流装置
WO2014148067A1 (ja) * 2013-03-21 2014-09-25 日産自動車株式会社 内燃機関の制御装置および制御方法
JP2015086754A (ja) * 2013-10-29 2015-05-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2017008839A (ja) * 2015-06-23 2017-01-12 トヨタ自動車株式会社 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
US10711708B2 (en) Control device for engine
JP5392293B2 (ja) 自動車搭載用ディーゼルエンジン及びディーゼルエンジンの制御方法
EP1406002B1 (en) Spark-ignition engine controller
US8936007B2 (en) Fuel injection control apparatus of internal combustion engine
US6899089B2 (en) Control apparatus for internal combustion engine and control method for internal combustion engine combustion method for internal combustion engine and direct injection engine
US7168409B2 (en) Controller for direct injection internal combustion engine
EP3572650A1 (en) Control system for engine, engine, method of controlling engine, and computer program product
JP2011153553A (ja) 過給機付エンジンの制御方法および制御装置
JP6252647B1 (ja) 予混合圧縮着火式エンジンの制御装置
US11248542B2 (en) Methods and systems for a vehicle
EP3412901B1 (en) Method and device for controlling internal combustion engine
EP1377740B1 (en) Control device for supercharged engine
CN110520615B (zh) 用于汽油压缩点火燃烧的富氮空气供应
EP1088983B1 (en) A control system for a direct injection engine of spark ignition type
EP2405120B1 (en) Combustion controller for internal combustion engine
JP2019199822A (ja) エンジンの制御装置
JP2019199821A (ja) 内燃機関の燃焼制御装置
JP3882630B2 (ja) 火花点火式直噴エンジンの制御装置
EP2397678B1 (en) Internal Combustion Engine
JP3331981B2 (ja) 内燃機関
JP4329446B2 (ja) 火花点火式エンジンの制御装置
JPH0347453A (ja) Egrタイミング調整式エンジン
JP2020176593A (ja) エンジンの制御方法および制御装置
JP2005054669A (ja) 火花点火式エンジン
JP2004293419A (ja) 火花点火式直噴エンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221115