JP2005054669A - 火花点火式エンジン - Google Patents

火花点火式エンジン Download PDF

Info

Publication number
JP2005054669A
JP2005054669A JP2003286285A JP2003286285A JP2005054669A JP 2005054669 A JP2005054669 A JP 2005054669A JP 2003286285 A JP2003286285 A JP 2003286285A JP 2003286285 A JP2003286285 A JP 2003286285A JP 2005054669 A JP2005054669 A JP 2005054669A
Authority
JP
Japan
Prior art keywords
cylinder
valve
gas
cylinders
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2003286285A
Other languages
English (en)
Inventor
Toshiro Nishimoto
敏朗 西本
Koji Asaumi
皓二 浅海
Hirokazu Matsuura
弘和 松浦
Taketoshi Yamauchi
武俊 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2003286285A priority Critical patent/JP2005054669A/ja
Publication of JP2005054669A publication Critical patent/JP2005054669A/ja
Abandoned legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

【課題】 2気筒接続で先行気筒においてリーン燃焼、後続気筒において均質燃焼を行わせることにより燃費改善を図り、特に、後続気筒でのガスと燃料噴霧とのミキシング性能および燃料の均質分散性を高め、燃焼性能を向上する。
【解決手段】 エンジンの部分負荷領域で、2気筒接続状態としつつ、先行気筒2A,2Dの空燃比を理論空燃比よりも大きいリーン空燃比として燃焼を行わせ、この先行気筒2A,2Dから後続気筒2B,2Cにリーン空燃比の既燃ガスを導入させて新たに供給された燃料とともに後続気筒2B,2Cで均質燃焼させるようにする。上記気筒間ガス通路22の後続気筒側端部に位置するポート11bをヘリカルポートとする一方、上記気筒間ガス通路22の先行気筒側端部に位置するポート12bをタンジェンシャルポートとする。
【選択図】 図5

Description

本発明は、各気筒の燃焼サイクルが所定の位相差をもつように設定された多気筒の火花点火式エンジンに関するものである。
従来から、火花点火式エンジンにおいて、各気筒内の混合気の空燃比を理論空燃比よりも大きいリーン空燃比とした状態で燃焼を行わせることにより燃費改善を図る技術が知られており、燃焼室内に直接燃料を噴射する燃料噴射弁を備え、低速低負荷領域等では、上記燃料噴射弁から圧縮行程で燃料を噴射して成層燃焼を行わせることにより、超リーン燃焼を実現するようにしたものが知られている(例えば、特許文献1参照)。
このようなエンジンにおいては、排気ガス浄化用の触媒として通常の三元触媒(HC,COおよびNOxに対して理論空燃比付近で浄化性能の高い触媒)だけではリーン運転時のNOxに対して充分な浄化性能が得られないため、特許文献1にも示されるように、酸素過剰雰囲気でNOxを吸着して酸素濃度低下雰囲気でNOxの離脱、還元を行う所定容量のリーンNOx触媒を設けている。そして、上記リーンNOx触媒を用いる場合、リーン運転中にリーンNOx触媒のNOx吸着量が増大したときには、例えば下記特許文献1に示されるように主燃焼以外に膨張行程中に追加燃料を噴射することで排気ガスの空燃比をリッチ化するとともにCOを生成し、これによってNOxの離脱、還元を促進するようにしている。
また、燃費改善のための別の手法として、例えば下記特許文献2に示されるように、燃焼室内に多量の既燃ガスを残留させることにより、圧縮行程の終期にディーゼルエンジンと同様に燃焼室内を高温・高圧にして混合気を自己着火(圧縮自己着火)させることが行われており、このような圧縮自己着火が行われると、燃焼室内全体で一気に燃焼が発生するため、仕事に寄与しない遅い燃焼となることが避けられて燃費改善に有利となるとともに、燃焼室内の温度が局部的に高くなるのを防止してNOxの発生を抑制することが可能である。
特開平10−29836号公報 特開2001−152919号公報
上記特許文献1に示されるような従来のリーン運転を行うエンジンでは、リーン運転中のNOx浄化性能を確保するために、上記リーンNOx触媒を排気通路に設ける必要があり、コスト的に不利である。また、リーンNOx触媒の浄化性能を維持するためには、上述のようにNOx吸着量の増大時にNOxを離脱させて還元するため、追加燃料の供給等による一時的な空燃比のリッチ化を行う必要がある。さらに、使用燃料が硫黄分を多く含む場合には、上記リーンNOx触媒の硫黄被毒を解消するため、触媒の加熱処理および還元材の供給等からなるリジェネレーション処理が必要となり、これらによって燃費改善効果が低下することが避けられない。しかも、混合気の空燃比がある程度以上にリーンになると、燃焼速度が遅くなりすぎてその終期に近い燃焼が仕事に寄与しなくなるため、成層燃焼でのリーン化による燃費改善には限界があった。
一方、上記特許文献2に示されるように、通常の火花点火式ガソリンエンジンにおいて、燃費の改善効果およびNOxの抑制効果を得るために圧縮自己着火を行わせるように構成した場合には、その圧縮上死点付近での燃焼室内の温度または圧力を大幅に高めて圧縮自己着火の環境が得られるようにする格別の工夫が必要であり、従来では広い運転領域にわたって良好に圧縮自己着火が行われる環境を得ることが困難である等の問題があった。
このため、本願出願人は、吸気、圧縮、膨張および排気の各行程からなるサイクルを行う多気筒エンジンにおいて、少なくとも低負荷低回転側の部分負荷領域で、排気行程と吸気行程が重なる一対の気筒間で排気行程にある先行気筒から排出される既燃ガスを、そのまま気筒間ガス通路を介して吸気行程にある後続気筒に導入し、この後続気筒から排出されるガスを、三元触媒が設けられた排気通路に導く2気筒接続状態とすることにより、先行気筒では理論空燃比よりも大幅なリーン空燃比とした状態で燃焼を行わせるとともに、後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料を供給して理論空燃比とした状態で燃焼を行わせる制御装置を開発した(特願2002−024548号)。
上記構成によれば、少なくともエンジンの低負荷低回転域において、先行気筒ではリーン空燃比での燃焼が行われ、熱効率が高められるとともにポンピングロスが低減されることにより顕著な燃費改善効果が得られ、また後続気筒では先行気筒から導入されたリーン空燃比の既燃ガスに燃料が供給されて理論空燃比とされた状態で燃焼が行われることにより、ポンピングロス低減による燃費効果が得られる。しかも、後続気筒から排出される理論空燃比の既燃ガスのみが三元触媒を備えた排気通路に導かれるため、三元触媒だけで充分に排気浄化性能が確保され、リーンNOx触媒も不要となる。さらに、上記のように2気筒接続状態とすることにより、後続気筒には先行気筒から高温の既燃ガスが導入されるので、圧縮行程後期に後続気筒の燃焼室内を高温、高圧として圧縮自己着火を行わせることができ、燃費改善に一層有利となる。
ところで、上記のように先行気筒から排出される既燃ガスを後続気筒に導く2気筒接続状態とする場合、後続気筒では多量のEGRが導入されるのと同等の状態で燃焼が行われるので、燃料を燃焼室全体に均質に分散させて燃焼性を高める必要があり、後続気筒に導入されるガスと燃料噴霧とのミキシング性能および均質分散性を高めることが要求される。
本発明は以上のような課題を考慮してなされたものであり、上記2気筒接続で先行気筒においてリーン燃焼、後続気筒において均質燃焼を行わせることにより燃費改善を図り、特に、後続気筒でのガスと燃料噴霧とのミキシング性能および燃料の均質分散性を高め、燃焼性能を向上することができる火花点火式エンジンを提供することを目的とする。
上記目的を達成するため、本発明は、各気筒の燃焼サイクルが所定の位相差をもつように設定された多気筒の火花点火式エンジンにおいて、エンジンの所定運転領域で、排気行程と吸気行程とが重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出される既燃ガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒の空燃比を理論空燃比よりも大きいリーン空燃比として燃焼を行わせ、この先行気筒から後続気筒にリーン空燃比の既燃ガスを導入させて新たに供給された燃料とともに後続気筒で均質燃焼させる特殊運転モードの制御を実行するようにした火花点火式エンジンであって、上記気筒間ガス通路の後続気筒側端部をヘリカルポートとする一方、上記気筒間ガス通路の先行気筒側端部をタンジェンシャルポートとしたものである。
この発明において、上記特殊運転モードの制御を実行するときに、上記後続気筒で圧縮自己着火による燃焼を行わせることが好ましい。
上記特殊運転モードの制御はエンジンの部分負荷域で行うようにし、一方、エンジンの高負荷域では、各気筒にそれぞれ新気が導入され各気筒からそれぞれ排出されるガスが排気通路に導かれる各気筒独立状態としつつ、各気筒においてそれぞれ燃焼を行わせる通常運転モードの制御を実行するようにしておけばよい。
好ましくは、エンジン回転数が所定回転数以下の低回転側領域における部分負荷領域で上記特殊運転モードの制御を実行するようにし、上記気筒間ガス通路の先行気筒側端部にガス導出弁、後続気筒側端部にガス導入弁をそれぞれ設け、かつ、排気通路に通じる各気筒の排気ポートに排気弁を設け、上記ガス導出弁、ガス導入弁および排気弁を略同一径のポペット弁で形成し、これらの弁に対してそれぞれ閉弁方向に付勢するバルブスプリングを設けるともに、上記ガス導出弁および上記ガス導入弁の各バルブスプリングのばね定数を上記排気弁のバルブスプリングのバネ定数よりも小さくする。
さらに、上記ガス導入弁のバルブスプリングのセット荷重を上記ガス導出弁のバルブスプリングのセット荷重よりも大きくすることが好ましい。
本発明のエンジンによると、上記特殊モードの制御が行われるときに、上記2気筒接続状態とされつつ先行気筒ではリーン空燃比で燃焼が行われ、後続気筒では先行気筒から導かれた既燃ガスと新たに供給された燃料とが混合されて均質燃焼が行われる。こうして、リーン空燃比による熱効率の向上およびポンピングロス低減等により燃費が改善される。
そして、気筒間ガス通路の先行気筒側端部がタンジェンシャルポートとされることにより先行気筒から気筒間ガス通路への既燃ガスの流出はスムーズに行われつつ、気筒間ガス通路の後続気筒側端部がヘリカルポートとされていることにより後続気筒に導入される既燃ガスで後続気筒内に強いスワールが生成されるため、後続気筒でのガスと燃料噴霧とのミキシング性能および燃料の均質分散性を高め、燃焼性能を向上することができる。
とくに、上記後続気筒での燃焼を圧縮自己着火により行わせるようにすれば、燃費改善に一層有利となる。この場合に、上記のように気筒間ガス通路の後続気筒側端部がヘリカルポートとされていることにより後続気筒でのガスと燃料噴霧とのミキシング性能および燃料の均質分散性が高められるため、広い運転領域にわたって良好に圧縮自己着火が行われる環境を得ることができ、圧縮自己着火を行う運転領域を拡大することができる。
また、部分負荷域で上記特殊運転モードとされる一方、高負荷域で上記通常運転モードとされると、部分負荷域では先行気筒からの既燃ガスが上記気筒間ガス通路のヘリカルポートを通って後続気筒に流入することで燃焼性能が向上されるが、高負荷域では、各気筒独立状態とされることにより、新気が上記ヘリカルポートとは別個の吸気ポートから気筒内に導入されることとなって、ヘリカルポートによる吸気抵抗の増大を招くことがなく、高負荷域で要求される充填効率を確保することができる。
また、上記低回転領域における部分負荷領域で上記特殊運転モードの制御を実行する場合に、通常運転モードで作動される排気弁は高速域でのバルブ動作性能を満足するようにバルブスプリングのバネ定数を比較的大きく設定する必要があるが、特殊運転モードのときに気筒間ガス通路を開閉する上記ガス導出弁およびガス導入弁は低回転域でのバルブ動作性能を満足すればよいので、これらの弁に対するバルブスプリングのバネ定数は比較的小さくすることができ、こうすることにより、バルブ駆動抵抗が小さくなり、燃費低減に寄与する。
このようにする場合に、上記ガス導入弁のバルブスプリングのセット荷重を上記ガス導出弁のバルブスプリングのセット荷重よりも大きくしておけば、上記特殊運転モードの制御を行っているときに、上記ガス導入弁に作用する気筒間ガス通路内のガス圧でガス導入弁が所定開弁時期より前に不正常に開いてしまうことを防止することができる。
図1は、本発明が適用されるエンジンの概略構成を示し、図2はエンジン本体1の一つの気筒とそれに対して設けられた吸・排気弁等の構造を概略的に示している。これらの図において、エンジン本体1は複数の気筒を有し、図示の実施形態では4つの気筒2A〜2Dを有している。各気筒2A〜2Dにはピストン3が嵌挿され、ピストン3の上方に燃焼室4が形成されている。各気筒2A〜2Dの燃焼室4の頂部には点火プラグ7が装備され、そのプラグ先端が燃焼室4内に臨んでいる。この点火プラグ7には、電子制御による点火時期のコントロールが可能な点火回路8が接続されている。
燃焼室4の側方部には、燃焼室4内に燃料を直接噴射する燃料噴射弁9が設けられている。この燃料噴射弁9は、図略のニードル弁およびソレノイドを内蔵し、パルス信号が入力されることにより、そのパルス入力時期にパルス幅に対応する時間だけ駆動されて開弁し、その開弁時間に応じた量の燃料を噴射するように構成されている。燃料噴射弁9には、図外の燃料ポンプにより燃料供給通路等を介して燃料が供給され、かつ圧縮行程における燃焼室内の圧力よりも高い燃料圧力を与え得るように燃料供給系統が構成されている。
なお、先行気筒と後続気筒とでは、それぞれに設けられる燃料噴射弁9の構造を異ならせておくことが好ましい。例えば、先行気筒2A,2Dに設けられる燃料噴射弁9としては成層燃焼に適するように狭角インジェクタ9aが用いられ(図4参照)、後続気筒2B,2Cに設けられる燃料噴射弁9としては均質燃焼に適するように広角インジェクタ9bが用いられる(図3参照)。そして、狭角インジェクタ9aからは先行気筒2A,2Dの燃焼室4の上方寄りの方向へ噴射され、すなわち点火プラグ7の付近に噴霧が成層化するように噴射される。一方、広角インジェクタ9bからは噴霧が燃焼室4全体に広く拡散するように噴射される。
また、各気筒2A〜2Dの燃焼室4に対して吸気ポート11、11a,11b及び排気ポート12、12a,12bが開口し、これらのポートに吸気通路15、排気通路20等が接続されるとともに、各ポートが吸気弁31、31a,31b及び排気弁32、32a,32bにより開閉されるようになっている。
そして、各気筒が所定の位相差をもって吸気、圧縮、膨張および排気の各行程からなるサイクルを行うようになっており、4気筒エンジンの場合、気筒列方向一端側から1番気筒2A、2番気筒2B、3番気筒2C、4番気筒2Dと呼ぶと、図10に示すように上記サイクルが1番気筒2A、3番気筒2C、4番気筒2D、2番気筒2Bの順にクランク角で180°ずつの位相差をもって行われるようになっている。なお、図10において、EXは排気行程、INは吸気行程であり、また、Fは燃料噴射、Sは強制点火を表し、図中の星マークは圧縮着火が行われることを表している。
排気行程と吸気行程が重なる一対の気筒間には、排気行程と吸気行程が重なるときの排気行程側の気筒(当明細書ではこれを先行気筒と呼ぶ)から、吸気行程側の気筒(当明細書ではこれを後続気筒と呼ぶ)に既燃ガスをそのまま導くことができるように、気筒間ガス通路22が設けられている。当実施形態の4気筒エンジンでは、図10に示すように1番気筒2Aの排気行程(EX)と2番気筒2Bの吸気行程(IN)とが重なり、また4番気筒2Dの排気行程(EX)と3番気筒2Cの吸気行程(IN)が重なるので、1番気筒2Aと2番気筒2B、および、4番気筒2Dと3番気筒2Cがそれぞれ一対をなし、1番気筒2Aおよび4番気筒2Dが先行気筒、2番気筒2Bおよび3番気筒2Cが後続気筒となる。
各気筒の吸・排気ポートとこれに接続される吸気通路、排気通路および気筒間ガス通路は、具体的には次のように構成されている。
先行気筒である1番気筒2Aおよび4番気筒2Dには、それぞれ、新気を導入するための吸気ポート11と、既燃ガス(排気ガス)を排気通路に送り出すための第1排気ポート12aと、既燃ガスを後続気筒に導出するための第2排気ポート12bとが配設されている。また、後続気筒である2番気筒2Bおよび3番気筒2Cには、それぞれ、新気を導入するための第1吸気ポート11aと、先行気筒からの既燃ガスを導入するための第2吸気ポート11bと、既燃ガスを排気通路に送り出すための排気ポート12とが配設されている。
図1に示す例では、先行気筒2A,2Dにおける吸気ポート11および後続気筒2B,2Cにおける第1吸気ポート11aが、1気筒当り2個ずつ、燃焼室の一方側半部に並列的に設けられている。また、先行気筒2A,2Dにおける第1排気ポート12aおよび第2排気ポート12bならびに後続気筒2B,2Cにおける第2吸気ポート11bおよび排気ポート12が、燃焼室の他方側半部に並列的に設けられている。すなわち、後続気筒2B,2Cの他方側半部には、後述するように排気ポート12を開閉する排気弁32と、第2吸気ポート11bを開閉するガス導入弁31bとが相隣接して配設されている。
先行気筒2A,2Dにおける吸気ポート11および後続気筒2B,2Cにおける第1吸気ポート11aには、吸気通路15における気筒別の分岐吸気通路16の下流端が接続されている。各分岐吸気通路16の下流端近傍には、共通の軸を介して互いに連動する多連スロットル弁17が設けられており、この多連スロットル弁17は制御信号に応じてアクチュエータ18により駆動され、吸入空気量を調節するようになっている。なお、吸気通路15における集合部より上流の共通吸気通路には吸気流量を検出するエアフローセンサ19が設けられている。
先行気筒2A,2Dにおける第1排気ポート12aおよび後続気筒2B,2Cにおける排気ポート12には、排気通路20における気筒別の分岐排気通路21の上流端部が接続されている。また、1番気筒2Aと2番気筒2Bとの間および3番気筒2Cと4番気筒2Dとの間には、それぞれ気筒間ガス通路22が設けられ、先行気筒である1番,4番気筒2A,2Dの第2排気ポート12bに気筒間ガス通路22の上流端部が接続されるとともに、後続気筒である2番,3番気筒2B,2Cの第2吸気ポート11bに気筒間ガス通路22の下流端部が接続されている。
上記気筒間ガス通路22の下流端部(後続気筒側端部)に位置する後続気筒2B,2Cの第2吸気ポート11bは、ヘリカルポートとなっている。つまり、図3および図5に示すように、第2吸気ポート11bは、開口部近傍のスロート部がヘリカル状に湾曲した形状とされることにより、このヘリカル状のスロート部を通って燃焼室4内に流入するガスが燃焼室4内に強いスワールSを生成するようになっている。
一方、上記気筒間ガス通路22の上流端部(先行気筒側端部)に位置する先行気筒2A,2Dの第2排気ポート12bは、タンジェンシャルポートとなっている。つまり、この第2排気ポート12bは、側方から見ると図4に示すように斜め上方から燃焼室4に向けて緩やかに湾曲し、燃焼室4の略シリンダ軸線方向に開口するように形成されており、平面視では図5に示すように略ストレートに延びている。このような形状とされることにより、燃焼室4から気筒間ガス通路22へスムーズに導出されて、第2排気ポート12bでの流通抵抗が極力小さくなるように形成されている。なお、吸気ポート11、第1排気ポート12a、第1吸気ポート11aおよび排気ポート12もタンジェンシャルポートとなっている。
上記気筒間ガス通路22には、酸素濃度に応じて出力がリニアに変化するリニアO2センサ25が設けられており、その出力に基づいて所定のリーン空燃比とされる先行気筒2A,2Dに対する燃料噴射量がフィードバック制御されるようになっている。
排気通路20における分岐排気通路21の下流の集合部には排気ガス中の酸素濃度を検出することにより空燃比を検出するO2センサ23が設けられている。O2センサ23は、理論空燃比付近で出力が急変するλO2センサであり、このO2センサ23の出力に基づいて後続気筒2B,2C(各気筒独立状態のときは先行気筒2A,2Dを含む)に対する燃料噴射量がフィードバック制御されるように構成されている。さらに、上記O2センサ23の下流の排気通路20には、排気浄化用の三元触媒24が設けられている。この三元触媒24は、一般に知られているように、排気ガスの空燃比が理論空燃比(つまり空気過剰率λが1)付近にあるときにHC,COおよびNOxに対して高い浄化性能を示す触媒である。
各気筒の吸・排気ポートを開閉する各弁とこれらに対する動弁機構は、次のようになっている。
先行気筒2A,2Dにおける吸気ポート11、第1排気ポート12aおよび第2排気ポート12bにはそれぞれ吸気弁31、排気弁32aおよびガス導出弁32bが設けられ、また後続気筒2B,2Cにおける第1吸気ポート11a、第2吸気ポート11bおよび排気ポート12にはそれぞれ吸気弁31a、ガス導入弁31bおよび排気弁32が設けられている。
上記各弁31,32a,32b,31a,31b,32は、それぞれバルブスプリングにより閉弁方向に付勢されたポペット弁からなり、各気筒が吸気行程または排気行程にあるときにカムシャフト33,34に設けられた駆動カムにより押し下げられて開放状態となる。ガス導入弁31b、ガス導出弁32bおよび排気弁32,32aを構成するポペット弁の弁径は同一径に設定されている。
上記吸気弁31,31aおよび排気弁32,32aに対して設けられたバルブスプリング51は、後述の通常運転モードの制御が行われる高速域でのバルブ動作性能を満足するようにバネ定数が比較的大きく設定されているが、ガス導出弁32bに対して設けられたバルブスプリング52およびガス導入弁31bに対して設けられたバルブスプリング53は、バネ定数がバルブスプリング51と比べて小さく、後述の特殊運転モードの制御が行われる低速域でのバルブ動作性能を満足し得る程度に設定されている。具体的には、図6(a),(b)に示すように、バルブスプリング52,53はバルブスプリング51と比べて線径が細くされることにより、バネ定数が小さくされている。
また、ガス導入弁31bに対して設けられたバルブスプリング53のセット荷重(ガス導入弁31bの閉止状態におけるバルブスプリングの付勢力)は、ガス導出弁32bに対して設けられたバルブスプリング52のセット荷重よりも高い値に設定されている。例えば、バルブスプリング53はバルブスプリング52と比べ、自由長が長くされることにより、一定長に圧縮したセット状態での付勢力が大きくなるように設定されている。
さらに、上記各弁のうちで排気弁32a、ガス導出弁32b、吸気弁31aおよびガス導入弁31bに対しては、これらの弁を作動状態と停止状態とに切り換える弁停止機構35が設けられている。この弁停止機構35は、従来から知られているため詳しい図示は省略するが、例えば、カムと弁軸との間に介装されたタペットに作動油の給排が可能な油圧室が設けられ、この油圧室に作動油が供給されている状態ではカムの作動が弁に伝えられて弁が開閉作動され、油圧室から作動油が排出されたときにはカムから弁への動力の伝達が遮断されて弁が停止されるように構成されたものである。
後続気筒2B,2C側の吸気弁31aおよび先行気筒2A,2D側の排気弁32aの弁停止機構35に対する作動油給排用の通路36には、第1コントロール弁37が設けられており、ガス導入弁31bおよびガス導出弁32bの弁停止機構35に対する作動油給排用の通路38には、第2コントロール弁39が設けられている(図7参照)。
図7は、当実施形態における駆動、制御系統の構成を示している。この図において、マイクロコンピュータ等からなるエンジン制御用のECU(コントロールユニット)40には、エアフローセンサ19、O2センサ23およびリニアO2センサ25からの信号が入力されるとともに、運転状態を判別するためにエンジン回転数を検出する回転数センサ47とアクセル開度(アクセルペダル踏込み量)を検出するアクセル開度センサ48とからの信号が入力されるようになっている。このECU40から、点火回路8、各燃料噴射弁9、多連スロットル弁17のアクチュエータ18、第1,第2のコントロール弁37,39に対して制御信号が出力されるように構成されている。
上記ECU40は、少なくともエンジンの低負荷低回転側の部分負荷領域で、ガス流通経路を2気筒接続状態としつつ、燃焼を行わせる制御手段を構成するものであり、運転状態判別手段41、弁停止機構制御手段42、吸入空気量制御手段43、燃料噴射制御手段45および点火制御手段46を備えている。
運転状態判別手段41は、回転数センサ47およびアクセル開度センサ48等から出力されたエンジンの運転状態(エンジン回転数およびエンジン負荷)の検出信号に基づき、運転状態が図4に示すような低負荷低回転側の領域A(部分負荷領域)と、高負荷側ないし高回転側の領域Bとを判別し、所定の条件下(たとえばエンジンが完全に暖機された状態)で、エンジンが低負荷低回転側の領域Aにある場合に2気筒接続状態とする特殊運転モードでの燃焼制御を選択し、高負荷側ないし高回転側の領域Bにある場合には各気筒独立状態とする通常運転モードでの燃焼制御を選択するように構成されている。
弁停止機構制御手段42は、上記運転状態判別手段41による特殊運転モードか通常運転モードかの判別結果に応じ、上記各コントロール弁37,39を制御することにより、各弁停止機構35を次のように制御する。
特殊運転モード:先行気筒排気弁32aおよび後続気筒吸気弁31aを停止状態
ガス導出弁32bおよびガス導入弁31bを作動状態
通常運転モード:先行気筒排気弁32aおよび後続気筒吸気弁31aを作動状態
ガス導出弁32bおよびガス導入弁31bを停止状態
吸入空気量制御手段43は、アクチュエータ18を制御することによりスロットル弁17の開度(スロットル開度)を制御するものであり、運転状態に応じてマップ等から目標吸入空気量を求め、その目標吸入空気量に応じてスロットル開度を制御する。この場合、特殊運転モードでは、後述のように後続気筒2B,2Cにおいては分岐吸気通路16からの吸気導入が遮断された状態で先行気筒から導入されるガス中の過剰空気と新たに供給される燃料との比が理論空燃比(以下これを実質的な理論空燃比という)とされつつ燃焼が行われるので、先行、後続の2気筒分の要求トルクに応じた燃料の燃焼に必要な量の空気(2気筒分の燃料の量に対して理論空燃比となる量の空気)が先行気筒2A,2Dに供給されるように、スロットル開度が調節される。
上記燃料噴射制御手段45は、各気筒2A〜2Dに設けられた燃料噴射弁9からの燃料噴射量および噴射タイミングをエンジンの運転状態に応じて制御し、また、点火制御手段46は、運転状態に応じた点火時期の制御および点火停止等の制御を行う。そして、特に運転状態が特殊運転モードである場合と通常運転モードである場合とで燃料噴射および点火の制御状態が変更されるようになっている。
すなわち、特殊運転モードとされる低負荷低回転側の領域Aでは、先行気筒2A,2Dに対しては、空燃比を理論空燃比よりも大きいリーン空燃比、好ましくは理論空燃比の略2倍もしくはそれ以上とするように燃料噴射量が制御されるとともに、圧縮行程で燃料を噴射して混合気の成層化を行わせるように噴射タイミングが設定され、かつ、圧縮上死点付近で強制点火を行わせるように点火タイミングが設定される。一方、後続気筒2B,2Cに対しては、先行気筒2A,2Dから導入されたリーン空燃比の既燃ガスに対して燃料が供給され、実質的な理論空燃比となるように燃料噴射量が制御され、かつ、吸気行程で燃料を噴射するように噴射タイミングが設定されるとともに、運転状態に応じて圧縮自己着火または強制点火による燃焼が行われるようになっている。
また、高負荷側ないし高回転側の領域Bにある場合には、各気筒2A〜2Dの空燃比を理論空燃比もしくはそれ以下とするように燃料噴射量を制御して通常運転モードの燃焼制御が実行され、例えば通常運転モードにおける大部分の領域で理論空燃比とし、最高負荷およびその付近の運転領域で理論空燃比よりリッチとする制御が実行される。そして、この場合に、各気筒2A〜2Dに対して吸気行程で燃料を噴射して混合気を均一化するように噴射タイミングを設定し、かつ各気筒2A〜2Dで強制点火を行わせるように制御される。
図9は特殊運転モードのときの先行気筒2A,2Dの吸気弁31およびガス導出弁32bと後続気筒2B,2Cのガス導入弁31bおよび排気弁32の各作動タイミングの一例を示している。この図に示す例では、上記ガス導入弁31bの開弁時期α1が、後続気筒2B,2Cの排気上死点TDCないしその近傍に設定されるとともに、上記ガス導出弁32bの開弁時期β1が、後続気筒2B,2Cの排気上死点TDCよりも所定のクランク角度(CA)、例えば50°CAだけ前に設定されることにより、特殊運転モードの制御時における上記ガス導入弁31bの開弁時期α1がガス導出弁32bの開弁時期β1よりも遅い時期に設定されている。
一方、後続気筒2B,2Cに設けられた排気弁32の閉弁時期γ2が、後続気筒2B,2Cの排気上死点TDCまたはその近傍、例えば排気上死点TDC後の4°CA程度の時期に設定され、後続気筒2B,2Cの燃焼室に相隣接して設けられた上記排気弁32とガス導入弁31bとのオーバラップ期間ORがクランク角度で5°CA以内に設定されることにより、上記排気弁32とガス導入弁31bとが実質的にオーバラップ状態となる期間が略0となるように構成されている。
また、上記ガス導出弁32bの閉弁時期β2が、先行気筒2A,2Dの排気上死点TDCないしその近傍に設定されるとともに、上記ガス導入弁31bの閉弁時期α2が、先行気筒2A,2Dの排気上死点TDCよりも所定のクランク角度、例えば54°CAだけ後に設定されることにより、特殊運転モードの制御時における上記ガス導入弁31bの閉弁時期α2がガス導出弁32bの閉弁時期β2よりも遅い時期に設定されている。
なお、上記の具体的数値で示した開弁時期および閉弁時期は、バルブリフト量が0.4mmの時点をもって定義したものである。
以上のような当実施形態の装置の作用を、図10〜図12を参照しつつ説明する。
特殊運転モードでは、前述のように先行気筒2A,2Dの排気弁32aおよび後続気筒2B,2Cの吸気弁31aが停止状態、気筒間ガス通路22の上流端部に設けられたガス導出弁32bおよび気筒間ガス通路22の下流端部に設けられたガス導入弁31bが作動状態とされることにより、実質的な新気およびガスの流通経路が、図11に示すような2気筒接続状態とされ、先行気筒2A,2Dから排出される既燃ガスがそのまま気筒間ガス通路22を介して後続気筒2B,2Cに導入されるとともに、この後続気筒2B,2Cから排出される排気ガスのみが排気通路20に導かれることになる。
上記2気筒接続状態において、先行気筒2A,2Dにそれぞれ吸気行程で吸気通路15から新気が導入され(図11中の矢印a)、先行気筒2A,2DではリニアO2センサ25によって検出される空燃比が理論空燃比の略2倍ないしそれ以上の超リーン空燃比となるように燃料噴射量がフィードバック制御されつつ、圧縮行程で燃料が噴射され、かつ所定の点火時期に点火が行われることにより、超リーン空燃比での成層燃焼が行われる(図10参照)。
なお、本発明の実施形態では、先行気筒2A,2Dの空燃比制御の精度を高めるために、気筒間ガス通路22にリニアO2センサ25を設けて先行気筒2A,2Dの燃料噴射量をフィードバック制御しているが、上記リニアO2センサ25はなくてもよい。すなわち、先行気筒2A,2Dの燃料噴射量は、エアフローセンサ19、O2センサ23、回転数センサ47、アクセル開度センサ48、ECU40から、エンジンの運転状態に応じて予め設定された空燃比となるように、吸入空気量に対応する先行気筒2A,2Dの燃料噴射量を決定し(オープン制御)、後続気筒2B,2Cにおいては、O2センサ23の出力に基づいて、理論空燃比となるように燃料の噴射量をフィードバック制御してもよい。さらに、O2センサ23の出力に基づいて、先行気筒2A,2Dと後続気筒2B,2Cの双方の燃料噴射量を決定してもよい。
その後、先行気筒2A,2Dの吸気行程と後続気筒2B,2Cの排気行程が一致する期間に、先行気筒2A,2Dから排出された既燃ガスがガス通路22を通って後続気筒2B,2Cに導入される(図10中の白抜き矢印および図11中の矢印b)。そして、後続気筒2B,2Cでは、先行気筒2A,2Dから導入されたリーン空燃比の既燃ガスに燃料が供給されて、実質的な理論空燃比となるように燃料噴射量が制御されつつ、吸気行程で燃料が噴射された後、均質燃焼が行われる。
この場合、先行気筒2A,2Dから排出された高温の既燃ガスが上記気筒間ガス通路22を介して後続気筒2B,2Cに導入されるように構成したため、後続気筒2B,2Cでは吸気行程で燃焼室内の温度を効果的に上昇させることができるとともに、この状態から、さらに圧縮行程で圧力および温度を上昇させることにより、圧縮行程の上死点付近で混合気を充分に圧縮自己着火させ得る程度まで燃焼室内の温度を上昇させることができる。しかも、上記先行気筒2A,2Dから導出された既燃ガスが後続気筒2B,2Cに導入されるまでの間に充分にミキシングされて均一に分布するとともに、吸気行程で後続気筒2B,2Cに噴射された燃料も圧縮行程終期までの間に燃焼室内全体に分散するので、理想的な同時圧縮着火の条件を満たすような混合気の分布状態が得られる。
したがって、後続気筒2B,2Cでは、多量のEGRガス相当の既燃ガス成分を含み、かつ、空燃比がリーンであるという条件下であっても、同時圧縮着火により燃焼が急速に行われる等より、エンジンの熱効率が大幅に向上されることとなる。
とくに、気筒間ガス通路22の先行気筒側端部に位置する第2排気ポート12bがタンジェンシャルポートとされることにより、先行気筒2A,2Dから気筒間ガス通路22への既燃ガスの流出はスムーズに行われつつ、気筒間ガス通路22の後続気筒側端部に位置する第2吸気ポート11bがヘリカルポートとされていることにより、後続気筒2B,2Cに導入される既燃ガスで後続気筒内に強いスワールが生成されるため、後続気筒でのガスと燃料噴霧とのミキシング性能および燃料の均質分散性が高められる。このため、広い運転領域にわたって良好に圧縮自己着火が行われる環境を得ることができ、圧縮自己着火を行う運転領域を拡大することができる。
このように、先行気筒2A,2Dでは超リーンでの成層燃焼により熱効率が高められるとともにポンピングロスが低減され、かつ後続気筒2B,2Cでは、先行気筒2A,2Dと同様にポンピングロス低減効果が得られるとともに、均一な混合気分布状態で圧縮自己着火が行われることにより熱効率が高められるため、これらの作用により、燃費が大幅に改善されることとなる。さらに、上記後続気筒2B,2Cでの圧縮自己着火が先行気筒2A,2Dから導出される既燃ガスの温度を利用して達成されるため、格別の加熱手段を用いたりエンジンの圧縮比を極端に高くしたりする等の構成を採用することなく、広い運転範囲に亘って圧縮自己着火を行わせることができる。
また、先行気筒2A,2Dでは、理論空燃比の略2倍もしくはそれ以上のリーン空燃比とされることでNOx発生量が比較的少なく抑えられ、後続気筒2B,2Cでは、先行気筒2A,2Dから既燃ガスが導入されることで多量のEGRが行われているのと同等の状態となることからNOxの発生が充分に抑制される。このような点からもエミッションの向上に有利となる。
また、特殊運転モードの制御時にガス導出弁32b、ガス導入弁31b等の作動タイミングが図9に示すように設定されていることにより、ガスの流動等が良好に行われる。
すなわち、上記ガス導入弁31bの開弁時期α1がガス導出弁32bの開弁時期β1よりも遅い時期に設定されて、後続気筒2B,2Cの排気上死点近傍で閉弁状態となる排気弁32と上記ガス導入弁31bとのオーバラップ期間ORが短くされることにより、上記気筒間ガス通路22から後続気筒2B,2C内に導入された上記既燃ガスが排気ポート12を介して排気通路20側に吹き抜けることが防止され、後続気筒2B,2Cにおける燃焼性が確保される。しかも、気筒間ガス通路22の上流端部に設けられたガス導出弁32bが早期に開放されることにより、先行気筒2A,2Dから気筒間ガス通路22内に既燃ガスがスムーズに流動される。
さらに、上記ガス導入弁31bの閉弁時期α2がガス導出弁32bの閉弁時期β2よりも遅い時期に設定され、上記ガス導入弁31bが相対的に遅閉じ状態となっているため、先行気筒2A,2Dから排出される既燃ガスが後続気筒2B,2Cに気筒間ガス通路22を介して導入される際に、大きな流動損失が生じることが防止され、後続気筒2B,2Cに対する上記既燃ガスの導入量が充分に確保されて後続気筒2B,2Cの自己着火性能が高められる。しかも、ガス導出弁32bが相対的に早閉じ状態とされることにより、先行気筒2A,2Dの内部EGR量が増大することが防止されて、先行気筒2A,2Dに対する新気の導入量が充分に確保される。したがって、先行気筒2A,2Dにおける燃焼性が高められる。
ところで、上記ガス導出弁32bおよびガス導入弁31bは、特殊運転モードとされる低負荷低回転側の領域Aでのみ作動され、高負荷側ないし高回転側の領域Bでは停止されるため、上記ガス導出弁32bおよびガス導入弁31bに対するバルブスプリング52,53のばね定数は低回転側の領域でのバルブ作動性能を満足し得る程度に比較的小さく設定しておけばよい。そして、このようにバルブスプリング52,53のばね定数を小さくすることにより、バルブ駆動抵抗が小さくなり、燃費低減効果が高められる。
また、ガス導入弁31bに対するバルブスプリング53のセット荷重がガス導出弁32bに対するバルブスプリング53のセット荷重よりも大きく設定されていることにより、ガス導入弁31bの不正規な作動が防止される。つまり、ガス導入弁31bには気筒間ガス22から高圧の既燃ガスの圧力が作用し、特に前述のようにガス導入弁31bの開弁時期がガス導出弁32bの開弁時期より遅く設定されている場合、ガス導入弁31bの開弁前に先行気筒2A,2Dから気筒間ガス通路22に導出された高圧の既燃ガスの圧力がガス導入弁31bに作用するが、このガス導入弁31bに対するバルブスプリング53のセット荷重が比較的大きく設定されていることにより、上記既燃ガスの圧力によってガス導入弁31bが設定開弁時期より前に不正規に開いてしまうことが確実の防止され、後続気筒2B,2C内に既燃ガスが早期に導入されることに起因した既燃ガスの吹き抜けが防止されることとなる。
一方、高負荷側ないし高回転側の領域Bでは、前述のように第1排気弁32aおよび第1吸気弁31aが作動状態とされるとともに、ガス導出弁32bおよびガス導入弁31bが停止状態とされることにより、実質的な新気および既燃ガスの流通経路は図12に示すようになり、各気筒2A〜2Dの吸気ポート11,11aおよび排気ポート12a,12が独立し、吸気通路15から各気筒2A〜2Dの吸気ポート11,11aに新気がそれぞれ導入されるとともに、各気筒2A〜2Dの排気ポート12a,12から排気通路20に既燃ガスが排出される。そして、上記通常運転モードの制御状態では理論空燃比もしくはそれよりややリッチとなるように吸入空気量および燃料噴射量が制御されることにより、高負荷側ないし高回転側の領域Bにおける出力性能が確保される。
なお、上記実施形態では、特殊運転モードの時に、後続気筒では理論空燃比で圧縮自己着火燃焼を行わせるようにしているが、リーン空燃比で圧縮自己着火燃焼を行わせるようにしてもよく、このようにすれば、燃費がより一層改善されるとともに、NOx低減効果も高められる。
また、特殊運転モードにおいて後続気筒で圧縮自己着火が行われる場合に、後続気筒に対する点火は停止してもよいが、圧縮自己着火を促進するための点火(点火アシスト)を行なうようにしてもよい。
本発明の実施形態に係る制御装置を備えたエンジン全体の概略平面図である。 エンジン本体等の概略断面図である。 後続気筒の吸・排気ポートおよびガス導入弁等の配設部分を示す断面図である。 先行気筒の吸・排気ポートおよびガス導出弁等の配設部分を示す断面図である。 一対の先行、後続気筒の吸・排気ポートおよび気筒間ガス通路等を示す概略平面図である。 (a)(b)バネ定数が異なる2種類のバルブスプリングを示す断面図である。 駆動、制御系統の構成を示す説明図である。 運転領域を示す説明図である。 特殊運転モードにおける弁の開閉タイミングを示す説明図である。 各気筒の排気行程、吸気行程、燃料噴射時期および点火時期等を示す図である。 特殊運転モードの新気およびガスの流通経路を示す説明図である。 通常運転モードの新気およびガスの流通経路を示す説明図である。
符号の説明
1 エンジン本体
2A,2D 1番,4番気筒(先行気筒)
2B,2C 2番,3番気筒(後続気筒)
9 燃料噴射弁
11,11a,11b 吸気ポート
12,12a,12b 排気ポート
15 吸気通路
20 排気通路
22 気筒間ガス通路
31b ガス導入弁
32b ガス導出弁
42 弁停止機構制御手段
45 燃料噴射制御手段
46 点火制御手段
51,52,53 バルブスプリング

Claims (5)

  1. 各気筒の燃焼サイクルが所定の位相差をもつように設定された多気筒の火花点火式エンジンにおいて、
    エンジンの所定運転領域で、排気行程と吸気行程とが重なる一対の気筒間において排気行程にある先行気筒から排出される既燃ガスがそのまま吸気行程にある後続気筒に気筒間ガス通路を介して導入され、この後続気筒から排出される既燃ガスが排気通路に導かれるような2気筒接続状態としつつ、先行気筒の空燃比を理論空燃比よりも大きいリーン空燃比として燃焼を行わせ、この先行気筒から後続気筒にリーン空燃比の既燃ガスを導入させて新たに供給された燃料とともに後続気筒で均質燃焼させる特殊運転モードの制御を実行するようにした火花点火式エンジンであって、
    上記気筒間ガス通路の後続気筒側端部をヘリカルポートとする一方、上記気筒間ガス通路の先行気筒側端部をタンジェンシャルポートとしたことを特徴とする火花点火式エンジン。
  2. 上記特殊運転モードの制御を実行するときに、上記後続気筒で圧縮自己着火による燃焼を行わせることを特徴とする請求項1記載の火花点火式エンジン。
  3. 上記特殊運転モードの制御をエンジンの部分負荷域で行う一方、エンジンの高負荷域では、各気筒にそれぞれ新気が導入され各気筒からそれぞれ排出されるガスが排気通路に導かれる各気筒独立状態としつつ、各気筒においてそれぞれ燃焼を行わせる通常運転モードの制御を実行するようにしたことを特徴とする請求項1又は2記載の火花点火式エンジン。
  4. エンジン回転数が所定回転数以下の低回転側領域における部分負荷領域で上記特殊運転モードの制御を実行するようにし、
    上記気筒間ガス通路の先行気筒側端部にガス導出弁、後続気筒側端部にガス導入弁をそれぞれ設け、かつ、排気通路に通じる各気筒の排気ポートに排気弁を設け、上記ガス導出弁、ガス導入弁および排気弁を略同一径のポペット弁で形成し、これらの弁に対してそれぞれ閉弁方向に付勢するバルブスプリングを設けるともに、上記ガス導出弁および上記ガス導入弁の各バルブスプリングのばね定数を上記排気弁のバルブスプリングのバネ定数よりも小さくしたことを特徴とする請求項3記載の火花点火式エンジン。
  5. 上記ガス導入弁のバルブスプリングのセット荷重を上記ガス導出弁のバルブスプリングのセット荷重よりも大きくしたことを特徴とする請求項4記載の火花点火式エンジン。
JP2003286285A 2003-08-04 2003-08-04 火花点火式エンジン Abandoned JP2005054669A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003286285A JP2005054669A (ja) 2003-08-04 2003-08-04 火花点火式エンジン

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003286285A JP2005054669A (ja) 2003-08-04 2003-08-04 火花点火式エンジン

Publications (1)

Publication Number Publication Date
JP2005054669A true JP2005054669A (ja) 2005-03-03

Family

ID=34365635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003286285A Abandoned JP2005054669A (ja) 2003-08-04 2003-08-04 火花点火式エンジン

Country Status (1)

Country Link
JP (1) JP2005054669A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034931A (ja) * 2012-08-09 2014-02-24 Daihatsu Motor Co Ltd 内燃機関の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034931A (ja) * 2012-08-09 2014-02-24 Daihatsu Motor Co Ltd 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
JP3963144B2 (ja) 火花点火式エンジンの制御装置
EP1408222B1 (en) Spark-ignition engine controller
JP4259255B2 (ja) 火花点火式エンジンの制御装置
JP2005054676A (ja) 火花点火式エンジン
JP3711939B2 (ja) 火花点火式エンジンの制御装置
JP3711941B2 (ja) 火花点火式エンジンの制御装置
JP2005054669A (ja) 火花点火式エンジン
JP3972744B2 (ja) 火花点火式4サイクルエンジンの制御装置
JP4285091B2 (ja) 火花点火式エンジンの制御装置
JP4329446B2 (ja) 火花点火式エンジンの制御装置
JP3826850B2 (ja) 火花点火式エンジンの制御装置
JP3894083B2 (ja) 火花点火式エンジンの制御装置
JP3951855B2 (ja) 火花点火式エンジンの制御装置
JP4123102B2 (ja) 火花点火式エンジンの制御装置
JP4107180B2 (ja) 火花点火式エンジンの制御装置
JP3922153B2 (ja) 火花点火式エンジンの制御装置
JP4123122B2 (ja) 火花点火式エンジンの制御装置
JP4158670B2 (ja) 火花点火式エンジンの制御装置
JP3951829B2 (ja) 火花点火式4サイクルエンジンの制御装置
JP3900072B2 (ja) 火花点火式エンジンの制御装置
JP4052214B2 (ja) 火花点火式エンジンの制御装置
JP2005016358A (ja) 火花点火式エンジンの制御装置
JP2005054677A (ja) 火花点火式エンジン
JP2005054678A (ja) 火花点火式エンジンの制御装置
JP2005016360A (ja) 火花点火式エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051115

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20070706