JP2019193931A - 溶液混合容器、及び流体デバイス - Google Patents

溶液混合容器、及び流体デバイス Download PDF

Info

Publication number
JP2019193931A
JP2019193931A JP2019089357A JP2019089357A JP2019193931A JP 2019193931 A JP2019193931 A JP 2019193931A JP 2019089357 A JP2019089357 A JP 2019089357A JP 2019089357 A JP2019089357 A JP 2019089357A JP 2019193931 A JP2019193931 A JP 2019193931A
Authority
JP
Japan
Prior art keywords
flow path
solution
channel
valve
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019089357A
Other languages
English (en)
Other versions
JP6885549B2 (ja
Inventor
一木 隆範
Takanori Ichiki
隆範 一木
太郎 上野
Taro Ueno
太郎 上野
章一 土屋
Shoichi Tsuchiya
章一 土屋
雅 小林
Masashi Kobayashi
雅 小林
宮本 健司
Kenji Miyamoto
健司 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
University of Tokyo NUC
Original Assignee
Nikon Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp, University of Tokyo NUC filed Critical Nikon Corp
Publication of JP2019193931A publication Critical patent/JP2019193931A/ja
Application granted granted Critical
Publication of JP6885549B2 publication Critical patent/JP6885549B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/54Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle provided with a pump inside the receptacle to recirculate the material within the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/51Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is circulated through a set of tubes, e.g. with gradual introduction of a component into the circulating flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/45Mixing liquids with liquids; Emulsifying using flow mixing
    • B01F23/451Mixing liquids with liquids; Emulsifying using flow mixing by injecting one liquid into another
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • B01F35/754Discharge mechanisms characterised by the means for discharging the components from the mixer
    • B01F35/7547Discharge mechanisms characterised by the means for discharging the components from the mixer using valves, gates, orifices or openings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/386Other diluting or mixing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"

Abstract

【課題】混合器内で混合される各溶液の体積を正確に定量可能な溶液混合器、該溶液混合器を備えた流体デバイスおよび溶液の混合方法を提供する。【解決手段】本発明の溶液混合器20は、溶液が循環する主流路21と、前記主流路に接続する溶液導入流路42と、前記主流路に接続する溶液排出流路32と、を備え、前記溶液排出流路は溶液排出流路バルブ33を有し、前記主流路中には主流路バルブ23a,23bを有することを特徴とする。【選択図】図1

Description

本発明は、溶液混合器、流体デバイス及び溶液の混合方法に関する。
本願は、2013年9月25日に、日本に出願された特願2013−199071号に基づき優先権を主張し、その内容をここに援用する。
近年、体外診断分野における試験の高速化、高効率化、および集積化、又は、検査機器の超小型化を目指したμ−TAS(Micro−Total Analysis Systems)の開発などが注目を浴びており、世界的に活発な研究が進められている。
μ−TASは、少量の試料で測定、分析が可能なこと、持ち運びが可能となること、低コストで使い捨てが可能なこと等、従来の検査機器に比べて優れている。
更に、高価な試薬を使用する場合や少量多検体を検査する場合において、有用性が高い方法として注目されている。
μ−TASの構成要素として、ループ状流路と、該流路上に配置されるポンプとを備えた回転式混合器が報告されている(非特許文献1)。この回転式混合器では、該ループ状の流路へと複数の溶液を注入し、ポンプを作動させることで、複数の溶液をループ状流路内で混合する。前記複数の溶液は、ループ状流路に連結する注入流路内に蓄積された後、ループ状流路へと注入される。この注入流路上にはバルブが設けられており、当該流路内で各溶液の体積が定量される。
Jong Wook Hong, Vincent Studer, Giao Hang, W French Anderson and Stephen R Quake、Nature Biotechnology 22, 435 - 439 (2004)
非特許文献1に記載の方法では、上述したように、ループ状流路内で混合される複数の溶液は、一旦、注入流路内に蓄積および定量された後にループ状流路内へと注入される。
一般的に、流路へと溶液を注入する際、空気等の混入のないように流路内を完全に溶液で満たそうとすれば、空気の排出完了と同時に注入を停止しない限り、流路内の体積よりも多くの溶液を注入する必要がある。これは非特許文献1に記載の回転混合器の構成においても同様であり、上記ループ状流路内で混合される複数の溶液は、ループ状流路内の体積よりも多くの溶液が注入されなければならない。したがって、混合に用いる溶液の体積は、注入流路内で定量されてはいても、ループ状流路内で実際に混合される際には、必ずしも正確ではないという恐れがあった。
本発明は、上記事情に鑑みてなされたものであって、混合器内で混合される各溶液の体積を正確に定量可能な溶液混合器、該溶液混合器を備えた流体デバイスおよび溶液の混合方法を提供することを目的とする。
本発明者らは上記の課題を解決するため、鋭意研究を行った結果、任意の体積を有する主流路を、バルブにより定量区画させることで、主流路内に注入された溶液を定量且つ混合することが可能となることを見出した。本発明の一実施態様は、下記(1)〜(6)を提供するものである。
(1)本発明の一実施態様における溶液混合器は、
溶液が循環する主流路と、
前記主流路に接続する少なくとも1つの溶液導入流路と、
前記主流路に接続する少なくとも1つの溶液排出流路と、を含み、
前記溶液排出流路は少なくとも1つの溶液排出流路バルブを有し、
前記主流路は少なくとも1つの主流路バルブを有する。
(2)本発明の一実施態様における流体デバイスは、先に記載の溶液混合器を備えることを特徴とする。
(3)本発明の一実施態様における溶液の混合方法は、溶液混合器を用いて、2種類の溶液を混合する方法であって、
前記溶液混合器は、
溶液が循環する主流路と、前記主流路に接続する溶液導入流路と、前記主流路に接続する溶液排出流路と、を含み、前記溶液排出流路は溶液排出流路バルブを有し、前記主流路は少なくとも1つの主流路バルブを有し、少なくとも1つの前記主流路バルブは、前記溶液排出流路の近傍に配置されており、
前記溶液排出流路の近傍に配置された少なくとも1つの前記主流路バルブ及び前記溶液排出流路バルブを開放した状態で、第一の溶液を前記溶液導入流路から前記主流路に送液する工程aと、
前記溶液排出流路の近傍に配置された少なくとも1つの前記主流路バルブを閉める工程bと、
第二の溶液を前記溶液導入流路から前記主流路に送液する工程cと、
前記溶液排出流路バルブを閉じる工程dと、
前記溶液排出流路の近傍に配置された少なくとも1つの前記主流路バルブを開け、前記第一の溶液と前記第二の溶液とを循環させて混合する工程eと、を含む方法である。
(4)本発明の一実施態様における溶液の混合方法は、溶液混合器を用いて、2種類の溶液を混合する方法であって、
前記溶液混合器は、
溶液が循環する主流路と、前記主流路に接続する溶液導入流路と、前記主流路に接続する溶液排出流路と、を含み、前記溶液排出流路は溶液排出流路バルブを有し、前記主流路は2つの主流路バルブを有し、前記溶液導入流路及び前記溶液排出流路は、前記2つの主流路バルブを閉じることによって区画される前記主流路の部分領域以外の領域で前記主流路に接続しており、
前記2つの主流路バルブ及び前記溶液排出流路バルブを開放した状態で、第一の溶液を前記溶液導入流路から前記主流路に送液する工程aと、
前記2つの主流路バルブを閉じる工程bと、
第二の溶液を前記溶液導入流路から前記主流路に送液する工程cと、
前記溶液排出流路バルブを閉じる工程dと、
前記2つの主流路バルブを開け、前記第一の溶液と前記第二の溶液とを循環させて混合する工程eと、
を含む方法である。
(5)本発明の一実施態様における溶液の混合方法は、溶液混合容器を用いて、複数の溶液を混合する方法であって、
前記溶液混合容器は、
第一の流路と、
第二の流路と、
前記第一の流路及び前記第二の流路を連通させる第一の結合流路及び第二の結合流路と、
前記第一の流路及び前記第二の流路のそれぞれに接続する第一の溶液導入流路及び第二の溶液導入流路と、
前記第一の流路及び前記第二の流路のそれぞれに接続する第一の溶液排出流路及び第二の溶液排出流路と、
前記第一の溶液排出流路及び前記第二の溶液排出流路にそれぞれ配置された第一の溶液排出流路バルブ及び第二の溶液排出流路バルブと、
前記第一の結合流路及び前記第二の結合流路にそれぞれ配置された第一の主流路バルブ及び第二の主流路バルブと、
を有し、
前記第一の主流路バルブ及び前記第二の主流路バルブを閉じ、前記第一の溶液排出流路バルブ及び前記第二の溶液排出流路バルブを開放した状態で、前記第一の溶液導入流路から前記第一の流路に第一の溶液を導入し、前記第二の溶液導入流路から前記第二の流路に第二の溶液を導入する工程aと、
前記第一の溶液排出流路バルブ及び前記第二の溶液排出流路バルブを閉じ、前記第一の主流路バルブ及び前記第二の主流路バルブを開放して、前記第一の溶液及び前記第二の溶液を循環させて混合する工程bと、
を含む方法である。
(6)本発明の一実施態様における溶液の混合方法は、混合容器を用いて、複数の溶液を混合する方法であって、
前記混合容器は、溶液が循環する主流路を含み、
前記主流路は、第一の流路と、第二の流路と、第三の流路と、前記第一の流路と前記第二の流路とを連通させる第一の結合流路及び第二の結合流路と、前記第二の流路及び前記第三の流路を連通させる第三の結合流路及び第四の結合流路と、を含み、
前記第一の流路、前記第二の流路及び前記第三の流路に接続する少なくとも1つの溶液導入流路と、
前記第一の流路、前記第二の流路及び前記第三の流路に接続する少なくとも1つの溶液排出流路と、を備え、
前記溶液排出流路は少なくとも1つの溶液排出流路バルブを有し、
前記第一の結合流路、前記第二の結合流路、第三の結合流路及び第四の結合流路は、それぞれ少なくとも1つの流路バルブを有し、
前記主流路バルブ及び前記溶液排出流路バルブは、前記主流路バルブ及び前記溶液排出流路バルブを閉じることによって区画される前記第一の流路、前記第二の流路及び前記第三の流路それぞれの部分領域が所定の体積を有するよう配置され、
前記第一の流路及び前記第二の流路が、相互に、且つ、他の流路から隔離されるように前記主流路バルブ及び前記溶液排出流路バルブを閉じ、前記第一の流路に第一の溶液を導入し、前記第二の流路に第二の溶液を導入する工程aと、
前記第一の流路と前記第二の流路とが連通するように主流路バルブを開放し、前記第一の溶液及び前記第二の溶液を循環させて混合する工程bと、
前記第三の流路が、他の流路から隔離されるように前記主流路バルブ及び前記溶液排出流路バルブを閉じ、前記第三の流路に第三の溶液を導入する工程cと、
前記第一の流路及び前記第二の流路と前記第三の流路とが連通するように主流路バルブを開放し、第一の溶液及び第二の溶液の混合溶液と第三の溶液とを循環させて混合する工程dと、
を含む方法である。
本発明によれば、溶液混合器内において、複数の溶液の体積が正確に定量された状態で、該複数の溶液を混合できる。
本実施形態における溶液混合器の一態様の模式図である。 本実施形態における溶液混合器の一態様の模式図である。 本実施形態における溶液混合器の一態様の模式図である。 本実施形態における溶液混合器の一態様の模式図である。 本実施形態における溶液混合器の一態様の模式図である。 本実施形態における溶液混合器の一態様の模式図である。 本実施形態における溶液混合器の一態様の模式図である。 本実施形態における溶液混合器の一態様の模式図である。 本実施形態における流体デバイスの一態様の模式図である。 本実施形態における流体デバイスの一態様の模式図である。 本実施形態における流体デバイスの一態様の模式図である。 本実施形態における溶液の混合方法の一態様の模式図である。 本実施形態における溶液の混合方法の一態様の模式図である。 本実施形態における溶液の混合方法の一態様の模式図である。 本実施形態における溶液の混合方法の一態様の模式図である。 本実施形態における溶液の混合方法の一態様の模式図である。 本実施形態における溶液の混合方法(工程A)の一態様の模式図である。 本実施形態における溶液の混合方法(工程B)の一態様の模式図である。 本実施形態における溶液の混合方法(工程C、工程D)の一態様の模式図である。 本実施形態における溶液の混合方法(工程E)の一態様の模式図である。 本実施形態における溶液の混合方法(工程F)の一態様の模式図である。 本実施形態における溶液の混合方法(工程G)の一態様の模式図である。 本実施形態における溶液の混合方法(工程H)の一態様の模式図である。 本実施形態における溶液の混合方法(工程I)の一態様の模式図である。 実施例におけるBAM基板に固定したエキソソームの定量結果である。 実施例における精製したmiRNAの定量結果である。 実施例におけるmiRNAに相補的なプローブが固定されてなる基板を備えた検出部、を有する流体デバイスを用いたmiRNA検出結果である。 実施例における溶液混合器を用いた溶液の混合の結果を示す画像である。 実施例における流体デバイス中のバルブの制御の詳細を示した結果である。 実施例における流体デバイス中のバルブの制御の詳細を示した結果である。 本実施形態における流体デバイスの基板の一態様の模式図である。
≪溶液混合器≫
[第1実施形態]
本実施形態の溶液混合器は、
溶液が循環する主流路と、
前記主流路に接続する溶液導入流路と、
前記主流路に接続する溶液排出流路と、を備え、
前記溶液排出流路中には前記溶液排出流路を開閉するための溶液排出流路バルブを有し、
前記主流路中には前記主流路を定量区画するための第一の主流路バルブを有し、
前記第一の主流路バルブは溶液排出流路の近傍に配置され、
前記主流路を定量区画するための第二の主流路バルブを備え、
前記第二の主流路バルブは溶液導入流路の近傍に配置されたものである。
図1は、本実施形態の溶液混合器20の基本構成を示す模式図である。本実施形態の溶液混合器は、溶液が循環する主流路21と、前記主流路に接続する溶液導入流路42と、前記主流路に接続する溶液排出流路32と、を備え、前記溶液排出流路32中には前記溶液排出流路32を開閉するための溶液排出流路バルブ33を有し、前記主流路21中には前記主流路21を定量区画するための第一の主流路バルブ23bを有し、前記第一の主流路バルブ23bは溶液排出流路32の近傍に配置され、さらに、前記主流路21を定量区画するための第二の主流路バルブ23aを備え、前記第二の主流路バルブ23aは溶液導入流路42の近傍に配置されたものである。溶液導入流路42および溶液排出流路32の数は特に制限されないが、図1に示される溶液混合器20は、それぞれ溶液導入流路42および溶液排出流路32を1つずつ備えている。
本実施形態の溶液混合器20は主流路バルブ23を有しており、これらを閉じた状態とすることで、主流路バルブ23により区画された主流路21は、それぞれ独立の体積を有する流路となる。また、溶液排出流路バルブ33の開閉を操作することで、主流路21内の空気等の排出及び溶液の充填を制御できる。
本実施形態の溶液混合器20は、予め流路内の体積が定められた主流路21を有しているので、主流路バルブ23により区画された主流路21内に充填された溶液の体積が正確に把握された状態で溶液を混合することができる。当該流路内に溶液が送液され、溶液の体積が定量された後、主流路バルブ23を開くことで、区画された流路同士が連通され、溶液の混合が可能となる。
このように、主流路21は、定量のみならず混合にも用いることが可能であるので、混合器への溶液の注入と定量を同時に行うことが可能であり、操作の効率化が実現される。
[第2実施形態]
本実施形態の溶液混合器は、
先の第一実施形態の溶液混合器の構成に、前記溶液導入流路を開閉するための溶液導入流路バルブをさらに有し、前記溶液導入流路として、第一の溶液を導入する第一の導入流路と、第二の溶液を導入する第二の導入流路と、を備えるものである。図2は、本実施形態の溶液混合器30の基本構成を示す模式図である。溶液混合器30は、前記溶液導入流路42を開閉するための溶液導入流路バルブ43をさらに有し、前記溶液導入流路として、第一の溶液を導入する第一の導入流路42aと、第二の溶液を導入する第二の導入流路42bと、を備えている。溶液導入流路バルブ43を設けたことにより、溶液導入流路バルブ43及び溶液排出バルブ33によって、主流路21が完全に区画化され得る。したがって、溶液導入流路バルブ43及び溶液排出流路バルブ33を閉じ、主流路バルブ23を開けた場合、溶液導入流路バルブ43及び溶液排出流路バルブ33によって閉鎖された主流路21内では、より効率的に溶液混合が実現される。
また、溶液混合器30が前記溶液導入流路として、第一の溶液を導入する第一の導入流路43aと、第二の溶液を導入する第二の導入流路43bとを備えることで、主流路バルブ23により区画された主流路21内へと異なる溶液を個別に導入できる。したがって、図2に示されるように、第二の主流路バルブ23aは、第一の導入流路42aと、第二の溶液を導入する第二の導入流路42bとの間に配置されることが好ましい。
[第3実施形態]
本実施形態の溶液混合器30’の構成を図3に示す。本実施形態の溶液混合器30’は、先の第2実施形態の溶液混合器30の構成に、前記溶液排出流路32として、第一の溶液を排出する第一の排出流路32aと、第二の溶液を排出する第二の排出流路32bと、を備えるものである。また、図3に示すように、第一の主流路バルブ23bは、第一の溶液を排出する第一の排出流路32aと、第二の溶液を排出する第二の排出流路32bとの間に配置されることが好ましい。このような構成を有する本実施形態の溶液混合器30’は、溶液排出流路バルブ33a又は33bの開閉を操作することで、主流路バルブ23によって区画された主流路21内へと導入された第一の溶液とおよび第二の溶液のそれぞれに対して個別に、主流路内の空気等の排出前記溶液の充填等を制御することができる。
[第4実施形態]
本実施形態の溶液混合器は、
前記主流路を定量区画するための第三の主流路バルブを備え、前記第三の主流路バルブは溶液排出流路の近傍にあって、前記第一の主流路バルブと前記第三の主流路バルブとの間に前記溶液排出流路は接続する。本実施形態の溶液混合器を模式的に示した図を図4に示す。本実施形態の溶液混合器40は、主流路21を定量区画するための第三の主流路バルブ23b’を備え、第三の主流路バルブ23b’は溶液排出流路32の近傍であって、第一の主流路バルブ23bと第三の主流路バルブ23b’との間に溶液排出流路32が接続する。このような構成を有する混合器40は、主流路バルブ23によって区画された主流路21内の溶液に対して個別に、主流路内の空気等の排出前記溶液の充填等を制御することができる。例えば、主流路21内に溶液が充填されている状態にあるとき、第一の主流路バルブ23b及び第二の主流路バルブ23aを閉じ、第三の主流路バルブ23b’及び溶液排出バルブ33を開くことで、主流路21内に充填された溶液のうち、主流路バルブ23aと、23b’によって区画された流路内の溶液を、溶液排出流路32を通じて排出できる。
[第5実施形態]
本実施形態の溶液混合器は、
前記主流路が、第一の流路と、第二の流路と、前記第一の流路と前記第二の流路を連通させる結合流路と、を備え、前記結合流路は前記第一の主流路バルブを有するものである。
本実施形態の溶液混合器の基本構成を示す模式図を図5に示す。溶液混合器50は、主流路21が、第一の流路21aと、第二の流路21bと、第一の流路21aと第二の流路21bとを連通させる結合流路22と、を備え、結合流路22は第一の主流路バルブ23bを有するものである。また、本実施形態の溶液混合器50は、図5に示されるように、第二の主流路バルブ23aおよび第三の主流路バルブ23b’を備えていることが好ましい。
第一の流路21aと、第二の流路21bとして表される複数の流路が、結合流路22によって連通されることで、後述の≪溶液の混合方法≫の第2実施形態において詳述するように、複数種の溶液を順次混合することが容易となる。
[第6実施形態]
本実施形態の溶液混合器は、先に記載の第5実施形態の溶液混合器50に、更に、ポンプを備えるものである。また、前記ポンプは、バルブの開閉により溶液の送液が可能なポンプバルブであることが好ましい。図6は、本実施形態の溶液混合器を模式的に表した図である。溶液混合器60は、ポンプバルブ24を備え、ポンプは3つのポンプバルブ24からなる。ポンプバルブ24の数は、4つ以上でもよい。主流路21中にポンプが配置されることで、より効率的な回転混合が実現される。なお、主流路バルブ23をポンプバルブとして使用してもよい。
[第7実施形態]
本実施形態の溶液混合器は、前記第一の溶液と前記第二の溶液との混合液の検出部を備えたものである。図7は、本実施形態の溶液混合器を模式的に表した図である。溶液混合器70は、先に記載の第5実施形態の溶液混合器50に、更に検出部4cを備えている。
溶液混合器70の主流路21内において溶液を回転混合させることで、検出部4cは当該溶液に含まれる分子との接触の機会が促進される。
本実施形態の流体デバイスが有する検出部4cは、前記分子(生体分子)に親和性を有する物質が固定されてなる基板を備えていることが好ましく、前記生体分子が核酸である場合には、検出部4cは、標的となる当該核酸に相補的なプローブが固定されてなる基板136を備えていることが好ましい。生体分子をmiRNAとする場合には、標的miRNAに相補的なプローブが固定されてなる基板136を備えていることが好ましく(図22参照)、生体分子をタンパク質とする場合には、基板136はプロテインアレイであることが好ましい。標的miRNAに相補的なプローブが固定されてなる基板としては、従来公知のDNAチップが挙げられる。
更に、特異的にかつ高感度に標的miRNAを検出するという観点から、検出部4cは、以下の構成を備えていることが好ましい。
図22に示すように、検出部4cは、標的miRNA133を第一の部分131と第二の部分132に分割した場合に、第一の部分131とハイブリダイズし得る配列を含む捕捉プローブ134が固定されてなる基板を備えていることが好ましい。
検出プローブ135は、二本鎖を形成する二つのステム部135c,135dと、該二つのステム部135c,135d間の領域であり、標識物質135aにより標識されているループ部135eと、標的miRNA133を第一の部分131と第二の部分132に分割した場合に、第二の部分132とハイブリダイズし得る配列135bとを有し、且つ5’突出末端又は3’突出末端を有する。
捕捉プローブ134及び検出プローブ135は、それぞれ、miRNA133の第一の部分131及び第二の部分132にハイブリダイズし得るものである。そのため、第一の部分131及び第二の部分132の長さは、5〜17塩基が好ましく、約22塩基からなるmiRNAを2分割した塩基数という観点から、7〜15塩基がより好ましい。
本実施形態においては、miRNA133の5’側の部分を第一の部分131とし、miRNA133の3’側の部分を第二の部分132とする。
尚、本発明及び本願明細書において「ハイブリダイズし得る」とは、本発明に用いられる捕捉プローブ及び検出プローブの一部がストリンジェントな条件下で標的核酸(標的miRNA)にハイブリダイズし、標的核酸(標的miRNA)以外の核酸分子にはハイブリダイズしないことを意味する。「ストリンジェントな条件」とは、例えば、Molecular Cloning−A LABORATORY MANUAL THIRD EDITION(Sambrookら、Cold Spring Harbor Laboratory Press)に記載の条件が挙げられる。
捕捉プローブ134は、5’末端領域に、miRNA133の第一の部分131とハイブリダイズし得る配列を含む。
miRNA133を高精度に定量する観点から、捕捉プローブ134は、miRNA133の第二の部分132とハイブリダイズしないように、miRNA133の第二の部分132に相補的な配列を含まないことが好ましい。
基板136に固定された捕捉プローブ134が、miRNA133とハイブリダイゼーションするためには、分子的な自由度が必要であることから、捕捉プローブ134は、基板136と結合する3’末端にスペーサー134aを有していることが好ましい。スペーサー134aの長さとしては、特に限定されないが、3〜50塩基が好ましく、5〜25塩基がより好ましい。ただし、スペーサーに用いられる塩基は、同程度の長さと柔らかさを持ったPEG等のリンカーで代替可能である。係る場合には、スペーサー134aに用いられる塩基数は0塩基でもよい。
捕捉プローブ134の長さは、プローブとして機能するために必要な長さであれば特に限定されないが、第一の部分131及びスペーサー134aの塩基数を勘案し、3〜50塩基が好ましく、5〜40塩基がより好ましい。
捕捉プローブ134は、DNAでもRNAでもよく、DNAやRNAと同様の機能を有するものであれば、天然、非天然に限られず、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)、BNA(Bridged Nucleic Acid)等の人工核酸を含むものであってもよい。DNAやRNAと比較して、標的miRNA133との親和性が高く、DNA分解酵素やRNA分解酵素に認識されにくく、T4DNAリガーゼ等のDNAリガーゼの基質になり得る観点から、捕捉プローブ134は、LNA又はBNAを含むことが好ましい。
捕捉プローブ134を固定するために用いられる基板136としては、ガラス基板、シリコン基板、プラスチック基板、金属基板等が挙げられる。捕捉プローブ134を基板136上に固定する方法としては、光リソグラフ技術を利用して、基板上に高密度でプローブを固定する方法やガラス基板等にスポッティングによりプローブを固定する方法が挙げられる。
本実施形態において、検出プローブ135は、3’末端領域に、miRNA133の第二の部分132とハイブリダイズし得る配列135bを含む。
miRNA133を高精度に定量する観点から、検出プローブ135は、miRNA133の第一の部分131とハイブリダイズしないように、miRNA133の第一の部分131に相補的な配列を含まないことが好ましい。
検出プローブ135は、ステムループ構造を形成する。ステムループ構造とは、一本鎖核酸において、分子内で離れた二箇所の領域に相補的な配列がある場合、核酸の塩基対間の相互作用によって二本鎖(ステム構造)を形成するとともに、その二箇所の領域に狭まれた配列がループ構造を形成するものをいい、ヘアピンループとも称される。
本実施形態において、検出プローブ135は、5’末端側から、二本鎖を形成する二つのステム部135c,135dと、該2つのステム部135c,135d間の領域であるループ部135eと、第二の部分132とハイブリダイズし得る配列135bとからなる。即ち、検出プローブ135は、3’突出末端を有している。検出プローブは、突出末端を有しており、検出プローブが有する突出末端が、5’突出末端であるか3’突出末端であるかは、捕捉プローブと基板とが捕捉プローブの5’末端を介して結合しているか3’末端を介して結合しているかによる。
検出プローブ135におけるステム部の長さは、ループ部の長さとの兼ね合いによって決まり、検出プローブ135が安定してステムループ構造を形成できる長さであれば特に限定されないが、3〜50塩基が好ましく、5〜20塩基がより好ましい。
検出プローブ135におけるループ部の長さは、ステム部の長さとの兼ね合いによって決まり、検出プローブ135が安定してステムループ構造を形成できる長さであれば特に限定されないが、3〜200塩基が好ましく、5〜100塩基がより好ましい。
検出プローブ135の長さは、ステムループ構造を形成でき、プローブとして機能するために必要な長さであれば特に限定されないが、第二の部分132の塩基数及びステムループ構造形成に必要な塩基数を勘案し、14〜200塩基が好ましく、24〜150塩基がより好ましい。
検出プローブ135は、DNAでもRNAでもよく、DNAやRNAと同様の機能を有するものであれば、天然、非天然に限られず、PNA(ペプチド核酸)、LNA(Locked Nucleic Acid)、BNA(Bridged Nucleic Acid)等の人工核酸を含むものであってもよい。DNAやRNAと比較して、標的miRNAとの親和性が高く、DNA分解酵素やRNA分解酵素に認識されにくく、T4DNAリガーゼ等のDNAリガーゼの基質になり得る観点から、検出プローブ135は、LNA又はBNAを含むことが好ましい。
捕捉プローブ134及び検出プローブ135の少なくともいずれか一方が、LNA又はBNAを含むことが好ましく、捕捉プローブ134及び検出プローブ135の両方が、LNA又はBNAを含むことがより好ましい。
検出プローブ135は、標識物質135aにより標識されている。標識物質としては、例えば、蛍光色素、蛍光ビーズ、量子ドット、ビオチン、抗体、抗原、エネルギー吸収性物質、ラジオアイソトープ、化学発光体、酵素等が挙げられる。
蛍光色素としては、FAM(カルボキシフルオレセイン)、JOE(6−カルボキシ−4’,5’−ジクロロ2’,7’−ジメトキシフルオレセイン)、FITC(フルオレセインイソチオシアネート)、TET(テトラクロロフルオレセイン)、HEX(5'−ヘキサクロロ−フルオレセイン−CEホスホロアミダイト)、Cy3、Cy5、Alexa568、Alexa647等が挙げられる。
全RNA中、miRNAはごく微量しか存在しないため、分画せずにmiRNAを高効率に標識することは困難である。一方、本実施形態においては、予め標識した検出プローブを用いるため、高感度に、miRNAを検出することができる。
本実施形態によれば、検出部と接触させる溶液が正確に定量されているので、正確な解析が実現される。
[第8実施形態]
本実施形態の溶液混合器は、前記主流路が撹拌構造を含む。撹拌構造として曲率を有する構造が挙げられる。曲率を有する構造においては流路内の流路壁面と溶液の相互作用(摩擦)により、壁面周辺の流速は遅く、流路中央の流速は速くなる。その結果、液体の流速に分布ができるため、溶液の混合が促進される。当該流路の内径は一例には0.01〜3mmであり、例えば0.5〜1mmである。
また前記曲率を有する構造は、折り返し構造に含まれていてもよい。図8は、本実施形態の溶液混合器80を模式的に表した図である。溶液混合器80は、主流路が折り返し構造31を含む。ここで、「折り返し構造」とは、基準となる流路の長軸方向に対して略直角に、流路がほぼ180度折り返す構造をいう。
折り返し数は、流路の伸びる方向が変更された回数で数えられ、図8に示される折り返し構造31における折り返し数は8である。折り返し構造においては、上記流速の差が繰り返し生じるので、溶液の混合がさらに促進される。
≪流体デバイス≫
[第1実施形態]
本実施形態の流体デバイスは、先に記載の溶液混合器を備えるものである。
本実施形態の流体デバイスは、サンプル中のエキソソームが内包する生体分子を検出するデバイスであることが好ましい。エキソソームは、直径30〜100nmの小型脂質小胞であり、エンドソームと細胞膜との融合体として、腫瘍細胞、樹状細胞、T細胞、B細胞等、種々の細胞から、血液、尿、唾液等の体液中に分泌される。
がん細胞等の異常細胞は、細胞膜の内部に特有のタンパク質や核酸、マイクロRNAなどを発現している。そして、体液中に分泌されるエキソソームも、分泌元の細胞由来のマイクロRNAなどを発現している。そのため、体液中のエキソソームの膜内部に存在する生体分子を分析することで、バイオプシー検査をしなくとも、生体内の異常を調べることができる技術の確立が期待されている。なお、バイオプシー検査とは、病変部位の組織を採取し顕微鏡で病変部位を観察することによって、病気の診断等を調べる臨床検査をいう。
[第2実施形態]
図9に示すように、本実施形態の流体デバイス1は、疎水性鎖と親水性鎖を有する化合物で修飾された層を有するエキソソーム精製部2と、生体分子精製部3と、溶液混合器4と、検出部4cと、エキソソーム精製部2と生体分子精製部3を繋ぐ第一の流路5と、生体分子精製部3と溶液混合器4を繋ぐ第二の流路6と、を備えている。
分析に用いるサンプルによる二次感染を防止する観点から、本実施形態の流体デバイス1は、更に廃液槽を備えていることが好ましい。一例として、図10に示すように、本実施形態のマイクロ流路デバイス(流体デバイス1)は、第一の廃液槽7、第二の廃液槽8、第三の廃液槽9を備え、第一の廃液槽7とエキソソーム精製部2を繋ぐ第三の流路10、第二の廃液槽8と生体分子精製部3を繋ぐ第四の流路11、第三の廃液槽9と溶液混合器4を繋ぐ第五の流路12を備えたものであることが好ましい。尚、図10においては三つの廃液槽を示しているが一つ又は二つの廃液槽にまとめたものであってもよい。
後述するように、エキソソーム精製部2からの廃液が第三の流路10を通って第一の廃液槽7に送られる。生体分子精製部3からの廃液が第四の流路11を通って第二の廃液槽8に送られる。溶液混合器4からの廃液が第五の流路12を通って第三の廃液槽9に送られる。
本実施形態の流体デバイス1における各構成の一例について、図11を用いて説明する。エキソソーム精製部2は、インレットと、疎水性鎖と親水性鎖を有する化合物で修飾された層を有するエキソソーム固定部2dを備える。図11に示すように、エキソソーム精製部2は、導入する試薬別にインレットを備えることが好ましい。即ち、エキソソーム精製部2は、サンプル導入用インレット2bと破砕液導入用インレット2cを備えることが好ましく、更に洗浄液導入用インレット2aを備えることがより好ましい。
エキソソーム固定部2dにおける疎水性鎖と親水性鎖を有する化合物とは、脂質二重膜に結合するための疎水性鎖と、この脂質鎖を溶解するための親水性鎖を有する化合物である。係る化合物を用いることにより、エキソソーム固定部2d上に脂質二重膜を有するエキソソームを固定することができる。
尚、本明細書において、「エキソソーム固定部2d上にエキソソームを固定する」とは、エキソソーム固定部にエキソソームを吸着させることも意味する。
疎水性鎖としては、単鎖であっても複鎖であってもよく、例えば、置換基を有していてもよい飽和又は不飽和の炭化水素基が挙げられる。
飽和又は不飽和の炭化水素基としては、炭素原子数6〜24の直鎖若しくは分岐鎖のアルキル基又はアルケニル基が好ましく、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基(オクタデシル基)、ノナデシル基、イコシル基、ヘンイコシル基、ドコシル基、トリコシル基、テトラコシル基、ミリストレイル基、パルミトレイル基、オレイル基、リノイル基、リノレイル基、リシノレイル基、イソステアリル基等が挙げられる。
中でも、ミリストレイル基、パルミトレイル基、オレイル基、リノイル基、リノレイル基が好ましく、オレイル基がより好ましい。
親水性鎖としては、タンパク質、オリゴペプチド、ポリペプチド、ポリアクリルアミド、ポリエチレングリコール(PEG)、デキストラン等が挙げられ、PEGが好ましい。
係る親水性鎖は、基板との結合のために化学修飾されていることが好ましく、活性エステル基を有することがより好ましく、N−ヒドロキシスクシンイミド基を有することが特に好ましい。
即ち、疎水性鎖と親水性鎖を有する化合物としては、脂質−PEG誘導体が好ましい。
脂質−PEG誘導体は、BAM(Biocompatible anchor for membrane)と呼ばれる。BAMとしては、例えば下記式(1)で表される化合物が挙げられる。
[式中、nは1以上の整数である。]
エキソソーム固定部2dの層として用いられる基板としては、ガラス基板、シリコン基板、ポリマー基板、金属基板等が挙げられる。基板は、疎水性鎖と親水性鎖を有する化合物の親水性鎖と結合する物質を介して結合していてもよく、係る物質としては、アミノ基、カルボキシル基、チオール基、水酸基、アルデヒド基を有する物質が挙げられ、3−アミノプロピルトリエトキシシランが好ましい。
本実施形態の流体デバイス1における液体の駆動は、外部吸引ポンプによってなされ、液体の流れは空圧式バルブの開閉によって制御される。バルブの開閉は、流体デバイス1に連結した外部空圧装置によって駆動・制御される。
図11に示すように、エキソソームの分析において、まず上述したエキソソーム精製部において、サンプル導入用インレット2bにサンプルを注入し、流路2iのバルブ2fを開き、吸引によりサンプルをエキソソーム固定部2dに導入する。
分析に用いられるサンプル量としては、1mL程度が好ましい。
サンプルとしては、検出対象の細胞をとりまく環境から得られるものであって、該細胞が分泌したエキソソームを含有するものであれば特に限定されず、血液、尿、母乳、気管支肺胞洗浄液、羊水、悪性滲出液、唾液等が挙げられる。中でも、エキソソームを検出しやすい血液又は尿が好ましい。更に、血液においては、エキソソームの検出のしやすさから、血漿が好ましい。
また、係るサンプルには、培養細胞が分泌したエキソソームを含有する細胞培養液も含まれる。
検出対象の細胞としては、エキソソームを産生することが知られているがん細胞、肥満細胞、樹状細胞、網赤血球、上皮細胞、B細胞、神経細胞等が挙げられる。
サンプルは、超遠心分離、限外ろ過、連続フロー電気泳動、サイズフィルターを用いたろ過、ゲルろ過クロマトグラフィー等により調製されたものであってもよいが、本実施形態においては、エキソソーム固定部2dにおける疎水性鎖と親水性鎖を有する化合物とエキソソームとの親和性が非常に高いため、調製を加えていないサンプルそのものであってもよい。
エキソソーム固定部2dにエキソソームを特異的に結合させる観点から、エキソソーム固定部2dに非特異的吸着抑制部を設けることが好ましい。一例として基板を、疎水性鎖と親水性鎖を有する化合物で修飾した後、疎水性鎖と親水性鎖を有する化合物が修飾されていない箇所を、PEG等の親水性基を有する化合物で処理することが挙げられる。
エキソソーム固定部2dに導入されたサンプル中のエキソソームは、上述した疎水性鎖と親水性鎖を有する化合物によって捕捉される。疎水性鎖と親水性鎖を有する化合物とエキソソームとの親和性が非常に高いため、サンプルをエキソソーム固定部2dに静置する必要はなく、連続的にエキソソーム固定部2d上をサンプルが通過すると同時にサンプル中のエキソソームがエキソソーム固定部2d上に捕捉される。
一例として、エキソソーム捕捉時の吸引圧力は、1〜30kPaであり、捕捉に要する時間は15秒程度である。エキソソーム固定部2dを通過した廃液は、バルブ10aを介して第三の流路10を通り第一の廃液槽7へ送られる。
本実施形態の流体デバイス1において、エキソソーム固定部2dの天井高を低く設計しておくことが好ましい。これにより、疎水性鎖と親水性鎖を有する化合物と、エキソソームとの接触の機会を増し、エキソソームの捕捉効率を高めることができる。
血液中には、エキソソーム以外にもマイクロベシクルやアポトーシス小体等の細胞外小胞が含まれており、これら細胞外小胞もエキソソーム固定部2dに固定される可能性がある。エキソソーム固定部2dからこれらの細胞外小胞を除去する観点から、エキソソーム固定部2d上のエキソソームを洗浄することが好ましい。
一例として、図11に示すように、流路2h上のバルブ2eを開き、洗浄液導入用インレット2aに洗浄液を注入し、エキソソーム固定部2dに導入する。
本実施形態においては疎水性鎖と親水性鎖を有する化合物で修飾された層とエキソソームとの結合が強力であるため、流速を速く調整でき、短時間での洗浄が可能である。一例として、PBS洗浄液500μLを吸引圧力1〜30kPaで15秒程度送液することにより洗浄される。エキソソーム固定部2dを通過した廃液は、バルブ10aを介して第三の流路10を通り第一の廃液槽7へ送られる。
次いで、エキソソーム固定部2dに固定されたエキソソームを破砕する。図11に示すように、流路2j上のバルブ2gを開き、破砕液導入用インレット2cに破砕液を注入し、吸引により破砕液をエキソソーム固定部2dへ導入する。破砕液としては、例えば細胞溶解に用いられる従来公知のものが挙げられる。
破砕液がエキソソーム固定部2dを通ることにより、エキソソーム固定部2d上に捕捉されたエキソソームが破砕され、エキソソームに内包される生体分子が放出される。
一例として、エキソソーム破砕時の吸引圧力は、1〜30kPaであり、破砕に要する時間は30秒程度である。エキソソーム固定部2dを通過した廃液は、バルブ10aを介して第三の流路10を通り第一の廃液槽7へ送られる。エキソソームから放出された生体分子は、バルブ5aを介して第一の流路5を通り生体分子精製部3へ送られる。
図11に示すように、生体分子精製部3は、生体分子回収液導入用インレット3bと、生体分子固定部3cとを備えることが好ましく、更に生体分子洗浄液導入用インレット3aを備えることがより好ましい。
生体分子固定部3cは、生体分子を固定可能なものであれば特に限定されないが、一例として核酸を固定するシリカメンブレンが挙げられる。
エキソソームは、分泌元の細胞に由来するタンパク質や核酸を保持している。核酸としては、miRNAが挙げられる。近年、短鎖の非コードRNAであるmiRNAが、生体内の遺伝子発現の制御をしていることが報告され、miRNAの異常発現とがんを初めとした様々な疾患との関係が明らかになりつつある。
本実施形態において、生体分子固定部3cが固定する生体分子はmiRNAであることが好ましい。生体分子固定部3cとしては、上述したように、流路上に埋め込まれたシリカメンブレンが挙げられる。
生体分子固定部3cをエキソソーム破砕液が通過することにより、生体分子固定部3c上に生体分子が捕捉される。
一例として、エキソソーム破砕液送液時の吸引圧力は、50〜70kPaであり、送液に要する時間は1分程度である。生体分子固定部3cを通過した廃液は、バルブ11aを介して第四の流路11を通り第二の廃液槽8へ送られる。
生体分子固定部3cに生体分子を固定した後、生体分子固定部3cを洗浄し、目的とする生体分子以外の夾雑物を取り除くことが好ましい。
図11に示すように、流路3e上のバルブ3dを開き、生体分子洗浄液導入用インレット3aに洗浄液を注入し、吸引により洗浄液を生体分子固定部3cへ導入する。洗浄液としては、例えば70%〜80%程度のエタノールが挙げられる。
一例として、洗浄時の洗浄液使用量は1mL程度であり、吸引圧力は、50〜70kPaであり、洗浄液の送液に要する時間は1分程度である。生体分子固定部3cを通過した廃液は、バルブ11aを介して第四の流路11を通り第二の廃液槽8へ送られる。エキソソームから放出された生体分子は、バルブ5aを介して第一の流路5を通り生体分子精製部3へ送られる。
溶液混合器への生体分子洗浄液の持ち込みを防止するために、生体分子固定部3cを洗浄した後、生体分子固定部3cを乾燥させることが好ましい。
図11に示すように、生体分子洗浄液導入用インレット3aから空気を吸引し、生体分子固定部3cを通過させることにより乾燥させる。
一例として、生体分子固定部3c乾燥時の吸引圧力は、50〜70kPaであり、乾燥に要する時間は2分程度である。
次いで、生体分子固定部3cに固定された生体分子を溶出させる。生体分子の回収率を向上させるために、生体分子回収液を生体分子固定部3cに導入した後、一定時間保持させることが好ましい。
図11に示すように、流路3gのバルブ3fを開け、生体分子回収液導入用インレット3bに生体分子回収液を注入し、生体分子回収液を生体分子固定部3cに導入する。
一例として、生体分子回収液は、RNase−free waterであり、該回収液の使用量は30μLであり、吸引圧力50〜70kPaで回収液を吸引し、回収液が生体分子固定部3cに到達した時点で吸引を停止させ、3分程度保持する。
次いで、生体分子固定部3cから生体分子を回収する。一例として、吸引圧力50〜70kPaで回収液を30秒かけて回収する。
生体分子は第二の流路6を通り、溶液混合器4へ送られる。一例として、溶液混合器4への生体分子の吸引圧力は、6kPa以下であり、30秒程度かけて送液する。
生体分子の溶液混合器4への送液は、図11中のバルブ4g、4hを閉じて行うことが好ましい。こうすることで、溶液混合器の流路内で、生体分子を含む溶液が定量される。
なお、流路6は、一例として、バルブ4eと4gの間につなぐ。また、溶液排出流路としての流路12は、先に記載の≪溶液混合器≫の第5〜7実施形態で示すように、主流路バルブ23bと主流路バルブ23b’との間につなぐようにしてもよい。
生体分子が溶液混合器4へ送られた後、バルブ4dを開け、検出プローブ導入用インレット4aに検出プローブ溶解液を注入し、検出プローブ溶解液を溶液混合器4へと送液する。検出プローブ溶解液の溶液混合器4への送液は、図11中のバルブ4g、4hを閉じて行う。こうすることで、溶液混合器の流路内で、検出プローブ溶解液が定量される。なお、排出用流路の位置は、先に記載の≪溶液混合器≫の第5〜7実施形態のようにしてもよい。
一例として、検出プローブ溶解液の組成は、100〜200nM検出プローブ、100〜200mM Tris−HCl(pH7.5)、200〜400mM NaCl、10〜30mM MgCl、0.5〜2mg/mL BSA、10〜30mM DTT、5〜20units/μL T4DNA Ligaseであり、係る検出プローブ溶解液を吸引圧力6kPa以下、30秒程度かけて送液する。
次いで、バルブ4d、4e、4f、12aを閉じ、バルブ4g、4hを開けて、生体分子と検出プローブ溶解液を溶液混合器内で循環させ、混合する。一例として図示略のポンプバルブの開閉を10分間程度継続させる。液を循環させることにより短時間で効率よく複合体(miRNA133―検出プローブ135−捕捉プローブ134複合体)が基板上に形成される(図22参照)。また、溶液を循環するためのポンプは溶液混合器の流路内に配置された、バルブ4g、4hを含む少なくとも三つのポンプバルブから成る。例えば、この三つのポンプバルブは、一つのバルブ4gと、二つのバルブ4hである。あるいは、この三つのポンプバルブは、二つのバルブ4gと、一つのバルブ4hである。ポンプバルブは、バルブ4gと、バルブ4hと、不図示のバルブとである。
次いで、捕捉プローブが固定されてなる基板を洗浄し、該基板上の非特異的吸着物を取り除くことが好ましい。したがって、図11に示すように、溶液混合器4は、更に洗浄液導入用インレット4bを備えていることが好ましい。バルブ4eを開け、洗浄液導入用インレット4bに洗浄液を注入し、基板に導入する。
一例として、洗浄液は0.2×SSCバッファーであり、使用量は500μLであり、該洗浄液を吸引圧力6kPa以下、1分かけて送液して洗浄を行う。洗浄液は溶液混合器内で循環させることが好ましい。洗浄液を循環させることにより短時間で効率よく基盤の洗浄が行われる。基板を通過した廃液は、バルブ12aを介して第五の流路12を通り、第三の廃液槽9へ送られる。
次いで、基板上に形成された複合体の標識物質の強度を測定する。標識物質の強度は、生体分子の存在量を反映するため、本実施形態によれば、サンプル中に含まれる生体分子の量を定量することができる。
標識物質の強度の測定は、一例として、図示略の顕微鏡、光源、パソコンなどの制御部により行われる。
本実施形態によれば、従来は1日以上要したエキソソームの分析をわずか一時間程度で迅速に行うことができる。更には、検出部と接触させる溶液が正確に定量されているので、正確な解析が実現される。
≪溶液の混合方法≫
[第1実施形態]
本実施改訂の溶液の混合方法は、先に記載の溶液混合器を用いた溶液の混合方法であって、溶液導入流路から第一の溶液を送液する工程と、
主流路を定量区画して第一の溶液を定量切り出しするように、主流路バルブを閉める工程と、
溶液導入流路から第二の溶液を送液する工程と、
溶液排出バルブを閉じる工程と、
第一の溶液と第二の溶液を回転混合して第三の溶液を得る工程と、
前記第三の溶液を検出する工程と、
前記第三の溶液を検出する工程の後に、主流路に洗浄液を送液し、主流路を洗浄する工程と、
を有する。
本実施形態の溶液の混合方法を、以下、図12を参照して説明する。図12に示す混合器20’は、先に記載の≪溶液混合器≫の第1実施形態の溶液混合器20に、先に記載の≪溶液混合器≫の第7実施形態の溶液混合器70が備える検出部4cをさらに備えたものである。まず、当該溶液混合器20’の、主流路バルブ23および排出流路バルブ33が開かれた状態で(図12A参照)、溶液導入流路から第一の溶液91を送液する(図12B参照)。次いで、主流路21を定量区画して第一の溶液を定量切り出しするように、主流路バルブ23を閉める(図12C参照)。そして、溶液導入流路42から第二の溶液92を送液する(図12D参照)。溶液排出バルブ33を閉じ、主流路バルブ23を開け、第一の溶液91と第二の溶液92とを回転混合して第三の溶液93を得る(図12E参照)。次いで、溶液排出流路バルブ33を開け、第三の溶液93を排出した後、溶液導入流路42から、洗浄液を主流路21へと送液し、主流路を洗浄する。洗浄液を上記と同様の方法により回転混合されることにより、効率の良い洗浄が達成される。
[第2実施形態]
本実施形態の溶液の混合方法は、先に記載の溶液混合器を用いた溶液の混合方法であって、
前記主流路が有する複数の流路(主流路)のうち隣接する二つの流路(主流路)を選択する工程Aと、
前記二つの流路(主流路)及び該二つの流路(主流路)に隣接する結合流路が定量区画されるように、前記流路(主流路)に隣接するバルブを閉める工程Bと、
前記二つの流路(主流路)のうち、第一の流路(主流路)に第一の溶液を送液する工程Cと、
前記二つの流路(主流路)のうち、第二の流路(主流路)に第二の溶液を送液する工程Dと、
前記二つの流路(主流路)同士を連通させる結合流路を開閉するための主流路バルブを開け、第一の溶液及び第二の溶液を回転混合して第三の溶液を得る工程Eと、
を有し、更に前記工程Eの後、前記二つの流路(主流路)に隣接する第三の流路(主流路)を選択する工程Fと、
前記第三の流路(主流路)及び該第三の流路(主流路)に隣接する結合流路が定量区画されるように、前記第三の流路(主流路)に隣接するバルブを閉める工程Gと、
前記第三の流路(主流路)に第四の溶液を送液する工程Hと、
これら三つの流路(主流路)同士を連通させる結合流路を開閉するための主流路バルブを開け、第三の溶液及び第四の溶液を回転混合して第五の溶液を得る工程Iと、
を有する。
本実施形態の溶液の混合方法を、以下、図13〜16を参照して説明する。図13〜16は、上述した溶液混合器の第3実施形態において示された溶液混合器30’および第5実施形態において示された溶液混合器50の変形例である。当該溶液混合器が備える結合流路で連通された流路の数は2つであったが、図13〜16における溶液混合器50’は、主流路として4つの並列する流路21a、21b、21c、21dを備えている。各流路には、各溶液導入流路42および溶液導入流路バルブ43a、43b、43c、43d、並びに、各溶液排出流路32および溶液排出流路バルブ33a、33b、33c、33d、を備える。また、溶液混合器50’は、各流路同士を連通させる結合流路22と、結合流路22上に配置される主流路バルブ23a、23b、23c、23d、23e、23fとを備える。
溶液混合器50’を用いた溶液の混合方法について、以下に説明する。工程A〜Bは図13A〜13Bを、工程C〜Eは図14A〜14Bを、工程F〜工程Gは図15A〜15Bを、工程H〜工程Iは図16A〜16Bをそれぞれ参照されたい。
(工程A):まず、主流路21のうち隣接する二つの流路(主流路)21a、21bを選択する。
(工程B):前記二つの流路(主流路)21a、21b及び該二つの流路(主流路)に隣接する結合流路22が定量区画されるように、前記流路(主流路)に隣接する主流路バルブ23a、23b、23c、23dおよび溶液排出流路バルブ33a、33bを閉める。
(工程C/D):前記第一の流路(主流路)21aに第一の溶液91を、前記第二の流路(主流路)21bに第二の溶液92をそれぞれ送液する。
(工程E):前記流路(主流路)21aと流路(主流路)21b同士を連通させる結合流路を開閉するための主流路バルブ23a、23bを開け、第一の溶液91及び第二の溶液92を回転混合して第三の溶液93を得る。
(工程F):二つの流路(主流路)21a、21bに隣接する第三の流路(主流路)21cを選択する。
(工程G):流路(主流路)21c及び流路(主流路)21cに隣接する結合流路が定量区画されるように、流路(主流路)21cに隣接する主流路バルブ23e、23f及び溶液排出流路バルブ33cを閉める。
(工程H):流路(主流路)21cに第四の溶液94を送液する。
(工程I):これら三つの流路(主流路)21a、21b、21c同士を連通させる結合流路を開閉するための主流路バルブ23a、23b、23c、23dを開け、第三の溶液及び第四の溶液を回転混合して第五の溶液95を得る。
本実施形態で示したように、溶液混合器50’が備える並列する複数の流路を順次選択することにより、溶液を所望の溶液同士を回転混合することができる。また同様に前記工程Fから前記工程Iを繰り返し、回転混合を行ってもよい。
以下、実施例により本発明を説明するが、本発明は以下の実施例に限定されるものではない。
[エキソソームの精製]
ガラス表面に3−アミノプロピルトリエトキシシラン(以下、APTESともいう。)を修飾し、APTES末端にエキソソームを固定化する前記式(1)で表されるPEG脂質誘導体、非特異吸着を抑制するメトキシPEGを修飾した。次に、ポリメタクリルスチレンを切削加工することで、精製デバイスを作製した。乳がん細胞株MCF−7の培養上清を超遠心し回収したエキソソーム懸濁液およびヒト血清中のエキソソームをデバイス内で固定した後、AFMで固定粒子密度を計測した。
デバイス内で固定化されたエキソソームのAFM像と固定密度を図17に示す。まず、AFM像より30−200nmの直径を持つ粒子が固定化されていることを確認した。
次に、固定層からの距離に対し、固定密度が指数関数的に減少することを確認した。また、ヒト血清から直接固定化した場合の固定量が、精製済みエキソソームを固定した場合の74%であることから、メトキシPEGが非特異吸着の抑制に寄与していると考えられる。
[miRNA精製]
流路内に小型化したシリカメンブレンを固定したデバイスを作製し、miRNAの精製を行った。miRNAをエキソソーム破砕液に懸濁し、吸引操作によりシリカメンブレンを通過させた。続いてシリカメンブレンの洗浄、乾燥を行った後、miRNA溶出液を導入しmiRNAを回収した。miRNA回収量は定量リアルタイムPCRにより求めた。
また、一般的なスピンカラム法との比較として、QIAGEN社miRNeasy Mini Kitを用いた。
miRNAの回収結果を図18に示す。本ユニットではシリカメンブレンのサイズを小型化することによって、所要時間の短縮と使用試薬の低減が達成された。また、サイズの小型化に伴い、少量の溶出液でmiRNAを回収することできるようになり、miRNA溶液の濃縮が可能となった。
[miRNA検出]
標的miRNAとして、miR−141、miR−143、miR−1275、miR−107、miR−181a−2*、miR−484、miR−21、let−7a,let−7b,let−7d,let−7f、miR−39の配列を有するRNAを合成した。また、それぞれの標的miRNAに相補的な配列を有する検出プローブ合計12種の核酸プローブを設計・合成した。一方、それぞれの標的miRNAに相補的な配列を有する捕捉プローブをガラス基板上で合成し、スポット状に配置した。
用いた標的miRNA、捕捉プローブ、及び検出プローブの配列を以下に示す。
(1)標的miRNA1:miR−141
[配列:5’−UAACACUGUCUGGUAAAGAUGG−3’] (配列番号1:22mer)
標的miRNA2:miR−143
[配列:5’−UGAGAUGAAGCACUGUAGCUC−3’] (配列番号2:21mer)
標的miRNA3:miR−1275
[配列:5’− GUGGGGGAGAGGCUGUC−3’] (配列番号3:17mer)
標的miRNA4:miR−107
[配列:5’− AGCAGCAUUGUACAGGGCUAUCA−3’] (配列番号4:23mer)
標的miRNA5:miR−181a−2*
[配列:5’− ACCACUGACCGUUGACUGUACC−3’] (配列番号5:22mer)
標的miRNA6:miR−484
[配列:5’− UCAGGCUCAGUCCCCUCCCGAU−3’] (配列番号6:22mer)
標的miRNA7:miR−21
[配列:5’− UAGCUUAUCAGACUGAUGUUGA−3’] (配列番号7:22mer)
標的miRNA8:let−7a
[配列:5’− UGAGGUAGUAGGUUGUAUAGUU−3’] (配列番号8:22mer)
標的miRNA9:let−7b
[配列:5’− UGAGGUAGUAGGUUGUGUGGUU−3’] (配列番号9:22mer)
標的miRNA10:let−7d
[配列:5’− AGAGGUAGUAGGUUGCAUAGUU−3’] (配列番号10:22mer)
標的miRNA11:let−7f
[配列:5’− UGAGGUAGUAGAUUGUAUAGUU−3’] (配列番号11:22mer)
標的miRNA12:miR−39
[配列:5’− UCACCGGGUGUAAAUCAGCUUG−3’] (配列番号12:22mer)
(2)捕捉プローブ1(Capture probe1)
[配列:5’−p−X1−fS−3’]
X1は以下の配列を表し、pはリン酸を表し、Sはチオール基を表し、fは6−FAM(6−フルオロセイン)を表す。
X1:ACCAGACAGTGTTAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAA(配列番号13:60mer)
捕捉プローブ2(Capture probe2)
X1:GTGCTTCATCTCAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAAC(配列番号14:60mer)
捕捉プローブ3(Capture probe3)
X1:CTCCCCCACACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACA(配列番号15:60mer)
捕捉プローブ4(Capture probe4)
X1:CTGTACAATGCTGCTACAACAACAACAACAACAACAACAACAACAACAACAACAACAACA(配列番号16:60mer)
捕捉プローブ5(Capture probe5)
X1:CAACGGTCAGTGGTACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAA(配列番号17:60mer)
捕捉プローブ6(Capture probe6)
X1:GGGACTGAGCCTGAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAA(配列番号18:60mer)
捕捉プローブ7(Capture probe7)
X1:AGTCTGATAAGCTAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAA(配列番号19:60mer)
捕捉プローブ8(Capture probe8)
X1:AACCTACTACCTCAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAA(配列番号20:60mer)
捕捉プローブ9(Capture probe9)
X1:ACCTACTACCTCAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAAC(配列番号21:60mer)
捕捉プローブ10(Capture probe10)
X1:AACCTACTACCTCTACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAA(配列番号22:60mer)
捕捉プローブ11(Capture probe11)
X1:ATCTACTACCTCAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAAC(配列番号23:60mer)
捕捉プローブ12(Capture probe12)
X1:TTTACACCCGGTGAACAACAACAACAACAACAACAACAACAACAACAACAACAACAACAA(配列番号24:60mer)
(3)検出プローブ1(Detect probe1)
[配列:5’−p−X2−Al−X3−3’]
X2、X3は以下の配列を表し、pはリン酸を表し、AlはAlexa647−AminoC6−dAを表す。
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGCCATCTTT(配列番号26:26mer)
検出プローブ2(Detect probe2)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGGAGCTACA(配列番号27:26mer)
検出プローブ3(Detect probe3)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGGACAGCCT(配列番号28:26mer)
検出プローブ4(Detect probe4)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGTGATAGCC(配列番号29:26mer)
検出プローブ5(Detect probe5)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGGGTACAGT(配列番号30:26mer)
検出プローブ6(Detect probe6)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGATCGGGAG(配列番号31:26mer)
検出プローブ7(Detect probe7)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGTCAACATC(配列番号32:26mer)
検出プローブ8(Detect probe8)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGAACTATAC(配列番号33:26mer)
検出プローブ9(Detect probe9)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGAACCACACA(配列番号34:27mer)
検出プローブ10(Detect probe10)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGAACTATGC(配列番号35:26mer)
検出プローブ11(Detect probe11)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:)GTCGGCAATTCAGTTGAGAACTATACA(配列番号36:27mer)
検出プローブ12(Detect probe12)
X2:CTCAACTGGTGTCGTGG(配列番号25:17mer)
X3:GTCGGCAATTCAGTTGAGCAAGCTGA(配列番号37:26mer)
上述した捕捉プローブを固定したDNAマイクロアレイ基板を株式会社Agilent社から購入し、表1の溶液に接触させながら室温で90分放置した。DNAマイクロアレイ基板を超純水で洗浄・乾燥後、当該溶液混合器に設置した。
表1中、Takara 10×bufferの組成は、500mM Tris−HCl(pH7.5)、100mM MgCl2、50mM DTTである。
さらに、任意の濃度のmiRNA溶液を表2のように調整し、検出プローブを含有するハイブリダイゼーション反応溶液を表3のように調製した。
調製したmiRNA溶液を溶液混合器のインレット1から、ハイブリダイゼーション反応溶液をインレット2から導入し、10分間循環させてハイブリダイゼーションさせた。
ハイブリダイゼーション反応終了後、インレット3から0.3M NaClと30mM クエン酸ナトリウムを含む洗浄液を500μl流してDNAマイクロアレイ基板を洗浄し、蛍光顕微鏡で観察した上で、蛍光強度を測定した。
結果を図19に示す。図19(a)は、miRNA検出結果を示す基板の画像である。
図19(b)は、図19(a)に対応しており、網掛けで示したスポットが、標的miRNAに対応するスポットで、蛍光が観察されるべきスポットである。各アルファベットは下記のmiRNAに対応している。
A:141、B:143、C:1275、D:107、E:181a-2*、F:484、S:let-7a、T:let-7b、U:let-7d。
導入したmiRNAに対応するプローブを固定した各スポットにおいて、Alexa647標識された検出プローブの蛍光像が観察された。なお、「C」のmiR-1275は、検出限界濃度を確認するため他のmiRNAの1000分の1の濃度で入れたため、蛍光が暗くなっている。また、プローブの配列ごとに明るさが異なるのは、プローブの親和性が異なるためである。
このことから、該溶液混合器を用いてmiRNAを配列依存的に検出できることが確認された。
[溶液の定量と回転混合]
溶液混合器の主流路21上のバルブ23a、23bを閉じた状態で、バルブ43aを開け、第一の溶液91を溶液混合器へと送液した(図20(2))。バルブ33を閉じた状態で、バルブ43bを開け、第二の溶液92を溶液混合器へと送液した(図20(3))。次いで、バルブ43a、43b、33が閉じた状態で、23a、23bを開き、ポンプバルブ(23a)からなるポンプを始動させ、第一の溶液91と第二の溶液92とを回転混合させ、第三の溶液93を得た(図20(4),図20(5))。第一の溶液91と第二の溶液92とは、十分に混合されていた。
[流体デバイスにおけるバルブの開閉]
図21Bに示す流体デバイスを作製した。図21Aの表に示すような各工程におけるバルブの開閉制御により、流体の流れを制御できることが確認された。
以上の結果から、本実施形態によれば、エキソソームが内包する標的miRNAを含む溶液と、検出プローブを含む溶液とを、流路上に検出部を有する溶液混合器によって定量混合できる。また、エキソソームの迅速な分析を自動化できる。
1…流体デバイス、2…エキソソーム精製部、2a…洗浄液導入用インレット、2b…サンプル導入用インレット、2c…破砕液導入用インレット、2d…エキソソーム固定部、2e,2f,2g,3d,3f,4f,4g,4h,5a,10a,11a,…バルブ、2h,2i,2j,3e,3g…流路、3…生体分子精製部、3b…生体分子回収液導入用インレット、3c…生体分子固定部、4…溶液混合器、4c…検出部、5…第一の流路、6…第二の流路、7…第一の廃液槽、8…第二の廃液槽、9…第三の廃液槽、10…第三の流路、11…第四の流路、12…第五の流路、 20,20’,30,30’,40,50,50’,60,70,80…溶液混合器、21a,21b,21c,21d(21)…主流路、31…折り返し構造、22…結合流路、32…溶液排出流路、23a,23b,23c,23d,23e,23f(23)…主流路バルブ、24…ポンプバルブ、33a,33b,33c,33d(33)…溶液排出流路バルブ、43a,43b,43c,43d,(43)…溶液導入流路バルブ、91…第一の溶液、92…第二の溶液、93…第三の溶液、94…第四の溶液、95…第五の溶液、 133…miRNA、131…第一の部分、132…第二の部分、134…捕捉プローブ、134a…スペーサー、135…検出プローブ、135a…標識物質、135b…配列、135c,135d…ステム部、136…基板。

Claims (11)

  1. 溶液混合容器を用いて、複数の溶液を混合する方法であって、
    前記溶液混合容器は、
    溶液が循環する主流路と、
    前記主流路に接続する少なくとも1つの溶液導入流路と、
    前記主流路に接続する少なくとも1つの溶液排出流路と、を含み、
    前記主流路は、少なくとも2つの主流路バルブを有し、
    前記主流路バルブは、いずれか2つの該主流路バルブを閉じることによって区画される前記主流路の部分領域のそれぞれが所定の体積を有するよう配置されており、
    前記主流路の部分領域の全てに、前記少なくとも1つの溶液導入流路と前記少なくとも1つの溶液排出流路が接続し、
    前記溶液排出流路のそれぞれが溶液排出流路バルブを有し、
    前記主流路の部分領域のそれぞれに、前記溶液導入流路から溶液を導入する工程と、
    前記主流路バルブをすべて開放して、前記溶液を回転混合する工程と、を含む方法。
  2. 少なくとも1つの前記主流路バルブが前記溶液導入流路及び/又は前記溶液排出流路の近傍に配置されている請求項1に記載の方法。
  3. 前記主流路は、
    第一の流路と、
    第二の流路と、
    前記第一の流路と前記第二の流路とを連通させる第一の結合流路及び第二の結合流路と、を含み、
    前記主流路バルブは、前記第一の結合流路及び/又は前記第二の結合流路に配置されている請求項1又は2に記載の方法。
  4. 更に、前記主流路に溶液を循環させるポンプを含む請求項1〜3のいずれか一項に記載の方法。
  5. 前記ポンプは、少なくとも3つのポンプバルブを含む請求項1〜4のいずれか一項に記載の方法。
  6. 前記主流路は、溶液中の物質の検出部を含む請求項1〜5のいずれか一項に記載の方法。
  7. 前記溶液中の物質は生体分子であり、
    前記検出部は、前記生体分子に親和性を有する物質が固定された基板を含む請求項6に記載の方法。
  8. 溶液混合器を用いて、2種類の溶液を混合する方法であって、
    前記溶液混合器は、
    溶液が循環する主流路と、前記主流路に接続する溶液導入流路と、前記主流路に接続する溶液排出流路と、を含み、前記溶液排出流路は溶液排出流路バルブを有し、前記主流路は2つの主流路バルブを有し、前記溶液導入流路及び前記溶液排出流路は、前記2つの主流路バルブを閉じることによって区画される前記主流路の部分領域以外の領域で前記主流路に接続しており、
    前記2つの主流路バルブは、それらを閉じることによって区画される前記主流路の部分領域のそれぞれが所定の体積を有するよう配置されており、
    前記2つの主流路バルブ及び前記溶液排出流路バルブを開放した状態で、第一の溶液を前記溶液導入流路から前記主流路に送液する工程aと、
    前記2つの主流路バルブを閉じる工程bと、
    第二の溶液を前記溶液導入流路から前記主流路に送液する工程cと、
    前記溶液排出流路バルブを閉じる工程dと、
    前記2つの主流路バルブを開け、前記第一の溶液と前記第二の溶液とを循環させて混合する工程eと、
    を含む方法。
  9. 溶液混合容器を用いて、複数の溶液を混合する方法であって、
    前記溶液混合容器は、
    第一の流路と、
    第二の流路と、
    前記第一の流路及び前記第二の流路を連通させる第一の結合流路及び第二の結合流路と、
    前記第一の流路及び前記第二の流路のそれぞれに接続する第一の溶液導入流路及び第二の溶液導入流路と、
    前記第一の流路及び前記第二の流路のそれぞれに接続する第一の溶液排出流路及び第二の溶液排出流路と、
    前記第一の溶液排出流路及び前記第二の溶液排出流路にそれぞれ配置された第一の溶液排出流路バルブ及び第二の溶液排出流路バルブと、
    前記第一の結合流路及び前記第二の結合流路にそれぞれ配置された第一の主流路バルブ及び第二の主流路バルブであって、それらを閉じることによって区画される前記主流路の部分領域のそれぞれが所定の体積を有するよう配置されている第一の主流路バルブ及び第二の主流路バルブとを有し、
    前記第一の主流路バルブ及び前記第二の主流路バルブを閉じ、前記第一の溶液排出流路バルブ及び前記第二の溶液排出流路バルブを開放した状態で、前記第一の溶液導入流路から前記第一の流路に第一の溶液を導入し、前記第二の溶液導入流路から前記第二の流路に第二の溶液を導入する工程aと、
    前記第一の溶液排出流路バルブ及び前記第二の溶液排出流路バルブを閉じ、前記第一の主流路バルブ及び前記第二の主流路バルブを開放して、前記第一の溶液及び前記第二の溶液を循環させて混合する工程bと、
    を含む方法。
  10. 前記溶液混合容器は、更に、
    第三の流路と、
    前記第二の流路及び前記第三の流路を連通させる第三の結合流路及び第四の結合流路と、
    前記第三の流路に接続する第三の溶液導入流路と、
    前記第三の流路に接続する第三の溶液排出流路と、
    前記第三の溶液排出流路に配置された第三の溶液排出流路バルブと、
    前記第三の結合流路及び前記第四の結合流路にそれぞれ配置された第三の主流路バルブ及び第四の主流路バルブと、
    を有し、
    前記工程bの前又は後に、前記第三の溶液排出流路バルブを開放した状態で、前記第三の溶液導入流路から前記第三の流路に第三の溶液を導入する工程cと、
    前記工程b及び前記工程cの後に、前記第三の溶液排出流路バルブを閉じ、前記第三の主流路バルブ及び前記第四の主流路バルブを開放して、前記第一の溶液及び前記第二の溶液の混合溶液と、第三の溶液とを循環させて混合する工程dと、を含む請求項9に記載の方法。
  11. 混合容器を用いて、複数の溶液を混合する方法であって、
    前記混合容器は、溶液が循環する主流路を含み、
    前記主流路は、第一の流路と、第二の流路と、第三の流路と、前記第一の流路と前記第二の流路とを連通させる第一の結合流路及び第二の結合流路と、前記第二の流路及び前記第三の流路を連通させる第三の結合流路及び第四の結合流路と、を含み、
    前記第一の流路、前記第二の流路及び前記第三の流路に接続する少なくとも1つの溶液導入流路と、
    前記第一の流路、前記第二の流路及び前記第三の流路に接続する少なくとも1つの溶液排出流路と、を備え、
    前記溶液排出流路は少なくとも1つの溶液排出流路バルブを有し、
    前記第一の結合流路、前記第二の結合流路、第三の結合流路及び第四の結合流路は、それぞれ少なくとも1つの主流路バルブを有し、
    前記主流路バルブ及び前記溶液排出流路バルブは、前記主流路バルブ及び前記溶液排出流路バルブを閉じることによって区画される前記第一の流路、前記第二の流路及び前記第三の流路それぞれの部分領域が所定の体積を有するよう配置され、
    前記第一の流路及び前記第二の流路が、相互に、且つ、他の流路から隔離されるように前記主流路バルブ及び前記溶液排出流路バルブを閉じ、前記第一の流路に第一の溶液を導入し、前記第二の流路に第二の溶液を導入する工程aと、
    前記第一の流路と前記第二の流路とが連通するように主流路バルブを開放し、前記第一の溶液及び前記第二の溶液を循環させて混合する工程bと、
    前記第三の流路が、他の流路から隔離されるように前記主流路バルブ及び前記溶液排出流路バルブを閉じ、前記第三の流路に第三の溶液を導入する工程cと、
    前記第一の流路及び前記第二の流路と前記第三の流路とが連通するように主流路バルブを開放し、第一の溶液及び第二の溶液の混合溶液と第三の溶液とを循環させて混合する工程dと、
    を含む方法。
JP2019089357A 2013-09-25 2019-05-09 溶液混合容器、流体デバイス、及び流体システム Active JP6885549B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013199071 2013-09-25
JP2013199071 2013-09-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015539273A Division JP6531989B2 (ja) 2013-09-25 2014-09-24 溶液の混合方法

Publications (2)

Publication Number Publication Date
JP2019193931A true JP2019193931A (ja) 2019-11-07
JP6885549B2 JP6885549B2 (ja) 2021-06-16

Family

ID=52743398

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015539273A Active JP6531989B2 (ja) 2013-09-25 2014-09-24 溶液の混合方法
JP2019089357A Active JP6885549B2 (ja) 2013-09-25 2019-05-09 溶液混合容器、流体デバイス、及び流体システム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015539273A Active JP6531989B2 (ja) 2013-09-25 2014-09-24 溶液の混合方法

Country Status (4)

Country Link
US (2) US20160199796A1 (ja)
EP (1) EP3051293B1 (ja)
JP (2) JP6531989B2 (ja)
WO (1) WO2015046263A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045666A1 (ja) * 2013-09-25 2015-04-02 国立大学法人東京大学 流体デバイス、エキソソームの分析方法、生体分子分析方法及び生体分子検出方法
WO2016153006A1 (ja) 2015-03-24 2016-09-29 国立大学法人東京大学 流体デバイス、システム、及び方法
EP3222351A1 (en) * 2016-03-23 2017-09-27 Ecole Polytechnique Federale de Lausanne (EPFL) Microfluidic network device
JP6846434B2 (ja) * 2016-04-29 2021-03-24 クレオプティクス・アーゲーCreoptix Ag 分子を回収するための方法およびアセンブリ
EP3467515A4 (en) * 2016-06-06 2020-04-29 Nikon Corporation FLUID DEVICE, SYSTEM, SAMPLE SUBSTANCE DETECTION METHOD, AND SAMPLE SUBSTANCE PURIFICATION METHOD
WO2017213074A1 (ja) * 2016-06-06 2017-12-14 株式会社ニコン 流体デバイス、システムおよび試料物質の検出方法
JPWO2017213123A1 (ja) * 2016-06-07 2019-04-04 国立大学法人 東京大学 流体デバイス
WO2019069372A1 (ja) * 2017-10-03 2019-04-11 株式会社ニコン 検出対象の測定方法、捕捉プローブ固定化担体、検出キット、及び流体デバイス
WO2019116476A1 (ja) * 2017-12-13 2019-06-20 株式会社ニコン 流体デバイス
JP7157421B2 (ja) * 2017-12-13 2022-10-20 国立大学法人 東京大学 流体デバイス
JP2019163949A (ja) * 2018-03-19 2019-09-26 積水化学工業株式会社 マイクロ流体デバイス及び反応システム
JP7070679B2 (ja) * 2018-06-29 2022-05-18 株式会社ニコン 流体デバイス及びシステム並びに混合方法
US20210348992A1 (en) * 2018-06-29 2021-11-11 Nikon Corporation Fluidic device, system, and mixing method
JP7264667B2 (ja) * 2019-02-28 2023-04-25 浜松ホトニクス株式会社 液体供給装置、微小デバイスシステム、及び液体供給方法
CN114100957B (zh) * 2020-08-26 2023-03-24 湖北万度光能有限责任公司 含料液回吸通道的狭缝涂布系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533605A (ja) * 2001-03-09 2004-11-04 バイオミクロ システムズ インコーポレイティッド アレイとのミクロ流体的インターフェース接続方法およびシステム
US20070006926A1 (en) * 2005-05-02 2007-01-11 Manu Prakash Microfluidic bubble logic devices
JP2008514901A (ja) * 2004-09-28 2008-05-08 クリーブランド バイオセンサーズ プロプライエタリー リミテッド マイクロ流体デバイス
US20100024888A1 (en) * 2006-03-27 2010-02-04 Xiaosheng Guan Fluidic flow merging apparatus
US20120136492A1 (en) * 2009-04-02 2012-05-31 Ahmed Mohamed Eid Amin Variable Volume Mixing and Automatic Fluid Management for Programmable Microfluids
US20120257470A1 (en) * 2009-10-13 2012-10-11 Iti Scotland Limited Microfluidic mixer
US20120309648A1 (en) * 2007-07-06 2012-12-06 The Regents Of The University Of Calfornia Integrated microfluidics for highly parallel screening of chemical reactions

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5511875A (en) * 1990-02-19 1996-04-30 Gambro Ab System for the preparation of a fluid concentrate intended for medical use
AU2002307152A1 (en) 2001-04-06 2002-10-21 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
US20090136982A1 (en) 2005-01-18 2009-05-28 Biocept, Inc. Cell separation using microchannel having patterned posts
US8158410B2 (en) * 2005-01-18 2012-04-17 Biocept, Inc. Recovery of rare cells using a microchannel apparatus with patterned posts
JP2007136322A (ja) * 2005-11-17 2007-06-07 Konica Minolta Medical & Graphic Inc 反応物質同士の拡散および反応を効率化したマイクロリアクタ、およびそれを用いた反応方法
CA2644206A1 (en) * 2006-03-02 2007-09-13 The Regents Of The University Of California Integrated microfluidics for parallel screening of chemical reactions
US7727723B2 (en) * 2006-04-18 2010-06-01 Advanced Liquid Logic, Inc. Droplet-based pyrosequencing
US7897356B2 (en) 2008-11-12 2011-03-01 Caris Life Sciences Methods and systems of using exosomes for determining phenotypes
WO2011063324A2 (en) * 2009-11-20 2011-05-26 The General Hospital Corporation Microfluidic systems for isolating microvesicles
US8376317B2 (en) * 2010-03-29 2013-02-19 Purdue Research Foundation Microfluidic purge valve
EP2409765A1 (en) * 2010-07-21 2012-01-25 F. Hoffmann-La Roche AG Microfluidic system and process for mixing liquid fluids

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004533605A (ja) * 2001-03-09 2004-11-04 バイオミクロ システムズ インコーポレイティッド アレイとのミクロ流体的インターフェース接続方法およびシステム
JP2008514901A (ja) * 2004-09-28 2008-05-08 クリーブランド バイオセンサーズ プロプライエタリー リミテッド マイクロ流体デバイス
US20070006926A1 (en) * 2005-05-02 2007-01-11 Manu Prakash Microfluidic bubble logic devices
US20100024888A1 (en) * 2006-03-27 2010-02-04 Xiaosheng Guan Fluidic flow merging apparatus
US20120309648A1 (en) * 2007-07-06 2012-12-06 The Regents Of The University Of Calfornia Integrated microfluidics for highly parallel screening of chemical reactions
US20120136492A1 (en) * 2009-04-02 2012-05-31 Ahmed Mohamed Eid Amin Variable Volume Mixing and Automatic Fluid Management for Programmable Microfluids
US20120257470A1 (en) * 2009-10-13 2012-10-11 Iti Scotland Limited Microfluidic mixer

Also Published As

Publication number Publication date
JPWO2015046263A1 (ja) 2017-03-09
EP3051293B1 (en) 2021-11-03
EP3051293A4 (en) 2017-11-22
EP3051293A1 (en) 2016-08-03
WO2015046263A1 (ja) 2015-04-02
JP6531989B2 (ja) 2019-06-19
JP6885549B2 (ja) 2021-06-16
US20190126215A1 (en) 2019-05-02
US11642636B2 (en) 2023-05-09
US20160199796A1 (en) 2016-07-14

Similar Documents

Publication Publication Date Title
JP6885549B2 (ja) 溶液混合容器、流体デバイス、及び流体システム
WO2015045666A1 (ja) 流体デバイス、エキソソームの分析方法、生体分子分析方法及び生体分子検出方法
EP4222283A1 (en) Compositions and methods for binding an analyte to a capture probe
CN115461470A (zh) 用于从组织中分离核和细胞的方法
US20160091489A1 (en) Devices and methods for isolating cells
US20220026419A1 (en) ImmunoLipoplex Nanoparticle Biochip Containing Molecular Probes for Capture and Characterization of Extracellular Vesicles
CN106164270A (zh) 核酸纯化方法
JP2015073523A (ja) 核酸の検出方法、検出プローブ、マイクロアレイ、核酸検出キット、核酸‐検出プローブ‐捕捉プローブ複合体、核酸固定化担体、及び流体デバイス
TW201608023A (zh) 對卵巢癌具有專一性之適合體及其應用
US20190276820A1 (en) Single extracellular vesicle multiplexed protein and rna analysis
Pallares-Rusiñol et al. Advances in exosome analysis
Nwokwu et al. ExoPRIME: Solid-phase immunoisolation and OMICS analysis of surface-marker-specific exosomal subpopulations
US11891668B2 (en) Methods for generating therapeutic delivery platforms
JP4940756B2 (ja) マイクロ流路系
Onukwugha et al. Emerging micro-nanotechnologies for extracellular vesicles in immuno-oncology: from target specific isolations to immunomodulation
US20220325271A1 (en) Droplet-based single extracellular vesicle sequencing
WO2017213074A1 (ja) 流体デバイス、システムおよび試料物質の検出方法
KR101513766B1 (ko) 알파태아단백질에 특이적으로 결합하는 dna 앱타머 및 이의 용도
CN109680343A (zh) 一种外泌体微量dna的建库方法
Soltesz et al. Quantification of mtDNA in extracellular vesicles
KR20220066839A (ko) 표적 핵산 검출용 조성물 및 이를 이용한 표적 핵산 검출 방법
US8785348B2 (en) Method of preparing carrier to separate nucleic acids, carrier and micro channel to separate nucleic acids, and method and apparatus for separating nucleic acids
TW201643249A (zh) 結合於非小細胞肺癌細胞(h1975)之dna適體
KR102498862B1 (ko) 엑소좀 액체생검 샘플 분석방법
Kim et al. Enhancement of capture sensitivity for circulating tumor cells in a breast cancer patient's blood by silicon nanowire platform

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200325

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6885549

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150