JP7070679B2 - 流体デバイス及びシステム並びに混合方法 - Google Patents

流体デバイス及びシステム並びに混合方法 Download PDF

Info

Publication number
JP7070679B2
JP7070679B2 JP2020527152A JP2020527152A JP7070679B2 JP 7070679 B2 JP7070679 B2 JP 7070679B2 JP 2020527152 A JP2020527152 A JP 2020527152A JP 2020527152 A JP2020527152 A JP 2020527152A JP 7070679 B2 JP7070679 B2 JP 7070679B2
Authority
JP
Japan
Prior art keywords
flow path
valve
substrate
fluid device
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020527152A
Other languages
English (en)
Other versions
JPWO2020003521A1 (ja
Inventor
遼 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2020003521A1 publication Critical patent/JPWO2020003521A1/ja
Application granted granted Critical
Publication of JP7070679B2 publication Critical patent/JP7070679B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • B01L2400/0655Valves, specific forms thereof with moving parts pinch valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • G01N2001/386Other diluting or mixing processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、流体デバイス及びシステム並びに混合方法に関する。
近年、体外診断分野における試験の高速化、高効率化、および集積化、又は、検査機器の超小型化を目指したμ-TAS(Micro-Total Analysis Systems)の開発などが注目を浴びており、世界的に活発な研究が進められている。
μ-TASは、少量の試料で測定、分析が可能なこと、持ち運びが可能となること、低コストで使い捨て可能なこと等、従来の検査機器に比べて優れている。
更に、高価な試薬を使用する場合や少量多検体を検査する場合において、有用性が高い方法として注目されている。
μ-TASの構成要素として、流路と、該流路上に配置されるポンプとを備えたデバイスが報告されている(非特許文献1)。このようなデバイスでは、該流路へ複数の溶液を注入し、ポンプを作動させることで、複数の溶液を流路内で混合する。
Jong Wook Hong, Vincent Studer, Giao Hang, W French Anderson and Stephen R Quake,Nature Biotechnology 22, 435 - 439 (2004)
本発明の第1の態様に従えば、厚さ方向に順次積層された第1基板、第2基板及び第3基板と、前記第1基板と前記第2基板との一方に設けられ、前記第1基板と前記第2基板との他方により覆われることで、前記第1基板と前記第2基板との接合面と平行な第1方向に沿った溝部で構成される第1流路と、前記第1方向に沿って互いに独立して複数設けられ、それぞれが前記第1流路の一部を共有部として有する環状の第2流路とを備え、前記第2流路は、前記第1基板と前記第2基板との一方に設けられ、前記第1基板と前記第2基板との他方により覆われることで、前記共有部を含み前記接合面と平行で第1方向と交差する第2方向に沿った溝部で構成される第1部分と、前記第2基板と前記第3基板との一方に設けられ、前記第2基板と前記第3基板との他方により覆われることで、前記第2方向に沿った溝部で構成される第2部分と、前記第2基板を前記厚さ方向に貫通し前記第1部分と前記第2部分とを前記第2方向の両端側の位置でそれぞれ接続する第3部分とを有する、流体デバイスが提供される。
本発明の第2の態様に従えば、積層された第1基板および第2基板と、前記第1基板と前記第2基板との少なくとも一方の基板に設けられた溝部で構成される第1流路と、前記第1流路において流体が流れる方向に沿って互いに独立して複数設けられ、前記第1流路と流路の一部を共有する共有部と前記第1流路と流路の一部を共有しない非共有部とにより構成された環状の第2流路と、を備え前記第1流路において、前記複数の第2流路の前記共有部は隣接し、バルブを介して接続している、流体デバイスが提供される。
本発明の第3の態様に従えば、本発明の第1の態様又は第2の態様の流体デバイスと、前記流体デバイスにセットされたときに、前記流路中の流体の流れを調整するバルブを変形させる用力を、前記バルブ毎に独立して供給可能な供給部と、を備えるシステムが提供される。
本発明の第4の態様に従えば、本発明の第1の態様の流体デバイスと、前記複数の第2流路に亘って直線上に配置された前記駆動バルブを一括して変形させる用力を前記直線に沿って配置された供給路を介して供給可能な第2供給部と、を備えるシステムが提供される。
本発明の第5の態様に従えば、厚さ方向に順次積層された第1基板及び第2基板を有し、前記第1基板と前記第2基板との少なくとも一方の基板に設けられた溝部で構成される第1流路と、前記第1流路において流体が流れる方向に沿って互いに独立して複数設けられた環状の第2流路と、を備え、前記第2流路は、それぞれ、前記第1基板と前記第2基板との少なくとも一方の基板に設けられた溝部で構成され、前記第1流路と流路の一部を共有する共有部と、前記第1流路と流路の一部を共有しない非共有部とを有する、流体デバイスを準備することと、前記第1流路に第1溶液を導入することと、前記複数の第2流路の前記非共有部にそれぞれ第2溶液を導入することと、前記共有部を前記第1流路の一部から前記第2流路の一部に切り替えることと、前記第2流路において、前記第1溶液と前記第2溶液とを混合することと、を含む混合方法が提供される。
一実施形態の流体デバイスを模式的に示す外観斜視図。 一実施形態の流体デバイスを模式的に示す平面図。 図2におけるA-A線視断面図。 図2におけるB-B線視断面図。 第2流路120Aを拡大した部分平面図。 図5における基材5のC-C線視断面図。 一実施形態の流体デバイスを模式的に示す部分平面図。 一実施形態の流体デバイスを模式的に示す外観斜視図。 一実施形態のシステムSYSの基本構成を示す断面図。 一実施形態のシステムSYSの駆動部TRを示す平面図。 第1流路110及び第2流路120A~120Eの変形例を示す部分平面図。
以下、本発明の流体デバイス及びシステム並びに混合方法の実施の形態を、図1ないし図11を参照して説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限られない。
図1は、本実施形態の流体デバイス1を模式的に示す外観斜視図である。図2は、流体デバイス1に設けられた流路の一例を模式的に示した平面図である。なお、図2においては、透明な上板6について、下側に配置された各部を透過させた状態で図示する。図3は、図2におけるA-A線視断面図である。図4は、図2におけるB-B線視断面図である。
本実施形態の流体デバイス1は、一例として、検体試料に含まれる検出対象である試料物質を免疫反応および酵素反応などにより検出するデバイスを含む。試料物質は、例えば、核酸、DNA、RNA、ペプチド、タンパク質、細胞外小胞体などの生体分子である。
図1に示すように、流体デバイス1は、基材5を備える。基材5は、厚さ方向に積層された3つの基板(第1基板6、第2基板9及び第3基板8)を有する。本実施形態の第1基板6、第2基板9及び第3基板8は、樹脂材料から構成される。第1基板6、第2基板9及び第3基板8を構成する樹脂材料としては、ポリプロピレン、ポリカーボネイト等が例示される。また、本実施形態において、第1基材6および第3基材8は、透明な材料から構成される。なお、第1基材6、第3基材8および第2基材9を構成する材料は、限定されない。
以下の説明においては、第1基板6、第2基板9及び第3基板8は、それぞれS平面視略矩形板状で水平面に沿って配置され、第1基板6は第2基板9の上側に配置され、第3基板8は第2基板9の下側に配置されるものとして説明する。ただし、これは、説明の便宜のために水平方向および上下方向を定義したに過ぎず、本実施形態に係る流体デバイス1の使用時の向きを限定しない。
また、以下の説明においては、第1基板6、第2基板9及び第3基板8の長辺方向をX方向(第1方向)とし、短辺方向(第2方向S)をY方向と、X方向及びY方向と直交する上記積層方向をZ方向として適宜説明する。
第1基材6は、上面6bと下面6aと、を有する。第2基材9は、上面9bと下面9aとを有する。同様に、第3基材8は、上面8bと下面8aと、を有する。
第1基材6の下面6aは、第2基材9の上面9bと積層方向に対向し接触する。第1基材6の下面6aと第2基材9の上面9bとは、接着等の接合手段により互いに接合されている。第1基材6の下面6aと第2基材9の上面9bとは、第1境界面(接合面)61を構成する。すなわち、第1基材6と第2基材9とは、第1境界面61で接合される。
同様に、第3基材8の上面8bは、第2基材9の下面9aと積層方向に対向し接触する。第3基材8の上面8bと第2基材9の下面9aとは、接着等の接合手段により互いに接合されている。第3基材8の上面8bと第2基材9の下面9aとは、第2境界面(接合面)62を構成する。すなわち、第2基材9と第3基材8とは、第2境界面62で接合される。
図3及び図4に示すように、基材5には、流路11と、リザーバー29と、注入孔32と、廃液槽7と、排出路37と、空気孔35と、供給路39と、バルブV1~V16、V21~V22と、ポンプPとが設けられている。
廃液槽7は、流路11中の溶液を廃棄する為に基材5に設けられる。廃液槽7は、第2基板9を貫通する貫通孔7aの内壁面と、第1基板6の下面6aと、第3基板8の上面8bとに空間に構成される。図1及び図2に示されるように、廃液槽7は、X方向に延びて形成されている。廃液槽7は、第2基板9における+Y側の端縁近傍に配置されている。
図3及び図4に示すように、空気孔35は、第1基板6及び第2基板9を貫通して設けられている。図1及び図2に示されるように、空気孔35は、廃液槽7の-X側に間隔をあけて配置されている。第2基板9の下面9aには、廃液槽7と空気孔35とを連通させる溝部36が形成されている。
図1及び図2に示されるように、流路11は、X方向に沿った溝部で構成される第1流路110と、X方向に沿って互いに独立して設けられた複数(図1及び図2では5つ)の第2流路120A~120E(適宜、第2流路120と総称する)とを有している。なお、溝部がX方向に沿うとは、溝部の長さにおける両端を結ぶ直線が略X方向と平行であることを意味する。
第1流路110は、第2基板9の上面9bに設けられ、第1基板6に覆われることにより形成される。第1流路110は、複数の第2流路120A~120Eに対応してX方向に複数配置された定量部GB1~GB5と、導入路51と排出路52とを有している。
なお、本実施形態において、定量部GB1~GB5は、形状、大きさ及び容積がそれぞれ同様である。定量部GB1~GB5の形状、大きさを同一(共通)とすることにより、複数の第2流路120A~120Eにおいて、バルブの配置を共通化することが可能となる。定量部GB1~GB5の形状、大きさ、容積は同一でなくてもよい。例えば、定量部GB1~GB5において、形状、大きさが同一で深さが異なる場合、バルブの配置を変更することなく、それぞれの定量部GB1~GB5の容積を容易に変更することができる。この構成を採る場合には、複数の第2流路120A~120Eにおいて、例えば異なる濃度の検体を評価する場合に有用である。
以下では定量部GB1を一例として説明する。
図5は、第2流路120Aを拡大した部分平面図である。定量部GB1は、略正三角形の合流・分岐部GB11、GB12、及びこれらを接続する接続部GB13を含む。図7は、定量部GB1の詳細を示す積層方向視の平面図である。図7に示すように、合流・分岐部GB11、GB12は、略正三角形の上面と底面を有する空間である。ここで、略正三角形とは、最も長い三辺がそれぞれ60度をなすことを意味する。合流・分岐部GB11、GB12は、平面視(積層方向視(第2基板9の厚さ方向視))において基準となる正三角形の頂点位置(以下、単に頂点位置と称する)同士を結ぶ線分と平行で当該正三角形の内側に所定距離オフセットした輪郭で囲まれ第2基板9の上面9bに設けられた窪みで形成されている。
本実施形態における合流・分岐部GB11、GB12は、第2基板9の上面9bと平行な正三角形の上面及び底面と、上面及び底面と直交する側面とを有する。従って、合流・分岐部GB11、GB12の平面視における上記輪郭は、第2基板9の上面9bと側面とが交差する稜線で形成される。
合流・分岐部GB11、GB12を構成する上面と底面とは、同じ大きさの正三角形であり、積層方向視で完全に重なる。正三角形の少なくとも2つの頂点の位置には、流路11中の流体の流れを調整するバルブが設けられる(詳細は後述)。
なお、合流・分岐部GB11、GB12を構成する上面と底面とは、上面の方が底面より大きい正三角形であり、積層方向視で、底面となる小さい正三角形が上面となる大きい正三角形の内部に配置される構成であってもよい。このとき、合流・分岐部GB11、GB12を構成する側面は上面から底面に向かうのに従って内部に向かう方向に傾斜する。
従って、各合流・分岐部GB11、GB12の輪郭同士が交差する位置(以下、単に交差位置と称する)は、上記正三角形の内側に配置される。上記線分と輪郭とのオフセット量としては、一例として0.1mm~0.2mm程度である。オフセットによって、バルブのダイアフラム部材のエラストマーの接地面を広くすることができるので、より安定的にバルブを封止できる。また、オフセットによって分岐部の体積の微調整が可能である。例えば、複数の合流・分岐部において、バルブのサイズは共通であっても、オフセット量を変えることで、それぞれ異なる体積の分岐部とすることができる。また、オフセット量は、三辺のうち少なくとも一辺における前記距離が他の辺における前記距離と異なっていてもよい。この構成を採った場合には、バルブの接液面積に差をつけることができ、接液面積が小さいバルブの耐内圧性を向上することができる。
合流・分岐部GB11における頂点位置の一つと、合流・分岐部GB12における頂点位置の一つとは同一位置に配置されている。
また、合流・分岐部GB11における頂点位置の一つと、合流・分岐部GB12における頂点位置の一つとの間には一定距離の間隔が設けられていてもよい。
換言すると、第1流路110は、輪郭が平面視正三角形の合流・分岐部が中心点を中心として点対称に一対で配置され、中心点を通る接続部が一対の合流・分岐部同士を接続する立鼓状(リボン状、砂時計状)の複数の定量部GB1~GB5が組み合わされている。共有部としての複数の定量部GB1~GB5は、連続して配列されている。隣り合う定量部GB1~GB5同士は、合流・分岐部の頂点位置を共有している。隣り合う定量部GB1~GB5同士が共有する頂点位置には、バルブが備えられている。
合流・分岐部GB11における頂点位置の一つと、合流・分岐部GB12における頂点位置の一つとは同一位置に配置されている場合、接続部GB13は、合流・分岐部GB11、GB12における上記同一位置に配置された頂点位置を介して合流・分岐部GB11、GB12同士を接続する。合流・分岐部GB11における頂点位置の一つと、合流・分岐部GB12における頂点位置の一つとの間に一定距離の間隔が設けられている場合、接続部GB13により、合流・分岐部GB11における頂点位置の一つと、合流・分岐部GB12における頂点位置の一つとを接続して、合流・分岐部GB11、GB12同士は接続される。接続部GB13は、一例として、直線状の溝で形成されている。合流・分岐部GB11、GB12及び接続部GB13は、同一深さに形成されている。合流・分岐部GB11、GB12及び接続部GB13の面積、深さ(すなわち容積)は、定量部GB1において定量する溶液の体積に応じて設定される。
合流・分岐部GB11における接続部GB13が配置されていない(非配置)の頂点位置には、バルブV1、V2が配置されている。合流・分岐部GB11は、バルブV1を介して排出路52と繋がり、バルブV1の開閉に応じて排出路52に対して接続可能または遮蔽可能である。排出路52は、一端においてバルブV1を介して定量部GB1と繋がり、他端において廃液槽7と繋がっている。
合流・分岐部GB12における接続部GB13が配置されていない(非配置)の頂点位置には、バルブV3、V4が配置されている。図2に示されるように、合流・分岐部GB12は、バルブV4を介して定量部GB2と繋がり、バルブV4の開閉に応じて定量部GB2に対して接続可能または遮蔽可能である。
同様に、定量部GB2は、バルブV7を介して定量部GB3と繋がり、バルブV7の開閉に応じて定量部GB3に対して接続可能または遮蔽可能である。定量部GB3は、バルブV10を介して定量部GB4と繋がり、バルブV10の開閉に応じて定量部GB4に対して接続可能または遮蔽可能である。定量部GB4は、バルブV13を介して定量部GB5と繋がり、バルブV13の開閉に応じて定量部GB5に対して接続可能または遮蔽可能である。定量部GB5は、バルブV16を介して導入路51と繋がり、バルブV16の開閉に応じて導入路51に対して接続可能または遮蔽可能である。
導入路51は、一端においてバルブV16を介して定量部GB5と繋がり、他端において注入孔53と繋がっている。注入孔53は、第2基板9を厚さ方向に貫通して形成されている。第3基板8は、図1に示されるように、注入孔53と対向する位置に空気孔54を有している。空気孔54は、第3基板8を厚さ方向に貫通して形成されている。溶液は、空気孔54を介して注入孔53に注入される。注入孔53は、リザーバーとして機能し、注入された溶液を貯溜(保持)可能である。注入孔53に注入・貯溜される溶液としては、例えば、検体等の試料含む溶液が挙げられる。
第1流路110は、バルブV2、V3、V5、V6、V8、V9、V11、V12、V14、V15を閉じた状態でバルブV1、V4、V7、V10、V13、V16を開放することにより、注入孔53、廃液槽7、溝部36及び空気孔35と連通可能である。第1流路110は、バルブV1~V16を閉じることにより、定量部GB1~GB5が区画化される。
図5に戻り、第2流路120Aは、YZ平面と略平行な平面に沿った環状(ループ状)に形成された循環流路である。第2流路120Aは、第2基板9の上面9bに設けられ、第1基板6に覆われることでY方向に沿った溝部で形成される第1部分121と、第2基板9の下面9aに設けられ、第3基板8に覆われることでY方向に沿った溝部で形成される第2部分122と、第2基板9を厚さ方向に貫通し第1部分121と第2部分122とをY方向の両端側の位置でそれぞれ接続する第3部分123とを有する。第3部分123は、例えば、第1基板6と第2基板9との接合面及び第2基板9と第3基板8との接合面に対して、略垂直に第2基板9を貫通していてもよい。
第1部分121は、合流・分岐部GB21、GB22、上面流路131、132及び定量部GB1を有している。定量部GB1は、第1流路110と第2流路120Aとの共有部として設けられている。すなわち、共有部である定量部GB1は、循環流路である第2流路120Aの一部である。
合流・分岐部GB21は、合流・分岐部GB11、GB12と同様に、平面視において正三角形の頂点位置同士を結ぶ線分と合致する輪郭、または線分と平行で当該正三角形の内側に所定距離オフセットした輪郭で囲まれた窪みで形成されている。合流・分岐部GB21における頂点位置の一つと、合流・分岐部GB11における頂点位置の一つとは同一位置に配置されている。合流・分岐部GB21と合流・分岐部GB11とは、同一位置の頂点位置に配置されたバルブV2の開閉に応じて接続可能または遮蔽可能である。
合流・分岐部GB21におけるバルブV2が配置された頂点位置とは異なる頂点位置の一つには上面流路131が接続され、他の一つにはバルブV21が配置されている。
上面流路131は、Y方向に沿って延びている。上面流路131は、+Y側において合流・分岐部GB21と接続され、中途においてポンプPが設けられている。ポンプPは、流路中に並んで配置された3つの要素ポンプ(駆動バルブ)Peから構成されている。要素ポンプPeは、いわゆるバルブポンプである。ポンプPは、3つの要素ポンプPeを互いに連携させて順次開閉することにより、循環流路(第2流路120A)内において溶液の流れを調整して搬送することができる。ポンプPを構成する要素ポンプPeの数は、3つ以上であればよく、例えば、4、5,6,7,8,9、10個であってもよい。
図2に示されるように、要素ポンプPeのそれぞれは、第2流路120A~120Eに亘ってY方向の位置が同一でX方向に延びる直線L1~L3上にそれぞれ配置されている。従って、要素ポンプPeを駆動するための用力を直線L1~L3に沿って供給することにより、第2流路120A~120Eの要素ポンプPe毎に一括して駆動することが可能となる。そのため、第2流路120A~120Eにおける溶液の流れを同期させることができる。
合流・分岐部GB22は、合流・分岐部GB21と同様に、平面視において正三角形の頂点位置同士を結ぶ線分と合致する輪郭、又は、線分と平行で当該正三角形の内側に所定距離オフセットした輪郭で囲まれた窪みで形成されている。合流・分岐部GB22における頂点位置の一つと、合流・分岐部GB12における頂点位置の一つとは同一位置に配置されている。合流・分岐部GB22と合流・分岐部GB12とは、同一位置の頂点位置に配置されたバルブV3の開閉に応じて接続可能または遮蔽可能である。
合流・分岐部GB22におけるバルブV3が配置された頂点位置とは異なる頂点位置の一つには上面流路132が接続され、他の一つにはバルブV22が配置されている。
上面流路132は、Y方向に沿って延びている。上面流路132は、-Y側において合流・分岐部GB22と接続されている。
第2部分122は、下面流路133を有している。下面流路133は、Y方向に沿って延びている。下面流路133の一部は、積層方向視で上面流路131、132及び定量部GB1と重なっている。すなわち、第1部分121と第2部分122とは、一部が第2基板9の厚さ方向に重なっている。
第3部分123は、接続孔134、135を有している。図3に示すように、接続孔134は、第2基板9を貫通する。接続孔134は、上面流路131の-Y側端部と下面流路133の-Y側端部とを接続する。接続孔135は、第2基板9を貫通する。接続孔135は、上面流路131の+Y側端部と下面流路133の+Y側端部とを接続する
図5に示すように、第2流路120Aには、供給路39を介してリザーバー29が接続され、排出路37を介して廃液槽7が接続されている。リザーバー29は、上面流路131と略平行に設けられている。図4に示すように、リザーバー29は、第2基板9の上面9bに開口する溝部で形成されている。リザーバー29の-Y側端部には、第2基板9の厚さ方向に貫通し、下面9aに開口する注入孔32が形成されている。溶液は、下面9a側から注入孔32を介してリザーバー29に注入されて貯溜される。
リザーバー29は、第2流路120A~120Eのそれぞれに個別、且つ独立して設けられている。リザーバー29に充填される溶液としては、例えば、注入孔53に貯溜された試料に対する試薬である。第2流路120A~120Eリザーバー29に充填される試薬としては、同種であってもよいし、異種のものであってもよい。
供給路39は、バルブV21の開閉に応じて合流・分岐部GB21と接続可能または遮蔽可能である。排出路37は、バルブV22の開閉に応じて合流・分岐部GB22と接続可能または遮蔽可能である。第2流路120Aにおけるリザーバー29は、バルブV21を閉じることにより、第2流路120Aに対して区画される。
図6は、図5における基材5のC-C線視断面図である。なお、ここでは、合流・分岐部GB11、GB21及びバルブV2の構造を代表して説明するが、他の合流・分岐部及びバルブV1~V16、V21~V22についても同様の構成である。
なお、上記の合流・分岐部GB11~GB12、GB21~GB22及びバルブV1~V16、V21~V22の中心位置は、二次元六方格子パターンで所定数配置された指標点から選択された位置にそれぞれ配置されている。
まず、バルブV2の構造について説明する。
図6に示すように、第1基材6には、バルブV2を保持するバルブ保持孔34が設けられる。バルブV2は、バルブ保持孔34において、第1基材6に保持される。バルブV2は、弾性材料から構成される。バルブV2に採用可能な弾性材料としては、ゴム、エラストマー樹脂などが例示される。バルブV2の直下の流路11には、半球状の窪み40が設けられる。窪み40は、第2基材9の上面9bにおいて、平面視円形状である。上面9bにおける窪み40の直径としては、例えば、1.0~3.0mmが好ましい。
バルブV2は、下側に向かって弾性変形して流路の断面積を変化させることにより、流路11における溶液の流れを調整する。バルブV2は、下側に向かって弾性変形して窪み40に当接することで流路11を閉塞する。また、バルブV2は、窪み40から離間することで流路11を開放する(図6の仮想線(二点鎖線))。
合流・分岐部GB11、GB21の底面85qには、バルブV2(窪み40)と合流・分岐部GB11、GB21の境界に位置し、バルブV2に向かうに従い天面85pとの距離を小さくする傾斜部SLが設けられている。傾斜部SLが設けられることによって、例えば、傾斜部SLが設けられず、窪み40の底部と合流・分岐部GB11、GB21の底面85qとの境界に段差(角部)が存在する場合と比較して、溶液をバルブV2にスムーズに導入することができ、段差(角部)の気泡残りを効果的に抑制できる。
また、排出路37、52、供給路39、導入路51のそれぞれと窪み40との境界についても、上述した傾斜部SLが設けられている。傾斜部SLは、流路11が扁平であり、且つ、溶液に対して親液性を有する場合に特に有効である。流路11が扁平であるとは、流路11の幅よりも流路11の深さが小さいことである。
各傾斜部SLは、バルブの中心に向かうのに従って60°の角度で縮径するテーパ形状を有している。当該テーパ形状における上記の傾斜部SLの最大幅W(図7参照)としては、0.5~1.5mm程度が好ましい。
なお、窪み40の最も低い位置が合流・分岐部GB11、GB21の底面85qよりも高い位置にある場合は、上記傾斜部SLが設けられる構成が有効に作用するが、窪み40の最も低い位置が合流・分岐部GB11、GB21の底面85qよりも低い位置にある場合は、傾斜部SLを設けることなく、底面85qと窪み40とが交差する構成であってもよい。
(注入孔53から流路110に溶液を供給して定量する手順)
次に、流体デバイス1において注入孔53から第1流路110に溶液を供給して定量する手順、及びリザーバー29から第2流路120Aに溶液を供給して定量する手順ついて説明する。なお、第1流路110における溶液の定量と、第2流路120Aにおける溶液の定量との順序はどちらが先でも構わない。また、注入孔53及びリザーバー29には、予め所定の溶液が充填されているものとして説明する。
第1流路110に溶液を供給して定量する場合、まず、バルブV2、V3、V5、V6、V8、V9、V11、V12、V14、V15を閉じ、バルブV1、V4、V7、V10、V13、V16を開放する。これにより、第1流路110を構成する定量部GB1~GB5と導入路51と排出路52とは、注入孔53、廃液槽7、溝部36及び空気孔35と連通する。
次に、図示略の吸引装置を用いて、図1~2、図4~5等に示す空気孔35から溝部36を介して廃液槽7内を負圧吸引する。これにより、注入孔53内の溶液は、導入路51を介して流路11側に移動する。また、導入路51の溶液の後方には、空気孔54を通過した空気が導入される。これにより、注入孔53に収容された溶液は、導入路51を介して定量部GB5~GB1及び排出路52に順次導入される。
例えば、バルブ(第3バルブ)V2及びバルブ(第4バルブ)V3を閉じ、バルブ(第1バルブ)V1及びバルブ(第1バルブ)V4を開き、定量部GB1に溶液を導入する際に、定量部GB2からバルブV4を介して合流・分岐部GB12に導入された溶液は、接続部GB13を介して合流・分岐部GB11に導入される。
ここで、定量部GB2とバルブV4との境界には、上述した傾斜部SLが設けられているため、定量部GB2とバルブV4(窪み40)との境界に気泡残りを抑制した状態で溶液をスムーズにバルブV4に導入して満たすことができる。また、合流・分岐部GB12は、平面視で正三角形に形成されており、バルブV4(窪み40)を基点として他の頂点位置に配置されたバルブV3及び接続部GB13までの距離が同一である。そのため、バルブV4から合流・分岐部GB12に導入された溶液は、図7に二点鎖線で示すように、バルブV3及び接続部GB13にほぼ同時に到達する。
その結果、例えば、接続部GB13に先に到達した溶液が接続部GB13に流動してしまい、バルブV3近辺に気泡が残る事態を抑制することが可能となる。
また、接続部GB13を介して溶液が導入された合流・分岐部GB11についても、合流・分岐部GB11が平面視で正三角形に形成されており、接続部GB13を基点として他の頂点位置にあるバルブV1、V2までの距離は同一である。そのため、接続部GB13から合流・分岐部GB11に導入された溶液は、図7に二点鎖線で示すように、バルブV1、V2にほぼ同時に到達する。
その結果、例えば、バルブV1に先に到達した溶液が排出路52に流動してしまい、バルブV2近辺に気泡が残る事態を抑制することが可能となる。
この後、バルブV1、V4、V7、V10、V13、V16を閉じる(すなわち、バルブV1~V16が閉じられる)ことで、定量部GB1~GB5をそれぞれ区画化する。この結果、図8に示されるように、気泡残りが抑制された状態で定量部GB1~GB5において、溶液SAがそれぞれ定量される。
換言すると、定量部GB1は、バルブV1、V4を閉じることにより、溶液SAを定量した状態で第1流路110から切り離される。
次に、リザーバー29から第2流路120Aに溶液を供給して定量する場合、まず、バルブV1~V4を閉じ、バルブV21、V22を開く。これにより、リザーバー29は、供給路39、第1部分121を構成する合流・分岐部GB21及び上面流路131、第3部分123を構成する接続孔134、第2部分122を構成する下面流路133、第3部分123を構成する接続孔135、第1部分121を構成する上面流路132及び合流・分岐部GB22、排出路37を介して廃液槽7と連通する。
次に、上述した吸引装置を用いて、空気孔35から溝部36を介して廃液槽7内を負圧吸引する。これにより、リザーバー29内の溶液は、供給路39を介して合流・分岐部GB21、上面流路131、接続孔134、下面流路133、接続孔135、上面流路132、合流・分岐部GB22及び排出路37に順次導入される。
供給路39を介して合流・分岐部GB21に溶液を導入する際についても、合流・分岐部GB21が平面視で正三角形に形成されており、バルブV21を基点として他の頂点位置にあるバルブV2及び上面流路131までの距離は同一である。そのため、供給路39から合流・分岐部GB21に導入された溶液は、バルブV2及び上面流路131にほぼ同時に到達し、気泡が残る事態を抑制された状態で上面流路131に導入される。
同様に、上面流路132を介して合流・分岐部GB22に溶液を導入する際についても、合流・分岐部GB22が平面視で正三角形に形成されており、上面流路132を基点として他の頂点位置にあるバルブV3及び排出路37までの距離は同一である。そのため、合流・分岐部GB22に導入された溶液は、バルブV3及び排出路37にほぼ同時に到達し、気泡が残る事態を抑制された状態で排出路37に導入される。
この後、バルブV21、V22を閉じることで、第2流路120Aのうち、定量部GB1を除いた領域を区画する。この結果、図8に示されるように、第2流路120Aにおいて、定量部GB1を除いた、上面流路131、接続孔134、下面流路133、接続孔135、上面流路132及び合流・分岐部GB22に気泡残りが抑制された状態で溶液SBがそれぞれ定量される。
なお、他の第2流路120B~120Eにおいて溶液を定量する場合は、定量部GB1を除いた第2流路120Aにおいて溶液SBを定量した手順を同様に実施すればよい。また、第2流路120Aにおいて溶液SBを定量する際に、第2流路120B~120Eのうち一つ以上の流路においても同時に溶液を定量する手順としてもよい。第2流路120A~120Eのうちの複数について同時に溶液を定量する場合は、吸引装置の負圧吸引力が大きくなるものの溶液の定量に要する時間を短くできる。
(流路11内の溶液SA、SBを混合する手順)
次に、流体デバイス1の流路に供給された溶液SA、SBを混合する手順について説明する。まず、上述したように、定量部GB1に溶液SAを定量し、定量部GB1を除いた第2流路120Aに溶液SBを定量した状態で、バルブV2、V3を開く。これにより、定量部GB1が第2流路120Aにおける共有部以外の部分と連通し、定量部GB1を含みYZ平面と略平行な平面に沿った環状の第2流路120Aが形成される。
すなわち、定量部GB1は、バルブV1~V4のうち、バルブV1、V4を開き、バルブV2、V3を閉じることにより第1流路110の一部となり、バルブV2、V3を開き、バルブV1、V4を閉じることにより第2流路120Aの一部となるように切り替えられる。
そして、ポンプPを用いて第2流路120A内の溶液SA、SBを送液して循環させる。第2流路120Aを循環する溶液SA、SBは、流路内の流路壁面と溶液の相互作用(摩擦)により、壁面周辺の流速は遅く、流路中央の流速は速くなる。その結果、溶液の流速に分布ができるため、定量された溶液SA、SBの混合および反応が促進される。
以上説明したように、本実施形態の流体デバイス1では、X方向に沿って配置された第1流路110の一部を構成する定量部GB1~GB5をそれぞれ共有部として含み、Y方向に沿って上面9bに配置された第1部分121と、Y方向に沿って下面9aに配置された第2部分122と、第1部分121及び第2部分122をZ方向で接続する第3部分123とを有し、YZ平面と略平行な平面に沿った環状の第2流路120A~120EがX方向に沿って互いに独立して設けられているため、環状の流路を、例えば、XY平面内で独立して複数設ける場合と比較して小型化を実現できる。また、本実施形態の流体デバイス1では、第1流路110において、第2流路120A~120Eとの共有部にあたる定量部GB1~GB5がバルブを解して連続していることにより、第1流路110から枝分かれする検体導入流路を解して第2流路120A~120Eに検体を移送する場合と比べて、無駄なく検体を第2流路に移送することができる。このことは特に検体量が微小である場合に有効である。
特に、本実施形態の流体デバイス1では、第1部分121と第2部分122との少なくとも一部が積層方向視で重なっているため、流体デバイス1をより小型化できる。そのため、本実施形態の流体デバイス1では、例えば、一種類の検体に対して複数種の試薬で検査する際にも、小型の設備で検査を実施することが可能となる。
また、本実施形態の流体デバイス1では、バルブV1~V4の開閉により定量部GB1を第1流路110の一部または第2流路120Aの一部に切り替えるため、共有部の切換を容易、且つ迅速に実施できる。すなわち、第1流路110において定量部GB1~GB5に液を導入する操作と、定量部GB1~GB5内の液を第2流路120A~120Eにおいて循環する操作と、が簡便に切り替え可能である。また、第1流路110において導入した液を無駄なく第2流路120A~120Eに導入することができる。
また、本実施形態の流体デバイス1では、第1流路110及び第2流路120A~120Eが、それぞれが正三角形の頂点位置同士を結ぶ各線分と平行な輪郭で囲まれ、溶液の合流または分岐が行われる一対の合流・分岐部GB11、GB12を有しているため、気泡の発生を抑制しつつ高精度に溶液SA、SBを定量することが可能になる。そのため、本実施形態の流体デバイス1では、気泡に影響されずに高精度に定量された溶液SA、SBを用いて、高精度の測定を実施することが可能になる。
また、本実施形態の流体デバイス1では、要素ポンプPeのそれぞれは、第2流路120A~120Eに亘ってY方向の位置が同一でX方向に延びる直線L1~L3上にそれぞれ配置されているため、第2流路120A~120Eの要素ポンプPe毎に一括して駆動することが可能となる。そのため、本実施形態の流体デバイス1では、第2流路120A~120Eにおける溶液の流れを容易に同期させることが可能になる。
さらに、本実施形態の流体デバイス1では、上記の要素ポンプPeを含めバルブV1~V16、V21、V22が上面9bに形成された第1部分121に配置されているため、バルブを駆動するための用力を基材5の積層方向一方側(+Z側)から供給すればよくなり、積層方向の両側から供給する場合と比較して装置の小型化及び低価格化に寄与できる。
循環流路を構成する第2流路120A~120Eに検出部が設けられている場合には、第1溶液に含まれる試料物質を検出することが可能である。なお、試料物質を検出するとは、試料物質を直接滴または間接的に検出することが可能である。試料物質を間接的に検出する例として、試料物質を、試料物質の検出を補助する検出補助物質と結合させてもよい。標識物質(検出補助物質)を用いる場合、標識物質と混合し検出補助物質と結合させた試料物質を含む溶液を第1溶液として用いればよい。検出部としては、試料物質を光学的に検出するものであってもよく、一例として、対物レンズ、撮像部を備えていてもよく、撮像部は、例えばEMCCD(Electron Multiplying Charge Coupled Device)カメラを備えていてもよい。また、検出部は、試料物質を電気化学検出するものであってもよく、一例として、電極を備えていてもよい。
標識物質(検出補助物質)としては、例えば、蛍光色素、蛍光ビーズ、蛍光タンパク質、量子ドット、金ナノ粒子、ビオチン、抗体、抗原、エネルギー吸収性物質、ラジオアイソトープ、化学発光体、酵素等が挙げられる。
蛍光色素としては、FAM(カルボキシフルオレセイン)、JOE(6-カルボキシ-4’,5’-ジクロロ2’,7’-ジメトキシフルオレセイン)、FITC(フルオレセインイソチオシアネート)、TET(テトラクロロフルオレセイン)、HEX(5’-ヘキサクロロ-フルオレセイン-CEホスホロアミダイト)、Cy3、Cy5、Alexa568、Alexa647等が挙げられる。
酵素としては、アルカリフォスファターゼ、ペルオキシダーゼ等が挙げられる。
さらに、循環流路を構成する第2流路120A~120Eに上記試料物質を捕捉できる捕捉部が設けられている場合には、上記検出部により試料物質を効率的に検出できる。試料物質の捕捉を継続したまま第2流路120A~120Eから溶液を排出することで試料物質を濃縮することができる。また、試料物質の捕捉を継続したまま第2流路120A~120Eに洗浄液を導入し循環させることで、捕捉部で捕捉された試料物質を洗浄することが可能である。
捕捉部は、試料物質自体、又は試料物質と結合された担体粒子を捕捉することで、第2流路120A~120E内を循環する溶液から、試料物質を収集することができる。捕捉部としては、例えば、磁石等の磁力発生源である。担体粒子としては、例えば、磁気ビーズ又は磁性粒子である。
また、流体デバイス1内に第2流路120A~120Eとは異なる循環流路を反応部として設け、当該反応部に上記検出部、捕捉部等を設けることにより、例えば、検出、捕捉、洗浄、希釈等の所望の反応をさせることが可能となる。
[システム]
次に、上記の流体デバイス1を備えるシステムSYSについて、図9及び図10を参照して説明する。
図9は、システムSYSの基本構成を示す断面図である。
図9に示すように、システムSYSは、上記の流体デバイス1及び駆動部TRを備えている。流体デバイス1は、駆動部TRにセットして使用される。駆動部TRは、板状に形成されており、流体デバイス1をセットしたときに、第1基材の上面6bと対向して配置される。駆動部TRは、流体デバイス1をセットしたときに、第1基材6の上面6bと当接する当接部72を有する。当接部72は、バルブ保持孔34の周囲を取り囲む環状に形成されている。当接部72は、第1基材6の上面6bと当接したときに、上面6bとの間を気密にシール可能である。
駆動部TRは、流体デバイス1のバルブV1~V16、V21~V22に駆動流体を供給する駆動流体供給孔(供給部)73を有する。駆動流体供給孔73には、流体供給源Dから駆動流体(例えば、エアー)が供給される。駆動流体は、バルブV1~V16、V21~V22を変形させる用力である。また、駆動部TRは、第2流路120A~120Eの要素ポンプPeを駆動するための用力を図2に示す直線L1~L3に沿って配置された供給路を介して供給可能な第2供給部(不図示)を有している。
図10は、駆動部TRの平面図である。図10に示すように、駆動部TRは、複数の当接部72及び駆動流体供給孔73を有している。各駆動流体供給孔73には、流体供給源Dから駆動流体が独立して供給可能である。当接部72及び駆動流体供給孔73は、二次元六方格子パターンで所定数(図10では、182個)配列されている。上記流体デバイス1におけるバルブV1~V16、V21~V22の中心位置は、二次元六方格子パターンで配置された当接部72及び駆動流体供給孔73から選択された位置(図10に黒塗りで示される位置)に配置されている。
上記構成のシステムSYSにおいては、流体デバイス1が駆動部TRにセットされ、上述したバルブV1~V16、V21~V22の開閉に応じて流体供給源Dから駆動流体が供給されることにより、第1流路110(定量部GB1~GB5)への溶液SAの導入、定量部GB1を除いた第2流路120Aへの溶液SBの導入及び第2流路120Aにおける溶液SA、SBの混合を実施できる。
本実施形態のシステムSYSでは、二次元六方格子パターンで配置された当接部72及び駆動流体供給孔73から選択された位置に流体デバイス1のバルブV1~V16、V21~V22を配置することにより、上述したように、正三角形の頂点位置同士を結ぶ線分と平行な輪郭で囲まれた合流・分岐部を容易に設けることが可能になる。そのため、本実施形態のシステムSYSでは、上記流体デバイス1における流路11、合流・分岐部GB11、GB12の配置や数に限られず、測定(検査)対象に応じて、溶液を導入する際に気泡が生じることを抑制できる最適な流路設計が可能になる。
以上、添付図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
例えば、上記実施形態で例示した流路、合流・分岐部、バルブの配置や数は一例であり、上述したように、二次元六方格子パターンで配置された当接部72及び駆動流体供給孔73から選択された位置に流体デバイス1のバルブ(及び合流・分岐部、流路)を配置することにより、種々の測定(検査)対象に容易に対応可能である。
例えば、上記実施形態では、第1流路110の一部を共有部とする五つの第2流路120A~120Eが設けられる構成を例示したが、第2流路の数は二つ以上であればよい。
また、上記実施形態では、合流・分岐部GB11、GB12の輪郭が、バルブV1~V16、V21~V22の中心位置が配置された正三角形の頂点位置同士を結ぶ線分と平行である構成を例示したが、この構成に限定されず、例えば、当該輪郭が頂点位置同士を結ぶ線分である構成であってもよい。
また、上記実施形態では、第2流路120A~120Eの第1部分121が第2基板9の上面9bに設けられ、第2部分122が第2基板9の下面9aに設けられる構成を例示したが、この構成に限定されない。例えば、第1部分121が第1基板6の下面6aに設けられる構成や、第1部分121が第1境界面61を跨いで第2基板9の上面9bと第1基板6の下面6aとの双方に設けられる構成であってもよい。また、第2部分122についても、第3基板8の上面8bに設けられる構成や、第2部分122が第2境界面62を跨いで第2基板9の下面9aと第3基板8の上面8bとの双方に設けられる構成であってもよい。流路となる溝部を一方の基板のみに設けた場合には、加工や基板同士のアライメントが容易となる。
また、上記実施形態では、第1流路110及び第2流路120A~120Eが正三角形の頂点位置同士を結ぶ各線分と平行な輪郭で囲まれた合流・分岐部を有する構成を例示したが、この構成に限定されない。図11は、第2流路120A~120Eうち代表的に示す第2流路120A及び第1流路110において、直線状の流路で溶液の合流または分岐が行われる変形例を示す部分平面図である。
図11に示すように、第1流路110は、X方向に延びる直線状の流路で形成され、間隔をあけてバルブV1、V4が配置されている。バルブV1、V4の間に定量部GB1が形成されている。定量部GB1には、接続孔134とポンプPとが配置された直線状の上面流路131の+Y側端部と、+Y側端部に接続孔135が形成された直線状の上面流路132の-Y側端部とがつながっている。第1部分121を構成する上面流路131及び上面流路132は、それぞれY方向に延びX方向に離間して配置されている。
上面流路131における定量部GB1の近傍には、バルブV2が配置されている。上面流路131におけるポンプPとバルブV2との間には、一端がバルブV21につながった導入流路161がつながっている。上面流路132における定量部GB1の近傍には、バルブV3が配置されている。上面流路132における接続孔135とバルブV3との間には、一端がバルブV22につながった排出流路162がつながっている。
第2部分122を構成する下面流路133は、上面流路131とX方向の位置が同一であり積層方向に重なって配置されている。接続孔135は、積層方向に対して傾いて(Z軸に対してY軸周りに傾いて)第2基板9を貫通し、上面流路132及び下面流路133の+Y側端部同士をつないでいる。定量部GB1を除いた第2流路120Aは、YZ平面と略平行な平面に形成されている。
他の第2流路120B~120Eは、第2流路120Aと同様の構成である。
上記流体デバイス1の変形例では、上述したように、バルブV2、V3を閉じ、バルブV1、V4を開いた状態で第1流路110に溶液SAを導入した後にバルブV1、V4を閉じることにより、定量部GB1に所定量の溶液SAが定量される。
次に、バルブV1~V4を閉じ、バルブV21、V22を開いた状態で、導入流路161を介して上面流路131、接続孔134、下面流路133、接続孔135、上面流路132に溶液SBを順次導入した後でバルブV21、V22を閉じることで、第2流路120Aのうち、定量部GB1を除いた領域を区画して溶液SBを定量する。
そして、定量部GB1に溶液SAを定量し、定量部GB1を除いた第2流路120Aに溶液SBを定量した状態で、ポンプPを用いて第2流路120A内の溶液SA、SBを送液して循環させる。これにより、第2流路120A~120EがYZ平面と略平行な平面に形成された小型の流体デバイス1により溶液SA、SBを混合することができる。
1…流体デバイス、 6…第1基板、 8…第3基板、 9…第2基板、 11…流路、 61…第1境界面(接合面)、 62…第2境界面(接合面)、 73…駆動流体供給孔(供給部)、 110…第1流路、 120、120A~120E…第2流路、 121…第1部分、 122…第2部分、 123…第3部分、 GB1~GB5…定量部(共有部)、 GB11、GB12…合流・分岐部、 GB13…接続部、 Pe要素ポンプ(駆動バルブ)、 TR…駆動部、 V1…バルブ(第1バルブ)、 V2…バルブ(第3バルブ)、 V3…バルブ(第4バルブ)、 V4…バルブ(第1バルブ)

Claims (19)

  1. 順次積層された第1基板、第2基板及び第3基板と、
    前記第1基板と前記第2基板との少なくとも一方の基板に設けられ、2つのバルブが配置される流路を有する第1部分と、
    前記第2基板と前記第3基板との少なくとも一方の基板に設けられた流路を有する第2部分と、
    前記第1部分と前記第2部分とを積層方向に各々接続する2つの流路を有する第3部分と、を含む循環流路と、
    を備える、流体デバイス。
  2. 液体の導入と排出を行う第1流路と、
    前記循環流路を含む第2流路と、
    を有し、
    前記第1流路は、前記第1部分における前記2つのバルブを両端とする第3流路を含み、
    前記第1流路と前記第3流路の境界には、各々バルブが配置されている、
    請求項1に記載の流体デバイス。
  3. 前記第1流路は、前記第3流路を複数有し、複数の前記第3流路毎に前記循環流路が形成される、
    請求項2に記載の流体デバイス。
  4. 複数の前記循環流路は、前記第3流路に配置されたバルブを介して互いに接続される、
    請求項3に記載の流体デバイス。
  5. 前記第1部分及び前記第2部分は、前記第1流路において流体が流れる第1方向と交差する第2方向に沿って流体が流れる溝部である、請求項2から4のいずれか一項に記載の流体デバイス。
  6. 前記第1流路と前記第2流路の少なくとも一方は、それぞれが前記積層方向視で正三角形の頂点位置同士を結ぶ各線分と合致する輪郭、または前記各線分と平行な輪郭で囲まれ、溶液の合流または分岐が行われる一対の合流・分岐部を有する、
    請求項2~5のいずれか一項に記載の流体デバイス。
  7. 前記一対の合流・分岐部において、前記正三角形の少なくとも2つの前記頂点位置に、前記流路中の流体の流れを調整するバルブが設けられる、
    請求項6に記載の流体デバイス。
  8. 前記第1部分は、前記第1流路と流路の一部を共有する共有部を含み、
    前記合流・分岐部は、前記共有部に配置されている、
    請求項6又は7に記載の流体デバイス。
  9. 前記第1流路及び前記第2流路は、流体の流れを調整するバルブを含み、
    前記バルブの中心位置は、二次元六方格子パターンで所定数配置された指標点から選択された位置にそれぞれ配置されている、
    請求項2~8のいずれか一項に記載の流体デバイス。
  10. 前記複数の第2流路のそれぞれは、互いに連携して作動し前記第2流路中の流体の流れを調整する所定数の駆動バルブを有し、
    前記所定数の駆動バルブのそれぞれは、前記複数の第2流路に亘って前記第1流路において流体が流れる第1方向に延びる直線上に配置されている、
    請求項2~9のいずれか一項に記載の流体デバイス。
  11. 前記駆動バルブは、前記第1部分に配置されている、
    請求項10に記載の流体デバイス。
  12. 前記第2流路は、それぞれが前記積層方向視で正三角形の頂点位置同士を結ぶ各線分と合致する輪郭、または前記各線分と平行な輪郭で囲まれ、溶液の合流または分岐が行われる第2の合流・分岐部を有し、
    前記第2の合流・分岐部を介して前記第2流路に前記溶液が導入される、
    請求項2~11のいずれか一項に記載の流体デバイス。
  13. 複数の前記第2流路には、当該第2流路に導入される溶液を貯留するリザーバーがそれぞれ個別、且つ、独立して設けられている、
    請求項2~12のいずれか一項に記載の流体デバイス。
  14. 積層された第1基板および第2基板と、
    前記第1基板と前記第2基板との少なくとも一方の基板に設けられた溝部で構成される第1流路と、
    前記第1流路において流体が流れる方向に沿って互いに独立して複数設けられ、前記第1流路と流路の一部を共有する共有部と前記第1流路と流路の一部を共有しない非共有部とにより構成された環状の第2流路と、を備え、
    前記第2流路は、
    前記共有部を含む流路を有する第1部分と、
    前記第1基板と前記第2基板との他方の基板に設けられた流路を有する第2部分と、
    前記第1部分と前記第2部分とを積層方向に各々接続する2つの流路を有する第3部分と、を含み、
    前記第1流路において、前記複数の第2流路の前記共有部は隣接し、バルブを介して接続している、
    流体デバイス。
  15. 請求項1から14のいずれか一項に記載の流体デバイスと、
    前記流体デバイスにセットされたときに、前記流路中の流体の流れを調整するバルブを変形させる用力を、前記バルブ毎に独立して供給可能な供給部と、
    を備えるシステム。
  16. 前記供給部は、二次元六方格子パターンで所定数配置され、
    前記バルブは、前記二次元六方格子パターンで所定数配置された供給部から選択された位置に配置されている、
    請求項15に記載のシステム。
  17. 請求項10または11に記載の流体デバイスと、
    前記複数の第2流路に亘って直線上に配置された前記駆動バルブを一括して変形させる用力を前記直線に沿って配置された供給路を介して供給可能な第2供給部と、
    を備えるシステム。
  18. 順次積層された第1基板及び第2基板を有し、
    前記第1基板と前記第2基板との少なくとも一方の基板に設けられた溝部で構成される第1流路と、前記第1流路において流体が流れる方向に沿って互いに独立して複数設けられた環状の第2流路と、を備え、
    前記第2流路は、それぞれ、前記第1基板と前記第2基板との少なくとも一方の基板に設けられた溝部で構成され、前記第1流路と流路の一部を共有する共有部と、前記第1流路と流路の一部を共有しない非共有部とを有し、
    前記第2流路は、
    前記共有部を含む流路を有する第1部分と、
    前記第1基板と前記第2基板との他方の基板に設けられた流路を有する第2部分と、
    前記第1部分と前記第2部分とを積層方向に各々接続する2つの流路を有する第3部分と、を含む、流体デバイスを準備することと、
    前記第1流路に第1溶液を導入することと、
    前記複数の第2流路の前記非共有部にそれぞれ第2溶液を導入することと、
    前記共有部を前記第1流路の一部から前記第2流路の一部に切り替えることと、
    前記第2流路において、前記第1溶液と前記第2溶液とを混合することと、を含む混合方法。
  19. 前記共有部は、前記第1流路に設けられた第1バルブ及び第2バルブと、前記第2流路に設けられた第3バルブ及び第4バルブとを備え、
    前記第3バルブ及び前記第4バルブを閉じ、前記第1バルブ及び前記第2バルブを開いた状態で前記第1流路に第1溶液を導入する工程と、
    前記第1溶液を導入した後、前記第1バルブ及び前記第2バルブを閉じ、前記第1溶液を定量区画する工程と、
    前記第3バルブ及び前記第4バルブを開き、前記第2流路に第2溶液を導入する工程と、を含む、
    請求項18に記載の混合方法。
JP2020527152A 2018-06-29 2018-06-29 流体デバイス及びシステム並びに混合方法 Active JP7070679B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/024911 WO2020003521A1 (ja) 2018-06-29 2018-06-29 流体デバイス及びシステム並びに混合方法

Publications (2)

Publication Number Publication Date
JPWO2020003521A1 JPWO2020003521A1 (ja) 2021-07-15
JP7070679B2 true JP7070679B2 (ja) 2022-05-18

Family

ID=68986358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020527152A Active JP7070679B2 (ja) 2018-06-29 2018-06-29 流体デバイス及びシステム並びに混合方法

Country Status (3)

Country Link
US (1) US20220003644A1 (ja)
JP (1) JP7070679B2 (ja)
WO (1) WO2020003521A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532710A (ja) 1998-12-16 2002-10-02 ユーティー−バトル,エルエルシー 電圧源と流体リザーバの数を削減する動電操作を実行する微小流体回路設計
JP2005326392A (ja) 2004-04-15 2005-11-24 Tama Tlo Kk 試料導入マイクロデバイス
WO2005121308A1 (ja) 2004-06-08 2005-12-22 Konica Minolta Medical & Graphic, Inc. 液体混合および反応を効率化したマイクロリアクタ
JP2006071505A (ja) 2004-09-02 2006-03-16 Shimadzu Corp 分取用の電気泳動マイクロチップ装置
JP2007044644A (ja) 2005-08-11 2007-02-22 Seiko Instruments Inc 液体移動装置、マイクロリアクタ、およびマイクロリアクタシステム
US20080003145A1 (en) 2006-06-28 2008-01-03 Applera Corporation Sample Distribution Devices and Methods
WO2015046263A1 (ja) 2013-09-25 2015-04-02 国立大学法人東京大学 溶液混合器、流体デバイス及び溶液の混合方法
WO2017052625A1 (en) 2015-09-25 2017-03-30 Hewlett-Packard Development Company, L.P. Fluidic channels for microfluidic devices
WO2017213123A1 (ja) 2016-06-07 2017-12-14 国立大学法人東京大学 流体デバイス
WO2017213080A1 (ja) 2016-06-06 2017-12-14 株式会社ニコン 流体デバイス、システム、試料物質の検出方法および試料物質の精製方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511603A1 (de) * 1995-03-30 1996-10-02 Norbert Dr Ing Schwesinger Vorrichtung zum Mischen kleiner Flüssigkeitsmengen
JP2006346671A (ja) * 2005-05-16 2006-12-28 Dainippon Screen Mfg Co Ltd 液液界面反応装置
NL1032816C2 (nl) * 2006-11-06 2008-05-08 Micronit Microfluidics Bv Micromengkamer, micromenger omvattende meerdere van dergelijke micromengkamers, werkwijzen voor het vervaardigen daarvan, en werkwijzen voor mengen.
CN105848773A (zh) * 2013-12-27 2016-08-10 株式会社朝日精细橡胶研究所 三维微型化学芯片
CN107002005B (zh) * 2014-09-02 2021-05-11 东芝医疗系统株式会社 核酸检测盒
CN108291184B (zh) * 2015-12-01 2022-07-01 日本板硝子株式会社 Pcr反应容器、pcr装置、pcr方法
WO2019130558A1 (ja) * 2017-12-28 2019-07-04 株式会社ニコン 流体デバイスおよび流路供給システム
JP7151766B2 (ja) * 2018-06-29 2022-10-12 株式会社ニコン 流体デバイス、システム及び混合方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002532710A (ja) 1998-12-16 2002-10-02 ユーティー−バトル,エルエルシー 電圧源と流体リザーバの数を削減する動電操作を実行する微小流体回路設計
JP2005326392A (ja) 2004-04-15 2005-11-24 Tama Tlo Kk 試料導入マイクロデバイス
WO2005121308A1 (ja) 2004-06-08 2005-12-22 Konica Minolta Medical & Graphic, Inc. 液体混合および反応を効率化したマイクロリアクタ
JP2006071505A (ja) 2004-09-02 2006-03-16 Shimadzu Corp 分取用の電気泳動マイクロチップ装置
JP2007044644A (ja) 2005-08-11 2007-02-22 Seiko Instruments Inc 液体移動装置、マイクロリアクタ、およびマイクロリアクタシステム
US20080003145A1 (en) 2006-06-28 2008-01-03 Applera Corporation Sample Distribution Devices and Methods
WO2015046263A1 (ja) 2013-09-25 2015-04-02 国立大学法人東京大学 溶液混合器、流体デバイス及び溶液の混合方法
WO2017052625A1 (en) 2015-09-25 2017-03-30 Hewlett-Packard Development Company, L.P. Fluidic channels for microfluidic devices
WO2017213080A1 (ja) 2016-06-06 2017-12-14 株式会社ニコン 流体デバイス、システム、試料物質の検出方法および試料物質の精製方法
WO2017213123A1 (ja) 2016-06-07 2017-12-14 国立大学法人東京大学 流体デバイス

Also Published As

Publication number Publication date
JPWO2020003521A1 (ja) 2021-07-15
US20220003644A1 (en) 2022-01-06
WO2020003521A1 (ja) 2020-01-02

Similar Documents

Publication Publication Date Title
US11565259B2 (en) Microfluidic devices having isolation pens and methods of testing biological micro-objects with same
US10775368B2 (en) Fluidic device, system, and method
ES2881221T3 (es) Chip microfluídico, método de fabricación del mismo y dispositivo de análisis que usa el mismo
US20190099752A1 (en) Fluidic device
US20180196059A1 (en) Method for detecting biological substance
US10584367B2 (en) Cell-spreading device and method for detecting rare cell
US11192106B2 (en) Fluidic device, system, method of detecting sample material and method of purifying sample material
US20180001320A1 (en) Fluidic device, system, and method
Sista Development of a digital microfluidic lab-on-a-chip for automated immunoassay with magnetically responsive beads
DK3060645T3 (en) MICROFLUID DEVICES WITH INSULATION DISEASES AND METHODS FOR TESTING BIOLOGICAL MICRO-OBJECTS
Lee et al. Microfluidic-based cell handling devices for biochemical applications
JP7070679B2 (ja) 流体デバイス及びシステム並びに混合方法
JP7151766B2 (ja) 流体デバイス、システム及び混合方法
JP7196916B2 (ja) 流体デバイス及びシステム
EP1305592A1 (en) Flow cell assemblies and methods of spatially directed interaction between liquids and solid surfaces
WO2020003526A1 (ja) 流体デバイス及びシステム
EP3629020B1 (en) Microfluidic droplet-based assay process and apparatus
US11504712B2 (en) Fluid device and fluid control system
US20210208175A1 (en) Fluid device
US20210162404A1 (en) Fluid device
JP2007292527A (ja) マイクロチップ及び化学反応検出システム
JP6992824B2 (ja) 流体デバイス及びシステム
JP2022031754A (ja) 流体デバイス及びその使用
KR101204185B1 (ko) 세포 검사용 칩

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7070679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150