以下に実施例を用いて本発明の内容を詳細に説明する。以下の説明では、液晶表示装置について説明するが、有機EL表示装置についても同様に適用することが出来る。また、以下の例では、タッチセンサ機能を有するIPS方式の液晶表示装置について説明するが、本発明は、タッチセンサ機能を有していない、液晶表示装置についても適用できる。また、IPS方式以外の液晶表示装置についても本発明を適用することが出来る。
図1は本発明が適用される液晶表示装置の概略平面図である。図1において、TFT基板1と対向基板2がシール材150によって接着し、シール材150に囲まれた領域に表示領域90が形成されている。シール材150を含む、周辺領域が額縁領域95になっている。TFT基板1において、走査線91が横方向(x方向)に延在して縦方向(y方向)に配列し、映像信号線92が縦方向に延在して横方向に配列し、走査線91と映像信号線92で囲まれた領域に画素93が形成されている。
TFT基板1は対向基板2よりも大きく形成され、TFT基板1と対向基板2が重なっていない部分は端子領域160となっている。端子領域160は、液晶表示装置に電源や信号を供給するためのフレキシブル配線基板400が接続している。図1の端子領域160にはフレキシブル配線基板400を接続するための端子が形成されている。以後この端子をFOG(Film On Glass)端子とも呼ぶ。端子領域160にはこの他に検査端子50が形成されている。
図2は、TFT基板100における画素93の平面図である。図2はIPS方式の液晶表示装置における画素93である。図2において、走査線91が横方向(x方向)に延在して縦方向(y方向)に配列している。映像信号線92は、縦方向に延在しているが、櫛歯状の画素電極113が形成された部分では、y方向に対してθ、あるいは−θ傾いて延在している。画素電極113は走査線91と映像信号線92に囲まれた領域に形成されている。画素電極113は、櫛歯電極部と、スルーホール130に重なるコンタクト部から形成されている。画素電極113の下層側には、容量絶縁膜を挟んでコモン電極111が平面状に形成されている。
画素電極113は、映像信号線92と同様、y方向に対してθだけ傾いて形成されている。配向膜の配向方向(AL)はy方向である。これによって、画素電極113に信号電圧が印加された場合に、液晶の回転方向を規定し、ドメインの発生を防止している。映像信号線92および走査線91の下層には、絶縁膜を挟んで半導体層102が形成されている。半導体層102が走査線91の下を通過するときにTFTが形成される。この場合は、走査線91がゲート電極の役割を有する。したがって、図2では、TFTが2個形成されている。
図2において、半導体層102はスルーホール120において映像信号線92と接続し、スルーホール125において、ソース電極107と接続している。ソース電極107は、スルーホール130において、画素電極113と接続している。
図3は図2のA−A断面図である。図3において、TFT基板1はガラスで形成された絶縁基板100に下地膜101が形成されている。絶縁基板100からの不純物が半導体層102を汚染しないようにするためである。下地膜101は、一般には、酸化シリコン膜(以後SiO膜で代表させる)と窒化シリコン膜(以後SiN膜で代表させる)の積層構造となっている。膜厚は例えばSiO膜が200nm、SiN膜が20nmである。
図3において、下地膜101の上に半導体層102が形成されている。半導体層102はCVDで形成されたa−Si膜をエキシマレーザによってポリシリコンに変換したものである。厚さは例えば、50nmである。半導体層102は、端子領域160においては、絶縁基板100の端部まで延在する放電線36として使用される。なお、下地膜101を構成するSiO膜、SiN膜、ポリシリコンに変換されるa−Si膜は原料を変えながら、連続してCVDによって形成される。半導体層102を覆ってゲート絶縁膜103が形成されている。ゲート絶縁膜103はTEOS(テトラエチルオルソシリケート tetraethyl orthosilicate)を原料としてCVDによって形成されたSiO膜である。厚さは例えば100nmである。
図3において、ゲート絶縁膜103の上にゲート電極104、すなわち、走査線91が形成されている。ゲート電極104は例えばMoW合金で形成され、厚さは例えば250nmである。ゲート電極104あるいは走査線91と同時に端子領域160における配線が形成される。ゲート電極104を覆って例えばSiNとSiOの積層膜によって層間絶縁膜105が形成されている。層間絶縁膜105は、例えば、SiO膜が400nm、SiN膜が250nmの積層膜である。
層間絶縁膜105の上にドレイン電極106となる映像信号線92、及び、画素電極113と接続するソース電極107が形成される。映像信号線92(ドレイン電極106)及びソース電極107は同時に形成され、例えば、窒化チタン(TiN)−チタン(Ti)−アルミニウム(Al)−チタン(Ti)の積層構造である。TiNは外光反射防止のために使用される。積層膜の厚さは、例えば、TiN/Ti/Al/Tiにおいて8nm/45nm/500nm/130nmである。映像信号線92と同層で形成される配線あるいは電極は、端子領域160の配線として使用されるとともに、端子電極としても使用される。
映像信号線92(ドレイン電極106)、ソース電極107等を覆って第1有機パッシベーション膜108を例えば、アクリル樹脂によって形成する。このアクリル樹脂は、例えば、感光性のポジ型のレジストで形成される。第1有機パッシベーション膜108は映像信号線92とコモン配線109間の浮遊容量を低減するために、2.5μmと、厚く形成される。
第1有機パッシベーション膜108の上のコモン電極111あるいは、タッチセンサのRx電極となる電極にコモン電圧あるいはタッチセンサ信号を入力するための、コモン配線109が形成される。コモン配線109は、例えば、映像信号線と同じTiN/Ti/Al/Ti(以後TATという場合もある)の積層構造で形成される場合もあるし、あるいは、モリブデン(Mo)−アルミニウム(Al)−モリブデン(Mo)(以後MAMという場合もある)の積層膜が使用される場合もある。この場合の膜厚は例えば、Mo/Al/Moが、10nm/177nm/10nmである。コモン配線109と同層で形成される電極は端子領域160の配線あるいは端子電極として使用される場合もある。
第1有機パッシベーション膜108にスルーホール131を形成し、後で形成される画素電極113とソース電極107との導通を可能にする。スルーホール131の内側には、コモン配線109と同じ材料で同じプロセスによって、第1台座131を形成し、ソース電極107と画素電極113との接続を確実にしている。なお、コモン配線109と第1台座1091とは絶縁されている。
コモン配線109及び第1有機パッシベーション膜108を覆って第2有機パッシベーション膜110を例えばアクリル樹脂によって形成する。このアクリル樹脂も、例えば、感光性のポジ型のレジストで形成される。第2有機パッシベーション膜110の上にコモン電極111を、ITOなどの透明導電膜によって形成する。なお、液晶表示装置をタッチセンサとして動作させる期間には、コモン電極111は、タッチセンサのセンサ電極Rxとなる。コモン電極111をタッチセンサのセンサ電極Rxとして作用させる場合、複数個の画素にわたるコモン電極111を纏めて、センサ電極Rxとしている。第2有機パッシベーション膜110は、コモン電極111あるいはコモン配線109と映像信号線92等との浮遊容量を低減させるために、1.5μm程度と厚く形成される。なお、このような構成によれば、コモン電極111と映像信号線92との間には、厚さ2.5μmの第1有機パッシベーション膜108と厚さ1.5μmの第2有機パッシベーション膜110との合計厚さの、約4μmのアクリル樹脂が存在することになり、映像信号線92とコモン電極111との容量を小さくすることが出来る。
第2パッシベーション膜110にスルーホール132を形成し、後で形成される画素電極113とソース電極107との導通を可能にする。スルーホール132の内側には、コモン電極111と同じ材料で同じプロセスによって、第2台座1111を形成し、ソース電極107と画素電極113との接続を確実にしている。なお、コモン電極111と第2台座1111とは絶縁されている。
コモン電極111を構成するITO膜は、端子部においては、端子電極の保護層としての役割も有する、第1ITO膜10として使用される。コモン電極111の厚さは例えば、50nmである。
コモン電極111等を覆って容量絶縁膜112がSiNによって形成される。容量絶縁膜112の厚さは、75nm乃至150nm程度であるが、典型的には120nm程度である。容量絶縁膜112は、コモン電極111と画素電極113との間の保持容量を大きくする場合には薄く形成される。なお、容量絶縁膜112は端子領域160においても、保護膜として使用される。
容量絶縁膜112を覆って画素電極113が形成される。画素電極113の形状は図2に示すとおりである。画素電極113はITOなどの透明導電膜で形成され、厚さは例えば、40nm程度である。画素電極113はスルーホール130(131、132)内に延在して、ソース電極107と接続する。なお、スルーホール130内には、第1台座1091、第2台座1111が存在し、ソース電極107と画素電極113との接続を確実にしている。
画素電極113を構成するITO膜は、端子部においては、端子電極の保護層としての役割も有する、第2ITO膜20として使用される。したがって、端子はコモン電極111と同時に形成される第1ITO膜10と画素電極113と同時に形成される第2ITO膜20の2層で保護されることになる。
画素電極113を覆って配向膜114が形成されている。配向膜114としては、ラビングによって配向処理された配向膜、あるいは、偏光紫外線によって配向処理された光配向膜が用いられる。IPS方式の場合は、プレティルト角が必要ないので、光配向処理が適している。
画素電極113に映像信号が印加されると、図3に示すように、液晶層300を通過する電気力線が発生し、これによって液晶分子301が回転し、液晶層300の光透過率が制御される。画素113毎に液晶層300を透過するバックライトからの量が異なるので、画像が形成される。
図3において、液晶層300を挟み、TFT基板1と対向して対向基板2が配置されている。対向基板2には、ガラス基板などの絶縁基板200にカラーフィルタ201とブラックマトリクス202が形成されている。カラーフィルタ201は、画素電極113と対応して、画素の透過領域に形成され、カラー画像の形成を可能としている。一方、スルーホール130部分やTFT部分はブラックマトリクス202によって覆い、画像のコントラストを維持している。
カラーフィルタ201及びブラックマトリクス202を覆ってオーバーコート膜203が形成されている。オーバーコート膜203はカラーフィルタ201の顔料が液晶層300中に析出することを防止することと、表面を平滑にすることである。オーバーコート膜203を覆って配向膜204が形成されている。配向膜204の配向処理は、TFT基板100側の配向膜114と同じである。
図4は、図3に示す液晶表示装置に組み込まれているタッチセンサの構成を示す平面図である。タッチセンサには自己容量方式と相互容量方式とが存在する。自己容量方式は、人の指先と電極との容量変化を検出するもので、各検出位置における電極はRx電極1個でよい。相互容量方式は、2個の電極間に電界を発生させ、人の指先が触れることによって生ずる電界の変化を検出するものである。各検出位置における電極は2個必要なので、引き回し配線が多くなる。図4は、自己容量方式のタッチセンサ方式を示す模式平面図である。
図4において、シール材150で囲まれた表示領域90内にセンサ電極Rxが横方向と縦方向に配列している。各センサ電極Rxには、端子領域160に延在するコモン配線109から電圧を供給される。図4におけるRxは各検出位置におけるタッチ位置検出用のセンサ電極であり、図2及び図3に示すコモン電極を複数画素分まとめたものである。図4では、Rxは横方向(x方向)に3個、縦方向(y方向)に5個記載されているが、これは、図を複雑化しないためであり、実際の製品では、センサ電極Rxは例えば、表示領域90内において、横方向に60乃至70個、縦方向に60乃至70個存在している。
図5は、タッチセンサ付液晶表示装置の動作を示す図である。図5において、1フレーム期間Tfは、画像表示期間Tdとタッチセンサ期間Tsに分割されている。画像表示期間Tdにおいては、コモン電極111には、コモン配線109を介してコモン電圧が供給される。一方、タッチセンサ期間においては、コモン配線109を介してセンサ電圧が供給される。画像表示期間Tdとタッチセンサ期間は、図1におけるフレキシブル配線基板400に配置されるドライバICによって切り替えられる。
図1では、ドライバICはフレキシブル配線基板に配置されているが、ドライバICは端子領域に配置される場合もある。図6はドライバICが端子領域に配置される場合の例である。図6において、表示領域90からの配線はドライバIC50と接続し、ドライバIC50からの配線がフレキシブル配線基板400に接続する。ドライバIC50を接続するための端子は、COG(Chip On Glass)端子と呼ばれる。
端子領域160に端子を形成するには、絶縁膜にスルーホールを形成する。スルーホールは、表示領域90あるいは、表示領域90と端子領域160との中間領域にも、配線を層間で乗り換えるために形成されるが、端子に形成されるスルーホールは、表示領域90あるいは中間領域にスルーホールに比べてはるかに大きい。一方、端子は、表示領域90あるいは中間領域に形成される配線と接続している。また、中間領域は、端子領域160と表示領域90との間の領域であり、具体的に中間領域はTFT基板1と対向基板2とが重なる周辺領域95の一部であってもよく、さらには、TFT基板1が対向基板2と重ならない領域に及んでもよい。中間領域には周辺領域95に形成されるゲート駆動回路や信号線駆動回路等、表示装置の駆動に関与する様々な配線が引き回されている。
発明者は、端子に形成される大きなスルーホールと同時に形成される表示領域90あるいは中間領域に形成される小さなスルーホールとが電気的に接続していることに関係して、特に、小さなスルーホールの側において、スルーホールが形成される絶縁膜、特に有機パッシベーション膜の断面形状に異常が生ずることを発見した。具体的には、スルーホールの底部付近においてオーバーハングが発生する。以後で詳細に説明するように、本発明は、特に、有機パッシベーション膜に形成される、スルーホールにおいて、断面形状が異常となることを対策するものである。
つまり、端子領域160には、大きなスルーホールとしてFOG端子、COG端子、検査端子のためのスルーホールが存在するが、端子に形成される大きなスルーホールとこれに接続する表示領域90あるいは中間領域に形成される小さなスルーホールとが配線によって接続されていると、小さなスルーホールの側のスルーホールの断面形状が異常となることを対策するものであるから、以後の説明では、端子領域160における端子としては、フレキシブル配線基板400との接続のためのFOG端子で代表させて説明する。
図7は、図1に対応する端子領域160の平面図である。図7では、FOG端子のみが描かれており、検査端子50は省略されている。以後、単に端子という場合は、FOG端子をいう。図7におけるFOG端子は例えば、長方形であり、長径が例えば100μm、短径が例えば10μmである。また、FOGもしくはCOG端子、検査パッドは長軸及び短軸を有する非矩形状を成す形状であっても良く、また図7に示すような第2方向Yと長形(長軸)が平行なものに限らず、FOG端子の長形(長軸)は第2方向Yに傾きを有するように形成するものであっても良い。図7において、端子領域160には、表示領域90から、第1有機パッシベーション膜108と第2有機パッシベーション膜110が延在している。第1有機パッシベーション膜108には、大きなスルーホール41が形成され、第2有機パッシベーション膜110には大きなスルーホール42が形成されている。第1有機パッシベーション膜108のスルーホール41は、端子領域160における第1有機パッシベーション膜除去部41と言い換えることもでき、同様に第2有機パッシベーション膜110のスルーホール42は端子領域160における第2有機パッシベーション膜除去部42と言い換えることもできる。
スルーホール41内には多くの端子30がx方向に配列している。各端子30は、表示領域90と引出し線35を介して接続している。各端子30から、TFT基板100の端子領域160の端部にかけて放電線36が延在している。この放電線36は、マザー基板の状態において、各液晶表示パネルからの放電線36と接続してアース線に接続し、製造工程において、各配線あるいはTFTが静電気によって破壊すること防止する。
図8は図7のB−B断面図である。図8において、TFT基板100の上に下地膜101が形成され、その上にゲート絶縁膜103が形成されている。ゲート絶縁膜103の上に端子30が形成されている。端子30はゲート電極104と同層で形成された端子金属の上に形成されている。図8では、層間絶縁膜、端子金属等は省略されている。
図8において、端子列の両側には、第1有機パッシベーション膜108と第2有機パッシベーション膜110が残されている。すなわち、端子列は、第1有機パッシベーション膜108のスルーホール41及び第2有機パッシベーション膜108のスルーホール42の中に形成されている。保護膜としての、SiNで形成された容量絶縁膜112が端子部分を除き、端子領域160の全域に形成されている。
図9は図7のC−C断面図であり、端子の短軸方向の詳細断面図である。図9において、絶縁基板100の上に下地膜101が形成され、その上にゲート絶縁膜103が形成されている。ゲート絶縁膜103の上には、ゲート電極104と同層で形成された第1端子金属31が形成されている。第1端子金属31は、表示領域90側へ向かって引き出される端子配線35と同じである。この場合は、第1端子金属31は、MoW合金である。
図9において、第1端子金属31を覆って層間絶縁膜105が形成されている。層間絶縁膜105の上には、映像信号線92と同層で形成された第2端子金属32が形成されている。すなわち、第2端子金属はTiN/Ti/Al/Tiの構成である。表示領域側へ向かって引き出される端子配線35は、映像信号線92、あるいは第2端子金属32と同層である場合もある。但し、この場合は、端子の断面は図9とは異なり、第1端子金属31が存在しない形となる。
第2端子金属32の上にコモン配線109と同層で形成された第3端子金属33が形成されている。すなわち、コモン配線109はTiN/Ti/Al/Tiで形成される場合とMo/Al/Moがあるが、図9では、Mo/Al/Moによって形成されている場合である。
図9において、第3端子金属33を覆って導電性保護膜としての第1ITO膜10がコモン電極109と同層で形成されている。第1ITO膜の端部を覆って保護膜としての容量絶縁膜112が形成されている。端子の接続部分では容量絶縁膜112にスルーホールが形成され、第1ITO膜10が露出している。容量絶縁膜112及び、第1ITO膜10を覆って画素電極113と同層で形成された第2ITO膜20が形成されている。
図10は図7のD−D断面図である。図10において、TFT基板100の上に下地膜101が形成され、その上にゲート絶縁膜103が形成されている。ゲート絶縁膜103の上に表示領域90から延在してきた端子配線35と同一である第1端子金属31が形成されている。第1端子金属31を覆って層間絶縁膜105が形成され、その上に映像信号線92と同時に形成された第2端子金属32が形成されている。第2端子金属32は層間絶縁膜105に形成されたスルーホールを介して第1端子金属31と接続している。
第2端子金属32の上にコモン配線109と同層で形成された第3端子金属33が形成されている。第3端子金属33を覆ってコモン電極111と同層で形成された第1ITO膜10が形成されている。端子において、第1ITO膜10は、端部においては容量絶縁膜112によって覆われるが、端子の接続部分では、画素電極113と同層で形成された第2ITO膜20によって覆われている。
なお、第2端子金属32は、層間絶縁膜105およびゲート絶縁膜103に形成されたスルーホールを介して、半導体層102で形成された放電線36と接続している。放電線36を構成する半導体層102には不純物がドープしてあり、導体となっている。放電線36は製造工程において発生する静電気を除去する役割を有している。
図10において、第1端子金属31あるいは端子配線35は表示領域90における走査線91、映像信号線92、コモン配線109等各種配線にに電気的に接続される。表示領域90から端子配線35までは、同一の層を延在するとは限らず、絶縁膜に形成されたスルーホールを介して種々の層を乗り換えて端子まで延在する。このうち、第1有機パッシベーション膜108あるいは第2有機パッシベーション膜110にスルーホールや有機パッシベーション膜除去部を形成する場合に問題が生ずる。
図11は、ソース電極7あるいはこれと同層の電極の上に第1有機パッシベーション膜108を形成し、スルーホールを形成した例である。図12は、コモン配線109あるいはこれと同層の電極の上に第2有機パッシベーション膜110を形成し、スルーホールを形成した例である。図11あるいは図12はスルーホールが問題無く形成された場合の例である。
しかし、実際に有機パッシベーション膜に形成されるスルーホールには図13に示すような、問題が生ずるおそれがある。図13では、コモン配線109の上に形成された第2有機パッシベーション膜110のスルーホールの場合を示しているが、例えば、ソース電極107あるは映像信号線92と同層で形成された電極の上に形成された第1有機パッシベーション膜108のスルーホールの場合も同様である。
図13のスルーホールの断面において、第2有機パッシベーション膜110にオーバーハングが形成されている。以後このオーバーハングをノッチ1101とも呼ぶ。このようなオーバーハングが形成されると、図14に示すように、スルーホール内において断線が生ずる。図14はコモン電極111をスルーホール内においてコモン配線109と接続しようとした例である。図14において、第2有機パッシベーション膜110に形成されたオーバーハングにおいて、コモン電極111が断線し、コモン配線109とコモン電極111との接続が出来なくなる。
このようなオーバーハングの発生は、スルーホールを現像する時の現像液によって第2有機パッシベーション膜110の下に形成されているコモン配線109に生ずる電池作用が生ずることに原因があると考えられる。コモン配線109は、TiN/Ti/Al/Tiで形成される場合もあるし、Mo/Al/Moで形成される場合もある。いずれの場合も、イオン化傾向の異なる金属の積層構造となっているので、現像液の存在によって電池作用が発生する。電池作用による電荷の存在によって、現像液が活性化し、コモン配線109付近の第2有機パッシベーション膜110を異常にエッチングしてしまう現象が生ずると考えられる。
つまり、電池作用が発生すると、電流が流れることになる。端子と表示領域とは配線によって接続している。一方、端子に形成されるスルーホールと、表示領域90あるいは、表示領域90と端子領域との中間領域に形成されるスルーホールとを比べると、一般には、端子に形成されるスルーホールのほうがはるかに大きい。そうすると、電池作用の差によって、電流が、端子側から表示領域側に流れることになる。このような場合、小さなスルーホール側において、図13に示すようなオーバーハングが発生する。
図15はこの問題を示す模式平面図である。図15における左側の図は、1個の大きな端子スルーホール44に対して、表示領域90等において、4個の小さなスルーホール43が対応している。図15における右側の図は、1個の大きな端子スルーホール44に対して、表示領域90、中間領域、周辺領域95等において、2個の小さなスルーホール43が対応している。端子のスルーホールの面積と、表示領域の合計のスルーホールの面積とを比較すると、図15に左側において差が小さく、右側において差が大きい。このような場合、差が大きい右側の構成において、小さなスルーホールにオーバーハングが発生する。図15、図16、図19において、OKはオーバーハングが発生しない場合、NGはオーバーハングが発生する場合である。
図16は端子のスルーホール44と表示領域90、中間領域、周辺領域95等のスルーホール43が1:1で対応している場合である。図16の左側の構成は端子のスルーホール44と表示領域のスルーホール43の面積の差が小さく、図16の右側の構成は端子のスルーホール44と表示領域のスルーホール43の面積の差が大きい。この場合、面積の差が大きい、図16の右側の構成において、小さなスルーホールにオーバーハングが発生する。
図17は、以上で説明した内容を図7の構成に当てはめたものである。図17において、端子領域には、第1有機パッシベーション膜108に大きなスルーホール41が形成されている。したがって、端子44全体が第1有機パッシベーション膜108のスルーホール41のための現像液にさらされる。特に大きなスルーホール41の形成によって図9、図10に示すように第2端子金属32の中間層であるAlの特に側面が現像液にさらされる面積が大きく、また時間が長く、第2端子金属32のAlが多くイオン化する。一方、表示領域においては、スルーホール43は、端子領域のスルーホール41に比べてはるかに小さい。また、個々の端子スルーホール44の面積に比べてはるかに小さい。図17において、43は表示領域のスルーホールであり、45はスルーホールの下にある電極である。この電極45は第2金属端子同様のTATであってもその中間層のAl側面は第1有機パッシベーション膜108で覆われており、スルーホール43においては上層Tiのみが露出されるだけとなり、第2端子金属のイオン化は少ない。端子部の電池作用と、表示領域におけるスルーホールの電池作用は大きく異なるので、電荷が端子部から表示領域側に移動することになる。そうすると、表示領域のスルーホール43において、現像液による有機パッシベーション膜108の異常エッチングが発生し、スルーホール43にオーバーハングが発生する。
図18及び図19は、スルーホールにおけるオーバーハングが発生する他の例を示す図である。図18は図7のC−C断面図を示す他の例である。図18が図9と異なる点は、第3端子金属が存在せず、第2端子金属32の上に第1ITO膜10と第2ITO膜20が形成されていることである。つまり、スルーホールは、第2端子金属であるTiN/Ti/Al/Tiに形成される。この場合も、図17に示すように、端子領域160では、例えば、第1有機パッシベーション膜108に大きなスルーホール41が形成される。また、表示領域90には小さなスルーホール43が形成される。
図19の左側の図は、端子のスルーホールも表示領域のスルーホールも同じMo/Al/Mo(図19ではMAM)で形成されている。このような構成の場合、オーバーハングが発生していない。一方、図19の右側の図は、端子のスルーホールが、図18に示すように、TiN/Ti/Al/Ti(図19ではTAT)電極の上に形成され、表示領域90に形成されるスルーホールは、Mo/Al/Mo(図19ではMAM)で形成されている。端子のスルーホールの形状、表示領域90のスルーホールの形状、個数等は図19の左側と右側で同じである。
このような場合、図19の右側において表示領域90のスルーホールにオーバーハングが発生する。つまり、スルーホールの底部に存在している金属が、端子部と表示領域、あるいは、大きなスルーホールと小さなスルーホールとで異なると、小さなスルーホールにオーバーハングが発生しやすい。あるいは、スルーホールの下に存在している積層金属が、端子部と表示領域とで異なると、小さなスルーホールにオーバーハングが発生しやすいということも出来る。
いずれにせよ、表示領域90あるいは表示領域90と端子領域160の中間領域に形成される小さいスルーホールのオーバーハングは、端子のスルーホールによって露出される金属の面積と、表示領域等におけるスルーホールによって露出される金属の面積の差が大きいことに起因している。以下に示す実施例は、このような知見に基づき、スルーホールのオーバーハングを対策する構成を与えるものである。
図20は、図7のD−D断面に対応する端子の断面図である。図20が図10と異なる点は、TiN/Ti/Al/Tiで形成された第2端子金属32が、第1端子金属31と接続するために層間絶縁膜105に形成されたスルーホール部分近辺の領域のみを残して除去されている点である。すなわち、端子部において、第2端子金属32の面積は非常に小さくなっており、表示領域等に形成された、第1有機パッシベーション膜108のスルーホールの面積とあまり変わらなくなっている。
したがって、端子領域160と表示領域90に同時にスルーホールを形成する時の、端子領域160における第2端子金属32の中間層であるAlの側面が現像液に曝される面積が小さくなることで、第2端子金属のイオン化を抑制し、電荷の移動は小さくなり、表示領域90の小さなスルーホールにおいて、有機パッシベーション膜108、110にオーバーハングが発生するという現象を回避することが出来る。この構成は、特に、表示領域90等において、映像信号線92と同じ金属、例えば、TiN/Ti/Al/Tiの積層金属の上に形成されるスルーホールに特に効果がある。
なお、図20において、放電線36と接続する部分には第2端子金属32は残存しているが、この部分は、第2端子金属32の上に端子スルーホールが形成される時点では、表示領域90とは接続していないので、表示領域90等におけるスルーホールのオーバーハングには影響を与えない。
図21は、実施例1の他の形態を示す断面図である。図21が図20と異なる点は、第2端子金属32が第1端子金属31と接続するために層間絶縁膜105に形成されたスルーホール部分近くで分断されているが、放電線36と接続するためのスルーホール付近を含め、第2端子金属32は残存している点である。この構成の場合も、第2端子金属32残存している部分は、第2端子金属32の上に端子スルーホールが形成される時点では、表示領域90等とは接続していないので、表示領域90等におけるスルーホールのオーバーハングには影響を与えない。
図22は実施例2を示す端子部の断面図である。図22も図7のD−D断面図に対応するものである。図22が図20と異なる点は、第3端子金属33も、層間絶縁膜105に形成されたスルーホール付近を除いて除去されている点である。すなわち、端子部において、第3端子金属33の面積も非常に小さくなっており、表示領域90等に形成されたスルーホールの面積とあまり変わらなくなっている。
したがって、端子領域160と表示領域90に同時にスルーホールを形成する時の、端子領域160における第2端子金属32の中間層であるAl、及び第3端子金属33の中間層であるAl側面が現像液に曝される面積が小さくなることで、第2端子金属と第3端子金属のイオン化を抑制し、電荷の移動は小さくなり、表示領域90の小さなスルーホールにおいて、有機パッシベーション膜108,110にオーバーハングが発生するという現象を回避することが出来る。本実施例では、特に、表示領域において、コモン配線109と同じ金属、例えば、Mo/Al/Moの積層金属の上に形成されるスルーホールに特に効果がある。本実施例も、映像信号線92と同じ金属、例えば、TiN/Ti/Al/Tiの積層金属の上に形成されるスルーホールに対しても効果があることは実施例1と同じである。
なお、図22において、放電線36と接続する部分には第3端子金属33は残存しているが、この部分は、第3端子金属の上にスルーホールが形成される時点では、表示領域90とは接続していないので、表示領域90等におけるスルーホールのオーバーハングには影響を与えない。
図22の他の特徴は、第2端子金属32の端部を第3端子金属33によって覆っていることである。したがって、第2端子金属32の端部は第3端子金属33によって保護されている。つまり、外気による端子金属の腐食は、第3端子金属についてのみ注意すればよい。
図23は実施例3を示す端子部の断面図である。図23も図7のD−D断面図に対応するものである。図23が図22と異なる点は、残存している第3端子金属33は容量絶縁膜112によって覆われていることである。すなわち、スルーホール形成時の表示領域90におけるスルーホールの断面形状についての効果は、実施例2と同様である。
図23においては、第3端子金属は容量絶縁膜112によって覆われている。容量絶縁膜112はSiNで形成されているので、水分を透過しない。したがって、Mo/Al/Moで形成された第3端子金属33、あるいは、TiN/Ti/Al/Tiで形成された第2端子金属32は外気から保護され、端子部の信頼性を向上させることが出来る。
図24は、実施例4における端子領域160の平面図である。図24が図7と異なる点は、第2有機パッシベーション膜110が、各端子共通に大きなスルーホールとして形成されているのではなく、端子30毎に除去されている点である。一方、第1有機パッシベーション膜108は各端子共通に大きなスルーホール41として形成されている。その他の構成は図7と同じである。
図25は図24のE−E断面図である。図25が図8と異なる点は、第2有機パッシベーション膜110が各端子30間に存在している点である。一方、第1有機パッシベーション膜108は各端子共通に大きなスルーホール41(もしくは第1有機パッシベーション膜除去部41)として形成されている。
図26は、図24のF−F断面図に相当する実施例4における端子部の断面図である。図26が図9と異なる点は、第3端子金属33の端部が第2有機パッシベーション膜110によって覆われている点である。第3端子金属33は、例えばMo/Al/Moで形成され、腐食しやすいAlを含んでいる。図26の構成は、Mo/Al/Moの端部は、第2有機パッシベーション膜110によって保護されているので、つまり、第2有機パッシベーション膜110は第3端子金属層33のAl側面に重なる領域で現像されず、現像液がAl側面に曝されないため、第3端子金属33のイオン化が抑制され、第2有機パッシベーション膜110のノッチ1101の発生を防ぎ、端子の信頼性を向上させることが出来る。その他の構成は図9と同じである。また、第2有機パッシベーション膜110のスルーホールで露出される第3端子金属は上層Tiもしくは上層Moのみであり、中間層であるAlは第2有機パッシベーション膜110から露出されない。
図27は、図24のG−G断面図に相当する実施例4における端子部の断面図である。図27が実施例1である図10と異なる点は、第3端子金属33の端部が第2有機パッシベーション膜110によって覆われている点である。つまり、図26で説明したのと同様に、第3端子金属33の端部は第2有機パッシベーション膜110によって保護されているので、端子の信頼性を向上させることが出来る。
図27が図20と異なる他の点は、保護膜としての容量絶縁膜112が残存している第2端子金属32を覆うように形成されていることである。この構成によって、第2端子金属32及び、第3端子金属33の一部は、外気から保護されることになる。このように、実施例4の構成は実施例1等に比べて端子部の耐食性能は向上している。
図27のその他の構成は図20と同じである。したがって、実施例4においても、実施例1と同様、表示領域90、あるいは、中間領域における第1有機パッシベーション膜108あるいは第2有機パッシベーション膜110に形成されたスルーホールのオーバーハングを回避することが出来る。なお、実施例2及び実施例3の構成も実施例4の構成と組み合わせることが出来る。
以上の実施例では、有機パッシベーション膜は、第1有機パッシベーション膜108と第2有機パッシベーション膜110が積層されて形成されている例を説明した。しかし、有機パッシベーション膜が1層のみの場合であっても本発明を適用することが出来る。この場合、例えば、実施例4においては、端子毎に形成されるスルーホールは、第1有機パッシベーション膜108に形成されたスルーホールとなる。
以上では、液晶表示装置について説明したが、有機EL表示装置についても同様に適用することが出来る。有機EL表示装置は、液晶層の代わりに、発光層を含む有機EL層がTFT基板に形成され、有機EL層を保護する保護膜が形成されている点が液晶表示装置とは異なる。しかし、端子領域が存在していること、表示領域には2層の有機パッシベーション膜が存在しており、各有機パッシベーション膜にスルーホールが形成されること等は、液晶表示装置と同様である。