WO2019208164A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2019208164A1
WO2019208164A1 PCT/JP2019/015101 JP2019015101W WO2019208164A1 WO 2019208164 A1 WO2019208164 A1 WO 2019208164A1 JP 2019015101 W JP2019015101 W JP 2019015101W WO 2019208164 A1 WO2019208164 A1 WO 2019208164A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
terminal
metal
insulating film
film
Prior art date
Application number
PCT/JP2019/015101
Other languages
English (en)
French (fr)
Inventor
中村 英達
金谷 康弘
元 小出
裕行 阿部
Original Assignee
株式会社ジャパンディスプレイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジャパンディスプレイ filed Critical 株式会社ジャパンディスプレイ
Priority to CN201980027818.3A priority Critical patent/CN112005290B/zh
Publication of WO2019208164A1 publication Critical patent/WO2019208164A1/ja
Priority to US17/074,980 priority patent/US11774811B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13458Terminal pads
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133345Insulating layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136204Arrangements to prevent high voltage or static electricity failures
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/13629Multilayer wirings
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/60Protection against electrostatic charges or discharges, e.g. Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/104Materials and properties semiconductor poly-Si
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a display device, and more particularly to a configuration in which breakage in a through hole is prevented when a through hole is formed in an organic insulating film.
  • a TFT substrate in which pixels having pixel electrodes and TFTs (Thin Film Transistors) are formed in a matrix and a counter substrate in which a black matrix or the like is formed are opposed to each other with a liquid crystal in the display region. It has become. In each pixel, an image is formed by controlling the transmittance of the liquid crystal.
  • an organic EL layer having a light emitting layer is formed for each pixel, and an image is formed by controlling the organic EL layer with a switching TFT and a driving TFT.
  • Each TFT is controlled by a scanning signal from the scanning line, and supplies a video signal line from the video signal line to the pixel electrode.
  • Video signals, power supply, common voltage, etc. are supplied from the terminals.
  • a plurality of conductive layers are stacked on the terminal. In particular, in the metal layer, an oxide film is formed on the surface after the manufacturing process or formation, and the terminal is not conductive. An increase in resistance at the terminal hinders image reproduction.
  • Patent Document 1 describes a configuration that prevents an increase in resistance due to oxidation of a lower metal layer in a liquid crystal display device terminal portion of an IPS (In Plane Switching) method or an FFS (Fringe Field Switching) method. ing.
  • IPS In Plane Switching
  • FFS Frringe Field Switching
  • an organic insulating film (hereinafter referred to as an organic passivation film) formed as a flattening film or thickly about 1.5 to 3 ⁇ m in order to reduce stray capacitance between multilayer wirings. Is used.
  • An organic EL display device uses two layers of such an organic passivation film, and a liquid crystal display device with a built-in touch sensor function may use two layers of organic passivation film.
  • a wiring is formed on the organic passivation film, and this wiring is connected to the terminal portion through a through hole formed in the organic passivation film.
  • the terminal portion has a laminated structure of a plurality of conductive layers and insulating layers in order to ensure connection reliability.
  • the formation of the terminal portion is performed in the same process as the formation of the display area. That is, the through hole formed in the insulating film in the display region and the through hole formed in the terminal portion are formed at the same time, and the wiring in the display region is connected to the terminal wiring in the terminal portion. In addition, a through hole is formed in the insulating film in order to transfer the wiring layer in an intermediate region that is a connection path between the terminal wiring and the display region.
  • the display area, intermediate area, and terminal area are connected by wiring. Therefore, the electric charge generated by the battery action in each through hole moves between the through hole in the display region, the through hole formed in the intermediate region, and the through hole in the terminal portion.
  • An object of the present invention is to particularly prevent a connection failure in a through hole due to an overhang formed at the bottom of the through hole in the organic passivation film. And it is to implement a highly reliable display device.
  • a display device including a display region and a terminal region in which a terminal is formed, wherein the terminal region includes a lead wire formed of a first metal drawn toward the display region, and the drawer.
  • the display device includes a second portion that overlaps the second through hole and that is separated from the first portion.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. It is a top view which shows the structure of a touch sensor. It is a figure which shows the relationship between an image display and the operation period of a touch sensor. It is a top view which shows the other example of a liquid crystal display device. It is a top view of a terminal area
  • FIG. 8 is a sectional view taken along line BB in FIG. It is CC sectional drawing of FIG. FIG. 8 is a DD sectional view of FIG. 7. It is sectional drawing of the normal through hole formed in the 1st organic passivation film.
  • FIG. 3 is a cross-sectional view of a terminal according to Example 1.
  • FIG. It is sectional drawing which shows the other form of the terminal of Example 1.
  • FIG. 6 is a cross-sectional view of a terminal of Example 2.
  • FIG. 6 is a cross-sectional view of a terminal of Example 3.
  • FIG. 6 is a plan view showing a terminal region of Example 4.
  • FIG. 25 is a cross-sectional view taken along the line EE of FIG. 24.
  • FIG. 25 is a sectional view taken along line FF in FIG. 24. It is GG sectional drawing of FIG.
  • liquid crystal display device will be described, but the same applies to an organic EL display device.
  • an IPS liquid crystal display device having a touch sensor function will be described, but the present invention can also be applied to a liquid crystal display device having no touch sensor function.
  • the present invention can also be applied to liquid crystal display devices other than the IPS system.
  • FIG. 1 is a schematic plan view of a liquid crystal display device to which the present invention is applied.
  • the TFT substrate 1 and the counter substrate 2 are bonded together by a sealing material 150, and a display area 90 is formed in an area surrounded by the sealing material 150.
  • a peripheral region including the sealing material 150 is a frame region 95.
  • the scanning lines 91 extend in the horizontal direction (x direction) and are arranged in the vertical direction (y direction), and the video signal lines 92 extend in the vertical direction and are arranged in the horizontal direction.
  • a pixel 93 is formed in a region surrounded by 91 and the video signal line 92.
  • the TFT substrate 1 is formed larger than the counter substrate 2, and a portion where the TFT substrate 1 and the counter substrate 2 do not overlap is a terminal region 160.
  • the terminal area 160 is connected to a flexible wiring substrate 400 for supplying power and signals to the liquid crystal display device. Terminals for connecting the flexible wiring board 400 are formed in the terminal region 160 of FIG. Hereinafter, this terminal is also referred to as an FOG (Film On Glass) terminal.
  • an inspection terminal 50 is formed in the terminal region 160.
  • FIG. 2 is a plan view of the pixel 93 on the TFT substrate 100.
  • FIG. 2 shows a pixel 93 in an IPS liquid crystal display device.
  • scanning lines 91 extend in the horizontal direction (x direction) and are arranged in the vertical direction (y direction).
  • the video signal line 92 extends in the vertical direction, but extends at an angle of ⁇ or ⁇ with respect to the y direction in the portion where the comb-like pixel electrode 113 is formed.
  • the pixel electrode 113 is formed in a region surrounded by the scanning line 91 and the video signal line 92.
  • the pixel electrode 113 is formed of a comb electrode portion and a contact portion overlapping the through hole 130.
  • a common electrode 111 is formed in a planar shape with a capacitive insulating film interposed therebetween.
  • the pixel electrode 113 is formed to be inclined by ⁇ with respect to the y direction, like the video signal line 92.
  • the alignment direction (AL) of the alignment film is the y direction.
  • a semiconductor layer 102 is formed below the video signal line 92 and the scanning line 91 with an insulating film interposed therebetween.
  • a TFT is formed when the semiconductor layer 102 passes under the scanning line 91. In this case, the scanning line 91 serves as a gate electrode. Therefore, in FIG. 2, two TFTs are formed.
  • the semiconductor layer 102 is connected to the video signal line 92 in the through hole 120 and is connected to the source electrode 107 in the through hole 125.
  • the source electrode 107 is connected to the pixel electrode 113 in the through hole 130.
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG.
  • the TFT substrate 1 has a base film 101 formed on an insulating substrate 100 made of glass. This is to prevent impurities from the insulating substrate 100 from contaminating the semiconductor layer 102.
  • the base film 101 generally has a laminated structure of a silicon oxide film (hereinafter represented by a SiO film) and a silicon nitride film (hereinafter represented by a SiN film).
  • the film thickness is, for example, 200 nm for the SiO film and 20 nm for the SiN film.
  • the semiconductor layer 102 is formed on the base film 101.
  • the semiconductor layer 102 is obtained by converting an a-Si film formed by CVD into polysilicon using an excimer laser.
  • the thickness is, for example, 50 nm.
  • the semiconductor layer 102 is used as a discharge line 36 extending to the end of the insulating substrate 100 in the terminal region 160.
  • the SiO film, SiN film, and a-Si film converted into polysilicon constituting the base film 101 are continuously formed by CVD while changing the raw material.
  • a gate insulating film 103 is formed so as to cover the semiconductor layer 102.
  • the gate insulating film 103 is a SiO film formed by CVD using TEOS (tetraethyl orthosilicate) as a raw material.
  • the thickness is 100 nm, for example.
  • the gate electrode 104 that is, the scanning line 91 is formed on the gate insulating film 103.
  • the gate electrode 104 is made of, for example, a MoW alloy and has a thickness of, for example, 250 nm.
  • a wiring in the terminal region 160 is formed simultaneously with the gate electrode 104 or the scanning line 91.
  • An interlayer insulating film 105 is formed by, for example, a laminated film of SiN and SiO so as to cover the gate electrode 104.
  • the interlayer insulating film 105 is, for example, a laminated film having a SiO film of 400 nm and a SiN film of 250 nm.
  • a video signal line 92 to be the drain electrode 106 and a source electrode 107 connected to the pixel electrode 113 are formed.
  • the video signal line 92 (drain electrode 106) and the source electrode 107 are formed at the same time, and have, for example, a laminated structure of titanium nitride (TiN) -titanium (Ti) -aluminum (Al) -titanium (Ti).
  • TiN is used for preventing reflection of external light.
  • the thickness of the laminated film is, for example, 8 nm / 45 nm / 500 nm / 130 nm in TiN / Ti / Al / Ti.
  • a wiring or electrode formed in the same layer as the video signal line 92 is used as a wiring for the terminal region 160 and also as a terminal electrode.
  • the first organic passivation film 108 is formed of, for example, acrylic resin so as to cover the video signal line 92 (drain electrode 106), the source electrode 107, and the like. This acrylic resin is formed of, for example, a photosensitive positive resist.
  • the first organic passivation film 108 is formed as thick as 2.5 ⁇ m in order to reduce the stray capacitance between the video signal line 92 and the common wiring 109.
  • a common wiring 109 for inputting a common voltage or a touch sensor signal to the common electrode 111 on the first organic passivation film 108 or the electrode serving as the Rx electrode of the touch sensor is formed.
  • the common wiring 109 may be formed of the same TiN / Ti / Al / Ti (hereinafter sometimes referred to as TAT) laminated structure as the video signal line, or molybdenum (Mo) -aluminum (Al).
  • a laminated film of molybdenum (Mo) (hereinafter sometimes referred to as MAM) may be used.
  • the film thickness of Mo / Al / Mo is 10 nm / 177 nm / 10 nm.
  • the electrode formed in the same layer as the common wiring 109 may be used as a wiring of the terminal region 160 or a terminal electrode.
  • a through hole 131 is formed in the first organic passivation film 108 to enable conduction between the pixel electrode 113 and the source electrode 107 that are formed later.
  • a first pedestal 131 is formed inside the through hole 131 by the same process and using the same material as that of the common wiring 109 to ensure the connection between the source electrode 107 and the pixel electrode 113.
  • the common wiring 109 and the first pedestal 1091 are insulated.
  • the second organic passivation film 110 is formed of, for example, an acrylic resin so as to cover the common wiring 109 and the first organic passivation film 108. This acrylic resin is also formed of, for example, a photosensitive positive resist.
  • a common electrode 111 is formed on the second organic passivation film 110 with a transparent conductive film such as ITO. Note that the common electrode 111 serves as the sensor electrode Rx of the touch sensor during the period in which the liquid crystal display device is operated as a touch sensor. When the common electrode 111 acts as the sensor electrode Rx of the touch sensor, the common electrodes 111 over a plurality of pixels are collectively used as the sensor electrode Rx.
  • the second organic passivation film 110 is formed as thick as about 1.5 ⁇ m in order to reduce the stray capacitance between the common electrode 111 or the common wiring 109 and the video signal line 92 or the like. According to such a configuration, the first organic passivation film 108 having a thickness of 2.5 ⁇ m and the second organic passivation film 110 having a thickness of 1.5 ⁇ m are provided between the common electrode 111 and the video signal line 92. Thus, there is an acrylic resin having a total thickness of about 4 ⁇ m, and the capacitance between the video signal line 92 and the common electrode 111 can be reduced.
  • a through hole 132 is formed in the second passivation film 110 to enable electrical connection between the pixel electrode 113 and the source electrode 107 to be formed later.
  • a second pedestal 1111 is formed inside the through hole 132 by the same process and using the same material as that of the common electrode 111 to ensure the connection between the source electrode 107 and the pixel electrode 113.
  • the common electrode 111 and the second pedestal 1111 are insulated.
  • the ITO film constituting the common electrode 111 is used as a first ITO film 10 that also serves as a protective layer for the terminal electrode in the terminal portion.
  • the thickness of the common electrode 111 is, for example, 50 nm.
  • a capacitor insulating film 112 is formed of SiN so as to cover the common electrode 111 and the like.
  • the thickness of the capacitor insulating film 112 is about 75 nm to 150 nm, but typically about 120 nm.
  • the capacitor insulating film 112 is formed thin when increasing the storage capacitance between the common electrode 111 and the pixel electrode 113. Note that the capacitor insulating film 112 is also used as a protective film in the terminal region 160.
  • a pixel electrode 113 is formed so as to cover the capacitor insulating film 112.
  • the shape of the pixel electrode 113 is as shown in FIG.
  • the pixel electrode 113 is formed of a transparent conductive film such as ITO and has a thickness of about 40 nm, for example.
  • the pixel electrode 113 extends into the through hole 130 (131, 132) and is connected to the source electrode 107. Note that a first pedestal 1091 and a second pedestal 1111 exist in the through hole 130 to ensure the connection between the source electrode 107 and the pixel electrode 113.
  • the ITO film constituting the pixel electrode 113 is used as the second ITO film 20 that also serves as a protective layer for the terminal electrode in the terminal portion. Therefore, the terminal is protected by two layers of the first ITO film 10 formed simultaneously with the common electrode 111 and the second ITO film 20 formed simultaneously with the pixel electrode 113.
  • An alignment film 114 is formed so as to cover the pixel electrode 113.
  • As the alignment film 114 an alignment film aligned by rubbing or a photo-alignment film aligned by polarized ultraviolet rays is used. In the case of the IPS system, since the pretilt angle is not necessary, the photo-alignment process is suitable.
  • the counter substrate 2 is disposed so as to face the TFT substrate 1 with the liquid crystal layer 300 interposed therebetween.
  • a color filter 201 and a black matrix 202 are formed on an insulating substrate 200 such as a glass substrate.
  • the color filter 201 is formed in the transmission region of the pixel corresponding to the pixel electrode 113, and can form a color image.
  • the through hole 130 and the TFT are covered with the black matrix 202 to maintain the contrast of the image.
  • An overcoat film 203 is formed so as to cover the color filter 201 and the black matrix 202.
  • the overcoat film 203 is to prevent the pigment of the color filter 201 from being precipitated in the liquid crystal layer 300 and to smooth the surface.
  • An alignment film 204 is formed so as to cover the overcoat film 203.
  • the alignment treatment of the alignment film 204 is the same as the alignment film 114 on the TFT substrate 100 side.
  • FIG. 4 is a plan view showing a configuration of a touch sensor incorporated in the liquid crystal display device shown in FIG.
  • the self-capacitance method detects a capacitance change between a human fingertip and an electrode, and the electrode at each detection position may be one Rx electrode.
  • the mutual capacitance method an electric field is generated between two electrodes, and a change in the electric field caused by touching a human fingertip is detected. Since two electrodes are required at each detection position, the number of wiring lines increases.
  • FIG. 4 is a schematic plan view showing a self-capacitance type touch sensor method.
  • the sensor electrodes Rx are arranged in the horizontal direction and the vertical direction in the display area 90 surrounded by the sealing material 150.
  • a voltage is supplied to each sensor electrode Rx from the common wiring 109 extending to the terminal region 160.
  • Rx in FIG. 4 is a sensor electrode for detecting a touch position at each detection position, and is a collection of the common electrodes shown in FIGS. 2 and 3 for a plurality of pixels.
  • three Rx are described in the horizontal direction (x direction) and five in the vertical direction (y direction), but this is not to complicate the figure.
  • FIG. 5 is a diagram showing the operation of the liquid crystal display device with a touch sensor.
  • one frame period Tf is divided into an image display period Td and a touch sensor period Ts.
  • a common voltage is supplied to the common electrode 111 through the common wiring 109.
  • a sensor voltage is supplied via the common wiring 109.
  • the image display period Td and the touch sensor period are switched by a driver IC arranged on the flexible wiring board 400 in FIG.
  • the driver IC is disposed on the flexible wiring board, but the driver IC may be disposed in the terminal area.
  • FIG. 6 shows an example in which the driver IC is arranged in the terminal area.
  • the wiring from the display area 90 is connected to the driver IC 50, and the wiring from the driver IC 50 is connected to the flexible wiring board 400.
  • a terminal for connecting the driver IC 50 is called a COG (Chip On Glass) terminal.
  • a through hole is formed in the insulating film.
  • the through hole is formed in the display region 90 or an intermediate region between the display region 90 and the terminal region 160 in order to transfer the wiring between the layers.
  • the through hole formed in the terminal is formed in the display region 90 or the intermediate region. It is much larger than a through hole.
  • the terminal is connected to the wiring formed in the display area 90 or the intermediate area.
  • the intermediate region is a region between the terminal region 160 and the display region 90. Specifically, the intermediate region may be a part of the peripheral region 95 where the TFT substrate 1 and the counter substrate 2 overlap. May extend to a region where the TFT substrate 1 does not overlap the counter substrate 2.
  • various wirings related to driving of the display device such as a gate driving circuit and a signal line driving circuit formed in the peripheral region 95 are routed.
  • the inventor particularly relates to the fact that the display area 90 formed simultaneously with the large through-hole formed in the terminal or the small through-hole formed in the intermediate area is electrically connected.
  • an abnormality occurs in the cross-sectional shape of the insulating film in which the through hole is formed, particularly the organic passivation film. Specifically, an overhang occurs near the bottom of the through hole.
  • the present invention is intended to prevent the cross-sectional shape from becoming abnormal especially in the through hole formed in the organic passivation film.
  • the terminal area 160 there are through holes for FOG terminals, COG terminals, and inspection terminals as large through holes, but the large through holes formed in the terminals and the display area 90 or the intermediate area connected to the large through holes. Since the cross-sectional shape of the through hole on the side of the small through hole becomes a countermeasure when the small through hole to be formed is connected by wiring, in the following description, the terminal in the terminal region 160 is used. As an example, an FOG terminal for connection with the flexible wiring board 400 will be described as a representative.
  • FIG. 7 is a plan view of the terminal region 160 corresponding to FIG. In FIG. 7, only the FOG terminal is drawn, and the inspection terminal 50 is omitted.
  • terminal simply refers to an FOG terminal.
  • the FOG terminal in FIG. 7 is, for example, rectangular and has a long diameter of, for example, 100 ⁇ m and a short diameter of, for example, 10 ⁇ m.
  • the FOG or COG terminal and the inspection pad may have a non-rectangular shape having a major axis and a minor axis, and the second direction Y and the major axis (major axis) are parallel to each other as shown in FIG.
  • the long shape (long axis) of the FOG terminal may be formed so as to have an inclination in the second direction Y.
  • the first organic passivation film 108 and the second organic passivation film 110 extend from the display region 90 to the terminal region 160.
  • a large through hole 41 is formed in the first organic passivation film 108
  • a large through hole 42 is formed in the second organic passivation film 110.
  • the through hole 41 of the first organic passivation film 108 can be rephrased as the first organic passivation film removing portion 41 in the terminal region 160, and similarly, the through hole 42 of the second organic passivation film 110 is the second organic passivation film in the terminal region 160.
  • the passivation film removing unit 42 can be used.
  • each terminal 30 is connected to the display area 90 via a lead line 35.
  • a discharge line 36 extends from each terminal 30 to the end of the terminal region 160 of the TFT substrate 100.
  • the discharge line 36 is connected to the discharge line 36 from each liquid crystal display panel and connected to the ground line in the state of the mother substrate, and prevents each wiring or TFT from being destroyed by static electricity in the manufacturing process.
  • FIG. 8 is a cross-sectional view taken along the line BB in FIG.
  • a base film 101 is formed on a TFT substrate 100, and a gate insulating film 103 is formed thereon.
  • a terminal 30 is formed on the gate insulating film 103.
  • the terminal 30 is formed on a terminal metal formed in the same layer as the gate electrode 104.
  • the interlayer insulating film, the terminal metal, etc. are omitted.
  • the first organic passivation film 108 and the second organic passivation film 110 are left on both sides of the terminal row. That is, the terminal row is formed in the through hole 41 of the first organic passivation film 108 and the through hole 42 of the second organic passivation film 108.
  • a capacitive insulating film 112 made of SiN as a protective film is formed over the entire terminal region 160 except for the terminal portion.
  • FIG. 9 is a cross-sectional view taken along the line CC of FIG. 7, and is a detailed cross-sectional view of the terminal in the minor axis direction.
  • a base film 101 is formed on an insulating substrate 100, and a gate insulating film 103 is formed thereon.
  • a first terminal metal 31 formed in the same layer as the gate electrode 104 is formed on the gate insulating film 103.
  • the first terminal metal 31 is the same as the terminal wiring 35 drawn toward the display region 90 side. In this case, the first terminal metal 31 is a MoW alloy.
  • an interlayer insulating film 105 is formed to cover the first terminal metal 31.
  • a second terminal metal 32 formed in the same layer as the video signal line 92 is formed on the interlayer insulating film 105. That is, the second terminal metal has a structure of TiN / Ti / Al / Ti.
  • the terminal wiring 35 led out toward the display area may be in the same layer as the video signal line 92 or the second terminal metal 32. However, in this case, the cross section of the terminal is different from that in FIG. 9 and the first terminal metal 31 does not exist.
  • a third terminal metal 33 formed in the same layer as the common wiring 109 is formed on the second terminal metal 32. That is, the common wiring 109 includes TiN / Ti / Al / Ti and Mo / Al / Mo. In FIG. 9, the common wiring 109 includes Mo / Al / Mo.
  • the first ITO film 10 as a conductive protective film is formed in the same layer as the common electrode 109 so as to cover the third terminal metal 33.
  • a capacitor insulating film 112 is formed as a protective film so as to cover the end portion of the first ITO film.
  • a through hole is formed in the capacitor insulating film 112 at the terminal connection portion, and the first ITO film 10 is exposed.
  • a capacitive ITO film 112 and a second ITO film 20 that covers the first ITO film 10 and is formed in the same layer as the pixel electrode 113 are formed.
  • FIG. 10 is a sectional view taken along the line DD of FIG.
  • a base film 101 is formed on a TFT substrate 100, and a gate insulating film 103 is formed thereon.
  • a first terminal metal 31 that is the same as the terminal wiring 35 extending from the display region 90 is formed on the gate insulating film 103.
  • An interlayer insulating film 105 is formed so as to cover the first terminal metal 31, and a second terminal metal 32 formed simultaneously with the video signal line 92 is formed thereon.
  • the second terminal metal 32 is connected to the first terminal metal 31 through a through hole formed in the interlayer insulating film 105.
  • a third terminal metal 33 formed in the same layer as the common wiring 109 is formed on the second terminal metal 32.
  • a first ITO film 10 is formed to cover the third terminal metal 33 and formed in the same layer as the common electrode 111.
  • the first ITO film 10 is covered with a capacitive insulating film 112 at an end portion, but is covered with a second ITO film 20 formed in the same layer as the pixel electrode 113 at a connection portion of the terminal.
  • the second terminal metal 32 is connected to the discharge line 36 formed of the semiconductor layer 102 through a through hole formed in the interlayer insulating film 105 and the gate insulating film 103.
  • the semiconductor layer 102 constituting the discharge line 36 is doped with impurities and serves as a conductor.
  • the discharge line 36 has a role of removing static electricity generated in the manufacturing process.
  • the first terminal metal 31 or the terminal wiring 35 is electrically connected to various wirings such as a scanning line 91, a video signal line 92, and a common wiring 109 in the display area 90. From the display area 90 to the terminal wiring 35, the same layer does not necessarily extend, and various layers are transferred to the terminal through through holes formed in the insulating film. Among these, a problem arises when a through hole or an organic passivation film removal portion is formed in the first organic passivation film 108 or the second organic passivation film 110.
  • FIG. 11 shows an example in which a first organic passivation film 108 is formed on the source electrode 7 or an electrode in the same layer as this to form a through hole.
  • FIG. 12 shows an example in which a second organic passivation film 110 is formed on the common wiring 109 or an electrode in the same layer, and a through hole is formed.
  • FIG. 11 or FIG. 12 shows an example where the through hole is formed without any problem.
  • FIG. 13 shows the case of the through hole of the second organic passivation film 110 formed on the common wiring 109.
  • the source electrode 107 or the electrode formed in the same layer as the video signal line 92 is shown. The same applies to the case of the through hole of the first organic passivation film 108 formed thereon.
  • FIG. 14 shows an example in which the common electrode 111 is connected to the common wiring 109 in the through hole.
  • the common electrode 111 is disconnected in the overhang formed in the second organic passivation film 110, and the common wiring 109 and the common electrode 111 cannot be connected.
  • the common wiring 109 may be formed of TiN / Ti / Al / Ti or may be formed of Mo / Al / Mo.
  • the battery action is generated by the presence of the developer. It is considered that due to the presence of electric charges due to the battery action, the developing solution is activated and the second organic passivation film 110 near the common wiring 109 is abnormally etched.
  • the terminal and the display area are connected by wiring.
  • the through hole formed in the terminal is compared with the through hole formed in the display region 90 or an intermediate region between the display region 90 and the terminal region, generally, the through hole formed in the terminal is far more. Big. Then, current flows from the terminal side to the display area side due to the difference in battery action. In such a case, an overhang as shown in FIG. 13 occurs on the small through hole side.
  • FIG. 15 is a schematic plan view showing this problem.
  • four small through holes 43 correspond to one large terminal through hole 44 in the display area 90 and the like.
  • two small through holes 43 correspond to one large terminal through hole 44 in the display area 90, the intermediate area, the peripheral area 95, and the like. Comparing the area of the through hole of the terminal with the total area of the through hole of the display area, the difference is small on the left side and large on the right side in FIG. In such a case, an overhang occurs in a small through hole in the configuration on the right side where the difference is large. 15, 16, and 19, OK indicates a case where no overhang occurs, and NG indicates a case where an overhang occurs.
  • FIG. 16 shows a case where the through-holes 44 of the terminals correspond to the through-holes 43 such as the display area 90, the intermediate area, and the peripheral area 95 in a 1: 1 ratio.
  • the configuration on the left side of FIG. 16 has a small area difference between the through hole 44 in the terminal and the through hole 43 in the display region, and the configuration on the right side in FIG. 16 has a difference in area between the through hole 44 in the terminal and the through hole 43 in the display region. large. In this case, an overhang occurs in a small through hole in the configuration on the right side of FIG.
  • FIG. 17 applies the content described above to the configuration of FIG.
  • a large through hole 41 is formed in the first organic passivation film 108 in the terminal region. Accordingly, the entire terminal 44 is exposed to the developer for the through hole 41 of the first organic passivation film 108.
  • the formation of a particularly large through hole 41 has a large area where the side surface of Al, which is an intermediate layer of the second terminal metal 32, is exposed to the developer, and a long time. A large amount of 32 Al is ionized.
  • the through hole 43 is much smaller than the through hole 41 in the terminal area. Further, the area of each terminal through hole 44 is much smaller.
  • FIG. 9 the display area
  • 43 is a through hole in the display area, and 45 is an electrode under the through hole. Even though this electrode 45 is a TAT similar to the second metal terminal, the Al side surface of the intermediate layer is covered with the first organic passivation film 108, and only the upper layer Ti is exposed in the through hole 43. There is little ionization of a two-terminal metal. Since the battery action of the terminal portion and the battery action of the through hole in the display area are greatly different, the charge moves from the terminal portion to the display area side. As a result, the organic passivation film 108 is abnormally etched by the developer in the through hole 43 in the display area, and an overhang is generated in the through hole 43.
  • FIG. 18 and 19 are diagrams showing another example in which an overhang occurs in a through hole.
  • FIG. 18 is another example showing a cross-sectional view taken along the line CC of FIG. 18 differs from FIG. 9 in that the third terminal metal does not exist and the first ITO film 10 and the second ITO film 20 are formed on the second terminal metal 32. That is, the through hole is formed in TiN / Ti / Al / Ti which is the second terminal metal. Also in this case, as shown in FIG. 17, in the terminal region 160, for example, a large through hole 41 is formed in the first organic passivation film 108. A small through hole 43 is formed in the display area 90.
  • the terminal through hole and the display area through hole are formed of the same Mo / Al / Mo (MAM in FIG. 19). In such a configuration, no overhang has occurred.
  • the through-hole of the terminal is formed on the TiN / Ti / Al / Ti (TAT in FIG. 19) electrode and formed in the display area 90 as shown in FIG.
  • the through hole is made of Mo / Al / Mo (MAM in FIG. 19).
  • the shape of the terminal through-hole, the shape of the through-hole in the display region 90, the number, etc. are the same on the left and right sides of FIG.
  • an overhang occurs in the through hole of the display area 90 on the right side of FIG. That is, if the metal present at the bottom of the through hole is different between the terminal portion and the display area, or between the large through hole and the small through hole, an overhang is likely to occur in the small through hole. Alternatively, if the laminated metal existing under the through hole is different between the terminal portion and the display area, it can be said that an overhang is likely to occur in a small through hole.
  • the overhang of the small through hole formed in the display region 90 or the intermediate region between the display region 90 and the terminal region 160 is caused by the metal area exposed by the through hole of the terminal and the through hole in the display region or the like. This is due to the large difference in the area of the exposed metal.
  • the embodiment shown below provides a configuration for taking measures against an overhang of a through hole based on such knowledge.
  • FIG. 20 is a cross-sectional view of the terminal corresponding to the DD cross section of FIG. FIG. 20 differs from FIG. 10 in that the second terminal metal 32 formed of TiN / Ti / Al / Ti is near the through-hole portion formed in the interlayer insulating film 105 to connect to the first terminal metal 31. This is a point that is removed leaving only the region. That is, in the terminal portion, the area of the second terminal metal 32 is very small and is not much different from the area of the through hole of the first organic passivation film 108 formed in the display region or the like.
  • the through hole is simultaneously formed in the terminal region 160 and the display region 90, the area where the side surface of Al that is the intermediate layer of the second terminal metal 32 in the terminal region 160 is exposed to the developer is reduced.
  • the ionization of the second terminal metal is suppressed, the movement of charges is reduced, and the phenomenon that overhang occurs in the organic passivation films 108 and 110 in a small through hole in the display region 90 can be avoided.
  • This configuration is particularly effective for a through hole formed on the same metal as the video signal line 92, for example, a laminated metal of TiN / Ti / Al / Ti in the display region 90 or the like.
  • the second terminal metal 32 remains in the portion connected to the discharge line 36, but this portion is displayed when the terminal through hole is formed on the second terminal metal 32. Since it is not connected to the area 90, it does not affect the overhang of the through hole in the display area 90 or the like.
  • FIG. 21 is a cross-sectional view showing another embodiment of the first embodiment.
  • FIG. 21 differs from FIG. 20 in that the second terminal metal 32 is divided near the through-hole portion formed in the interlayer insulating film 105 in order to connect to the first terminal metal 31, but is connected to the discharge line 36.
  • the second terminal metal 32 remains, including the vicinity of the through-hole for the purpose. Even in this configuration, the remaining portion of the second terminal metal 32 is not connected to the display region 90 or the like when the terminal through-hole is formed on the second terminal metal 32. It does not affect the overhang of the through hole at 90 or the like.
  • FIG. 22 is a cross-sectional view of the terminal portion showing the second embodiment.
  • FIG. 22 also corresponds to the DD sectional view of FIG.
  • FIG. 22 differs from FIG. 20 in that the third terminal metal 33 is also removed except in the vicinity of the through hole formed in the interlayer insulating film 105. That is, in the terminal portion, the area of the third terminal metal 33 is also very small, which is not much different from the area of the through hole formed in the display region 90 or the like.
  • the Al side surface that is the intermediate layer of the second terminal metal 32 and the Al side surface that is the intermediate layer of the third terminal metal 33 in the terminal region 160 is developed.
  • the area exposed to the liquid ionization of the second terminal metal and the third terminal metal is suppressed, and the movement of electric charges is reduced, and the organic passivation films 108 and 110 are formed in the small through holes of the display region 90.
  • the phenomenon that overhang occurs can be avoided.
  • in the display region there is an effect particularly on a through hole formed on the same metal as the common wiring 109, for example, a laminated metal of Mo / Al / Mo.
  • This embodiment is also effective for a through hole formed on the same metal as the video signal line 92, for example, a laminated metal of TiN / Ti / Al / Ti.
  • the third terminal metal 33 remains in the portion connected to the discharge line 36, but this portion has a display area 90 when the through hole is formed on the third terminal metal. Is not connected to the display area 90, so that the overhang of the through hole in the display area 90 or the like is not affected.
  • FIG. 22 Another feature of FIG. 22 is that the end of the second terminal metal 32 is covered with the third terminal metal 33. Therefore, the end portion of the second terminal metal 32 is protected by the third terminal metal 33. That is, the corrosion of the terminal metal due to the outside air needs to be noted only for the third terminal metal.
  • FIG. 23 is a cross-sectional view of the terminal portion showing the third embodiment.
  • FIG. 23 also corresponds to the DD sectional view of FIG. FIG. 23 differs from FIG. 22 in that the remaining third terminal metal 33 is covered with the capacitive insulating film 112. That is, the effect on the cross-sectional shape of the through hole in the display region 90 when the through hole is formed is the same as that of the second embodiment.
  • the third terminal metal is covered with a capacitive insulating film 112. Since the capacitor insulating film 112 is made of SiN, it does not transmit moisture. Therefore, the third terminal metal 33 formed of Mo / Al / Mo or the second terminal metal 32 formed of TiN / Ti / Al / Ti is protected from the outside air, and the reliability of the terminal portion is improved. I can do it.
  • FIG. 24 is a plan view of the terminal region 160 in the fourth embodiment. 24 differs from FIG. 7 in that the second organic passivation film 110 is not formed as a large through hole in common with each terminal but is removed for each terminal 30. On the other hand, the first organic passivation film 108 is formed as a large through hole 41 common to each terminal. Other configurations are the same as those in FIG.
  • FIG. 25 is a cross-sectional view taken along line EE in FIG. 25 differs from FIG. 8 in that a second organic passivation film 110 is present between the terminals 30.
  • the first organic passivation film 108 is formed as a large through hole 41 (or first organic passivation film removing portion 41) common to each terminal.
  • FIG. 26 is a cross-sectional view of the terminal portion in Example 4 corresponding to the FF cross-sectional view of FIG. 26 differs from FIG. 9 in that the end portion of the third terminal metal 33 is covered with the second organic passivation film 110.
  • the third terminal metal 33 is made of, for example, Mo / Al / Mo and contains Al that is easily corroded.
  • the end of Mo / Al / Mo is protected by the second organic passivation film 110, that is, the second organic passivation film 110 overlaps the Al side surface of the third terminal metal layer 33.
  • the developer is not exposed to the Al side surface, so that the ionization of the third terminal metal 33 is suppressed, the occurrence of the notch 1101 of the second organic passivation film 110 can be prevented, and the reliability of the terminal can be improved.
  • Other configurations are the same as those in FIG. Further, the third terminal metal exposed in the through hole of the second organic passivation film 110 is only the upper layer Ti or the upper layer Mo, and Al as the intermediate layer is not exposed from the second organic passivation film 110.
  • FIG. 27 is a cross-sectional view of the terminal portion in Example 4 corresponding to the GG cross-sectional view of FIG. FIG. 27 is different from FIG. 10 of the first embodiment in that the end portion of the third terminal metal 33 is covered with the second organic passivation film 110. That is, as described in FIG. 26, since the end portion of the third terminal metal 33 is protected by the second organic passivation film 110, the reliability of the terminal can be improved.
  • FIG. 27 differs from FIG. 20 in that the capacitor insulating film 112 as a protective film is formed so as to cover the remaining second terminal metal 32. With this configuration, the second terminal metal 32 and a part of the third terminal metal 33 are protected from the outside air. Thus, the structure of Example 4 has improved corrosion resistance of the terminal portion compared to Example 1 and the like.
  • FIG. 27 Other configurations in FIG. 27 are the same as those in FIG. Therefore, also in the fourth embodiment, as in the first embodiment, it is possible to avoid an overhang of the through hole formed in the first organic passivation film 108 or the second organic passivation film 110 in the display region 90 or the intermediate region. I can do it.
  • the configurations of the second and third embodiments can be combined with the configuration of the fourth embodiment.
  • the organic passivation film has been described as being formed by laminating the first organic passivation film 108 and the second organic passivation film 110.
  • the present invention can be applied even when the organic passivation film is only one layer.
  • the through hole formed for each terminal is a through hole formed in the first organic passivation film 108.
  • the organic EL display device is different from the liquid crystal display device in that an organic EL layer including a light emitting layer is formed on a TFT substrate instead of a liquid crystal layer, and a protective film for protecting the organic EL layer is formed.
  • an organic EL layer including a light emitting layer is formed on a TFT substrate instead of a liquid crystal layer, and a protective film for protecting the organic EL layer is formed.
  • the presence of the terminal region, the presence of a two-layer organic passivation film in the display region, and the formation of a through hole in each organic passivation film are the same as in the liquid crystal display device.
  • Black matrix 203 ... Overcoat film, 204 ... Alignment film, 300 ... Liquid crystal, 301 ... Liquid crystal molecule, 400 ... Flexible wiring board, 1101 ... Organic passivation Film notch, 1102 ... disconnection, Rx ... sensor electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Geometry (AREA)

Abstract

本発明の課題は、表示領域と端子領域に同時に有機パッシベーション膜のスルーホールを形成する際、表示領域のスルーホールに発生するオーバーハングを対策する。ことである。これを実現する構成は次のとおりである。すなわち、表示領域と、端子が形成された端子領域と、を備えた表示装置であって、前記端子領域は、前記表示領域に向かって引き出される第1金属で形成された引出し線と、前記引出し線を覆う第1絶縁膜と、前記第1絶縁膜上に形成された第2金属と、前記第2金属の表面に接触する第3金属と、を有し、前記第1絶縁膜は第1絶縁膜に形成された第1スルーホールと第2スルーホールを有し、前記第2金属は、前記第1スルーホールに重なり前記第1スルーホールを介して前記引出し線に接続する第1部分と、前記第2スルーホールに重なり前記第1部分と分断された第2部分と、を有する表示装置である。

Description

表示装置
 本発明は表示装置に係り、特に有機絶縁膜にスルーホールを形成した場合のスルーホール内における断線を対策した構成に関する。
 液晶表示装置では、表示領域に、画素電極及びTFT(Thin Film Transistor)を有する画素がマトリクス状に形成されたTFT基板とブラックマトリクス等が形成された対向基板とが液晶を挟んで対向した構成となっている。そして、各画素において、液晶の透過率を制御することによって、画像を形成している。
 有機EL表示装置では、画素毎に発光層を有する有機EL層を形成し、この有機EL層をスイッチングTFT及び駆動TFTによって制御することによって画像を形成している。
 各TFTは走査線からの走査信号によって制御され、映像信号線からの映像信号線を画素電極に供給する。映像信号、電源、コモン電圧等は端子から供給される。端子には、複数の導電層が積層されるが、特に、金属層においては、その製造過程や形成後において表面に酸化膜が生じ、端子の導通をそこなう。端子における抵抗増加は画像再生の妨げになる。
 特許文献1には、IPS(In Plane Switching)方式、あるいは、FFS(Fringe Field Switching)方式の液晶表示装置端子部において、下層金属層が酸化されることによる抵抗の増大を防止した構成が記載されている。
特開2013-152409号公報
 液晶表示装置や有機EL表示装置では、平坦化膜として、あるいは、多層配線間の浮遊容量を低減するために、1.5乃至3μm程度に厚く形成した有機絶縁膜(以後、有機パッシベーション膜という)が使用される。有機EL表示装置ではこのような有機パッシベーション膜が2層使用され、また、液晶表示装置でも、タッチセンサ機能を内蔵したものは、有機パッシベーション膜が2層使用される場合がある。
 有機パッシベーション膜の上に配線が形成されるが、この配線は、有機パッシベーション膜に形成したスルーホールを介して端子部と接続する。端子部は、接続の信頼性を確保するために、複数の導電層及び絶縁層の積層構造となっている。
 端子部の形成は、表示領域の形成と同じプロセスにおいて行われる。すなわち、表示領域における絶縁膜に形成するスルーホールと端子部に形成されるスルーホールとは同時に形成され、表示領域の配線と、端子部の端子配線とは接続している。また、端子配線と表示領域の配線の接続経路である中間領域において、配線層を乗り換えるために絶縁膜にスルーホールが形成される。
 ところで、絶縁膜、特に有機パッシベーション膜にスルーホールを形成する場合は、露光後、現像液によってパターニングするが、この現像液の存在が下層の金属層に電池作用を発生させることが多い。この電池作用が、有機パッシベーション膜のスルーホールの断面形状に影響を及ぼし、これが、スルーホールにおける断線を引き起こす危険がある。具体的には、スルーホールの底部付近においてオーバーハングを発生させる。
 表示領域、中間領域、端子領域は配線によって接続している。したがって、各スルーホールで生ずる電池作用による電荷は、表示領域におけるスルーホール、中間領域に形成されるスルーホール及び端子部のスルーホールとの間で相互に移動する。
 この電池作用に起因する電荷の移動の影響は、表示領域あるいは中間領域に形成される、比較的面積が小さいスルーホールにおいて顕著に表れる。したがって、スルーホールにおける断線は表示領域及び中間領域において発生しやすい。
 本発明の課題は、特に、有機パッシベーション膜におけるスルーホールの底部に形成されるオーバーハングによる、スルーホール内における接続不良を対策するものである。そして、信頼性の高い表示装置を実現することである。
 本発明は上記課題を克服するものであり、代表的な手段は次のとおりである。すなわち、表示領域と、端子が形成された端子領域と、を備えた表示装置であって、前記端子領域は、前記表示領域に向かって引き出される第1金属で形成された引出し線と、前記引出し線を覆う第1絶縁膜と、前記第1絶縁膜上に形成された第2金属と、前記第2金属の表面に接触する第3金属と、を有し、前記第1絶縁膜は第1絶縁膜に形成された第1スルーホールと第2スルーホールを有し、前記第2金属は、前記第1スルーホールに重なり前記第1スルーホールを介して前記引出し線に接続する第1部分と、前記第2スルーホールに重なり前記第1部分と分断された第2部分と、を有する表示装置である。
液晶表示装置の平面図である。 表示領域の画素の平面図である。 図2のA-A断面図である。 タッチセンサの構成を示す平面図である。 画像表示とタッチセンサの動作期間の関係を示す図である。 液晶表示装置の他の例を示す平面図である。 端子領域の平面図である。 図7のB-B断面図である。 図7のC-C断面図である。 図7のD-D断面図である。 第1有機パッシベーション膜に形成された通常のスルーホールの断面図である。 第2有機パッシベーション膜に形成された通常のスルーホールの断面図である。 第1有機パッシベーション膜に形成された、オーバーハングが生じたスルーホールの断面図である。 スルーホールにおいてオーバーハングが生じた場合の断線の発生を示す断面図である。 オーバーハングに対するスルーホールの面積の比の影響を示す模式図である。 オーバーハングに対するスルーホールの面積の比の影響を示す他の模式図である。 オーバーハングに対するスルーホールの面積の比の影響を示す具体例である。 端子の断面構造を示す他の例である。 オーバーハングに対する端子の材料の差の影響を示す例である。 実施例1の端子の断面図である。 実施例1の端子の他の形態を示す断面図である。 実施例2の端子の断面図である。 実施例3の端子の断面図である。 実施例4の端子領域を示す平面図である。 図24のE-E断面図である。 図24のF-F断面図である。 図24のG-G断面図である。
 以下に実施例を用いて本発明の内容を詳細に説明する。以下の説明では、液晶表示装置について説明するが、有機EL表示装置についても同様に適用することが出来る。また、以下の例では、タッチセンサ機能を有するIPS方式の液晶表示装置について説明するが、本発明は、タッチセンサ機能を有していない、液晶表示装置についても適用できる。また、IPS方式以外の液晶表示装置についても本発明を適用することが出来る。
 図1は本発明が適用される液晶表示装置の概略平面図である。図1において、TFT基板1と対向基板2がシール材150によって接着し、シール材150に囲まれた領域に表示領域90が形成されている。シール材150を含む、周辺領域が額縁領域95になっている。TFT基板1において、走査線91が横方向(x方向)に延在して縦方向(y方向)に配列し、映像信号線92が縦方向に延在して横方向に配列し、走査線91と映像信号線92で囲まれた領域に画素93が形成されている。
 TFT基板1は対向基板2よりも大きく形成され、TFT基板1と対向基板2が重なっていない部分は端子領域160となっている。端子領域160は、液晶表示装置に電源や信号を供給するためのフレキシブル配線基板400が接続している。図1の端子領域160にはフレキシブル配線基板400を接続するための端子が形成されている。以後この端子をFOG(Film On Glass)端子とも呼ぶ。端子領域160にはこの他に検査端子50が形成されている。
 図2は、TFT基板100における画素93の平面図である。図2はIPS方式の液晶表示装置における画素93である。図2において、走査線91が横方向(x方向)に延在して縦方向(y方向)に配列している。映像信号線92は、縦方向に延在しているが、櫛歯状の画素電極113が形成された部分では、y方向に対してθ、あるいは-θ傾いて延在している。画素電極113は走査線91と映像信号線92に囲まれた領域に形成されている。画素電極113は、櫛歯電極部と、スルーホール130に重なるコンタクト部から形成されている。画素電極113の下層側には、容量絶縁膜を挟んでコモン電極111が平面状に形成されている。
 画素電極113は、映像信号線92と同様、y方向に対してθだけ傾いて形成されている。配向膜の配向方向(AL)はy方向である。これによって、画素電極113に信号電圧が印加された場合に、液晶の回転方向を規定し、ドメインの発生を防止している。映像信号線92および走査線91の下層には、絶縁膜を挟んで半導体層102が形成されている。半導体層102が走査線91の下を通過するときにTFTが形成される。この場合は、走査線91がゲート電極の役割を有する。したがって、図2では、TFTが2個形成されている。
 図2において、半導体層102はスルーホール120において映像信号線92と接続し、スルーホール125において、ソース電極107と接続している。ソース電極107は、スルーホール130において、画素電極113と接続している。
 図3は図2のA-A断面図である。図3において、TFT基板1はガラスで形成された絶縁基板100に下地膜101が形成されている。絶縁基板100からの不純物が半導体層102を汚染しないようにするためである。下地膜101は、一般には、酸化シリコン膜(以後SiO膜で代表させる)と窒化シリコン膜(以後SiN膜で代表させる)の積層構造となっている。膜厚は例えばSiO膜が200nm、SiN膜が20nmである。
 図3において、下地膜101の上に半導体層102が形成されている。半導体層102はCVDで形成されたa-Si膜をエキシマレーザによってポリシリコンに変換したものである。厚さは例えば、50nmである。半導体層102は、端子領域160においては、絶縁基板100の端部まで延在する放電線36として使用される。なお、下地膜101を構成するSiO膜、SiN膜、ポリシリコンに変換されるa-Si膜は原料を変えながら、連続してCVDによって形成される。半導体層102を覆ってゲート絶縁膜103が形成されている。ゲート絶縁膜103はTEOS(テトラエチルオルソシリケート tetraethyl orthosilicate)を原料としてCVDによって形成されたSiO膜である。厚さは例えば100nmである。
 図3において、ゲート絶縁膜103の上にゲート電極104、すなわち、走査線91が形成されている。ゲート電極104は例えばMoW合金で形成され、厚さは例えば250nmである。ゲート電極104あるいは走査線91と同時に端子領域160における配線が形成される。ゲート電極104を覆って例えばSiNとSiOの積層膜によって層間絶縁膜105が形成されている。層間絶縁膜105は、例えば、SiO膜が400nm、SiN膜が250nmの積層膜である。
 層間絶縁膜105の上にドレイン電極106となる映像信号線92、及び、画素電極113と接続するソース電極107が形成される。映像信号線92(ドレイン電極106)及びソース電極107は同時に形成され、例えば、窒化チタン(TiN)-チタン(Ti)-アルミニウム(Al)-チタン(Ti)の積層構造である。TiNは外光反射防止のために使用される。積層膜の厚さは、例えば、TiN/Ti/Al/Tiにおいて8nm/45nm/500nm/130nmである。映像信号線92と同層で形成される配線あるいは電極は、端子領域160の配線として使用されるとともに、端子電極としても使用される。
 映像信号線92(ドレイン電極106)、ソース電極107等を覆って第1有機パッシベーション膜108を例えば、アクリル樹脂によって形成する。このアクリル樹脂は、例えば、感光性のポジ型のレジストで形成される。第1有機パッシベーション膜108は映像信号線92とコモン配線109間の浮遊容量を低減するために、2.5μmと、厚く形成される。
 第1有機パッシベーション膜108の上のコモン電極111あるいは、タッチセンサのRx電極となる電極にコモン電圧あるいはタッチセンサ信号を入力するための、コモン配線109が形成される。コモン配線109は、例えば、映像信号線と同じTiN/Ti/Al/Ti(以後TATという場合もある)の積層構造で形成される場合もあるし、あるいは、モリブデン(Mo)-アルミニウム(Al)-モリブデン(Mo)(以後MAMという場合もある)の積層膜が使用される場合もある。この場合の膜厚は例えば、Mo/Al/Moが、10nm/177nm/10nmである。コモン配線109と同層で形成される電極は端子領域160の配線あるいは端子電極として使用される場合もある。
 第1有機パッシベーション膜108にスルーホール131を形成し、後で形成される画素電極113とソース電極107との導通を可能にする。スルーホール131の内側には、コモン配線109と同じ材料で同じプロセスによって、第1台座131を形成し、ソース電極107と画素電極113との接続を確実にしている。なお、コモン配線109と第1台座1091とは絶縁されている。
 コモン配線109及び第1有機パッシベーション膜108を覆って第2有機パッシベーション膜110を例えばアクリル樹脂によって形成する。このアクリル樹脂も、例えば、感光性のポジ型のレジストで形成される。第2有機パッシベーション膜110の上にコモン電極111を、ITOなどの透明導電膜によって形成する。なお、液晶表示装置をタッチセンサとして動作させる期間には、コモン電極111は、タッチセンサのセンサ電極Rxとなる。コモン電極111をタッチセンサのセンサ電極Rxとして作用させる場合、複数個の画素にわたるコモン電極111を纏めて、センサ電極Rxとしている。第2有機パッシベーション膜110は、コモン電極111あるいはコモン配線109と映像信号線92等との浮遊容量を低減させるために、1.5μm程度と厚く形成される。なお、このような構成によれば、コモン電極111と映像信号線92との間には、厚さ2.5μmの第1有機パッシベーション膜108と厚さ1.5μmの第2有機パッシベーション膜110との合計厚さの、約4μmのアクリル樹脂が存在することになり、映像信号線92とコモン電極111との容量を小さくすることが出来る。
 第2パッシベーション膜110にスルーホール132を形成し、後で形成される画素電極113とソース電極107との導通を可能にする。スルーホール132の内側には、コモン電極111と同じ材料で同じプロセスによって、第2台座1111を形成し、ソース電極107と画素電極113との接続を確実にしている。なお、コモン電極111と第2台座1111とは絶縁されている。
 コモン電極111を構成するITO膜は、端子部においては、端子電極の保護層としての役割も有する、第1ITO膜10として使用される。コモン電極111の厚さは例えば、50nmである。
 コモン電極111等を覆って容量絶縁膜112がSiNによって形成される。容量絶縁膜112の厚さは、75nm乃至150nm程度であるが、典型的には120nm程度である。容量絶縁膜112は、コモン電極111と画素電極113との間の保持容量を大きくする場合には薄く形成される。なお、容量絶縁膜112は端子領域160においても、保護膜として使用される。
 容量絶縁膜112を覆って画素電極113が形成される。画素電極113の形状は図2に示すとおりである。画素電極113はITOなどの透明導電膜で形成され、厚さは例えば、40nm程度である。画素電極113はスルーホール130(131、132)内に延在して、ソース電極107と接続する。なお、スルーホール130内には、第1台座1091、第2台座1111が存在し、ソース電極107と画素電極113との接続を確実にしている。
 画素電極113を構成するITO膜は、端子部においては、端子電極の保護層としての役割も有する、第2ITO膜20として使用される。したがって、端子はコモン電極111と同時に形成される第1ITO膜10と画素電極113と同時に形成される第2ITO膜20の2層で保護されることになる。
 画素電極113を覆って配向膜114が形成されている。配向膜114としては、ラビングによって配向処理された配向膜、あるいは、偏光紫外線によって配向処理された光配向膜が用いられる。IPS方式の場合は、プレティルト角が必要ないので、光配向処理が適している。
 画素電極113に映像信号が印加されると、図3に示すように、液晶層300を通過する電気力線が発生し、これによって液晶分子301が回転し、液晶層300の光透過率が制御される。画素113毎に液晶層300を透過するバックライトからの量が異なるので、画像が形成される。
 図3において、液晶層300を挟み、TFT基板1と対向して対向基板2が配置されている。対向基板2には、ガラス基板などの絶縁基板200にカラーフィルタ201とブラックマトリクス202が形成されている。カラーフィルタ201は、画素電極113と対応して、画素の透過領域に形成され、カラー画像の形成を可能としている。一方、スルーホール130部分やTFT部分はブラックマトリクス202によって覆い、画像のコントラストを維持している。
 カラーフィルタ201及びブラックマトリクス202を覆ってオーバーコート膜203が形成されている。オーバーコート膜203はカラーフィルタ201の顔料が液晶層300中に析出することを防止することと、表面を平滑にすることである。オーバーコート膜203を覆って配向膜204が形成されている。配向膜204の配向処理は、TFT基板100側の配向膜114と同じである。
 図4は、図3に示す液晶表示装置に組み込まれているタッチセンサの構成を示す平面図である。タッチセンサには自己容量方式と相互容量方式とが存在する。自己容量方式は、人の指先と電極との容量変化を検出するもので、各検出位置における電極はRx電極1個でよい。相互容量方式は、2個の電極間に電界を発生させ、人の指先が触れることによって生ずる電界の変化を検出するものである。各検出位置における電極は2個必要なので、引き回し配線が多くなる。図4は、自己容量方式のタッチセンサ方式を示す模式平面図である。
 図4において、シール材150で囲まれた表示領域90内にセンサ電極Rxが横方向と縦方向に配列している。各センサ電極Rxには、端子領域160に延在するコモン配線109から電圧を供給される。図4におけるRxは各検出位置におけるタッチ位置検出用のセンサ電極であり、図2及び図3に示すコモン電極を複数画素分まとめたものである。図4では、Rxは横方向(x方向)に3個、縦方向(y方向)に5個記載されているが、これは、図を複雑化しないためであり、実際の製品では、センサ電極Rxは例えば、表示領域90内において、横方向に60乃至70個、縦方向に60乃至70個存在している。
 図5は、タッチセンサ付液晶表示装置の動作を示す図である。図5において、1フレーム期間Tfは、画像表示期間Tdとタッチセンサ期間Tsに分割されている。画像表示期間Tdにおいては、コモン電極111には、コモン配線109を介してコモン電圧が供給される。一方、タッチセンサ期間においては、コモン配線109を介してセンサ電圧が供給される。画像表示期間Tdとタッチセンサ期間は、図1におけるフレキシブル配線基板400に配置されるドライバICによって切り替えられる。
 図1では、ドライバICはフレキシブル配線基板に配置されているが、ドライバICは端子領域に配置される場合もある。図6はドライバICが端子領域に配置される場合の例である。図6において、表示領域90からの配線はドライバIC50と接続し、ドライバIC50からの配線がフレキシブル配線基板400に接続する。ドライバIC50を接続するための端子は、COG(Chip On Glass)端子と呼ばれる。
 端子領域160に端子を形成するには、絶縁膜にスルーホールを形成する。スルーホールは、表示領域90あるいは、表示領域90と端子領域160との中間領域にも、配線を層間で乗り換えるために形成されるが、端子に形成されるスルーホールは、表示領域90あるいは中間領域にスルーホールに比べてはるかに大きい。一方、端子は、表示領域90あるいは中間領域に形成される配線と接続している。また、中間領域は、端子領域160と表示領域90との間の領域であり、具体的に中間領域はTFT基板1と対向基板2とが重なる周辺領域95の一部であってもよく、さらには、TFT基板1が対向基板2と重ならない領域に及んでもよい。中間領域には周辺領域95に形成されるゲート駆動回路や信号線駆動回路等、表示装置の駆動に関与する様々な配線が引き回されている。
 発明者は、端子に形成される大きなスルーホールと同時に形成される表示領域90あるいは中間領域に形成される小さなスルーホールとが電気的に接続していることに関係して、特に、小さなスルーホールの側において、スルーホールが形成される絶縁膜、特に有機パッシベーション膜の断面形状に異常が生ずることを発見した。具体的には、スルーホールの底部付近においてオーバーハングが発生する。以後で詳細に説明するように、本発明は、特に、有機パッシベーション膜に形成される、スルーホールにおいて、断面形状が異常となることを対策するものである。
 つまり、端子領域160には、大きなスルーホールとしてFOG端子、COG端子、検査端子のためのスルーホールが存在するが、端子に形成される大きなスルーホールとこれに接続する表示領域90あるいは中間領域に形成される小さなスルーホールとが配線によって接続されていると、小さなスルーホールの側のスルーホールの断面形状が異常となることを対策するものであるから、以後の説明では、端子領域160における端子としては、フレキシブル配線基板400との接続のためのFOG端子で代表させて説明する。
 図7は、図1に対応する端子領域160の平面図である。図7では、FOG端子のみが描かれており、検査端子50は省略されている。以後、単に端子という場合は、FOG端子をいう。図7におけるFOG端子は例えば、長方形であり、長径が例えば100μm、短径が例えば10μmである。また、FOGもしくはCOG端子、検査パッドは長軸及び短軸を有する非矩形状を成す形状であっても良く、また図7に示すような第2方向Yと長形(長軸)が平行なものに限らず、FOG端子の長形(長軸)は第2方向Yに傾きを有するように形成するものであっても良い。図7において、端子領域160には、表示領域90から、第1有機パッシベーション膜108と第2有機パッシベーション膜110が延在している。第1有機パッシベーション膜108には、大きなスルーホール41が形成され、第2有機パッシベーション膜110には大きなスルーホール42が形成されている。第1有機パッシベーション膜108のスルーホール41は、端子領域160における第1有機パッシベーション膜除去部41と言い換えることもでき、同様に第2有機パッシベーション膜110のスルーホール42は端子領域160における第2有機パッシベーション膜除去部42と言い換えることもできる。
 スルーホール41内には多くの端子30がx方向に配列している。各端子30は、表示領域90と引出し線35を介して接続している。各端子30から、TFT基板100の端子領域160の端部にかけて放電線36が延在している。この放電線36は、マザー基板の状態において、各液晶表示パネルからの放電線36と接続してアース線に接続し、製造工程において、各配線あるいはTFTが静電気によって破壊すること防止する。
 図8は図7のB-B断面図である。図8において、TFT基板100の上に下地膜101が形成され、その上にゲート絶縁膜103が形成されている。ゲート絶縁膜103の上に端子30が形成されている。端子30はゲート電極104と同層で形成された端子金属の上に形成されている。図8では、層間絶縁膜、端子金属等は省略されている。
 図8において、端子列の両側には、第1有機パッシベーション膜108と第2有機パッシベーション膜110が残されている。すなわち、端子列は、第1有機パッシベーション膜108のスルーホール41及び第2有機パッシベーション膜108のスルーホール42の中に形成されている。保護膜としての、SiNで形成された容量絶縁膜112が端子部分を除き、端子領域160の全域に形成されている。
 図9は図7のC-C断面図であり、端子の短軸方向の詳細断面図である。図9において、絶縁基板100の上に下地膜101が形成され、その上にゲート絶縁膜103が形成されている。ゲート絶縁膜103の上には、ゲート電極104と同層で形成された第1端子金属31が形成されている。第1端子金属31は、表示領域90側へ向かって引き出される端子配線35と同じである。この場合は、第1端子金属31は、MoW合金である。
 図9において、第1端子金属31を覆って層間絶縁膜105が形成されている。層間絶縁膜105の上には、映像信号線92と同層で形成された第2端子金属32が形成されている。すなわち、第2端子金属はTiN/Ti/Al/Tiの構成である。表示領域側へ向かって引き出される端子配線35は、映像信号線92、あるいは第2端子金属32と同層である場合もある。但し、この場合は、端子の断面は図9とは異なり、第1端子金属31が存在しない形となる。
 第2端子金属32の上にコモン配線109と同層で形成された第3端子金属33が形成されている。すなわち、コモン配線109はTiN/Ti/Al/Tiで形成される場合とMo/Al/Moがあるが、図9では、Mo/Al/Moによって形成されている場合である。
 図9において、第3端子金属33を覆って導電性保護膜としての第1ITO膜10がコモン電極109と同層で形成されている。第1ITO膜の端部を覆って保護膜としての容量絶縁膜112が形成されている。端子の接続部分では容量絶縁膜112にスルーホールが形成され、第1ITO膜10が露出している。容量絶縁膜112及び、第1ITO膜10を覆って画素電極113と同層で形成された第2ITO膜20が形成されている。
 図10は図7のD-D断面図である。図10において、TFT基板100の上に下地膜101が形成され、その上にゲート絶縁膜103が形成されている。ゲート絶縁膜103の上に表示領域90から延在してきた端子配線35と同一である第1端子金属31が形成されている。第1端子金属31を覆って層間絶縁膜105が形成され、その上に映像信号線92と同時に形成された第2端子金属32が形成されている。第2端子金属32は層間絶縁膜105に形成されたスルーホールを介して第1端子金属31と接続している。
 第2端子金属32の上にコモン配線109と同層で形成された第3端子金属33が形成されている。第3端子金属33を覆ってコモン電極111と同層で形成された第1ITO膜10が形成されている。端子において、第1ITO膜10は、端部においては容量絶縁膜112によって覆われるが、端子の接続部分では、画素電極113と同層で形成された第2ITO膜20によって覆われている。
 なお、第2端子金属32は、層間絶縁膜105およびゲート絶縁膜103に形成されたスルーホールを介して、半導体層102で形成された放電線36と接続している。放電線36を構成する半導体層102には不純物がドープしてあり、導体となっている。放電線36は製造工程において発生する静電気を除去する役割を有している。
 図10において、第1端子金属31あるいは端子配線35は表示領域90における走査線91、映像信号線92、コモン配線109等各種配線に電気的に接続される。表示領域90から端子配線35までは、同一の層を延在するとは限らず、絶縁膜に形成されたスルーホールを介して種々の層を乗り換えて端子まで延在する。このうち、第1有機パッシベーション膜108あるいは第2有機パッシベーション膜110にスルーホールや有機パッシベーション膜除去部を形成する場合に問題が生ずる。
 図11は、ソース電極7あるいはこれと同層の電極の上に第1有機パッシベーション膜108を形成し、スルーホールを形成した例である。図12は、コモン配線109あるいはこれと同層の電極の上に第2有機パッシベーション膜110を形成し、スルーホールを形成した例である。図11あるいは図12はスルーホールが問題無く形成された場合の例である。
 しかし、実際に有機パッシベーション膜に形成されるスルーホールには図13に示すような、問題が生ずるおそれがある。図13では、コモン配線109の上に形成された第2有機パッシベーション膜110のスルーホールの場合を示しているが、例えば、ソース電極107あるは映像信号線92と同層で形成された電極の上に形成された第1有機パッシベーション膜108のスルーホールの場合も同様である。
 図13のスルーホールの断面において、第2有機パッシベーション膜110にオーバーハングが形成されている。以後このオーバーハングをノッチ1101とも呼ぶ。このようなオーバーハングが形成されると、図14に示すように、スルーホール内において断線が生ずる。図14はコモン電極111をスルーホール内においてコモン配線109と接続しようとした例である。図14において、第2有機パッシベーション膜110に形成されたオーバーハングにおいて、コモン電極111が断線し、コモン配線109とコモン電極111との接続が出来なくなる。
 このようなオーバーハングの発生は、スルーホールを現像する時の現像液によって第2有機パッシベーション膜110の下に形成されているコモン配線109に生ずる電池作用が生ずることに原因があると考えられる。コモン配線109は、TiN/Ti/Al/Tiで形成される場合もあるし、Mo/Al/Moで形成される場合もある。いずれの場合も、イオン化傾向の異なる金属の積層構造となっているので、現像液の存在によって電池作用が発生する。電池作用による電荷の存在によって、現像液が活性化し、コモン配線109付近の第2有機パッシベーション膜110を異常にエッチングしてしまう現象が生ずると考えられる。
 つまり、電池作用が発生すると、電流が流れることになる。端子と表示領域とは配線によって接続している。一方、端子に形成されるスルーホールと、表示領域90あるいは、表示領域90と端子領域との中間領域に形成されるスルーホールとを比べると、一般には、端子に形成されるスルーホールのほうがはるかに大きい。そうすると、電池作用の差によって、電流が、端子側から表示領域側に流れることになる。このような場合、小さなスルーホール側において、図13に示すようなオーバーハングが発生する。
 図15はこの問題を示す模式平面図である。図15における左側の図は、1個の大きな端子スルーホール44に対して、表示領域90等において、4個の小さなスルーホール43が対応している。図15における右側の図は、1個の大きな端子スルーホール44に対して、表示領域90、中間領域、周辺領域95等において、2個の小さなスルーホール43が対応している。端子のスルーホールの面積と、表示領域の合計のスルーホールの面積とを比較すると、図15に左側において差が小さく、右側において差が大きい。このような場合、差が大きい右側の構成において、小さなスルーホールにオーバーハングが発生する。図15、図16、図19において、OKはオーバーハングが発生しない場合、NGはオーバーハングが発生する場合である。
 図16は端子のスルーホール44と表示領域90、中間領域、周辺領域95等のスルーホール43が1:1で対応している場合である。図16の左側の構成は端子のスルーホール44と表示領域のスルーホール43の面積の差が小さく、図16の右側の構成は端子のスルーホール44と表示領域のスルーホール43の面積の差が大きい。この場合、面積の差が大きい、図16の右側の構成において、小さなスルーホールにオーバーハングが発生する。
 図17は、以上で説明した内容を図7の構成に当てはめたものである。図17において、端子領域には、第1有機パッシベーション膜108に大きなスルーホール41が形成されている。したがって、端子44全体が第1有機パッシベーション膜108のスルーホール41のための現像液にさらされる。特に大きなスルーホール41の形成によって図9、図10に示すように第2端子金属32の中間層であるAlの特に側面が現像液にさらされる面積が大きく、また時間が長く、第2端子金属32のAlが多くイオン化する。一方、表示領域においては、スルーホール43は、端子領域のスルーホール41に比べてはるかに小さい。また、個々の端子スルーホール44の面積に比べてはるかに小さい。図17において、43は表示領域のスルーホールであり、45はスルーホールの下にある電極である。この電極45は第2金属端子同様のTATであってもその中間層のAl側面は第1有機パッシベーション膜108で覆われており、スルーホール43においては上層Tiのみが露出されるだけとなり、第2端子金属のイオン化は少ない。端子部の電池作用と、表示領域におけるスルーホールの電池作用は大きく異なるので、電荷が端子部から表示領域側に移動することになる。そうすると、表示領域のスルーホール43において、現像液による有機パッシベーション膜108の異常エッチングが発生し、スルーホール43にオーバーハングが発生する。
 図18及び図19は、スルーホールにおけるオーバーハングが発生する他の例を示す図である。図18は図7のC-C断面図を示す他の例である。図18が図9と異なる点は、第3端子金属が存在せず、第2端子金属32の上に第1ITO膜10と第2ITO膜20が形成されていることである。つまり、スルーホールは、第2端子金属であるTiN/Ti/Al/Tiに形成される。この場合も、図17に示すように、端子領域160では、例えば、第1有機パッシベーション膜108に大きなスルーホール41が形成される。また、表示領域90には小さなスルーホール43が形成される。
 図19の左側の図は、端子のスルーホールも表示領域のスルーホールも同じMo/Al/Mo(図19ではMAM)で形成されている。このような構成の場合、オーバーハングが発生していない。一方、図19の右側の図は、端子のスルーホールが、図18に示すように、TiN/Ti/Al/Ti(図19ではTAT)電極の上に形成され、表示領域90に形成されるスルーホールは、Mo/Al/Mo(図19ではMAM)で形成されている。端子のスルーホールの形状、表示領域90のスルーホールの形状、個数等は図19の左側と右側で同じである。
 このような場合、図19の右側において表示領域90のスルーホールにオーバーハングが発生する。つまり、スルーホールの底部に存在している金属が、端子部と表示領域、あるいは、大きなスルーホールと小さなスルーホールとで異なると、小さなスルーホールにオーバーハングが発生しやすい。あるいは、スルーホールの下に存在している積層金属が、端子部と表示領域とで異なると、小さなスルーホールにオーバーハングが発生しやすいということも出来る。
 いずれにせよ、表示領域90あるいは表示領域90と端子領域160の中間領域に形成される小さいスルーホールのオーバーハングは、端子のスルーホールによって露出される金属の面積と、表示領域等におけるスルーホールによって露出される金属の面積の差が大きいことに起因している。以下に示す実施例は、このような知見に基づき、スルーホールのオーバーハングを対策する構成を与えるものである。
 図20は、図7のD-D断面に対応する端子の断面図である。図20が図10と異なる点は、TiN/Ti/Al/Tiで形成された第2端子金属32が、第1端子金属31と接続するために層間絶縁膜105に形成されたスルーホール部分近辺の領域のみを残して除去されている点である。すなわち、端子部において、第2端子金属32の面積は非常に小さくなっており、表示領域等に形成された、第1有機パッシベーション膜108のスルーホールの面積とあまり変わらなくなっている。
 したがって、端子領域160と表示領域90に同時にスルーホールを形成する時の、端子領域160における第2端子金属32の中間層であるAlの側面が現像液に曝される面積が小さくなることで、第2端子金属のイオン化を抑制し、電荷の移動は小さくなり、表示領域90の小さなスルーホールにおいて、有機パッシベーション膜108、110にオーバーハングが発生するという現象を回避することが出来る。この構成は、特に、表示領域90等において、映像信号線92と同じ金属、例えば、TiN/Ti/Al/Tiの積層金属の上に形成されるスルーホールに特に効果がある。
 なお、図20において、放電線36と接続する部分には第2端子金属32は残存しているが、この部分は、第2端子金属32の上に端子スルーホールが形成される時点では、表示領域90とは接続していないので、表示領域90等におけるスルーホールのオーバーハングには影響を与えない。
 図21は、実施例1の他の形態を示す断面図である。図21が図20と異なる点は、第2端子金属32が第1端子金属31と接続するために層間絶縁膜105に形成されたスルーホール部分近くで分断されているが、放電線36と接続するためのスルーホール付近を含め、第2端子金属32は残存している点である。この構成の場合も、第2端子金属32残存している部分は、第2端子金属32の上に端子スルーホールが形成される時点では、表示領域90等とは接続していないので、表示領域90等におけるスルーホールのオーバーハングには影響を与えない。
 図22は実施例2を示す端子部の断面図である。図22も図7のD-D断面図に対応するものである。図22が図20と異なる点は、第3端子金属33も、層間絶縁膜105に形成されたスルーホール付近を除いて除去されている点である。すなわち、端子部において、第3端子金属33の面積も非常に小さくなっており、表示領域90等に形成されたスルーホールの面積とあまり変わらなくなっている。
 したがって、端子領域160と表示領域90に同時にスルーホールを形成する時の、端子領域160における第2端子金属32の中間層であるAl、及び第3端子金属33の中間層であるAl側面が現像液に曝される面積が小さくなることで、第2端子金属と第3端子金属のイオン化を抑制し、電荷の移動は小さくなり、表示領域90の小さなスルーホールにおいて、有機パッシベーション膜108,110にオーバーハングが発生するという現象を回避することが出来る。本実施例では、特に、表示領域において、コモン配線109と同じ金属、例えば、Mo/Al/Moの積層金属の上に形成されるスルーホールに特に効果がある。本実施例も、映像信号線92と同じ金属、例えば、TiN/Ti/Al/Tiの積層金属の上に形成されるスルーホールに対しても効果があることは実施例1と同じである。
 なお、図22において、放電線36と接続する部分には第3端子金属33は残存しているが、この部分は、第3端子金属の上にスルーホールが形成される時点では、表示領域90とは接続していないので、表示領域90等におけるスルーホールのオーバーハングには影響を与えない。
 図22の他の特徴は、第2端子金属32の端部を第3端子金属33によって覆っていることである。したがって、第2端子金属32の端部は第3端子金属33によって保護されている。つまり、外気による端子金属の腐食は、第3端子金属についてのみ注意すればよい。
 図23は実施例3を示す端子部の断面図である。図23も図7のD-D断面図に対応するものである。図23が図22と異なる点は、残存している第3端子金属33は容量絶縁膜112によって覆われていることである。すなわち、スルーホール形成時の表示領域90におけるスルーホールの断面形状についての効果は、実施例2と同様である。
 図23においては、第3端子金属は容量絶縁膜112によって覆われている。容量絶縁膜112はSiNで形成されているので、水分を透過しない。したがって、Mo/Al/Moで形成された第3端子金属33、あるいは、TiN/Ti/Al/Tiで形成された第2端子金属32は外気から保護され、端子部の信頼性を向上させることが出来る。
 図24は、実施例4における端子領域160の平面図である。図24が図7と異なる点は、第2有機パッシベーション膜110が、各端子共通に大きなスルーホールとして形成されているのではなく、端子30毎に除去されている点である。一方、第1有機パッシベーション膜108は各端子共通に大きなスルーホール41として形成されている。その他の構成は図7と同じである。
 図25は図24のE-E断面図である。図25が図8と異なる点は、第2有機パッシベーション膜110が各端子30間に存在している点である。一方、第1有機パッシベーション膜108は各端子共通に大きなスルーホール41(もしくは第1有機パッシベーション膜除去部41)として形成されている。
 図26は、図24のF-F断面図に相当する実施例4における端子部の断面図である。図26が図9と異なる点は、第3端子金属33の端部が第2有機パッシベーション膜110によって覆われている点である。第3端子金属33は、例えばMo/Al/Moで形成され、腐食しやすいAlを含んでいる。図26の構成は、Mo/Al/Moの端部は、第2有機パッシベーション膜110によって保護されているので、つまり、第2有機パッシベーション膜110は第3端子金属層33のAl側面に重なる領域で現像されず、現像液がAl側面に曝されないため、第3端子金属33のイオン化が抑制され、第2有機パッシベーション膜110のノッチ1101の発生を防ぎ、端子の信頼性を向上させることが出来る。その他の構成は図9と同じである。また、第2有機パッシベーション膜110のスルーホールで露出される第3端子金属は上層Tiもしくは上層Moのみであり、中間層であるAlは第2有機パッシベーション膜110から露出されない。
 図27は、図24のG-G断面図に相当する実施例4における端子部の断面図である。図27が実施例1である図10と異なる点は、第3端子金属33の端部が第2有機パッシベーション膜110によって覆われている点である。つまり、図26で説明したのと同様に、第3端子金属33の端部は第2有機パッシベーション膜110によって保護されているので、端子の信頼性を向上させることが出来る。
 図27が図20と異なる他の点は、保護膜としての容量絶縁膜112が残存している第2端子金属32を覆うように形成されていることである。この構成によって、第2端子金属32及び、第3端子金属33の一部は、外気から保護されることになる。このように、実施例4の構成は実施例1等に比べて端子部の耐食性能は向上している。
 図27のその他の構成は図20と同じである。したがって、実施例4においても、実施例1と同様、表示領域90、あるいは、中間領域における第1有機パッシベーション膜108あるいは第2有機パッシベーション膜110に形成されたスルーホールのオーバーハングを回避することが出来る。なお、実施例2及び実施例3の構成も実施例4の構成と組み合わせることが出来る。
 以上の実施例では、有機パッシベーション膜は、第1有機パッシベーション膜108と第2有機パッシベーション膜110が積層されて形成されている例を説明した。しかし、有機パッシベーション膜が1層のみの場合であっても本発明を適用することが出来る。この場合、例えば、実施例4においては、端子毎に形成されるスルーホールは、第1有機パッシベーション膜108に形成されたスルーホールとなる。
 以上では、液晶表示装置について説明したが、有機EL表示装置についても同様に適用することが出来る。有機EL表示装置は、液晶層の代わりに、発光層を含む有機EL層がTFT基板に形成され、有機EL層を保護する保護膜が形成されている点が液晶表示装置とは異なる。しかし、端子領域が存在していること、表示領域には2層の有機パッシベーション膜が存在しており、各有機パッシベーション膜にスルーホールが形成されること等は、液晶表示装置と同様である。
 10…第1ITO膜、 20…第2ITO膜、 30…FOG端子、 10…第1端子金膜、 32…第2端子金属、 33…第3端子金属、 35…引出し線、 36…放電線、 41…第1有機パッシベーション膜スルーホール、 42…第2有機パッシベーション膜スルーホール、 43…小スルーホール、 44…端子スルーホール、 45…スルーホール台座、 36…放電線、 50…検査端子、 60…ドライバIC、 90…表示領域、 91…走査線、 92…映像信号線、 93…画素、 95…額縁領域、 100…TFT基板、 101…下地膜、 102…半導体層、 103…ゲート絶縁膜、 104…ゲート電極、 105…層間絶縁膜、 106…ドレイン電極、 107…ソース電極、 108…第1有機パッシベーション膜、 109…コモン配線、 110…第2有機パッシベーション膜、 111…コモン電極、 112…容量絶縁膜、 113…画素電極、 114…配向膜、 115…引出し配線、 116…遮光膜、 120…スルーホール、 125…スルーホール、 131…第1有機パッシベーション膜スルーホール、 132…第2有機パッシベーション膜スルーホール、 130…スルーホール、 140…溝状スルーホール、 150…シール材、 160…端子領域、 200…対向基板、 201…カラーフィルタ、 202…ブラックマトリクス、 203…オーバーコート膜、 204…配向膜、 300…液晶、 301…液晶分子、 400…フレキシブル配線基板、 1101…有機パッシベーション膜ノッチ、 1102…断線、 Rx…センサ電極

Claims (12)

  1.  表示領域と、端子が形成された端子領域と、を備えた表示装置であって、
     前記端子領域は、前記表示領域に向かって引き出される第1金属で形成された引出し線と、前記引出し線を覆う第1絶縁膜と、前記第1絶縁膜上に形成された第2金属と、前記第2金属の表面に接触する第3金属と、を有し、
     前記第1絶縁膜は第1絶縁膜に形成された第1スルーホールと第2スルーホールを有し、
     前記第2金属は、前記第1スルーホールに重なり前記第1スルーホールを介して前記引出し線に接続する第1部分と、前記第2スルーホールに重なり前記第1部分と分断された第2部分と、を有する表示装置。
  2.  前記端子はさらに、絶縁基板と、放電線と、前記放電線を覆う第2絶縁膜と、を備え、
     前記放電線は、前記絶縁基板と前記第2絶縁膜との間に位置し、
     前記第1絶縁膜は前記第2絶縁膜に積層されており、
     前記第2スルーホールは前記第2絶縁膜を貫通し前記放電線を露出し、
     前記第2金属の前記第2部分は前記第2スルーホールを介して前記放電線に接続される、
    請求項1に記載の表示装置。
  3.  前記引出し線は、前記第2絶縁膜と前記第1絶縁膜との間に形成され、
     前記放電線は、前記引出し線とは離れる方向に延出する、
    請求項2に記載の表示装置。
  4. 前記第3金属は、前記第2金属の前記第1部分の表面及び側面を覆う第3部分と、前記第2金属端子の前記第2部分の表面と側面を覆う第4部分と、前記第1部分と前記第2部分とが分離された領域にて前記第1絶縁膜に接触する第5部分とを有し、
     前記第3部分と前記第4部分と前記第5部分は一体的に形成されている、
    請求項1乃至請求項3の何れか一項に記載の表示装置。
  5.  前記第3金属は、前記第2金属の前記第1部分の表面及び側面を覆う第3部分と、前記第2金属の前記第2部分の表面と側面を覆う第4部分とを有し、
     前記第3部分は前記第4部分とは分離されている、
    請求項1乃至請求項3の何れか一項に記載の表示装置。
  6.  前記端子領域はさらに、第1透明導電膜と、第2透明導電膜と、を有し、
     前記第2透明導電膜は前記第1透明導電膜に積層されており、
     前記第1透明導電膜は前記第3部分の表面及び側面に接し、前記第4部分の表面及び側面に接し、前記第5部分の表面に接する、請求項4に記載の表示装置。
  7.  前記端子領域はさらに、第1透明導電膜と、第2透明導電膜と、を有し、
     前記第2透明導電膜は前記第1透明導電膜に積層されており、
     前記第1透明導電膜は前記第3部分の表面及び側面に接し、前記第4部分の表面及び側面に接し、前記第3部分と前記第4部分とが分離された領域にて前記第1絶縁膜に接する、請求項5に記載の表示装置。
  8.  前記端子領域は一対の長辺及び一対の短辺を有する矩形状であり、前記第1スルーホールは一方の前記短辺側に位置し、前記第2スルーホールは他方の前記短辺側に位置する、請求項1乃至請求項7の何れか一項に記載の表示装置。
  9.  前記端子領域はさらに前記第1透明導電膜と前記第2透明導電膜との間に無機絶縁膜を有し、前記無機絶縁膜は前記第3部分及び前記第4部分の側面を覆う、請求項6乃至請求項8の何れか一項に記載の表示装置。
  10.  前記無機絶縁膜は、前記第3部分及び前記第4部分の表面を覆う、請求項9に記載の表示装置。
  11.  前記端子領域は前記端子の周囲を囲う有機絶縁膜を有し、前記有機絶縁膜は前記第3端子金属の少なくとも一部の外縁に接する、請求項1乃至請求項4の何れか一項に記載の表示装置。
  12. 前記第1金属は前記引出し配線と一体的に形成され前記第1スルーホールから前記第2スルーホールに向かって延出する延出しており、前記第1スルーホールと前記第2スルーホールの間に前記第1金属の端部がある、請求項1乃至請求項11の何れか一項に記載の表示装置。
PCT/JP2019/015101 2018-04-27 2019-04-05 表示装置 WO2019208164A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980027818.3A CN112005290B (zh) 2018-04-27 2019-04-05 显示装置
US17/074,980 US11774811B2 (en) 2018-04-27 2020-10-20 Display device having through holes without overhang in cross section

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018086372A JP7046705B2 (ja) 2018-04-27 2018-04-27 表示装置
JP2018-086372 2018-04-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/074,980 Continuation US11774811B2 (en) 2018-04-27 2020-10-20 Display device having through holes without overhang in cross section

Publications (1)

Publication Number Publication Date
WO2019208164A1 true WO2019208164A1 (ja) 2019-10-31

Family

ID=68294081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/015101 WO2019208164A1 (ja) 2018-04-27 2019-04-05 表示装置

Country Status (4)

Country Link
US (1) US11774811B2 (ja)
JP (1) JP7046705B2 (ja)
CN (1) CN112005290B (ja)
WO (1) WO2019208164A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109671726B (zh) * 2019-01-04 2021-01-26 京东方科技集团股份有限公司 阵列基板及其制造方法、显示面板、显示装置
CN112017541A (zh) * 2020-08-25 2020-12-01 昆山国显光电有限公司 显示面板和显示装置
CN115128873B (zh) * 2021-03-29 2023-12-05 株式会社日本显示器 显示装置及显示装置的阵列基板
CN114137771B (zh) * 2021-12-08 2023-08-01 Tcl华星光电技术有限公司 阵列基板及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084248A (ja) * 2003-09-05 2005-03-31 Mitsubishi Electric Corp 液晶表示装置およびその製造方法
JP2010217932A (ja) * 2005-05-31 2010-09-30 Lg Display Co Ltd 液晶ディスプレイ
JP2011017822A (ja) * 2009-07-08 2011-01-27 Sony Corp 液晶表示パネル
JP2013225015A (ja) * 2012-04-20 2013-10-31 Kyocera Corp 液晶表示装置
US20140346470A1 (en) * 2013-05-23 2014-11-27 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
JP2015087434A (ja) * 2013-10-28 2015-05-07 パナソニック液晶ディスプレイ株式会社 表示装置
US20170062548A1 (en) * 2015-08-28 2017-03-02 Lg Display Co., Ltd. Organic Light Emitting Display Device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100492147C (zh) * 2006-05-29 2009-05-27 爱普生映像元器件有限公司 液晶显示装置及其制造方法
WO2009081633A1 (ja) * 2007-12-20 2009-07-02 Sharp Kabushiki Kaisha アクティブマトリクス基板、これを備えた液晶表示装置、及びアクティブマトリクス基板の製造方法
US8685803B2 (en) * 2009-12-09 2014-04-01 Sharp Kabushiki Kaisha Semiconductor device and method for producing same
WO2012029406A1 (ja) * 2010-08-31 2012-03-08 シャープ株式会社 表示パネルおよびその製造方法
JP5604457B2 (ja) 2012-01-26 2014-10-08 株式会社ジャパンディスプレイ 液晶表示装置
JP6002478B2 (ja) * 2012-07-04 2016-10-05 株式会社ジャパンディスプレイ 液晶表示装置
JP2014095795A (ja) * 2012-11-09 2014-05-22 Japan Display Inc 液晶表示装置およびその製造方法
JP6655417B2 (ja) * 2016-02-17 2020-02-26 株式会社ジャパンディスプレイ 表示装置
JP6655471B2 (ja) * 2016-05-18 2020-02-26 株式会社ジャパンディスプレイ 表示装置及びセンサ装置
CN109313871A (zh) * 2016-06-28 2019-02-05 夏普株式会社 有源矩阵基板、光闸基板、显示装置、有源矩阵基板的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005084248A (ja) * 2003-09-05 2005-03-31 Mitsubishi Electric Corp 液晶表示装置およびその製造方法
JP2010217932A (ja) * 2005-05-31 2010-09-30 Lg Display Co Ltd 液晶ディスプレイ
JP2011017822A (ja) * 2009-07-08 2011-01-27 Sony Corp 液晶表示パネル
JP2013225015A (ja) * 2012-04-20 2013-10-31 Kyocera Corp 液晶表示装置
US20140346470A1 (en) * 2013-05-23 2014-11-27 Samsung Display Co., Ltd. Organic light emitting display device and method of manufacturing the same
JP2015087434A (ja) * 2013-10-28 2015-05-07 パナソニック液晶ディスプレイ株式会社 表示装置
US20170062548A1 (en) * 2015-08-28 2017-03-02 Lg Display Co., Ltd. Organic Light Emitting Display Device

Also Published As

Publication number Publication date
JP2019191461A (ja) 2019-10-31
US11774811B2 (en) 2023-10-03
CN112005290A (zh) 2020-11-27
CN112005290B (zh) 2022-08-12
JP7046705B2 (ja) 2022-04-04
US20210036031A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2019208164A1 (ja) 表示装置
US11719982B2 (en) Display device
US20110102719A1 (en) Horizontal-electric-field liquid crystal display apparatus
US8284364B2 (en) Active matrix display device
US10761354B2 (en) Display device
JP6621284B2 (ja) 表示装置
JP6627447B2 (ja) 液晶表示装置
JP2009223245A (ja) 液晶表示装置
JP2017103408A (ja) 表示装置
JP6336765B2 (ja) 表示装置
JP2021177216A (ja) 表示装置
WO2020049962A1 (ja) 表示装置
JP5247615B2 (ja) 横電界方式の液晶表示装置
JP7274627B2 (ja) 表示装置
JP2019040120A (ja) 液晶表示装置
JP7027470B2 (ja) 表示装置
JP2018146923A (ja) 液晶表示装置
JP5396224B2 (ja) 液晶表示装置
JP5055511B2 (ja) 横電界方式の液晶表示装置
JP2024078814A (ja) 液晶表示装置
JP2020013148A (ja) 液晶表示装置
JP2019066719A (ja) 表示パネル
JP2017003661A (ja) アレイ基板及び当該アレイ基板を備えた表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19792459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19792459

Country of ref document: EP

Kind code of ref document: A1