JP2019178824A - 水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法 - Google Patents

水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法 Download PDF

Info

Publication number
JP2019178824A
JP2019178824A JP2018069238A JP2018069238A JP2019178824A JP 2019178824 A JP2019178824 A JP 2019178824A JP 2018069238 A JP2018069238 A JP 2018069238A JP 2018069238 A JP2018069238 A JP 2018069238A JP 2019178824 A JP2019178824 A JP 2019178824A
Authority
JP
Japan
Prior art keywords
water quality
steam
quality monitoring
water
monitoring system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018069238A
Other languages
English (en)
Other versions
JP6934833B2 (ja
Inventor
裕一 関根
Yuichi Sekine
裕一 関根
邦夫 浅井
Kunio Asai
邦夫 浅井
祐一 岩本
Yuichi Iwamoto
祐一 岩本
真吾 田村
Shingo Tamura
真吾 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2018069238A priority Critical patent/JP6934833B2/ja
Priority to TW108102331A priority patent/TWI705219B/zh
Priority to KR1020190015518A priority patent/KR102231021B1/ko
Priority to MYPI2019000721A priority patent/MY197601A/en
Priority to US16/273,630 priority patent/US11060422B2/en
Priority to PH12019000075A priority patent/PH12019000075A1/en
Priority to MX2019001831A priority patent/MX2019001831A/es
Priority to CN201910112949.3A priority patent/CN110320334B/zh
Priority to SG10201901223U priority patent/SG10201901223UA/en
Publication of JP2019178824A publication Critical patent/JP2019178824A/ja
Application granted granted Critical
Publication of JP6934833B2 publication Critical patent/JP6934833B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/003Arrangements for measuring or testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/32Collecting of condensation water; Drainage ; Removing solid particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/02Controlling, e.g. stopping or starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • F01K7/22Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type the turbines having inter-stage steam heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/42Use of desuperheaters for feed-water heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/006Investigating resistance of materials to the weather, to corrosion, or to light of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/02Electrochemical measuring systems for weathering, corrosion or corrosion-protection measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4166Systems measuring a particular property of an electrolyte
    • G01N27/4167Systems measuring a particular property of an electrolyte pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N2001/1031Sampling from special places
    • G01N2001/1037Sampling from special places from an enclosure (hazardous waste, radioactive)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N2001/1031Sampling from special places
    • G01N2001/105Sampling from special places from high-pressure reactors or lines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • G01N2001/2229Headspace sampling, i.e. vapour over liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N2001/2282Devices for withdrawing samples in the gaseous state with cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Hydrology & Water Resources (AREA)
  • Thermal Sciences (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】従来に比べて正確かつ確実に蒸気タービンシステムにおける水質を評価する。【解決手段】蒸気タービンのうち、供給される蒸気の圧力が低い低圧タービン12から蒸気を抽気する低圧抽気配管12Aを通過する蒸気を取得するサンプリング配管22と、サンプリング配管22で取得された蒸気が流入する蒸気流入槽32と、蒸気流入槽32に流入した蒸気を凝縮させた凝縮水の水質を計測するための水質計測装置50と、水質計測装置50の計測結果を用いて凝縮水の水質を診断する水質診断装置100と、を備え、蒸気流入槽32は、水質計測装置50に対して高所に設置されており、水質計測装置50は、ヘッド差を利用して大気圧へ昇圧された凝縮水の水質を計測する。【選択図】 図2

Description

本発明は蒸気タービンシステムに用いられ水の質をモニタリングするための水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに蒸気の水質モニタリング方法に関する。
蒸気タービンの乾湿交播域で凝縮する凝縮水の水質を測定するモニタを提供し、モニタによる水質情報をもとに給水水質および蒸気系薬品注入を制御する機構を備えた蒸気タービン材料の腐食損傷を防止する高い信頼性を有する蒸気タービンの一例として、特許文献1には、蒸気タービン翼表面近傍の凝縮条件を模擬した凝縮室により凝縮水を得、その凝縮水を分析することにより水質をモニタする、さらにモニタ結果により蒸気タービンの運転条件の制御,薬品の注入を行うことが記載されている。
特開平9−170704号公報
例えば蒸気を扱う火力プラントにおいてはプラントの形式に応じて種々な水質管理方法が設定されている。
このような水質管理では、ボイラ入口側からサンプリングした水の水質を測定し、測定値が基準値におさまるように管理されてきた。
このような状況の中で、動翼,静翼及びロータ等に腐食損傷が発生することがある。特に高圧,中圧及び低圧タービンで構成される火力発電プラントでは蒸気の乾湿交播域にあたる低圧タービンの後段で蒸気が凝縮して液滴が発生し、これに腐食媒体が混入して腐食を進行させることがある。
さらに、プラントの起動及び停止時において高,中,低圧タービンおよび給水ポンプ駆動用タービンに凝縮水が発生し、低圧タービン同様、腐食損傷が発生する場合がある。
これら腐食損傷が発生する環境は特に蒸気がエネルギーを使い果たして水に変化する乾湿交播域であることが多い。金属材料の腐食損傷は材料が接する環境に大きく依存するため、タービン材を腐食損傷から守るためにはタービン材が接している凝縮水の水質をモニタリングし、把握した情報をもとに蒸気の元となる給水の水質を管理することが効果的と考えられる。
このような技術の一環として、上述の特許文献1のような技術がある。この特許文献1に記載された技術では、水蒸気の一部を抽出する抽出管からサンプリングしている。
ここで、蒸気タービンシステムの低圧タービンのタービン蒸気は周囲に比べて負圧であることが多く、特許文献1に記載のような技術では、低圧タービンから抽気した蒸気を凝縮させた凝縮水を、水質を計測する装置に送っても、圧力が大気圧でないために水質の計測が困難であり、水質のモニタリングを十分に実行することができない、との問題があることが本発明者の検討によって明らかとなった。
本発明は、従来に比べて正確かつ確実に水質を評価することが可能な水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法を提供する。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、蒸気発生源で発生させた蒸気により機械的エネルギーを得る蒸気タービンを備えた蒸気タービンシステムで用いられる蒸気の質を評価する水質モニタリングシステムであって、前記蒸気タービンのうち、供給される蒸気の圧力が低い低圧タービンから蒸気を抽気する抽気配管を通過する蒸気を取得するサンプリング配管と、前記サンプリング配管で取得された蒸気が流入する蒸気流入槽と、前記蒸気流入槽に流入した蒸気を凝縮させた凝縮水の水質を計測する水質計測装置と、前記水質計測装置の計測結果を用いて前記凝縮水の水質を診断する水質診断装置と、を備え、前記蒸気流入槽は、前記水質計測装置に対して高所に設置されており、前記水質計測装置は、ヘッド差を利用して大気圧へ昇圧された凝縮水の水質を計測することを特徴とする。
本発明によれば、蒸気タービンシステムにおける水質を従来に比べて正確かつ確実に評価することができる。上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。
本発明の実施例1の蒸気タービンシステムの全体構成を表す概略図である。 実施例1の水質モニタリングシステムの概略を示す図である。 図2に示す水質モニタリングシステムのうち、水質診断装置の概略構成を示す図である。 実施例1の水質診断装置の水質データベースに記憶されている、凝縮水のpHと腐食電位との関係を示す図である。 実施例1の水質診断装置の水質データベースに記憶されている、材料の寿命と腐食ピット発生に対する裕度との関係を示す図である。 実施例1の水質診断装置の水質データベースに記憶されている、材料の寿命と水素脆化に対する裕度との関係を示す図である。 実施例1の水質診断装置における腐食ピット発生に対する裕度の評価手順の一例を示すフローチャート図である。 実施例1の水質診断装置の水質データベースに記憶されている、凝縮水中のカチオン濃度と孔食発生電位との関係を示す図である。 実施例1の水質診断装置における腐食ピット発生に対する裕度の評価手順の他の一例を示すフローチャート図である。 実施例1の水質診断装置の水質データベースに記憶されている、凝縮水中の塩化ナトリウム量と電位変動幅との関係を示す図である。 実施例1の水質診断装置の水質データベースに記憶されている、凝縮水中のカチオン濃度とすき間腐食の発生確率との関係を示す図である。 実施例1の水質診断装置の水質データベースに記憶されている、凝縮水の電位とすき間腐食の裕度との関係を示す図である。 実施例1の水質診断装置における凝縮水の電気伝導度に対するナトリウムイオン濃度の導出方法の概略を示す図である。 実施例1の水質診断装置の水質データベースに記憶されている、作用応力拡大係数とナトリウムイオン濃度との関係を示す図である。 実施例1の水質診断装置の水質データベースに記憶されている、溶液浸漬時間に対するすき間腐食の発生確率との関係を示す図である。 実施例2の水質モニタリングシステムの概略を示す図である。 実施例3の水質モニタリングシステムの概略を示す図である。 実施例4の水質モニタリングシステムの概略を示す図である。 実施例5の水質モニタリングシステムの概略を示す図である。 実施例5の変形例の水質モニタリングシステムの概略を示す図である。 実施例6の水質モニタリングシステムのうち、水質診断装置の概略構成を示す図である。 実施例7の水質モニタリングシステムのうち、水質診断装置の概略構成を示す図である。 実施例7の水質診断装置の水質データベースに記憶されている、材料の使用時間に対する推定ピット径の関係を示す図である。 実施例7の水質診断装置で用いる、材料の使用時間と各種リスクとの関係の一例を示す図である。 実施例7の水質診断装置における余寿命評価の手順を示すフローチャート図である。 実施例7の水質診断装置の水質データベースに記憶されている、凝縮水中のカチオン濃度と試験片におけるき裂進展速度との関係を示す図である。 実施例7の水質診断装置で用いる、材料の使用時間に対するき裂長さとの関係の一例を示す図である。
以下に本発明の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法の実施例を、図面を用いて説明する。
<実施例1>
本発明の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法の実施例1について図1乃至図15を用いて説明する。
最初に、図1を用いて本実施例に係る蒸気タービンシステムの全体構成について説明する。図1は本実施例の蒸気タービンシステムの概略図である。なお、以下の実施例では、蒸気タービンシステムとして化石燃料を熱源とする火力発電システムを例に説明するが蒸気タービンシステムはこれに限定されず、様々な発電用蒸気タービンや船舶用蒸気タービン、その他の熱エネルギーにより水を気化させ、気化した水蒸気のエネルギーによりタービン羽根を回転させ機械的エネルギーを得るシステムに本発明は適用することができる。
図1に示すように、本実施例の蒸気タービンシステムは、ボイラ1、高圧タービン7、中圧タービン10、低圧タービン12、復水器14、発電機16を備えている。
ボイラ1は化石燃料焚きボイラであって、蒸気発生源の一例である。ボイラ1で化石燃料を燃焼することで復水器14から供給された復水を加熱し、高温高圧の蒸気を発生させる。
主蒸気管2には、主蒸気止め弁3や蒸気加減弁4が設けられている。また、主蒸気管2には、蒸気加減弁4をバイパスして、主蒸気管2よりも蒸気タービンの低圧側につながるオーバーロード蒸気管5が接続されている。このオーバーロード蒸気管5には、オーバーロード弁6が設けられている。
ボイラ1で発生した蒸気は主蒸気管2およびオーバーロード蒸気管5を介して高圧タービン7に導かれ、高圧タービン7を駆動する。高圧タービン7を駆動して減圧した蒸気は、高圧タービン排気管8を流下してボイラ1に導かれ、再度加熱されて再熱蒸気となる。
ボイラ1で再加熱された再熱蒸気は、高温再熱蒸気管9を介して中圧タービン10に導かれて中圧タービン10を駆動する。
中圧タービン10を駆動して減圧した蒸気は、中圧タービン排気管11を介して低圧タービン12に導かれ、低圧タービン12を駆動する。
低圧タービン12を駆動して減圧した蒸気は、低圧タービン排気管13を介して復水器14に導かれる。復水器14は冷却水配管(図示せず)を備えており、復水器14に導かれた蒸気と冷却水配管内を流れる冷却水との熱交換により蒸気を復水する。
低圧給水加熱器18は、復水器14で復水された給水を低圧抽気配管12Aによって低圧タービン12から抽気された蒸気によって加熱する。
高圧給水加熱器19は、高圧抽気配管7Aによって高圧タービン7から抽気された蒸気によって、低圧給水加熱器18によって加熱された給水をボイラ1に送るために更に加熱する。
高圧給水加熱器19を介して加熱された給水は再びボイラ1に送られる。
図1に示した高圧タービン7、中圧タービン10及び低圧タービン12は、タービンロータ15によって同軸上に連結されている。また、タービンロータ15には発電機16が連結されていて、高圧タービン7、中圧タービン10及び低圧タービン12の回転動力によって発電機16が駆動し、高圧タービン7、中圧タービン10及び低圧タービン12の出力が電力(電気エネルギー)として取り出される。
なお、火力発電システムの構成は図1に示すシステムに特に限定されない。
本実施例では、このような蒸気タービンシステムのうち、低圧給水加熱器18に対して、追加の設備として、蒸気の質を評価するための水質モニタリングシステムが設置されている。このように追加の設備であることによって、負圧・高温などの厳しい環境下での独自性のある計測が可能となる。
次に本実施例の水質モニタリングシステムの構成や動作について図2乃至図15を用いて説明する。最初に、水質モニタリングシステムや水質診断装置の構成の詳細について図2乃至図6を用いて説明する。図2は実施例1の水質モニタリングシステムの概略を示す図、図3は水質診断装置の概略構成を示す図である。図4乃至図6は、水質モニタリングシステム内の水質データベース130に記録されているデータの一例を示す図である。
図2に示すように、水質モニタリングシステムは、サンプリング配管22、凝縮部30、計測用配管42、水質計測装置50、水質診断装置100、排水配管52を備えている。
サンプリング配管22は、低圧タービン12から蒸気を抽気する低圧抽気配管12Aを通過して低圧給水加熱器18に流入した蒸気を取得するための配管であり、低圧給水加熱器18の既設のフランジ等の開口部に接続されている。サンプリング配管22を通過した蒸気は凝縮部30に送られる。バルブ24は、サンプリング配管22を通過する蒸気の流量、すなわち凝縮部30へ送られる蒸気の流量を調整する弁である。
凝縮部30は、蒸気流入槽32、凝縮装置34から構成される。
蒸気流入槽32は、サンプリング配管22で取得された蒸気を一時的に溜める空間である。この蒸気流入槽32には、サンプリングした蒸気にモニタリング用試験片31を曝すための試験片導入器33が設けられている。このようなモニタリング用試験片31を蒸気に曝すための蒸気流入槽32を備えていることによって、乾き蒸気環境下の腐食特性評価が可能となる。
モニタリング用試験片31は、破壊力学的特性(き裂進展特性、すき間腐食特性)やSCC(Stress Corrosion Cracking:応力腐食割れ)の発生を評価できる形状や材質の金属片を導入することが望ましい。このようなモニタリング用試験片31を導入して、任意のタイミングで取り出して、き裂進展特性、すき間腐食特性、応力腐食割れのうちいずれか一つ以上を評価する。導入するモニタリング用試験片31は、例えば後述する図11に示すようなすき間腐食試験片や図26に示すようなき裂進展速度評価試験片とすることができる。また、導入するモニタリング用試験片31の数は特に限定されず、評価したい試験項目数に応じて適宜導入することができる。
また、モニタリング用試験片31は、蒸気タービン(特に低圧タービン12)に用いられている材料よりも鋭敏化させたものを用いることができる。
凝縮装置34は、蒸気流入槽32に流入した蒸気を凝縮させるための装置であり、冷却系配管36を有している。凝縮装置34では、冷却系配管36を用いて蒸気を冷却することで凝縮水を生成する。冷却系配管36に流す冷却媒体は軸冷水系統、復水、工業用水などを用いることができる。
計測用配管42は、凝縮部30で凝縮させた凝縮水を水質計測装置50に対して送るための配管である。この計測用配管42には、水質計測装置50へ送られる蒸気の流量を調整するためのバルブ44や、U字型構造としたUシール46が設けられている。
水質計測装置50は、蒸気流入槽32に流入した蒸気を凝縮させた凝縮水の水質を計測する装置であり、蒸気タービン低圧段の水質の計測を行うことによって、蒸気タービンの抽気を活用した水質モニタリングを実現するための装置である。
本実施例においては、凝縮部30の蒸気流入槽32は、水質計測装置50に対して高所に設置されている。例えば、蒸気タービンシステムが設置された建屋の2階、もしくは3階に凝縮部30の蒸気流入槽32が設置されている場合、水質計測装置50は1階に設置される。これにより、水質計測装置50は、ヘッド差を利用して大気圧へ昇圧された凝縮水の水質を計測する。
本実施例の水質計測装置50において測定する水質の項目は、例えば、pH,DO(溶存酸素量:Dissolved Oxygen),温度,電気伝導度またはNa等のカチオン濃度、腐食電位、酸化還元電位のうち少なくともいずれか1つ以上であることが望ましい。これらの測定項目の測定方法はいずれも公知の様々な方法を用いることができる。
例えば、pHであれば指示薬法,金属電極法(水素電極法、キンヒドロン電極法、アンチモン電極法),ガラス電極法,半導体センサ法が挙げられる。DOであれば滴定法や隔膜電極法が挙げられる。電気伝導度やカチオン濃度であれば交流二電極法や電磁誘導法が挙げられる。腐食電位であれば直流分極測定法や交流インピーダンス法が挙げられる。酸化還元電位であればmV測定機能を有するpH計本体と貴金属電極(白金電極または金電極)と比較電極を用いて測定する手法が挙げられる。
水質診断装置100は、水質計測装置50の計測結果を用いて凝縮水の水質を診断する装置である。水質診断装置100の詳細については後述する。
水質計測装置50において水質評価が行われた凝縮水は排水配管52を介して蒸気タービンシステムの系外に排出する。排水配管52にはバルブ54を設ける。このような排水配管52を設けることによって、蒸気タービンシステムの系内へ水質計測時の薬品混入を防ぐことができる。
次に、水質診断装置100の詳細について図3を用いて説明する。
水質診断装置100は、サンプリング配管22、バルブ24、凝縮部30、計測用配管42、バルブ44、Uシール46等のタービンシステムに追加で設けられた追設機器や水質計測装置50の後段側に設けられており、水質評価装置110、タービン運転状態監視装置120、水質データベース130、データ収集装置140、データ表示装置150を有している。
水質診断装置100は、PC等で一体構成されたものであっても、各個が独立した構成であっても、いずれかが一体化して他が独立した構成であってもよいが、一体化されている場合は装置構成を単純化できるため、一体化していることが望ましい。
タービン運転状態監視装置120は、蒸気タービンシステムにおける出力や圧力、温度などの運転状態を監視する装置であり、運転状態と長期的な取得データの比較や検証を可能とするために、これらのデータを時間と関係づけて水質評価装置110に出力する。
水質評価装置110は、コンピュータなどの演算装置であり、水質計測装置50で取得したデータを基に水質診断を行う。このような水質診断結果を基にして定検間隔の最適化を実現することができる。水質診断装置100で実行される水質診断の具体例については図7以降を用いて後ほど詳しく説明する。
水質評価装置110では、タービン運転状態監視装置120から入力された時間と関係づけられた出力や圧力、温度などの運転状態の情報と水質計測装置50で取得したデータとを関連付けた上でデータ収集装置140に出力する。
水質データベース130は、水質評価装置110において腐食状態の同定や取得水質との比較等を行うために設けられたデータベースである。水質データベース130に記録されているデータには、例えば図4に示すような凝縮水のpHと腐食電位との関係を示すプールベイ線図(pH−電位線図)がある。また、求めた孔食発生電位から腐食ピット発生に対する裕度を評価するために用いる図5に示すような材料の寿命と腐食ピット発生に対する裕度との関係を示すデータ、求めた水素脆化発生電位から水素脆化に対する裕度を評価するために用いる図6に示すような材料の寿命と水素脆化に対する裕度との関係を示すデータ等がある。
このようなデータを保有しておくことにより、腐食電位と孔食発生電位の差分(腐食ピットの裕度)、腐食電位と水素脆化発生電位の差分(水素脆化の裕度)の評価から信頼性評価が可能となる。
データ収集装置140は、水質計測装置50の計測結果や水質評価装置110で評価された凝縮水の水質データを保存する記録媒体であり、例えばHDDなどである。
データ表示装置150は、水質計測装置50の計測結果や水質評価装置110で評価された凝縮水の水質データを表示するためのディスプレイである。また、では、凝縮水の水質が所定値より悪化したと診断されたときに警告を通知する。警告の通知方法としては、警告音や警告表示などがある。
次に、本実施例における水質モニタリング方法について図7乃至図15を用いて以下説明する。本実施例の水質モニタリング方法は、ボイラ1で発生させた蒸気により機械的エネルギーを得る蒸気タービンを備えた蒸気タービンシステムで用いられる蒸気の質を評価するものであり、図2に示すような水質モニタリングシステムで好適に実施される。
図7は腐食ピット発生に対する裕度の評価手順の一例を示すフローチャート図、図8は凝縮水中のカチオン濃度と孔食発生電位との関係を示す図、図9は腐食ピット発生に対する裕度の評価手順の他の一例を示すフローチャート図、図10は凝縮水中の塩化ナトリウム量と電位変動幅との関係を示す図、図11は凝縮水中のカチオン濃度とすき間腐食の発生確率との関係を示す図、図12は凝縮水の電位とすき間腐食の裕度との関係を示す図、図13は凝縮水の電気伝導度に対するナトリウムイオン濃度の導出方法の概略を示す図、図14は作用応力拡大係数とナトリウムイオン濃度との関係を示す図、図15は溶液浸漬時間に対するすき間腐食の発生確率との関係を示す図である。
蒸気を取得する取得工程、凝縮水を生成させる生成工程、水質を計測する水質計測工程は、上述した図2に示す水質モニタリングシステム内の各構成により好適に実行される。
以下に説明する、水質計測工程の計測結果を用いて凝縮水の水質を診断する水質診断工程は、水質診断装置100の水質評価装置110によって好適に実行される。
例えば、腐食ピットの発生に対する裕度の評価の流れについて図7以降を参照して説明する。
上述のように、水質計測装置50ではpH,腐食電位,温度,DO,電気伝導度またはカチオン濃度などが測定されている。
そこで、水質評価装置110は、測定されたこれらのデータのうち、pH,腐食電位のデータを、水質データベース130に記録されているプールベイ線図にプロットし、電気伝導度やカチオン濃度・温度・DOから孔食発生電位や水素脆化発生電位を補正して、取得水の腐食電位と孔食発生電位の差分から腐食ピットの発生に対する裕度を評価する。
具体的には、図7に示すように、水質評価装置110は、最初に、水質計測装置50で測定されたpH,腐食電位の測定データの入力を受ける(ステップS110)。その後、水質評価装置110は、これらのpH,腐食電位のデータを、水質データベース130に記録されているプールベイ線図にプロットする(ステップS112)。
これに並行して、水質評価装置110は、水質データベース130に記録されている孔食発生電位の実験室環境下データを取得する(ステップS120)とともに、電気伝導度もしくはカチオン濃度,DO,温度の測定データを水質計測装置50から取得する(ステップS122)。ステップS120において取得する孔食発生電位の実験室環境下データは、図8に示すようなデータである。
その後、水質評価装置110は、Na濃度等のカチオン濃度等を用いて孔食発生電位を補正する(ステップS124)。例えば、図8に示すような実験室で取得したデータ範囲を外挿して、実機環境下での孔食発生電位の推定値を求める。
その後、水質評価装置110は、ステップS112で入力された腐食電位とステップS124で求めた孔食発生電位との差分を評価する(ステップS130)。次いで、水質評価装置110は、この差分の評価から、腐食ピットに対する裕度を求める(ステップS140)。
水質評価装置110は、このような手順で評価した求めた腐食ピットやSCC発生に対する余裕度をもとにして、タービンの翼材やロータ材の寿命診断に活用することができる。このように、取得水質からタービン部材の腐食に対する寿命評価を行うことによって最適な定検間隔の設定が可能となる。
また、水質評価装置110は、孔食発生電位と同様に、カソード(卑、マイナス)側も同様に水素脆化発生電位を実験室環境下で取得し、水素脆化発生電位と取得水の腐食電位との差分で、水素脆化に対する裕度を評価することができる。これにより、取得水質からタービン部材の水素脆化に対する寿命評価の適用が可能となり、同様に最適な定検間隔の提案が可能になる。
上述のように、水質データベース130に実験室環境下での水質評価結果を保存しておき、利用することができる。実験室環境下でのデータを水質計測結果と比較することにより、腐食ピットやSCC発生などに対する余裕度の評価が可能となる。また、実験室環境下データを用いることで水質評価の高精度化が可能となる。
また、腐食ピットの発生に対する裕度の評価方法は図7に示す手順に限られず、図9以降で説明する手法によっても評価可能である。
具体的には、図9に示すように、水質評価装置110は、最初に、実験室環境下のすき間腐食の発生確率のデータを取得する(ステップS210)。このステップS210で取得するデータは、図10に示すようなデータである。また、水質評価装置110は、実験室環境下におけるすき間腐食の電位低下量のデータを取得する(ステップS212)。このステップS212で取得するデータは、図11に示すようなデータである。図11には、すき間腐食データを取得する際に用いるすき間腐食試験片の概要もあわせて示す。
その後、水質評価装置110は、ステップS210で取得した実験室環境下のすき間腐食の発生確率のデータとステップS212で取得したすき間腐食の電位低下量のデータとから、すき間腐食による電位低下量のカチオン濃度依存性を求める(ステップS214)。
これらステップS210乃至ステップS214と同時に、水質評価装置110は、孔食発生電位の実験室環境下データを取得する(ステップS220)。このステップS220で取得するデータは、上述した図8に示すような関係のデータである。
その後、水質評価装置110は、ステップS220で取得した孔食発生電位の実験室環境下データから、孔食発生電位のカチオン濃度依存性を求める(ステップS222)。
次いで、水質評価装置110は、ステップS214で求めた取得したすき間腐食による電位低下量のカチオン濃度依存性のデータとステップS222で取得した孔食発生電位のカチオン濃度依存性のデータとから、孔食発生電位のしきい値を求める(ステップS230)。求められるしきい値は、例えば図4に示す孔食発生電位の領域の境界に相当する。
更に、水質評価装置110は、水質計測装置50で測定されたpH,腐食電位の測定データの入力を受け(ステップS240)、これらのpH,腐食電位のデータを、水質データベース130に記録されているプールベイ線図にプロットする(ステップS242)。
その後、水質評価装置110は、ステップS242で入力された腐食電位とステップS230で求めた孔食発生電位との差分を評価する(ステップS250)。次いで、水質評価装置110は、この差分の評価から、図12に示すような両電位の差分とすき間腐食に対する裕度を用いて、腐食ピットに対する裕度を求める(ステップS260)。
なお、上述のような評価をスムーズに行うために、水質データベース130には、図13に示すような、すき間腐食試験片を用いたすき間腐食の発生する電位と電気伝導度の対応関係やすき間腐食の発生する電位とNa量との対応関係を保存しておくとともに、これらの関係から予め電気伝導度とNa量との対応関係を推定,保存しておき、電気伝導度を水質計測装置50で測定することによってNa量を推定できるようにしておくことが望ましい。これにより、実機環境の同定をより速やかに、かつ正確に実行できるようになり、より容易に適切な定検間隔の設定が可能となる。
予め保存しておく対応関係は、腐食電位に加えて、酸化還元電位と電気伝導度やNa量との対応関係であってもよい。このように、腐食電位や酸化還元電位と各種電気伝導度との関係を予め取得しておくことにより、応答が速い電気伝導度の取得パラメータから水質診断が可能となり、診断の即時性を増加させることができる。
また、Na量については、スミヤ法によるなどの拭き取り試験結果を活用することも可能である。より正確な診断が可能となる。
更に、上述のように、Na量⇒電気伝導度等への変換や電気伝導度⇒Na量の変換については、図13に示すような関係により可能であることから、図14に示すような濃度を変えた試験溶液に試験片を任意の時間で浸漬させた時の作用応力拡大係数と全体系のNa量との関係や、図15に示すような濃度を変えた試験溶液に試験片を任意の時間で浸漬させた時の溶液浸漬時間と全体系のNa量との関係を求めておくことが望ましい。これによれば、き裂進展速度やすき間腐食発生確率についても電気伝導度やカチオン濃度から評価することができるようになり、より柔軟な水質診断が可能となる。
次に、本実施例の効果について説明する。
上述した本発明の実施例1の蒸気タービンシステムは、ボイラ1で発生させた蒸気により機械的エネルギーを得る蒸気タービンを備えた蒸気タービンシステムで用いられる蒸気の質を評価する水質モニタリングシステムを備えている。この水質モニタリングシステムは、蒸気タービンのうち、供給される蒸気の圧力が低い低圧タービン12から蒸気を抽気する低圧抽気配管12Aを通過する蒸気を取得するサンプリング配管22と、サンプリング配管22で取得された蒸気が流入する蒸気流入槽32と、蒸気流入槽32に流入した蒸気を凝縮させた凝縮水の水質を計測するための水質計測装置50と、水質計測装置50の計測結果を用いて凝縮水の水質を診断する水質診断装置100と、を備え、蒸気流入槽32は、水質計測装置50に対して高所に設置されており、水質計測装置50は、ヘッド差を利用して大気圧へ昇圧された凝縮水の水質を計測するものである。
このように蒸気流入槽32が水質計測装置50に対して高所に設置されていることによって、低圧タービン12の環境が負圧であり、評価する蒸気が低圧タービンからの抽気であっても、ヘッド差を利用して凝縮水を大気圧へ昇圧することができる。このため、水質計測装置50において水質の計測を確実に行うことでき、従来に比べて水質のモニタリングを確実にかつ継続して実行することができる。従って、水質に異常が発生して、蒸気タービンシステムに異常が発生する危険性を従来に比べて正確に把握することができ、適切な対応を取ることが可能となる。
また、蒸気流入槽32に流入した蒸気を凝縮させる冷却系配管36を有する凝縮装置34を更に備えたため、蒸気をより効率的に凝縮させることができ、より安定して水質評価を行うことができる。
更に、蒸気流入槽32に流入する蒸気に曝すためのモニタリング用試験片31を導入する試験片導入器33を更に備えたことで、腐食特性の評価が可能となり、更に充実した水質モニタリングが可能となる。
また、蒸気流入槽32と水質計測装置50との間に、Uシール46を設けたことにより、凝縮させた凝縮水が負圧の低圧タービン12側へ逆流することを抑止することができ、安定した水質モニタリングをより確実に実現することができる。
更に、低圧給水加熱器18は一般的に追加の配管を接続するためのフランジなどを有していることから、サンプリング配管22は、低圧抽気配管12Aを通過して低圧給水加熱器18に流入した蒸気を取得することで、サンプリング配管22を接続するために大掛かりな改修等が不要であり、既存の蒸気タービンシステムに追加で水質モニタリングシステムを設置することが容易となる。また、新規の蒸気タービンシステムにおいても配管の溶接などを増やす必要がないことから、水質モニタリングシステムをより簡易に、かつ安価に設置することが可能である。
また、水質診断装置100は、凝縮水の水質が所定値より悪化したと診断されたときに警告を通知するデータ表示装置150を有することにより、運転員が水質データを逐次確認することが可能であり、また水質悪化の早期発見が可能となる。
更に、水質診断装置100は、水質計測装置50の計測結果と凝縮水の水質データを保存するデータ収集装置140を有することで、データの保存や長期的な比較が可能となり、水質モニタリングの結果をより有効に利用することができる。
また、水質計測装置50は、凝縮水のpH、溶存酸素量、温度、電気伝導度、カチオン濃度、腐食電位、酸化還元電位のうちいずれか一つ以上を計測することにより、水質変化の早急な捕捉が可能であり、特に低圧タービン12の寿命評価・診断への活用が可能となる。
更に、暴露工程で生成した試験片を用いて、き裂進展特性、すき間腐食特性、応力腐食割れのうちいずれか一つ以上を評価する評価工程を更に有することにより、実機環境にさらされた材料による試験が可能となり、より正確な水質診断や高い精度での蒸気タービンの寿命評価が可能となる。
また、暴露工程で用いる試験片として、蒸気タービンに用いられている使用材よりも鋭敏化させた材料を用いることにより、加速的に腐食を進行させることができ、寿命の早期診断が可能となる。
<実施例2>
本発明の実施例2の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法について図16を用いて説明する。実施例1と同じ構成には同一の符号を示し、説明は省略する。以下の実施例においても同様とする。
図16は実施例2の水質モニタリングシステムの概略を示す図である。
図16に示すように、本実施例の水質モニタリングシステムは、図2に示す水質モニタリングシステムのうち、サンプリング配管22から分岐配管62が分岐されている。この分岐された分岐配管62のバルブ64の下流側にはサンプリングした蒸気にモニタリング用試験片31を曝すための試験片導入スペース65が設置されている。試験片導入スペース65は蒸気流入槽32に対して並列に配置されており、試験片導入スペース65を通過した蒸気はバルブ68を有する分岐配管66を通過して蒸気流入槽32に流入する。
その他の構成・動作は前述した実施例1と略同じ構成・動作であり、詳細は省略する。
本発明の実施例2の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法においても、前述した実施例1のそれとほぼ同様な効果が得られる。
また、試験片導入スペース65はサンプリング配管22から分岐された、バルブを有する分岐配管62,66に設置され、蒸気流入槽32に対して並列に配置されており、暴露工程では、試験片導入スペース65にモニタリング用試験片31を設置することにより、バルブ64,68を閉じるだけで蒸気タービンシステムを停止させずに任意の時間でモニタリング用試験片31の取り出しや追加が可能となり、モニタリング用試験片31を利用したデータの取得をより充実させることが可能となる。
<実施例3>
本発明の実施例3の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法について図17を用いて説明する。
図17は実施例3の水質モニタリングシステムの概略を示す図である。
図17に示すように、本実施例の水質モニタリングシステムは、図2に示す水質モニタリングシステムのうち、蒸気流入槽32と水質計測装置50との間の計測用配管42に、凝縮水を昇圧するためのポンプ70を設けたものである。これにより、水質計測装置50に送られる凝縮水を確実に昇圧するものである。
その他の構成・動作は前述した実施例1と略同じ構成・動作であり、詳細は省略する。
本発明の実施例3の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法においても、前述した実施例1のそれとほぼ同様な効果が得られる。
また、蒸気流入槽32と水質計測装置50との間に、凝縮水を昇圧するためのポンプ70を設けたことにより、より確実に水質計測装置50に送られる凝縮水を昇圧することができ、水質モニタリングをより確実にかつ継続して実行することが可能となる。
なお、上述した実施例2のシステムにおいて、本実施例のように計測用配管42にポンプ70を設置することが可能である。
<実施例4>
本発明の実施例4の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法について図18を用いて説明する。
図18は実施例4の水質モニタリングシステムの概略を示す図である。
図2に示す水質モニタリングシステムでは、蒸気流入槽32と冷却系配管36を有する凝縮装置34とが直列に配置されているが、図18に示す本実施例の水質モニタリングシステムのように、凝縮装置を設けずに、蒸気流入槽80を計測用配管42に直接接属するとともに、計測用配管42に冷却系配管86を設置することができる。
その他の構成・動作は前述した実施例1と略同じ構成・動作であり、詳細は省略する。
本発明の実施例4の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法においても、前述した実施例1のそれとほぼ同様な効果が得られる。
また、本実施例のシステムは、実施例1のシステムに比べて構成を簡略化することができ、設置面積の低減や低コスト化などのメリットが得られる。
なお、上述した実施例2や実施例3、更にはそれらのなお書きのシステムに対しても本実施例のように凝縮装置を省略することが可能である。
<実施例5>
本発明の実施例5の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法について図19および図20を用いて説明する。
図19は実施例5の水質モニタリングシステムの概略を示す図、図20は本実施例の変形例の水質モニタリングシステムの概略を示す図である。
図19に示すように、本実施例の水質モニタリングシステムは、図2に示す水質モニタリングシステムのうち、蒸気を低圧給水加熱器18から取得するサンプリング配管22の換わりに、低圧抽気配管12Aから蒸気を直接取得するサンプリング配管92を設置するものである。サンプリング配管92には、バルブ94を設ける。
その他の構成・動作は前述した実施例1と略同じ構成・動作であり、詳細は省略する。
本発明の実施例5の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法においても、前述した実施例1のそれとほぼ同様な効果が得られる。
また、サンプリング配管92は、低圧抽気配管12Aから蒸気を取得することにより、よりタービンに近い水質の取得が可能であることから、より精度の高い水質診断が可能となる。また、低圧抽気配管12Aは基本的に大口径であることから、抽気蒸気のサンプリング量が豊富となるため、より連続的な水質計測が可能となる。
なお、本実施例の低圧抽気配管12Aからのサンプリング配管92は固定されたものに限られず、図20に示すように、サンプリング配管92に換わって伸縮接手から構成されるサンプリング配管92Aを設置することができる。
また、上述した実施例2乃至実施例4やそれらのなお書きのシステムに対しても本実施例のように低圧抽気配管12Aから蒸気を取得することが可能である。
<実施例6>
本発明の実施例6の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法について図21を用いて説明する。
図21は実施例6の水質モニタリングシステムのうち、水質診断装置の概略構成を示す図である。
図21に示すように、本実施例の水質モニタリングシステムの水質診断装置100Aは、図3に示すような水質診断装置に加えて、水質診断装置100Aにおける水質診断結果に基づいて蒸気タービンの運転を調整するタービン運転制御装置170を更に備えたものである。
タービン運転制御装置170では、例えば、水質評価装置110において凝縮水の水質が悪化していると判断されるときは、高圧タービン7や中圧タービン10、特に低圧タービン12において腐食が発生する可能性が高まっているとして、ボイラ1に供給する化石燃料の量を減らす等、タービンの出力を低下、あるいは停止させる等の出力のフィードバック制御を実行する。
その他の構成・動作は前述した実施例1と略同じ構成・動作であり、詳細は省略する。
本発明の実施例6の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法においても、前述した実施例1のそれとほぼ同様な効果が得られる。
また、水質評価装置110Aにおける水質診断結果に基づいて蒸気タービンの運転を調整するタービン運転制御装置170を更に備えたことにより、腐食によるタービンの損傷の恐れがあるときには出力を低下させたり、運転を停止させたりすることができ、腐食によって予期せぬ蒸気タービンシステムの停止といった極力避けなければならない突発的な停止をより確実に抑制することが可能となる。
なお、上述した実施例2乃至実施例5やそれらのなお書きのシステムに対しても本実施例のようにタービン運転制御装置170を更に備えることが可能である。
<実施例7>
本発明の実施例7の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法について図22乃至図27を用いて説明する。
図22は本実施例7の水質モニタリングシステムのうち、水質診断装置の概略構成を示す図である。図23は、材料の使用時間に対する推計ピット径の関係を示す図である。図24は、材料の使用時間と腐食に対するリスクとの関係の一例を示す図である。図25は余寿命評価の手順を示すフローチャート図である。図26は水質データベースに記憶されている、凝縮水中のカチオン濃度と試験片におけるき裂進展速度との関係を示す図である。図27は、材料の使用時間に対するき裂長さとの関係の一例を示す図である。
図22に示すように、本実施例の水質診断装置100Bは、図3に示すような水質診断装置に加えて、蒸気タービンに加わる作用応力を評価する作用応力評価装置180を有している。
作用応力評価装置180は、タービン運転状態監視装置120から入力された起動回数等の運転情報と、蒸気タービンの形状パラメータ等の材料力学的パラメータ情報を用いてFEM(Finite Element Method:有限要素法)解析を実行し、蒸気タービンの各部位の材料に加わる作用応力や振動振幅(応力集中)を求める。
また、水質評価装置110Bは、作用応力評価装置180によって評価された蒸気タービンの作用応力の情報を用いて水質診断を行う。
例えば、水質評価装置110Bは、水質計測装置50で取得した、もしくは水質評価装置110Bで推定したNa量と、水質データベース130に保存されている実験室環境下で取得したモニタリング用試験片(特にすき間腐食試験片)の評価結果から、腐食ピット径を計算する。水質データベース130に保存されている実験室環境下で取得したモニタリング用試験片(特にすき間腐食試験片)の評価結果は例えば図23に示すような関係のデータである。
更に、水質評価装置110Bは、作用応力評価装置180によるFEM解析等で得た作用応力や起動停止回数から求めた応力拡大係数を用いて、腐食損傷リスクを評価する。これは、例えば図24に示すような運転時間に対する腐食ピットの発生により生じる不具合の発生確率の関係を用いる。
以下、き裂進展試験片を用いた実験室データを利用した、き裂進展速度の評価方法について図25乃至図27を用いて説明する。
図25に示すように、最初に、水質評価装置110Bは、水質データベース130に記録されている試験片におけるカチオン濃度とき裂発生確率との関係のデータを取得する(ステップS310)。
その後、水質評価装置110Bは、Na濃度等のカチオン濃度等を用いて、図26に示すようなき裂進展データのカチオン濃度依存性を求める(ステップS312)。
また、水質評価装置110Bは、並行して水質計測装置50で測定されたカチオン濃度の測定データの入力を受ける(ステップS320)。
更に、水質評価装置110Bは、作用応力評価装置180によるFEM解析によって求めた、低圧タービン12における作用応力(変動応力)の推定結果を取得する(ステップS330)。
その後、水質評価装置110Bは、ステップS312で求めた実機環境下でのき裂進展速度を求める(ステップS350)。例えば、図26に示すように、ステップS330で評価した作用応力とステップS320で入力されたカチオン濃度とから、実験室で取得したデータ範囲を外挿して、当該カチオン濃度と当該作用応力における実機環境下でのき裂進展速度を評価する。
その後、水質評価装置110Bは、ステップS350で求めたき裂進展速度とタービン運転状態監視装置120から入力された起動時間などの情報とから、現時点におけるき裂長さを評価するとともに、図27に示すようなき裂長さと蒸気に暴露される時間や起動停止回数などとの関係から、許容き裂長さとの差分を求め、余寿命を評価する(ステップS360)。評価した余寿命は、データ表示装置150において表示するとともに、データ収集装置140に記録する。
その他の構成・動作は前述した実施例1と略同じ構成・動作であり、詳細は省略する。
本発明の実施例7の水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法においても、前述した実施例1のそれとほぼ同様な効果が得られる。
また、水質診断装置100Bは、蒸気タービンに加わる作用応力を評価する作用応力評価装置180を有することにより、作用応力に応じた実機環境下での腐食に対するリスクを評価できるため、より正確な診断が可能となり、より適切な定検間隔の設定が可能となる。
なお、上述した実施例2乃至実施例6やそれらのなお書きのシステムに対しても本実施例のように作用応力評価装置180を更に備えることが可能である。
<その他>
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
12…低圧タービン
12A…低圧抽気配管
13…低圧タービン排気管
14…復水器
16…発電機
18…低圧給水加熱器
22…サンプリング配管
24…バルブ
30…凝縮部
31…モニタリング用試験片
32…蒸気流入槽
33…試験片導入器(導入部)
34…凝縮装置
36…冷却系配管(冷却部)
42…計測用配管
44…バルブ
46…Uシール(U字配管)
50…水質計測装置
52…排水配管
54…バルブ
62,66…分岐配管
64…バルブ
65…試験片導入スペース(導入部)
68…バルブ
70…ポンプ
80…蒸気流入槽
86…冷却系配管
92,92A…サンプリング配管
94…バルブ
100,100A,100B…水質診断装置
110,110B…水質評価装置
120…タービン運転状態監視装置
130…水質データベース
140…データ収集装置(データ収集部)
150…データ表示装置(表示部)
170…タービン運転制御装置(タービン運転制御部)
180…作用応力評価装置(作用応力評価部)

Claims (22)

  1. 蒸気発生源で発生させた蒸気により機械的エネルギーを得る蒸気タービンを備えた蒸気タービンシステムで用いられる蒸気の質を評価する水質モニタリングシステムであって、
    前記蒸気タービンのうち、供給される蒸気の圧力が低い低圧タービンから蒸気を抽気する抽気配管を通過する蒸気を取得するサンプリング配管と、
    前記サンプリング配管で取得された蒸気が流入する蒸気流入槽と、
    前記蒸気流入槽に流入した蒸気を凝縮させた凝縮水の水質を計測する水質計測装置と、
    前記水質計測装置の計測結果を用いて前記凝縮水の水質を診断する水質診断装置と、を備え、
    前記蒸気流入槽は、前記水質計測装置に対して高所に設置されており、前記水質計測装置は、ヘッド差を利用して大気圧へ昇圧された凝縮水の水質を計測する
    ことを特徴とする水質モニタリングシステム。
  2. 請求項1に記載の水質モニタリングシステムにおいて、
    前記蒸気流入槽に流入した蒸気を凝縮させる冷却部を有する凝縮装置を更に備えた
    ことを特徴とする水質モニタリングシステム。
  3. 請求項1に記載の水質モニタリングシステムにおいて、
    前記蒸気流入槽に流入する蒸気に曝すための試験片を導入する導入部を更に備えた
    ことを特徴とする水質モニタリングシステム。
  4. 請求項3に記載の水質モニタリングシステムにおいて、
    前記導入部は前記サンプリング配管から分岐された、バルブを有する分岐配管に設置され、前記蒸気流入槽に対して並列に配置されている
    ことを特徴とする水質モニタリングシステム。
  5. 請求項1に記載の水質モニタリングシステムにおいて、
    前記蒸気流入槽と前記水質計測装置との間に、U字配管を設けた
    ことを特徴とする水質モニタリングシステム。
  6. 請求項1に記載の水質モニタリングシステムにおいて、
    前記蒸気流入槽と前記水質計測装置との間に、凝縮水を昇圧するためのポンプを設けた
    ことを特徴とする水質モニタリングシステム。
  7. 請求項1に記載の水質モニタリングシステムにおいて、
    前記サンプリング配管は、前記抽気配管を通過して給水加熱器に流入した蒸気を取得する
    ことを特徴とする水質モニタリングシステム。
  8. 請求項1に記載の水質モニタリングシステムにおいて、
    前記サンプリング配管は、前記抽気配管から蒸気を取得する
    ことを特徴とする水質モニタリングシステム。
  9. 請求項1に記載の水質モニタリングシステムにおいて、
    前記水質診断装置は、前記凝縮水の水質が所定値より悪化したと診断されたときに警告を通知する表示部を有する
    ことを特徴とする水質モニタリングシステム。
  10. 請求項1に記載の水質モニタリングシステムにおいて、
    前記水質診断装置は、前記水質計測装置の計測結果と前記凝縮水の水質データを保存するデータ収集部を有する
    ことを特徴とする水質モニタリングシステム。
  11. 請求項1に記載の水質モニタリングシステムにおいて、
    前記水質診断装置における水質診断結果に基づいて前記蒸気タービンの運転を調整するタービン運転制御部を更に備えた
    ことを特徴とする水質モニタリングシステム。
  12. 請求項1に記載の水質モニタリングシステムにおいて、
    前記水質診断装置は、前記蒸気タービンに加わる作用応力を評価する作用応力評価部を有する
    ことを特徴とする水質モニタリングシステム。
  13. 請求項1に記載の水質モニタリングシステムにおいて、
    前記水質計測装置は、前記凝縮水のpH、溶存酸素量、温度、電気伝導度、カチオン濃度、腐食電位、酸化還元電位のうちいずれか一つ以上を計測する
    ことを特徴とする水質モニタリングシステム。
  14. 請求項1乃至13のいずれか1項に記載の水質モニタリングシステムを備えたことを特徴とする蒸気タービンシステム。
  15. 蒸気発生源で発生させた蒸気により機械的エネルギーを得る蒸気タービンを備えた蒸気タービンシステムで用いられる蒸気の質を評価する水質モニタリング方法であって、
    前記蒸気タービンのうち、供給される蒸気の圧力が低い低圧タービンから蒸気を抽気する抽気配管を通過する蒸気を取得する取得工程と、
    前記取得工程で取得した蒸気を蒸気流入槽に流入させ、その後に前記蒸気を凝縮させて凝縮水を生成させる生成工程と、
    前記生成工程で生成した凝縮水の水質を計測する水質計測工程と、
    前記水質計測工程の計測結果を用いて前記凝縮水の水質を診断する水質診断工程と、を有しており、
    前記生成工程では前記凝縮水の水質を計測する水質計測装置に対して高所で前記凝縮水を生成して、前記水質計測装置ではヘッド差を利用して大気圧へ昇圧させた凝縮水の水質を計測する
    ことを特徴とする水質モニタリング方法。
  16. 請求項15に記載の水質モニタリング方法において、
    前記生成工程では、冷却部を用いて前記蒸気を冷却することで前記凝縮水を生成する
    ことを特徴とする水質モニタリング方法。
  17. 請求項15に記載の水質モニタリング方法において、
    前記取得工程で取得した蒸気に試験片を曝す暴露工程を更に有する
    ことを特徴とする水質モニタリング方法。
  18. 請求項17に記載の水質モニタリング方法において、
    前記暴露工程では、前記生成工程で前記蒸気を生成する配管から分岐された、バルブを有する分岐配管に前記試験片を設置する
    ことを特徴とする水質モニタリング方法。
  19. 請求項17に記載の水質モニタリング方法において、
    前記暴露工程で生成した試験片を用いて、き裂進展特性、すき間腐食特性、応力腐食割れのうちいずれか一つ以上を評価する評価工程を更に有する
    ことを特徴とする水質モニタリング方法。
  20. 請求項17に記載の水質モニタリング方法において、
    前記暴露工程で用いる試験片として、前記蒸気タービンに用いられている使用材よりも鋭敏化させた材料を用いる
    ことを特徴とする水質モニタリング方法。
  21. 請求項15に記載の水質モニタリング方法において、
    前記水質計測工程では、前記凝縮水のpH、溶存酸素量、温度、電気伝導度、カチオン濃度、腐食電位、酸化還元電位のうちいずれか一つ以上を計測する
    ことを特徴とする水質モニタリング方法。
  22. 請求項15に記載の水質モニタリング方法において、
    前記水質診断工程で前記凝縮水の水質が所定値より悪化したと診断されたときに警告を通知する表示工程を更に有する
    ことを特徴とする水質モニタリング方法。
JP2018069238A 2018-03-30 2018-03-30 水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法 Active JP6934833B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2018069238A JP6934833B2 (ja) 2018-03-30 2018-03-30 水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法
TW108102331A TWI705219B (zh) 2018-03-30 2019-01-22 水質監視系統與具備其之蒸氣渦輪系統、以及水質監視方法
MYPI2019000721A MY197601A (en) 2018-03-30 2019-02-11 Water quality monitoring system and steam turbine system including the same as well as water quality monitoring method
KR1020190015518A KR102231021B1 (ko) 2018-03-30 2019-02-11 수질 모니터링 시스템과 그것을 구비한 증기 터빈 시스템, 및 수질 모니터링 방법
US16/273,630 US11060422B2 (en) 2018-03-30 2019-02-12 Water quality monitoring system and steam turbine system including the same as well as water quality monitoring method
PH12019000075A PH12019000075A1 (en) 2018-03-30 2019-02-12 Water quality monitoring and steam turbine system including the same as well as water quality monitoring method
MX2019001831A MX2019001831A (es) 2018-03-30 2019-02-13 Sistema y monitoreo de la calidad del agua y sistema de turbina de vapor incluyendo el mismo asi como metodo de monitoreo de la calidad del agua.
CN201910112949.3A CN110320334B (zh) 2018-03-30 2019-02-13 水质监测系统、具备该水质监测系统的蒸汽轮机系统以及水质监测方法
SG10201901223U SG10201901223UA (en) 2018-03-30 2019-02-13 Water quality monitoring system and steam turbine system including the same as well as water quality monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018069238A JP6934833B2 (ja) 2018-03-30 2018-03-30 水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法

Publications (2)

Publication Number Publication Date
JP2019178824A true JP2019178824A (ja) 2019-10-17
JP6934833B2 JP6934833B2 (ja) 2021-09-15

Family

ID=68056888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018069238A Active JP6934833B2 (ja) 2018-03-30 2018-03-30 水質モニタリングシステムとそれを備えた蒸気タービンシステム、並びに水質モニタリング方法

Country Status (9)

Country Link
US (1) US11060422B2 (ja)
JP (1) JP6934833B2 (ja)
KR (1) KR102231021B1 (ja)
CN (1) CN110320334B (ja)
MX (1) MX2019001831A (ja)
MY (1) MY197601A (ja)
PH (1) PH12019000075A1 (ja)
SG (1) SG10201901223UA (ja)
TW (1) TWI705219B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230169348A (ko) 2021-06-30 2023-12-15 미츠비시 파워 가부시키가이샤 이로전 추정 방법

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849676A (zh) * 2019-10-16 2020-02-28 广州文冲船厂有限责任公司 一种用于压载水系统的取样检测装置及其使用方法
CN113514278B (zh) * 2021-04-23 2023-12-12 三峡智慧水务科技有限公司 一种野外溪流水资源投放勘测装置
WO2023003989A1 (en) * 2021-07-21 2023-01-26 Ecolab Usa Inc. Combined cycle power plant utilizing organic water additives
US20240035760A1 (en) * 2022-07-27 2024-02-01 Chemtreat, Inc. Methods and systems for evaluating heat exchangers
CN115953687B (zh) * 2023-01-18 2023-11-10 生态环境部卫星环境应用中心 基于遥感技术的小微水体受损等级划分方法和装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1869340A (en) * 1929-12-17 1932-07-26 Standard Oil Dev Co Method and apparatus for heat transfer
CN1010616B (zh) 1985-08-13 1990-11-28 西屋电气公司 诊断设备
JPH09170704A (ja) * 1995-12-21 1997-06-30 Hitachi Ltd 蒸気凝縮水の水質モニタおよびそれを用いたエネルギー変換システム
JP2001116715A (ja) * 1999-10-20 2001-04-27 Hitachi Ltd 腐食電位測定装置
EP1179656A1 (de) * 2000-08-10 2002-02-13 Siemens Aktiengesellschaft Verfahren zum Betreiben einer Dampfturbinenanlage und Dampfturbinenanlage
CN1547032A (zh) 2003-12-04 2004-11-17 天津化工研究设计院 锅炉水处理药剂性能评价装置
US7162373B1 (en) 2005-11-21 2007-01-09 General Electric Company Method and system for assessing life of cracked dovetail in turbine
JP2007255838A (ja) 2006-03-24 2007-10-04 Kurita Water Ind Ltd ボイラ装置
JP4900783B2 (ja) * 2006-03-29 2012-03-21 栗田工業株式会社 ボイラの蒸気品質モニタリング装置
JP2009168377A (ja) 2008-01-17 2009-07-30 Mitsubishi Heavy Ind Ltd 発電設備及び発電設備の水質管理方法
US20120100079A1 (en) 2009-07-01 2012-04-26 Koninklijke Philips Electronics N.V. Stimuli-responsive carriers for mpi-guided drug delivery
US9033649B2 (en) * 2009-08-17 2015-05-19 Fuji Electric Co., Ltd. Corrosive environment monitoring system and corrosive environment monitoring method
JP5549804B2 (ja) * 2010-03-15 2014-07-16 栗田工業株式会社 蒸気質モニタリング装置
JP5643691B2 (ja) 2011-03-23 2014-12-17 株式会社東芝 二酸化炭素回収型汽力発電システム及びその運転方法
KR101362820B1 (ko) * 2012-08-06 2014-02-14 순천대학교 산학협력단 수질 오염 측정 장치 및 방법
AU2015288693B2 (en) 2014-07-10 2019-02-14 Asahi Kasei Kabushiki Kaisha Membrane distillation apparatus and hydrophobic porous membrane
CN104391099A (zh) 2014-12-17 2015-03-04 国网上海市电力公司 一种水质检测设备
CN204422516U (zh) 2014-12-17 2015-06-24 国网上海市电力公司 一种水质检测设备
CN206161495U (zh) 2016-10-11 2017-05-10 国网天津市电力公司 一种炉水侵蚀性试验模拟研究装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230169348A (ko) 2021-06-30 2023-12-15 미츠비시 파워 가부시키가이샤 이로전 추정 방법
DE112022001873T5 (de) 2021-06-30 2024-01-18 Mitsubishi Heavy Industries, Ltd. Erosionsschätzverfahren

Also Published As

Publication number Publication date
SG10201901223UA (en) 2019-10-30
KR102231021B1 (ko) 2021-03-23
US11060422B2 (en) 2021-07-13
US20190301308A1 (en) 2019-10-03
CN110320334A (zh) 2019-10-11
PH12019000075A1 (en) 2020-01-20
TW201947156A (zh) 2019-12-16
CN110320334B (zh) 2021-08-31
TWI705219B (zh) 2020-09-21
JP6934833B2 (ja) 2021-09-15
MX2019001831A (es) 2019-10-01
MY197601A (en) 2023-06-27
KR20190114737A (ko) 2019-10-10

Similar Documents

Publication Publication Date Title
KR102231021B1 (ko) 수질 모니터링 시스템과 그것을 구비한 증기 터빈 시스템, 및 수질 모니터링 방법
US9033649B2 (en) Corrosive environment monitoring system and corrosive environment monitoring method
CN111033253B (zh) 水质诊断系统、发电站及水质诊断方法
JP5698931B2 (ja) ガスタービン部品の腐食をオンライン監視するシステム及び方法
US7310877B2 (en) Method of producing sensors for monitoring corrosion of heat-exchanger tubes
JP3965275B2 (ja) 火力発電プラントの熱効率診断方法および装置
JP3614640B2 (ja) 火力発電プラントの熱効率診断方法および装置
KR101174469B1 (ko) 배관 수명 평가 방법
JP2015081901A (ja) 原子力設備の健全性評価方法および健全性評価システム
JP2011058933A (ja) ボイラの余寿命評価装置および方法
JP3517229B2 (ja) クリープ余寿命評価方法
JP2013170800A (ja) 排熱回収ボイラおよび複合発電設備
CN103629657B (zh) 一种监测发电机组高温氧化皮情况的方法及装置
KR102306882B1 (ko) 응력부식균열 개시 시간 측정 시험장치 및 방법
KR102077865B1 (ko) 저압터빈의 경년열화평가방법
JP7225025B2 (ja) 腐食管理システム、水処理装置、及び発電プラント、並びに腐食管理方法、並びに腐食管理プログラム
JP5164928B2 (ja) ガスタービンの異常診断装置
JP2020118566A (ja) 高温機器の余寿命評価方法および余寿命評価支援システム
JPH0875107A (ja) 高温耐圧部の寿命評価法
KR100991689B1 (ko) 증기 발생기 열수력적 불안정성 분석 및 광역수위 계측치를이용한 관 지지판 유로홈 막힘량의 정량적 진단방법
JP2001324497A (ja) 余寿命診断装置
Sultanov et al. Assessment of technical condition of condensers of TPP steam turbines according to the data of the power equipment parameters monitoring system
Aziz et al. Failure Analysis of Condenser Tube in Unit 1 of the Tenayan Steam Power Plant 2 X 110 MW
JP3032106B2 (ja) プラント機器の健全性監視診断方法
Tuurna et al. Monitoring and in-service experiments on power plants

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20200608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210707

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210707

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210719

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210824

R150 Certificate of patent or registration of utility model

Ref document number: 6934833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150