JP2019176124A - 半導体装置の製造方法、及び、半導体装置 - Google Patents

半導体装置の製造方法、及び、半導体装置 Download PDF

Info

Publication number
JP2019176124A
JP2019176124A JP2018178761A JP2018178761A JP2019176124A JP 2019176124 A JP2019176124 A JP 2019176124A JP 2018178761 A JP2018178761 A JP 2018178761A JP 2018178761 A JP2018178761 A JP 2018178761A JP 2019176124 A JP2019176124 A JP 2019176124A
Authority
JP
Japan
Prior art keywords
region
wafer
semiconductor
semiconductor device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018178761A
Other languages
English (en)
Inventor
宮本 佳典
Yoshinori Miyamoto
佳典 宮本
徳太郎 岡部
Tokutaro Okabe
徳太郎 岡部
優也 鹿児島
Yuya Kagoshima
優也 鹿児島
圭介 東谷
Keisuke Higashiya
圭介 東谷
千明 尾崎
Chiaki Ozaki
千明 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to KR1020190027431A priority Critical patent/KR20190112647A/ko
Priority to US16/354,056 priority patent/US11101404B2/en
Priority to CN201910193342.2A priority patent/CN110364414A/zh
Publication of JP2019176124A publication Critical patent/JP2019176124A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/10344Aluminium gallium nitride [AlGaN]

Abstract

【課題】生産性を向上できる半導体装置の製造方法、及び、半導体装置を提供する。【解決手段】半導体装置の製造方法は、上面を有し、サファイアからなるウェーハ50を準備する工程であって、上面は、第1領域11と、第1領域を囲んで設けられた第2領域12と、を含み、第2領域は、第1領域よりも2μm以上高い又は低い位置に設けられた、ウェーハを準備する工程と、AlzGa1−zN(0.03≦z≦0.15)からなるAl含有層を含む半導体層を上面に形成する工程と、を含む。【選択図】図2

Description

本発明は、半導体装置の製造方法、及び、半導体装置に関する。
発光素子などの半導体装置において、例えば、サファイア基板などウェーハの上に、半導体層が成長される。半導体層にクラックが生じ、歩留まりを低下させる場合がある。生産性の向上が求められる。
国際公開第2011/161975号
本発明は、生産性を向上できる半導体装置の製造方法、及び、半導体装置を提供する。
本発明の一態様によれば、半導体装置の製造方法は、上面を有し、サファイアからなるウェーハを準備する工程であって、前記上面は、第1領域と、前記第1領域を囲んで設けられた第2領域と、を含み、前記第2領域は、前記第1領域よりも2μm以上高い又は低い位置に設けられた、前記ウェーハを準備する工程と、AlGa1−zN(0.03≦z≦0.15)からなるAl含有層を含む半導体層を前記上面に形成する工程と、を含む。
本発明の別の一態様によれば、半導体装置の製造方法は、上面を有し、サファイアからなるウェーハを準備する工程であって、前記上面は、第1領域と、前記第1領域の周りに設けられた第3領域と、前記第1領域と前記第3領域との間に前記第1領域を囲んで設けられた溝と、を含み、前記溝の深さは、2μm以上である、前記ウェーハを準備する工程と、AlGa1−zN(0.03≦z≦0.15)からなるAl含有層を含む半導体層を前記上面に形成する工程と、を含む。
本発明の別の一態様によれば、半導体装置は、上面を有し、サファイアからなるウェーハであって、前記上面は、第1領域と、前記第1領域を囲んで設けられた第2領域と、を含み、前記第2領域は、前記第1領域よりも2μm以上高い又は低い位置に設けられた、ウェーハと、前記上面に設けられたAlGa1−zN(0.03≦z≦0.15)からなるAl含有層を含む半導体層と、を含む。
本発明の別の一態様によれば、半導体装置は、上面を有し、サファイアからなるウェーハであって、前記上面は、第1領域と、前記第1領域の周りに設けられた第3領域と、前記第1領域と前記第3領域との間に前記第1領域を囲んで設けられた溝と、を含み、前記溝の深さは、2μm以上である、ウェーハと、前記上面に設けられたAlGa1−zN(0.03≦z≦0.15)であるAl含有層を含む半導体層と、を含む。
本発明の一態様によれば、生産性を向上できる半導体装置の製造方法、及び、半導体装置が提供される。
実施形態に係る半導体装置の製造方法を例示するフローチャートである。 実施形態に係る半導体装置の製造方法で用いられるウェーハを例示する模式的断面図である。 実施形態に係る半導体装置の製造方法で用いられるウェーハを例示する模式的断面図である。 実施形態に係る半導体装置の製造方法の一部を例示する模式的断面図である。 実施形態に係る半導体装置の製造方法の一部を例示する模式的断面図である。 実施形態に係る半導体装置を例示する模式的断面図である。 実施形態に係る半導体装置の製造方法で用いられる別のウェーハを例示する模式図である。 実施形態に係る半導体装置の製造方法で用いられる別のウェーハを例示する模式図である。 実施形態に係る半導体装置の製造方法で用いられるウェーハを例示するグラフ図である。 実施形態に係る半導体装置の製造方法で用いられるウェーハを例示するグラフ図である。 実施形態に係る半導体装置の製造方法で用いられるウェーハを例示するグラフ図である。 実施形態に係る半導体装置の製造方法に関する試験結果を例示するグラフ図である。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚さと幅との関係、部分間の大きさの比率などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比率が異なって表される場合もある。
なお、本願明細書において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1実施形態)
図1は、実施形態に係る半導体装置の製造方法を例示するフローチャートである。
図1に示すように、実施形態に係る半導体装置の製造方法は、ウェーハを準備する工程(ステップS110)及び半導体層を形成する工程(ステップS120)を含む。以下、ウェーハの例について説明する。
図2及び図3は、実施形態に係る半導体装置の製造方法で用いられるウェーハを例示する模式的断面図である。
図2は、図3のII−II線断面図である。図3は、図2の矢印AR1から見た平面図である。
図2に示すように、ウェーハ50は、上面10(例えば第1面)と、下面10B(例えば第2面)と、を有する。例えば、上面10に対して垂直な方向を、Z軸方向とする。Z軸方向に対して垂直な1つの方向をX軸方向とする。Z軸方向及びX軸方向に対して垂直な方向をY軸方向とする。上面10及び下面10Bは、X−Y平面に沿う。
ウェーハ50は、半導体層を成長させるための基板として機能する。ウェーハ50は、例えば、サファイア基板である。ウェーハ50は、例えば、サファイアからなる。1つの例において、上面10は、実質的に、サファイアのc面に沿っている。「上面10が、実質的に、サファイアのc面に沿っている」とき、例えば、上面10とサファイアのc面との間の角度は、5度以下である。上面10が、c面に対して傾斜しても良い。
ウェーハ50の外端16は、ウェーハ50のなかで、最も外側に位置する領域である。ウェーハ50の外端16は、例えば、X−Y平面と交差する。ウェーハ50において、外端16の近傍にベベル部15が設けられている。ベベル部15の表面は、X−Y平面(例えば第1領域11)に対して傾斜している。ベベル部15の厚さ(Z軸方向に沿う長さ)は、外端16から内側へ向かう方向において増大する。
実施形態において、上面10は、ベベル部15を除いた部分とする。例えば、X−Y平面において、上面10の周りに、ベベル部15が設けられる。
図3に示すように、ウェーハ50の外端16は、例えば、略円形である。ウェーハ50の一部にオリエンテーションフラット17が設けられている。図3に示すように、外端16の内側に環状のベベル部15が設けられる。その内側に、上面10が設けられる。上面10の外縁10Eは、ベベル部15と連続して設けられる。外縁10Eは、例えば、オリエンテーションフラット17に対応する部分を除いて、略円形である。
図2及び図3に示すように、上面10は、第1領域11及び第2領域12を含む。第1領域11は、ウェーハ50の中心50c(図3参照)を含む。第1領域11は、ウェーハ50の内側に位置する内側領域である。
図3に示すように、第2領域12は、第1領域11の周りに設けられる。例えば、第2領域12は、第1領域11を囲むように設けられる。第2領域12は、外周領域である。
図2に示すように、例えば、第1領域11及び第2領域12は、互いに実質的に平行である。例えば、第1領域11及び第2領域12は、X−Y平面に沿う。「第1領域11及び第2領域12が互いに実質的に平行である」とき、例えば、第1領域11を含む平面と、第2領域12と、の間の角度の絶対値は、5度以下である。
第2領域12は、第1領域11よりも高い又は第1領域11よりも低い位置に設けられる。図2に示す例においては、第2領域12は、第1領域11を規準にして、低い位置に設けられている。例えば、下面10Bを含む平面と、第1領域11と、の間のZ軸方向に沿う距離(第1距離)は、下面10Bを含む平面と、第2領域12と、の間のZ軸方向に沿う距離(第2距離)よりも短い。
第1領域11の高さ(Z軸方向における位置)と、第2領域12の高さ(Z軸方向における位置)と、の差(段差d1)は、2μm以上である。段差d1は、Z軸方向に沿う長さである。段差d1は、第1領域11を含む平面と、第2領域12と、のZ軸方向に沿った距離に対応する。第1距離と第2距離との差が、段差d1に対応する。
この例では、第1領域11と第2領域12との間に、段差部12Sが設けられている。段差部12Sの高さ(または深さ)が、段差d1に対応する。1つの例において、上面10は、第1領域11、第2領域12、及び段差部12Sを含む。
第2領域12は、内側端部12aを有する。内側端部12aは、第1領域11側の端である。この例では、第2領域12の外側端部12bは、上面10の外縁10Eと同じ部分に位置する。第2領域12において、内側端部12aと外縁10Eとの間の距離を第2領域12の幅w12とする。幅w12は、ウェーハ50の中心50c(図3参照)を通る直線に沿った、内側端部12aと外縁10Eとの間の距離に対応する。ウェーハ50の中心50cは、ウェーハ50の上面視形状を円形状と仮想としたときの、ウェーハ50の中心である。
第1領域11の幅w11は、ウェーハ50の中心50cを通る直線に沿った第1領域11の長さに対応する。幅w12は、幅w11よりも小さい。幅w12は、例えば、2.0mm以上10mm以下である、幅w11は、例えば、5mm以上300mm以下である。
上記のような第2領域12は、例えば、元となるウェーハの上面にマスクを形成し、ウェーハの上面の、マスクに覆われていない部分の一部を第1ウエットエッチングにより除去することにより形成できる。マスクは、上記の元となるウェーハの上面のうちの第1領域11となる部分を被覆し、第2領域12となる部分を露出させる。さらに、第1ウエットエッチングの後に第2ウエットエッチングを行っても良い。第2ウエットエッチングにおいては、第1ウエットエッチングの際に形成したマスクを除去しウェーハ50の表面を処理する。これにより得られる第1領域11の表面、及び、第2領域12の表面(底面)において、マスクの残渣などが除去される。これらの表面が、より平坦になる。第2ウエットエッチングにおけるウェーハに対するエッチングレートは、第1ウエットエッチングにおけるウェーハに対するエッチングレートよりも低い。マスクには、例えば、SiOからなる材料が用いられる。
このような第1領域11及び第2領域12を有するウェーハ50の上面10に半導体層20が形成される(ステップS120(図1参照))。以下、半導体層20の形成の例について説明する。
図4及び図5は、実施形態に係る半導体装置の製造方法の一部を例示する模式的断面図である。
図5は、図4の一部を拡大して示している。
図4及び図5に示すように、ウェーハ50の上面10に、半導体層20が形成される。半導体層20の形成は、MOCVD(metal organic chemical vapor deposition)などにより行われる。半導体層20となる結晶が、エピタキシャル成長される。
半導体層20は、第1半導体領域21及び第2半導体領域22を含む。第1半導体領域21は、上面10の第1領域11に設けられる。第2半導体領域22は、上面10の第2領域12に設けられる。
図5に示すように、第1領域11と第2領域12と間において、段差(高さの違い)が設けられている。このため、第1半導体領域21と第2半導体領域22とは、不連続である。このため、第2半導体領域22にクラック20Xが生じた場合においても、第2半導体領域22に生じたクラック20Xが、第1半導体領域21に延びることが抑制される。その結果、半導体層20のうちの第1半導体領域21におけるクラックに起因する不良が抑制される。実施形態によれば、生産性を向上できる。図5においては、クラック20Xは半導体層20の厚さ方向に延びる。実施形態において、クラック20Xの延びる方向は、任意である。例えば、半導体層20に生じるクラック20Xが、図4に示すX軸方向に延びる場合もある。
ウェーハ50の上面10において、第2領域12が設けられない第1参考例がある。第1参考例では、上面10は、1つの高さだけを有する。この場合、半導体層20のうちで、ベベル部15の近傍領域にクラック20Xが生じると、そのクラック20Xを起点としたクラックが内側領域に伸展し易いことが分かった。第1参考例においてクラック20Xがベベル部15の近傍領域から内側領域へ伸展し易いのは、ベベル部15の近傍領域と、内側領域と、で半導体層20が、連続的であるためと考えられる。
これに対して、実施形態においては、第1領域11と第2領域12と間の段差(高さの違い)により、それらの領域上に結晶成長した第1半導体領域21と第2半導体領域22とが、不連続になる。このため、第2半導体領域22にクラック20Xが生じた場合においても、第1半導体領域21へのクラック20Xの伸展が抑制される。
例えば、半導体層20の形成後の検査において、実施形態における不良率は、上記の第1参考例における不良率の0.4倍以下にできることが分かった。
図4及び図5に示すように、この例では、ウェーハ50の段差部12Sに、第3半導体領域23が形成されている。例えば、上面10がサファイアのc面に沿っている場合、第1領域11及び第2領域12の面方位は、互いに実質的に同じサファイアのc面である。これに対して、段差部12Sの表面の面方位は、第1領域11及び第2領域12の面方位とは異なる。このため、第3半導体領域23においては、半導体層20が実質的にエピタキシャル成長しないと考えられる。上面10のうち、主に第1領域11及び第2領域12において、半導体層20がエピタキシャル成長される。第3半導体領域23が形成される場合は、第1半導体領域21と第2半導体領域22との間の不連続性が、より高まる。このため、第2半導体領域22のクラック20Xが、第1半導体領域21へ伸展することが、より抑制される。これにより、生産性を向上できる。
発明者の検討によると、ウェーハ50の外周部(例えば、ベベル部15の近傍)において、半導体層20に異常が発生し易いことが分かった。例えば、ウェーハ50の外周部に成長する半導体層20の厚さは、内側部に成長する半導体層20の厚さよりも厚くなり易いことが分かった。そして、ウェーハ50の外周部に成長する半導体層20において、クラック20Xが発生し易い。このような傾向は、成長させる半導体層20が、Alを含む窒化物半導体である場合に特に顕著であることが分かった。
例えば、図5に示すように、第1領域11の上に成長された第1半導体領域21の厚さt1は、第1半導体領域21のなかで実質的に一定である。これに対して、第2領域12の上に成長された第2半導体領域22の厚さt2は、厚さt1よりも厚くなる傾向がある。そして、第2半導体領域22の厚さt2は、内側領域(第1半導体領域21)から外端16への方向に拡大する傾向がある。さらに第2半導体領域22において、第1半導体領域21よりもクラック20Xが顕著に発生し易い。このような第2半導体領域22における特異な状態は、例えば、ウェーハ50の外端16の近傍における、半導体層20の意図しない成長が影響していると考えられる。
実施形態に係るウェーハ50においては、ウェーハ50の上面10に第1領域11及び第2領域12を設ける。これらの領域の間において、段差が設けられる。これにより、形成する半導体層20がAlを含む窒化物半導体である場合においても、第2半導体領域22に生じたクラック20Xの第1半導体領域21への伸展を効果的に抑制できる。実施形態によれば、生産性を向上できる半導体装置の製造方法を提供できる。
第2領域12に形成される第2半導体領域22は、半導体層20の形成の後に除去されて破棄される部分である。第1領域11に形成される第1半導体領域21は、半導体装置として使用される。第2半導体領域22の面積が過度に大きいと、1つのウェーハ50から得られる半導体装置の数が減り、生産性が低下する。このため、第2半導体領域22の幅は、クラック20Xの伸展を抑制できるような範囲で、小さいことが好ましい。
発明者の検討によると、ウェーハ50の外周部上に成長する半導体層20において、クラック20Xが発生し易い領域の幅(ベベル部15から距離)は、約10mm以下であることがわかった。
実施形態においては、第2領域12の幅w12は、2.0mm以上10mm以下であることが好ましい。幅w12が2.0mm以上であることにより、第1半導体領域21では、クラック20Xが発生し難くなる効果が安定して得られる。そして、第2半導体領域22にクラック20Xが発生しても、段差により、第2半導体領域22に発生したクラック20Xの第1半導体領域21への伸展を効果的に抑制できる。幅w12を10mm以下にすることで、半導体装置として使用されない第2領域12を小さくできる。有効な第1領域11の面積を大きくでき、高い生産性が得られる。
図2に示すように、この例では、第2領域12は、上面10の外縁10Eに達している。例えば、第2領域12は、第2領域12の内側端部12aから外縁10Eまでの間で、連続的に設けられている。第2領域12は、X−Y平面に沿っている。このような第2領域12では、例えば、第1領域11と類似の結晶が得られる。これにより、第2領域12の上に、半導体層20を効果的に成長でき、形成された第2半導体領域22に、意図しない成長が生じた半導体層を集中させることができる。
例えば、シリコン基板の外周部分(ベベル部15の近傍領域)において、粗面加工が施される第2参考例がある。粗面加工により、細かい凹凸が設けられる。第2参考例において、外周領域の表面の算術平均粗さRaが内側部分(第1領域11に対応)の表面の算術平均粗さRaよりも大きくされる。外周領域における算術平均粗さRaは、例えば、約230nmであり、内側部分の算術平均粗さRaは、例えば、約2.1nmである。このような第2参考例においては、外周部分(ベベル部15の近傍領域)に成長される半導体層20は、多結晶となる。一般に、シリコン基板の上に窒化物半導体を形成する際に、熱膨張係数及び格子定数の差に起因して、ウェーハ端部においてクラックが発生し易い。粗面加工によって、このようなクラックを抑制できるとされている。
第2参考例のような粗面加工をサファイア基板に形成することも考えられる。この場合、粗面加工により、外周部分で多結晶が成長する。一方、内周部分では、実質的に単結晶が成長する。このように、第2参考例では、内周部分と外周部分とで、成長する膜の特性が大きく異なる。このため、例えば、粗面加工に起因して、内側部分の上に成長した半導体層20の中で、外周部分に近い領域と、中心領域と、の間で、半導体層20の特性が異なり易い。従って、第2参考例においては、内周部分における半導体層20において、均一性が不十分となりやすい。
これに対して、実施形態においては、第2領域12の表面は、高さを除いて、例えば、第1領域11の表面と同様である。このため、第2領域12を設けたことによる、第1領域11に形成される第1半導体領域21への影響が実質的に生じない。第1半導体領域21において、均一な特性を得やすくできる。
さらに、ウェーハ50の上面10に半導体層20を形成した後に、半導体層20に電極などが形成される。この後、ウェーハ50を除去する場合がある。この除去は、例えば、LLO(laser lift-off)処理などにより行われる。上記の第2参考例の場合、ベベル部15の近傍領域に粗面加工が設けられるため、LLO処理で照射されるレーザ光が粗面加工の部分(凹凸)で散乱し、集光が困難になる。このため、第2参考例においては、LLO処理を効率よく実施することが困難である。
これに対して、実施形態においては、第2領域12の表面の平坦性は高い。このため、LLO処理において、レーザ光が第2領域12で散乱することが抑制される。実施形態においては、LLO処理を効率よく実施することができる。
実施形態において、第2領域12の算術平均粗さRaは、例えば、第1領域11の算術平均粗さRaと同様でもよい。
例えば、第1領域11の算術平均粗さRaは、0.05nm以上0.3nm以下、好ましくは、0.1nm以上0.2nm以下である。第2領域12の算術平均粗さRaは、0.05nm以上0.3nm以下、好ましくは、0.1nm以上0.2nm以下である。
既に説明したように、半導体層20がAlを含む場合に、ウェーハ50の外周部(例えば、ベベル部15の近傍)において、半導体層20に意図しない状態(例えば、厚さの異常、及び、クラック20Xの集中的な発生)が発生し易い。このような現象は、半導体層20が、Alの組成比が高い(例えばAlGaNからなる層を含む)場合に、特に顕著である。Alの組成比が高いAlGaNを成長させると、例えば、ウェーハ50の外周領域におけるAlの濃度(組成比)は、ウェーハ50の内側領域におけるAlの濃度よりも高くなる傾向がある。このことからも、ウェーハ50の外周領域では、AlGaNに異常が生じ意図しない成長が生じていると推測される。このような場合に、実施形態に係る第2領域12により、クラック20Xの伸展を効果的に抑制できる。例えば、ウェーハ50外周部から内周部に向かうクラック20Xの発生が抑制できる。これにより、歩留り良く半導体装置(例えば発光装置)を製造することができる。
実施形態において、第2領域12は、第1領域11よりも低い位置に位置することが好ましい。例えば、ウェーハ50の上面10に半導体層20を形成する際に、原料ガスは、上面10に沿って流れる。第2領域12が第1領域11よりも低い位置に位置することで、ガスの流れが乱されることが抑制できる。
以下、半導体層20がAlを含む窒化物半導体を含む例について説明する。
図6は、実施形態に係る半導体装置を例示する模式的断面図である。
図6に示すように、ウェーハ50の上面10の第1領域11の上に、半導体層20(第1半導体領域21)が設けられる。半導体層20は、半導体装置110の少なくとも一部となる。この例では、半導体装置110は、発光装置(例えば、LEDまたはLD)である。半導体装置110は、ウェーハ50を含んでも良い。
半導体層20は、例えば、第1半導体膜31、発光層33及び第2半導体膜32を含む。第1半導体膜31の上に、発光層33が設けられる。発光層33の上に第2半導体膜32が設けられる。
第1半導体膜31は、アンドープのGaNからなる第1膜31aと、その上に設けられたアンドープのAlGaNからなる第2膜31bと、その上に設けられた不純物としてSiがドープされたAlGaNからなる第3膜31cと、を含む。第1半導体膜31は、n形の半導体層として機能する。発光層33は、例えば、交互に積層された、AlGaNからなる障壁膜33aと、InGaNからなる井戸膜33bと、を含む。例えば、障壁膜33a及び井戸膜33bが1つのセットとして、3〜5セットが設けられる。この例では、発光層33において、障壁膜33aと井戸膜33bとのセットの他に、最も第2半導体膜32に近い側に障壁膜33aがさらに設けられている。第2半導体膜32は、例えば、不純物としてMgがドープされたAlGaNを含む。第2半導体膜32は、p形の半導体層として機能する。
例えば、Alを含む第2膜31b及び第3膜31cにおけるAl組成比(III族元素中におけるAlの比率)は、例えば3%(原子%)以上8%(原子%)以下である。例えば、第2膜31b及び第3膜31cは、Alx1Ga1−x1N(0.03≦x1≦0.08)を含む。
例えば、障壁膜33aにおけるAl組成比(III族元素中におけるAlの比率)は、例えば3%(原子%)以上15%(原子%)以下(例えば約10%)である。例えば、障壁膜33aは、Alx3Ga1−x3N(0.03≦x3≦0.15)を含む。
例えば、第2半導体膜32におけるAl組成比(III族元素中におけるAlの比率)は、例えば3%(原子%)以上10%(原子%)以下(例えば約7%)である。例えば、第2半導体膜32は、Alx2Ga1−x2N(0.03≦x2≦0.10)を含む。
このように、半導体層20は、Al含有層35を含む。Al含有層35は、Alを含む窒化物半導体からなる。この例では、Al含有層35は、第2膜31b、第3膜31c、障壁膜33a及び第2半導体膜32を含む。
Al含有層35における、III属元素中におけるAlの比率は、3%(原子%)以上15%(原子%)以下である。
Al含有層35の厚さを、Al含有層35に含まれる複数のAlGaN膜の合計の厚さとする。Al含有層35の厚さは、例えば、半導体層20の総膜厚(厚さt1)の20%以上40%以下である。上記において、「厚さ」は、Z軸方向に沿う長さである。
例えば、第1膜31aの厚さは、約6.5μmである。例えば、第2膜31bの厚さは、約0.05μmである。第3膜31cの厚さは、約2μmである。従って、第2膜31b及び第3膜31cの合計の厚さは、約2μmである。例えば、障壁膜33aの合計の厚さは、約0.15μmである。例えば、第2半導体膜32の厚さは、約0.18μmである。
従って、Al含有層35の厚さ(Al含有層35に含まれる複数のAlGaN膜の合計の厚さ)は、約2.3μmである。一方、半導体層20の総膜厚(厚さt1)は、約9μmである。従って、1つの例において、Al含有層35の厚さは、厚さt1の約25%である。
発光層33とウェーハ50との間に、Al含有層35の一部(例えば、第2膜31b及び第3膜31c)が位置する。発光層33とウェーハ50との間に位置する、Al含有層35の一部において、Al組成比は、例えば3%以上8%以下である。発光層33とウェーハ50との間に位置する、Al含有層35の一部は、Alx1Ga1−x1N(0.03≦x1≦0.08)を含む。発光層33とウェーハ50との間に、Al含有層35の全部が位置してもよい。
発光層33とウェーハ50との間に位置する、Al含有層35の一部を、第3膜31cと見なしても良い。この場合も、発光層33とウェーハ50との間に位置する、Al含有層35の一部において、Al組成比は、例えば3%以上8%以下である。発光層33とウェーハ50との間に位置する、Al含有層35の一部は、Alx1Ga1−x1N(0.03≦x1≦0.08)を含む。
この場合も、発光層33とウェーハ50との間に位置する、Al含有層35の一部の厚さは、実質的に、20%以上40%以下である。
実施形態において、発光層33から放出される光のピーク波長は、330nm以上400nm以下である。1つの例において、ピーク波長は、約365nmである。別の例において、ピーク波長は、約385nmである。
発光層33から放出される光のピーク波長が330nm以上400nm以下である場合において、Al含有層35の一部が、Alを含まない、例えばGaNからなる半導体層である場合、Al含有層35の一部で発光層33から放出される光が吸収されやすい。Al含有層35の一部において、Alの組成比を高くすることで、発光層33から放出される光に対する高い透過率が得られる。
例えば、発光層33とウェーハ50との間に位置する、Al含有層35の一部は、第3膜31cを含む。第3膜31cは、例えば、n側電極などが設けられるコンタクト層として機能する。電流の適切な広がりを得るために、第3膜31cは、比較的厚くされる(例えば、約2μm)。このような場合に、第1領域11とは異なる高さの第2領域12を設けることで、高い組成比のAlを含む第3膜31cを設けた場合においても、クラック20Xの伸展を効果的に抑制できる。
以下、半導体層20がAlを含む窒化物半導体を含む他の例を説明する。
半導体層20は、Al含有層35を含む。Al含有層35は、Alを含む窒化物半導体からなる。
Al含有層35における、III属元素中におけるAlの比率は、50%(原子%)以上、好ましくは70%(原子%)以上である。例えば、Al含有層35は、AlGa1−xN(0.5≦x≦1)を含む。
Al含有層35の厚さを、Al含有層35に含まれる複数のAlGaN膜及びAlN膜の合計の厚さとする。Al含有層35の厚さは、例えば、半導体層20の総膜厚(厚さt1)の70%以上、好ましくは80%以上である。上記において、「厚さ」は、Z軸方向に沿う長さである。
実施形態において、発光層33から放出される光のピーク波長は、250nm以上330nm以下である。1つの例において、ピーク波長は、約270nmである。別の例において、ピーク波長は、約280nmである。
実施形態において、第1領域11と第2領域12との間の段差d1は、例えば、第3膜31cの厚さ以上であることが好ましい。
図7及び図8は、実施形態に係る半導体装置の製造方法で用いられる別のウェーハを例示する模式図である。
図7は、図8のVII−VII線断面図である。図8は、図7の矢印AR2から見た平面図である。
図7及び図8に示すように、実施形態に係る別のウェーハ51では、ウェーハ51の上面10は、溝12Tを含む。例えば、上面10は、第1領域11、溝12T及び第3領域13を含む。第1領域11と第3領域13との間に、溝12Tが設けられる。溝12Tは、第1領域11の周りに設けられる。溝12Tは、例えば、第1領域11を囲む。溝12Tの周りに、第3領域13が設けられる。溝部12Tは、内側端部12cを有する。内側端部12cは、第1領域11側の端である。溝部12Tは、内側端部12dを有する。内側端部12dは、第2領域12側の端である。溝部12Tは、内側端部12cと底部との間の段差部と、外側端部12dと底部との間の段差部と、を有する。内側端部12cは、第1領域11側の端である。溝部12Tは、上面10のうち、内側端部12cから外側端部12dまでの領域である。第3領域13において、第3領域13の内側端部(溝部12Tの外側端部12d)と上面10の外縁10Eとの間の距離を、第3領域13の幅とする。
溝12Tの深さdTは、例えば、2μm以上である。深さdTは、第1領域11の上面のZ軸方向における位置と、溝12Tの底部のZ軸方向における位置と、の間のZ軸方向における距離である。溝12Tの底部は、X−Y平面に沿う領域を含んでも良い。溝12Tは、X−Y平面に沿う領域を含まなくても良い。溝12Tは、例えば「V字」状でも良い。溝12Tの底部の幅wT(図7参照)は、例えば、10μm以上100μm以下であることが好ましい。
このような形状の上面10に、半導体層20(図4参照)が形成される。この半導体層20は、例えば、Al含有層35を含む。別のウェーハ51において、半導体層20は、上面10のうち、主に第1領域11及び第3領域13に、エピタキシャル成長される。
ウェーハ51においても、第2半導体領域22にクラック20Xが生じた場合においても、第2半導体領域22に生じたクラック20Xが、第1半導体領域21に延びることが抑制される。第1半導体領域21におけるクラックに起因する不良が抑制される。ウェーハ51においても、生産性を向上できる。
ウェーハ51においても、第2領域12は、例えば、ウエットエッチングなど(上記の第1ウエットエッチング及び第2ウエットエッチング)により形成できる。例えば、ウェーハ51の上面10のうちの第1領域11及び第3領域13を被覆し、第2領域12を露出させるマスクを形成し、露出した部分の一部を第1ウエットエッチングにより除去することにより、第2領域12が形成できる。
第3領域13の幅は、例えば、2.0mm以上10mm以下であることが好ましい。
第3領域13の幅が2.0mm以上であることにより、半導体層20のうちの第1領域11の上の部分(第1半導体領域21、図7参照)では、クラック20Xが発生し難くなる効果が安定して得られる。そして、半導体層20のうちの第3領域13の上の領域にクラック20Xが発生しても、溝12Tにより、発生したクラック20Xの第1半導体領域21への伸展を効果的に抑制できる。第3領域13の幅を10mm以下にすることで、半導体装置として使用されない第3領域13を小さくできる。有効な第1領域11の面積を大きくでき、高い生産性が得られる。
図9〜11は、実施形態に係る半導体装置の製造方法で用いられるウェーハを例示するグラフ図である。
これらの図は、段差が異なる3種類のウェーハの上面10の凹凸の評価結果を示している。これらの図の横軸は、X軸方向に沿う位置である。これらの図の縦軸は、高さを示している。
図9に示す例においては、段差d1は、約3.1μmである。図10に示す例においては、段差d1は、約6.0μmである。図11に示す例においては、段差d1は、約8.8μmである。これらの図に示すように、第1領域11の表面の凹凸、及び、第2領域12の表面の凹凸は、段差d1よりも非常に小さい。
以下、ウェーハに関する実験結果の例について説明する。第1の実験では、段差d1を変更したウェーハの試料が作製される。それらの試料におけるクラックの状態が微分干渉顕微鏡で評価される。段差d1が1μmの場合は、第2半導体領域22(図5参照)のクラック20Xが段差を超えて第1半導体領域21に延びることが観察された。第2半導体領域22におけるクラック20Xの数に対する、第1半導体領域21に延びたクラック20Xの数の比は、約47%である。
これに対して、段差d1が2μmの場合は、第2半導体領域22のクラック20Xで、第1半導体領域21に延びたものは観察されなかった。このように、段差d1が少なくとも2μm以上であることで、クラックの伸展が確実に抑制できる。
図12は、実施形態に係る半導体装置の製造方法に関する試験結果を例示するグラフ図である。
図12は、第2領域12(段差が異なる領域)の幅w12(図2参照)を変えて製造したときの半導体装置(LED)の特性の試験結果を例示している。図12の横軸は、幅w12(mm)である。縦軸は、半導体装置の試験における改善率Y1である。試験では、ウェーハ全体に対してレーザ光を照射した状態の画像を取得することでクラックが生じていない領域の面積CRを算出し、ウェーハ全体の面積WRに対する、クラックが生じていない領域の面積CRの比(CR/WR)が、合格率とされる。幅w12が0mmの時の合格率YBと、幅w12が0mmではないときの合格率YAと、の差(YA−YB)が改善率Y1とされる。この例は、段差d1(図2参照)が6μmのときの結果である。例えば、クラック20Xが第1半導体領域21に延びると、半導体装置の発光特性が劣化し、改善率Y1が低くなる。
図12に示すように、幅w12が1.5mm以下の範囲では、幅w12が大きくなると、改善率Y1が上昇する傾向がある。幅w12が2.0mm以上において、改善率Y1の上昇は、飽和する。幅w12を2.0mm以上にすることで、安定した高い改善率Y1が得られる。
(第2実施形態)
本実施形態は、ウェーハ(例えば、上記のウェーハ50またはウェーハ51など)に係る。以下、ウェーハ50(図2及び図3参照)について説明する。実施形態に係るウェーハ50は、上面10を有する。上面10は、第1領域11及び第2領域12を含む。第2領域12は、第1領域11の周りに設けられる。第2領域12は、第1領域11よりも2μm以上高い又は低い位置に設けられる。
実施形態において、第2領域12は、第1領域11よりも低い位置に位置する。例えば、第1領域11及び第2領域12は、実質的に互いに平行である(図2参照)。例えば、ウェーハ50は、サファイアからなる。本実施形態において、溝12T(図7及び図8参照)が設けられても良い。溝12Tの幅dTは、例えば、10μm以上100μm以下である。
本実施形態によれば、生産性を向上できるウェーハが提供できる。
(第3実施形態)
第3実施形態は、半導体装置に係る。以下では、図6に示した半導体装置110の例について説明する。
図6に示すように、半導体装置110は、例えば、ウェーハ50と、ウェーハ50の上面10に設けられた半導体層20と、を含む。ウェーハ50は、第2実施形態に関して説明したウェーハ(及びその変形)を含む。半導体装置110によれば、高い生産性が得られる。半導体装置110は、ウェーハ50の上面に半導体層20が設けられた形態が含まれる。半導体装置110は、半導体層20が設けられたウェーハ50が個片化された状態を含む。
図6に示すように、半導体層20は、Al含有層35を含む。Al含有層35における、III属元素中におけるAlの比率は、3%(3原子%)以上15%(15原子%)以下である。この比率は、3%(3原子%)以上8%(8原子%)以下でも良い。Al含有層35は、例えば、AlGa1−zN(0.03≦z≦0.15)である。Al含有層35は、例えば、AlGa1−zN(0.03≦z≦0.08)でも良い。Al含有層35の厚さ(合計の厚さ)は、例えば、半導体層20の総膜厚(厚さt1)の20%以上40%以下である。
半導体層20(半導体装置110)において、発光層33が設けられても良い。発光層33から出射する光のピーク波長は、330nm以上400nm以下である。発光層33とウェーハ50との間に、Al含有層35の一部(例えば、第3膜31cなど)が位置しても良い。Al含有層35の上記の一部は、第3膜31cでも良い。
実施形態に係る半導体装置110は、例えばトランジスタ(HEMT:High Electron Mobility Transistorなど)を含んでも良い。例えば、HEMTにおいて、ウェーハ50にAlを含む窒化物半導体層(半導体層20)が設けられる。この場合も、高い生産性が得られる。
実施形態によれば、生産性を向上できる半導体装置の製造方法、及び、半導体装置を提供できる。
なお、本願明細書において、「垂直」及び「平行」は、厳密な垂直及び厳密な平行だけではなく、例えば製造工程におけるばらつきなどを含むものであり、実質的に垂直及び実質的に平行であれば良い。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、半導体装置の製造方法で用いられるウェーハ、基板、半導体構造、及びレーザなどのそれぞれの具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述した半導体装置の製造方法、ウェーハ、及び、半導体装置を基にして、当業者が適宜設計変更して実施し得る全ての半導体装置の製造方法、ウェーハ、及び、半導体装置も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと解される。
10…上面、 10B…下面、 10E…外縁、 11…第1領域、 12…第2領域、 12S…段差部、 12a…内側端部、 12b…外側端部、 12c…内側端部、 12d…外側端部、 12T…溝、 13…第3領域、 15…ベベル部、 16…外端、 17…オリエンテーションフラット、 20…半導体層、 20X…クラック、 21〜23…第1〜第3半導体領域、 31…第1半導体膜、 31a…第1膜、 31b…第2膜、 31c…第3膜、 32…第2半導体膜、 33…発光層、 33a…障壁膜、 33b…井戸膜、 35…Al含有層、 50、51…ウェーハ、 50c…中心、 110…半導体装置、 AR1、AR2…矢印、 d1…段差、 dT…深さ、
t1、t2…厚さ、 w11、w12、wT…幅

Claims (20)

  1. 上面を有し、サファイアからなるウェーハを準備する工程であって、前記上面は、第1領域と、前記第1領域を囲んで設けられた第2領域と、を含み、前記第2領域は、前記第1領域よりも2μm以上高い又は低い位置に設けられた、前記ウェーハを準備する工程と、
    AlGa1−zN(0.03≦z≦0.15)からなるAl含有層を含む半導体層を前記上面に形成する工程と、
    を備えた半導体装置の製造方法。
  2. 前記第2領域は、前記上面の外縁に達している、請求項1に記載の半導体装置の製造方法。
  3. 前記第2領域は、前記第1領域よりも低い位置に位置する、請求項1または2に記載の半導体装置の製造方法。
  4. 前記第1領域及び第2領域は、互いに平行である、請求項1〜3のいずれか1つに記載の半導体装置の製造方法。
  5. 前記第2領域の内側端部と前記上面の外縁との距離は、2.0mm以上10mm以下である、請求項1〜4のいずれか1つに記載の半導体装置の製造方法。
  6. 上面を有し、サファイアからなるウェーハを準備する工程であって、前記上面は、第1領域と、前記第1領域の周りに設けられた第3領域と、前記第1領域と前記第3領域との間に前記第1領域を囲んで設けられた溝と、を含み、前記溝の深さは、2μm以上である、前記ウェーハを準備する工程と、
    AlGa1−zN(0.03≦z≦0.15)からなるAl含有層を含む半導体層を前記上面に形成する工程と、
    を備えた半導体装置の製造方法。
  7. 前記第3領域の内側端部と前記上面の外縁との距離の幅は、2.0mm以上10mm以下である、請求項6に記載の半導体装置の製造方法。
  8. 前記Al含有層の厚さは、前記半導体層の厚さの20%以上40%以下である、請求項6または7に記載の半導体装置の製造方法。
  9. 前記半導体層は、複数の前記Al含有層を含み、
    前記複数のAl含有層のそれぞれの厚さの和は、前記半導体層の厚さの20%以上40%以下である、請求項6または7に記載の半導体装置の製造方法。
  10. 前記半導体層は、ピーク波長が330nm以上400nm以下である光を発する発光層をさらに含み、
    前記発光層と前記ウェーハとの間に、前記複数のAl含有層の一部又は全部が位置する、請求項6〜9のいずれか1つに記載の半導体装置の製造方法。
  11. 上面を有し、サファイアからなるウェーハであって、前記上面は、第1領域と、前記第1領域を囲んで設けられた第2領域と、を含み、前記第2領域は、前記第1領域よりも2μm以上高い又は低い位置に設けられた、ウェーハと、
    前記上面に設けられたAlGa1−zN(0.03≦z≦0.15)からなるAl含有層を含む半導体層と、
    を備えた半導体装置。
  12. 前記第2領域は、前記上面の外縁に達している、請求項11に記載の半導体装置。
  13. 前記第2領域は、前記第1領域よりも低い位置に位置する、請求項11または12に記載の半導体装置。
  14. 前記第1領域及び第2領域は、互いに平行である、請求項11〜13のいずれか1つに記載の半導体装置。
  15. 前記第2領域の内側端部と前記上面の外縁との距離は、2.0mm以上10mm以下である、請求項11〜14のいずれか1つに記載の半導体装置。
  16. 上面を有し、サファイアからなるウェーハであって、前記上面は、第1領域と、前記第1領域の周りに設けられた第3領域と、前記第1領域と前記第3領域との間に前記第1領域を囲んで設けられた溝と、を含み、前記溝の深さは、2μm以上である、ウェーハと、
    前記上面に設けられたAlGa1−zN(0.03≦z≦0.15)であるAl含有層を含む半導体層と、
    を備えた半導体装置。
  17. 前記第3領域の内側端部と前記上面の外縁との距離の幅は、2.0mm以上10mm以下である、請求項16に記載のウェーハ半導体装置。
  18. 前記Al含有層の厚さは、前記半導体層の厚さの20%以上40%以下である、請求項16または17に記載の半導体装置。
  19. 前記半導体層は、複数の前記Al含有層を含み、
    前記複数のAl含有層のそれぞれの厚さの和は、前記半導体層の厚さの20%以上40%以下である、請求項16または17に記載の半導体装置。
  20. 前記半導体層は、ピーク波長が330nm以上400nm以下である光を発する発光層をさらに含み、
    前記発光層と前記ウェーハとの間に、前記複数Al含有層の一部又は全部が位置する、請求項16〜19のいずれか1つに記載の半導体装置。
JP2018178761A 2018-03-26 2018-09-25 半導体装置の製造方法、及び、半導体装置 Pending JP2019176124A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020190027431A KR20190112647A (ko) 2018-03-26 2019-03-11 반도체 장치의 제조 방법 및 반도체 장치
US16/354,056 US11101404B2 (en) 2018-03-26 2019-03-14 Method for manufacturing semiconductor device and semiconductor device
CN201910193342.2A CN110364414A (zh) 2018-03-26 2019-03-14 半导体装置的制造方法以及半导体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018058967 2018-03-26
JP2018058967 2018-03-26

Publications (1)

Publication Number Publication Date
JP2019176124A true JP2019176124A (ja) 2019-10-10

Family

ID=68167254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018178761A Pending JP2019176124A (ja) 2018-03-26 2018-09-25 半導体装置の製造方法、及び、半導体装置

Country Status (3)

Country Link
JP (1) JP2019176124A (ja)
KR (1) KR20190112647A (ja)
CN (1) CN110364414A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978641B1 (ja) * 2020-09-17 2021-12-08 日本碍子株式会社 Iii族元素窒化物半導体基板
WO2022059244A1 (ja) * 2020-09-17 2022-03-24 日本碍子株式会社 Iii族元素窒化物半導体基板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018116A1 (ja) * 2010-08-06 2012-02-09 日亜化学工業株式会社 サファイア基板と半導体発光素子
JP2013118384A (ja) * 2011-12-05 2013-06-13 Samsung Electronics Co Ltd シリコン基板、これを採用したエピ構造体及びシリコン基板の製造方法
JP2014146731A (ja) * 2013-01-30 2014-08-14 Dowa Electronics Materials Co Ltd Iii族窒化物半導体発光素子
JP2015211136A (ja) * 2014-04-25 2015-11-24 日亜化学工業株式会社 窒化物半導体素子およびその製造方法
CN207134376U (zh) * 2017-08-10 2018-03-23 厦门三安光电有限公司 外延生长衬底及发光二极管

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915282B2 (ja) * 2007-05-28 2012-04-11 三菱化学株式会社 Iii族窒化物半導体成長用の下地基板およびiii族窒化物半導体の成長方法
JP4927121B2 (ja) * 2009-05-29 2012-05-09 シャープ株式会社 窒化物半導体ウェハ、窒化物半導体素子および窒化物半導体素子の製造方法
US9006865B2 (en) 2010-06-25 2015-04-14 Dowa Electronics Materials Co., Ltd. Epitaxial growth substrate, semiconductor device, and epitaxial growth method
EP2738824B1 (en) * 2011-07-26 2022-08-24 Nichia Corporation Semiconductor light-emitting element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018116A1 (ja) * 2010-08-06 2012-02-09 日亜化学工業株式会社 サファイア基板と半導体発光素子
JP2013118384A (ja) * 2011-12-05 2013-06-13 Samsung Electronics Co Ltd シリコン基板、これを採用したエピ構造体及びシリコン基板の製造方法
JP2014146731A (ja) * 2013-01-30 2014-08-14 Dowa Electronics Materials Co Ltd Iii族窒化物半導体発光素子
JP2015211136A (ja) * 2014-04-25 2015-11-24 日亜化学工業株式会社 窒化物半導体素子およびその製造方法
CN207134376U (zh) * 2017-08-10 2018-03-23 厦门三安光电有限公司 外延生长衬底及发光二极管

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6978641B1 (ja) * 2020-09-17 2021-12-08 日本碍子株式会社 Iii族元素窒化物半導体基板
WO2022059244A1 (ja) * 2020-09-17 2022-03-24 日本碍子株式会社 Iii族元素窒化物半導体基板
US11862689B2 (en) 2020-09-17 2024-01-02 Ngk Insulators, Ltd. Group-III element nitride semiconductor substrate

Also Published As

Publication number Publication date
CN110364414A (zh) 2019-10-22
KR20190112647A (ko) 2019-10-07

Similar Documents

Publication Publication Date Title
JP5995302B2 (ja) 窒化物半導体発光素子の製造方法
JP2009091175A (ja) GaNエピタキシャル基板、半導体デバイス、GaNエピタキシャル基板及び半導体デバイスの製造方法
US8860183B2 (en) Semiconductor substrate, semiconductor device, and manufacturing methods thereof
JP6120204B2 (ja) エピタキシャルウェハ及びその製造方法、紫外発光デバイス
KR20120004159A (ko) 기판구조체 및 그 제조방법
EP2492953A2 (en) Nitride based light emitting device using patterned lattice buffer layer and method of manufacturing the same
US9543476B2 (en) UV light emitting diode and method of fabricating the same
JP2019176124A (ja) 半導体装置の製造方法、及び、半導体装置
US20100219442A1 (en) Semiconductor light emitting device and method for manufacturing thereof
WO2020092722A9 (en) Method of obtaining a smooth surface with epitaxial lateral overgrowth
JP5040721B2 (ja) 窒化物半導体装置およびその製造方法
WO2009087855A1 (ja) 半導体デバイスの製造方法
JP5646545B2 (ja) 半導体発光素子及びその製造方法
US11101404B2 (en) Method for manufacturing semiconductor device and semiconductor device
US8987026B2 (en) Semiconductor light emitting device
JP2008117902A (ja) 窒化物半導体素子の製造方法
TW201933625A (zh) 發光元件及其製造方法
JP5723341B2 (ja) 半導体装置の製造方法
JP6963195B2 (ja) 半導体素子の製造方法
JP2013138093A (ja) 窒化物半導体素子及びその製造方法
JP7246038B2 (ja) 窒化物半導体レーザダイオード
US8564134B2 (en) Semiconductor substrate, semiconductor device, and manufacturing methods thereof
US7956380B2 (en) Semiconductor light-emitting device
JP5951732B2 (ja) 半導体発光素子
JP2014049637A (ja) Iii族窒化物半導体発光素子を作製する方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230202