JP2019174371A - ガスセンサ及びガスセンサの制御方法 - Google Patents

ガスセンサ及びガスセンサの制御方法 Download PDF

Info

Publication number
JP2019174371A
JP2019174371A JP2018064970A JP2018064970A JP2019174371A JP 2019174371 A JP2019174371 A JP 2019174371A JP 2018064970 A JP2018064970 A JP 2018064970A JP 2018064970 A JP2018064970 A JP 2018064970A JP 2019174371 A JP2019174371 A JP 2019174371A
Authority
JP
Japan
Prior art keywords
oxygen concentration
control means
preliminary
voltage
concentration control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018064970A
Other languages
English (en)
Other versions
JP6991091B2 (ja
Inventor
拓 岡本
Taku Okamoto
拓 岡本
信和 生駒
Nobukazu Ikoma
信和 生駒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2018064970A priority Critical patent/JP6991091B2/ja
Priority to US16/365,763 priority patent/US10845326B2/en
Priority to DE102019002274.2A priority patent/DE102019002274A1/de
Priority to CN201910241414.6A priority patent/CN110320261B/zh
Publication of JP2019174371A publication Critical patent/JP2019174371A/ja
Application granted granted Critical
Publication of JP6991091B2 publication Critical patent/JP6991091B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/417Systems using cells, i.e. more than one cell and probes with solid electrolytes
    • G01N27/419Measuring voltages or currents with a combination of oxygen pumping cells and oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4071Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure
    • G01N27/4072Cells and probes with solid electrolytes for investigating or analysing gases using sensor elements of laminated structure characterized by the diffusion barrier
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts
    • G01N27/4076Reference electrodes or reference mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/409Oxygen concentration cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/41Oxygen pumping cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

【課題】排気ガスのような未燃成分、酸素の存在下に共存する複数成分(例えばNO、NH3等)の濃度を長期間にわたり精度よく測定することができるガスセンサにおいて、ノイズの発生を抑えることができ、しかも、センシングの応答性を高めることができるガスセンサ及びガスセンサの制御方法を提供する。【解決手段】第1動作時において予備酸素濃度制御手段に印加される第1電圧をVa、第2動作時において予備酸素濃度制御手段に印加される第2電圧をVb、予備酸素濃度制御手段の停止時に印加される電圧をVoffとしたとき、Voff<Va<Vbである。【選択図】図3

Description

本発明は、被測定ガス中の複数目的成分の各濃度を測定することが可能なガスセンサ及びガスセンサの制御方法に関する。
特許文献1では、排気ガスのような未燃成分、酸素の存在下に共存する複数成分(例えばNO、NH等)の濃度を長期間にわたり精度よく測定することができるガスセンサを提供することを目的としている。
当該目的を達成するため、特許文献1に記載されたガスセンサは、測定室内の特定成分の濃度を測定する特定成分測定手段と、予備調整室内の酸素濃度を制御する予備酸素濃度制御手段と、予備酸素濃度制御手段の駆動及び停止を制御する駆動制御手段と、予備酸素濃度制御手段の駆動時及び停止時における特定成分測定手段からのセンサ出力との差、及び各々のセンサ出力の一方に基づいて、第1目的成分と第2目的成分の濃度を取得する目的成分取得手段とを有する。
国際公開第2017/222002号
特許文献1では、上述したように、予備酸素濃度制御手段の駆動時及び停止時における特定成分測定手段からのセンサ出力との差、及び各々のセンサ出力の一方に基づいて、第1目的成分と第2目的成分の濃度を取得するようにしている。予備酸素濃度制御手段は、固体電解質と該固体電解質の両面に形成された2つの電極とを有し、1つのコンデンサを構成する。特に、予備酸素濃度制御手段の駆動時に印加される駆動電圧と、停止時に印加される停止電圧(0V)との差が大きい場合、予備酸素濃度制御手段に流れる電流波形の立ち下りと立ち上がりにオーバーシュートが発生し易く、ノイズの原因となるおそれがある。そこで、波形が安定してからデータを読み出すことが考えられるが、波形が安定するまでに時間がかかり、センシングの応答性が低下するおそれがある。
本発明はこのような課題を考慮してなされたものであり、排気ガスのような未燃成分、酸素の存在下に共存する複数成分(例えばNO、NH等)の濃度を長期間にわたり精度よく測定することができるガスセンサにおいて、ノイズの発生を抑えることができ、しかも、センシングの応答性を高めることができるガスセンサ及びガスセンサの制御方法を提供することを目的とする。
[1] 第1の本発明に係るガスセンサは、少なくとも酸素イオン伝導性の固体電解質からなる構造体と、前記構造体に形成され、被測定ガスが導入されるガス導入口と、前記ガス導入口に連通する酸素濃度調整室と、前記酸素濃度調整室に連通する測定室と、前記ガス導入口と前記酸素濃度調整室との間に設けられ、前記ガス導入口に連通する予備調整室とを有するセンサ素子と、前記酸素濃度調整室内の酸素濃度を制御する酸素濃度制御手段と、前記センサ素子の温度を制御する温度制御手段と、前記測定室内の特定成分の濃度を測定する特定成分測定手段と、前記固体電解質と該固体電解質の両面に形成された2つの電極とを有し、前記予備調整室内の酸素濃度を制御する予備酸素濃度制御手段と、前記予備酸素濃度制御手段を制御する駆動制御手段と、前記予備酸素濃度制御手段の第1動作時における前記特定成分測定手段からのセンサ出力と、前記予備酸素濃度制御手段の第2動作時における前記特定成分測定手段からのセンサ出力との差、及び前記各々のセンサ出力の一方に基づいて、第1目的成分と第2目的成分の濃度を取得する目的成分取得手段とを有するガスセンサであって、前記第1動作時において前記予備酸素濃度制御手段に印加される第1電圧をVa、前記第2動作時において前記予備酸素濃度制御手段に印加される第2電圧をVb、前記予備酸素濃度制御手段の停止時に印加される電圧をVoffとしたとき、
Voff<Va<Vb
であることを特徴とする。
これにより、排気ガスのような未燃成分、酸素の存在下に共存する複数成分(例えばNO、NH等)の濃度を長期間にわたり精度よく測定することができるガスセンサにおいて、ノイズの発生を抑えることができると共に、センシングの応答性を高めることができる。
[2] 第1の本発明において、前記予備酸素濃度制御手段に印加される電圧の範囲であって、前記第2目的成分(NH)が前記第2目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達し、前記第1目的成分(NO)が前記第1目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達する電圧の範囲を第1電圧範囲とし、前記予備酸素濃度制御手段に印加される電圧の範囲であって、前記第2目的成分(NH)が前記予備調整室で前記第1目的成分(NO)に変化して前記酸素濃度調整室内に到達し、前記第1目的成分(NO)が前記第1目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達する電圧の範囲を第2電圧範囲としたとき、前記第1電圧Vaは前記第1電圧範囲に含まれ、前記第2電圧Vbは前記第2電圧範囲に含まれることが好ましい。
[3] 第1の本発明において、前記第1目的成分を含み、且つ、前記第2目的成分を含まない第1被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(1)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(1)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(1)とし、前記第2目的成分を含み、且つ、前記第1目的成分を含まない第2被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(2)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(2)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(2)とし、Ip3off(1)−Ip3va(1)=ΔIp3(1)、Ip3off(2)−Ip3vb(2)=ΔIp3(2)とし、前記第2動作時において前記予備酸素濃度制御手段に前記第2電圧Vbが印加された際の|ΔIp3(1)−ΔIp3(2)|を基準差分としたとき、前記第1動作時において前記予備酸素濃度制御手段に前記第1電圧Vaが印加された際の|ΔIp3(1)−ΔIp3(2)|が前記基準差分の1/2以下である。好ましくは1/10以下、さらに好ましくは1/100以下である。
[4] 第1の本発明において、前記第1目的成分を含み、且つ、前記第2目的成分を含まない第1被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(1)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(1)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(1)とし、前記第2目的成分を含み、且つ、前記第1目的成分を含まない第2被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(2)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(2)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(2)とし、Ip3off(1)−Ip3va(1)=ΔIp3(1)、Ip3off(2)−Ip3vb(2)=ΔIp3(2)としたとき、前記第1動作時において前記予備酸素濃度制御手段に前記第1電圧Vaが印加された際の|ΔIp3(1)−ΔIp3(2)|が0.05μA以下である。好ましくは0.01μA以下、さらに好ましくは0.001μA以下である。
[5] 第1の本発明において、前記特定成分がNO、前記第1目的成分がNO、前記第2目的成分がNHであってもよい。
[6] 第2の本発明に係るガスセンサの制御方法は、少なくとも酸素イオン伝導性の固体電解質からなる構造体と、前記構造体に形成され、被測定ガスが導入されるガス導入口と、前記ガス導入口に連通する酸素濃度調整室と、前記酸素濃度調整室に連通する測定室と、前記ガス導入口と前記酸素濃度調整室との間に設けられ、前記ガス導入口に連通する予備調整室とを有するセンサ素子と、前記酸素濃度調整室内の酸素濃度を制御する酸素濃度制御手段と、前記センサ素子の温度を制御する温度制御手段と、前記測定室内の特定成分の濃度を測定する特定成分測定手段と、前記固体電解質と該固体電解質の両面に形成された2つの電極とを有し、前記予備調整室内の酸素濃度を制御する予備酸素濃度制御手段と、前記予備酸素濃度制御手段を制御する駆動制御手段と、前記予備酸素濃度制御手段の第1動作時における前記特定成分測定手段からのセンサ出力と、前記予備酸素濃度制御手段の第2動作時における前記特定成分測定手段からのセンサ出力との差、及び前記各々のセンサ出力の一方に基づいて、第1目的成分と第2目的成分の濃度を取得する目的成分取得手段とを有するガスセンサの制御方法において、前記第1動作時において前記予備酸素濃度制御手段に印加される第1電圧をVa、前記第2動作時において前記予備酸素濃度制御手段に印加される第2電圧をVb、前記予備酸素濃度制御手段の停止時に印加される電圧をVoffとしたとき、
Voff<Va<Vb
に設定して実施することを特徴とする。
[7] 第2の本発明において、前記予備酸素濃度制御手段に印加される電圧の範囲であって、前記第2目的成分が前記第2目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達し、前記第1目的成分が前記第1目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達する電圧の範囲を第1電圧範囲とし、前記予備酸素濃度制御手段に印加される電圧の範囲であって、前記第2目的成分が前記予備調整室で前記第1目的成分に変化して前記酸素濃度調整室内に到達し、前記第1目的成分が前記第1目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達する電圧の範囲を第2電圧範囲としたとき、前記第1電圧Vaを前記第1電圧範囲から設定し、前記第2電圧Vbを前記第2電圧範囲から設定することが好ましい。
[8] 第2の本発明において、前記第1目的成分を含み、且つ、前記第2目的成分を含まない第1被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(1)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(1)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(1)とし、前記第2目的成分を含み、且つ、前記第1目的成分を含まない第2被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(2)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(2)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(2)とし、Ip3off(1)−Ip3va(1)=ΔIp3(1)、Ip3off(2)−Ip3vb(2)=ΔIp3(2)とし、前記第2動作時において前記予備酸素濃度制御手段に前記第2電圧Vbが印加された際の|ΔIp3(1)−ΔIp3(2)|を基準差分としたとき、前記第1動作時において前記予備酸素濃度制御手段に前記第1電圧Vaが印加された際の|ΔIp3(1)−ΔIp3(2)|を前記基準差分の1/2以下にする。好ましくは1/10以下、さらに好ましくは1/100以下にする。
[9] 第2の本発明において、前記第1目的成分を含み、且つ、前記第2目的成分を含まない第1被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(1)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(1)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(1)とし、前記第2目的成分を含み、且つ、前記第1目的成分を含まない第2被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(2)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(2)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(2)とし、Ip3off(1)−Ip3va(1)=ΔIp3(1)、Ip3off(2)−Ip3vb(2)=ΔIp3(2)としたとき、前記第1動作時において前記予備酸素濃度制御手段に前記第1電圧Vaが印加された際の|ΔIp3(1)−ΔIp3(2)|を0.05μA以下にする。好ましくは0.01μA以下、さらに好ましくは0.001μA以下にする。
[10] 第2の本発明において、前記特定成分がNO、前記第1目的成分がNO、前記第2目的成分がNHであってもよい。
本発明に係るガスセンサ及びガスセンサの制御方法は、排気ガスのような未燃成分、酸素の存在下に共存する複数成分(例えばNO、NH等)の濃度を長期間にわたり精度よく測定することができるガスセンサ及びガスセンサの制御方法において、ノイズの発生を抑えることができ、しかも、センシングの応答性を高めることができる。
本実施の形態に係るガスセンサの一構造例を示す断面図である。 ガスセンサを模式的に示す構成図である。 第1被測定ガス(NO)及び第2被測定ガス(NH)毎に、予備電圧Vp0に対する測定ポンプ電流(センサ出力)Ip3の変化と、Vp0=0Vのときの測定ポンプ電流Ip3から、予備電圧Vp0の増加に伴って徐々に低下する測定ポンプ電流Ip3を差し引いた変化量ΔIp3の変化を示すグラフである。 図4Aは比較例の時間に対する測定ポンプ電流(センサ出力)Ip3の変化を示すグラフであり、図4Bは実施例の時間に対する測定ポンプ電流(センサ出力)Ip3の変化を示すグラフである。 予備ポンプセルが第2動作している場合の予備調整室内、酸素濃度調整室内及び測定室内の反応を模式的に示す説明図である。 予備ポンプセルが第1動作している場合の予備調整室内、酸素濃度調整室内及び測定室内の反応を模式的に示す説明図である。 ガスセンサで使用されるマップをグラフ化して示す図である。 ガスセンサで使用されるマップをテーブルの形式で示す説明図である。 ガスセンサの制御方法の一例を示すフローチャートである。 ガスセンサの変形例の一構造例を示す断面図である。
以下、本発明に係るガスセンサ及びガスセンサの制御方法の実施の形態例を図1〜図10を参照しながら説明する。なお、本明細書において、数値範囲を示す「〜」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。
本実施の形態に係るガスセンサ10は、図1及び図2に示すように、センサ素子12を有する。センサ素子12は、酸素イオン伝導性の固体電解質からなる構造体14と、該構造体14に形成され、被測定ガスが導入されるガス導入口16と、構造体14内に形成され、ガス導入口16に連通する酸素濃度調整室18と、構造体14内に形成され、酸素濃度調整室18に連通する測定室20とを有する。
酸素濃度調整室18は、ガス導入口16に連通する主調整室18aと、主調整室18aに連通する副調整室18bとを有する。測定室20は副調整室18bに連通している。
さらに、このガスセンサ10は、構造体14のうち、ガス導入口16と主調整室18aとの間に設けられ、ガス導入口16に連通する予備調整室21を有する。
具体的には、センサ素子12の構造体14は、第1基板層22aと、第2基板層22bと、第3基板層22cと、第1固体電解質層24と、スペーサ層26と、第2固体電解質層28との6つの層が、図面視で下側からこの順に積層されて構成されている。各層は、それぞれジルコニア(ZrO)等の酸素イオン伝導性固体電解質層にて構成されている。
センサ素子12の先端部側であって、第2固体電解質層28の下面と第1固体電解質層24の上面との間には、ガス導入口16と、第1拡散律速部30と、予備調整室21と、第2拡散律速部32と、酸素濃度調整室18と、第3拡散律速部34と、測定室20とが備わっている。また、酸素濃度調整室18を構成する主調整室18aと、副調整室18bとの間に第4拡散律速部36が備わっている。
これらガス導入口16と、第1拡散律速部30と、予備調整室21と、第2拡散律速部32と、主調整室18aと、第4拡散律速部36と、副調整室18b、第3拡散律速部34と、測定室20とは、この順に連通する態様にて隣接形成されている。ガス導入口16から測定室20に至る部位を、ガス流通部とも称する。
ガス導入口16と、予備調整室21と、主調整室18aと、副調整室18bと、測定室20は、スペーサ層26をくり抜いた態様にて設けられた内部空間である。予備調整室21と、主調整室18aと、副調整室18bと、測定室20はいずれも、各上部が第2固体電解質層28の下面で、各下部が第1固体電解質層24の上面で、各側部がスペーサ層26の側面で区画されている。
第1拡散律速部30、第3拡散律速部34及び第4拡散律速部36は、いずれも2本の横長の(図面に垂直な方向に開口が長手方向を有する)スリットとして設けられている。第2拡散律速部32は、1本の横長の(図面に垂直な方向に開口が長手方向を有する)スリットとして設けられている。
また、第3基板層22cの上面と、スペーサ層26の下面との間であって、ガス流通部よりも先端側から遠い位置には、基準ガス導入空間38が設けられている。基準ガス導入空間38は、上部がスペーサ層26の下面で、下部が第3基板層22cの上面で、側部が第1固体電解質層24の側面で区画された内部空間である。基準ガス導入空間38には、基準ガスとして、例えば酸素や大気が導入される。
ガス導入口16は、外部空間に対して開口している部位であり、該ガス導入口16を通じて外部空間からセンサ素子12内に被測定ガスが取り込まれる。
第1拡散律速部30は、ガス導入口16から予備調整室21に導入される被測定ガスに、所定の拡散抵抗を付与する部位である。予備調整室21については後述する。
第2拡散律速部32は、予備調整室21から主調整室18aに導入される被測定ガスに、所定の拡散抵抗を付与する部位である。
主調整室18aは、ガス導入口16から導入された被測定ガス中の酸素分圧を調整するための空間として設けられる。酸素分圧は、主ポンプセル40が作動することによって調整される。
主ポンプセル40は、主内側ポンプ電極42と、外側ポンプ電極44と、これらの電極に挟まれた酸素イオン伝導性の固体電解質とを含んで構成される電気化学的ポンプセル(主電気化学的ポンピングセル)である。主内側ポンプ電極42は、主調整室18aを区画する第1固体電解質層24の上面、第2固体電解質層28の下面、及び、スペーサ層26の側面のそれぞれのほぼ全面に設けられている。外側ポンプ電極44は、第2固体電解質層28の上面の主内側ポンプ電極42と対応する領域に外部空間に露出する態様にて設けられている。主内側ポンプ電極42と外側ポンプ電極44は、被測定ガス中のNOx成分に対する還元能力を弱めた材料で構成される。例えば平面視矩形状の多孔質サーメット電極(例えば、0.1wt%〜30.0wt%のAuを含むPt等の貴金属とZrOとのサーメット電極)として形成される。
主ポンプセル40は、センサ素子12の外部に備わる第1可変電源46により第1ポンプ電圧Vp1を印加して、外側ポンプ電極44と主内側ポンプ電極42との間に第1ポンプ電流Ip1を流すことにより、主調整室18a内の酸素を外部空間に汲み出し、あるいは、外部空間の酸素を主調整室18a内に汲み入れることが可能となっている。
また、センサ素子12は、電気化学的センサセルである第1酸素分圧検出センサセル50を有する。この第1酸素分圧検出センサセル50は、主内側ポンプ電極42と、第3基板層22cの上面と第1固体電解質層24とに挟まれる基準電極48と、これらの電極に挟まれた酸素イオン伝導性固体電解質とによって構成されている。基準電極48は、外側ポンプ電極44等と同様の多孔質サーメットからなる平面視ほぼ矩形状の電極である。また、基準電極48の周囲には、多孔質アルミナからなり、且つ、基準ガス導入空間38につながる基準ガス導入層52が設けられている。すなわち、基準電極48の表面に、基準ガス導入空間38の基準ガスが基準ガス導入層52を介して導入されるようになっている。第1酸素分圧検出センサセル50は、主調整室18a内の雰囲気と基準ガス導入空間38の基準ガスとの間の酸素濃度差に起因して主内側ポンプ電極42と基準電極48との間に第1起電力V1が発生する。
第1酸素分圧検出センサセル50において生じる第1起電力V1は、主調整室18aに存在する雰囲気の酸素分圧に応じて変化する。センサ素子12は、上記第1起電力V1によって、主ポンプセル40の第1可変電源46をフィードバック制御する。これにより、第1可変電源46が主ポンプセル40に印加する第1ポンプ電圧Vp1を、主調整室18aの雰囲気の酸素分圧に応じて制御することができる。
第4拡散律速部36は、主調整室18aでの主ポンプセル40の動作により酸素濃度(酸素分圧)が制御された被測定ガスに所定の拡散抵抗を付与して、該被測定ガスを副調整室18bに導く部位である。
副調整室18bは、予め主調整室18aにおいて酸素濃度(酸素分圧)が調整された後、第4拡散律速部36を通じて導入された被測定ガスに対して、さらに補助ポンプセル54による酸素分圧の調整を行うための空間として設けられている。これにより、副調整室18b内の酸素濃度を高精度に一定に保つことができるため、このガスセンサ10は、精度の高いNOx濃度測定が可能となる。
補助ポンプセル54は、電気化学的ポンプセルであり、副調整室18bに面する第2固体電解質層28の下面の略全体に設けられた補助ポンプ電極56と、外側ポンプ電極44と、第2固体電解質層28とによって構成される。
なお、補助ポンプ電極56についても、主内側ポンプ電極42と同様に、被測定ガス中のNOx成分に対する還元能力を弱めた材料を用いて形成される。
補助ポンプセル54は、補助ポンプ電極56と外側ポンプ電極44との間に所望の第2ポンプ電圧Vp2を印加することにより、副調整室18b内の雰囲気中の酸素を外部空間に汲み出し、あるいは、外部空間から副調整室18b内に汲み入れることが可能となっている。
また、副調整室18b内における雰囲気中の酸素分圧を制御するために、補助ポンプ電極56と、基準電極48と、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24とによって電気化学的なセンサセル、すなわち、補助ポンプ制御用の第2酸素分圧検出センサセル58が構成されている。
なお、この第2酸素分圧検出センサセル58にて検出される第2起電力V2に基づいて電圧制御される第2可変電源60にて、補助ポンプセル54がポンピングを行う。これにより、副調整室18b内の雰囲気中の酸素分圧は、NOxの測定に実質的に影響がない低い分圧にまで制御されるようになっている。
また、これと共に、補助ポンプセル54の第2ポンプ電流Ip2が、第2酸素分圧検出センサセル58の起電力V1の制御に用いられるようになっている。具体的には、第2ポンプ電流Ip2は、制御信号として第2酸素分圧検出センサセル58に入力され、その第2起電力V2が制御されることにより、第4拡散律速部36を通じて副調整室18b内に導入される被測定ガス中の酸素分圧の勾配が常に一定となるように制御されている。ガスセンサ10をNOxセンサとして使用する際は、主ポンプセル40と補助ポンプセル54との働きによって、副調整室18b内での酸素濃度は各条件の所定の値に精度良く保たれる。
第3拡散律速部34は、副調整室18bで補助ポンプセル54の動作により酸素濃度(酸素分圧)が制御された被測定ガスに所定の拡散抵抗を付与して、該被測定ガスを測定室20に導く部位である。
NOx濃度の測定は、主として、測定室20内に設けられた測定用ポンプセル61の動作により行われる。測定用ポンプセル61は、測定電極62と、外側ポンプ電極44と、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24とによって構成された電気化学的ポンプセルである。測定電極62は、測定室20内の例えば第1固体電解質層24の上面に直に設けられ、被測定ガス中のNOx成分に対する還元能力を、主内側ポンプ電極42よりも高めた材料にて構成された多孔質サーメット電極である。測定電極62は、測定電極62上の雰囲気中に存在するNOxを還元するNOx還元触媒としても機能する。
測定用ポンプセル61は、測定電極62の周囲(測定室20内)の雰囲気中における窒素酸化物の分解によって生じた酸素を汲み出して、その発生量を測定ポンプ電流Ip3、すなわち、センサ出力として検出することができる。
また、測定電極62の周囲(測定室20内)の酸素分圧を検出するために、第1固体電解質層24と、測定電極62と、基準電極48とによって電気化学的なセンサセル、すなわち、測定用ポンプ制御用の第3酸素分圧検出センサセル66が構成されている。第3酸素分圧検出センサセル66にて検出された第3起電力V3に基づいて第3可変電源68が制御される。
副調整室18b内に導かれた被測定ガスは、酸素分圧が制御された状況下で第3拡散律速部34を通じて測定室20内の測定電極62に到達する。測定電極62の周囲の被測定ガス中の窒素酸化物は還元されて酸素を発生する。そして、この発生した酸素は測定用ポンプセル61によってポンピングされる。その際、第3酸素分圧検出センサセル66にて検出された第3起電力V3が一定となるように第3可変電源68の第3ポンプ電圧Vp3が制御される。測定電極62の周囲において発生する酸素の量は、被測定ガス中の窒素酸化物の濃度に比例する。従って、測定用ポンプセル61の測定ポンプ電流Ip3を用いて被測定ガス中の窒素酸化物濃度を算出することができる。すなわち、測定用ポンプセル61は、測定室20内の特定成分(NO)の濃度を測定する特定成分測定手段を構成する。
また、このガスセンサ10は、電気化学的なセンサセル70を有する。このセンサセル70は、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24と、第3基板層22cと、外側ポンプ電極44と、基準電極48とを有する。このセンサセル70によって得られる起電力Vrefによりセンサ外部の被測定ガス中の酸素分圧を検出可能となっている。
さらに、センサ素子12においては、第2基板層22bと第3基板層22cとに上下から挟まれた態様にて、ヒータ72が形成されている。ヒータ72は、第1基板層22aの下面に設けられた図示しないヒータ電極を通して外部から給電されることにより発熱する。ヒータ72が発熱することによって、センサ素子12を構成する固体電解質の酸素イオン伝導性が高められる。ヒータ72は、予備調整室21と酸素濃度調整室18の全域に渡って埋設されており、センサ素子12の所定の場所を所定の温度に加熱、保温することができるようになっている。なお、ヒータ72の上下面には、第2基板層22b及び第3基板層22cとの電気的絶縁性を得る目的で、アルミナ等からなるヒータ絶縁層74が形成されている(以下、ヒータ72、ヒータ電極、ヒータ絶縁層74をまとめてヒータ部とも称する)。
そして、予備調整室21は、後述する駆動制御手段108(図2参照)によって駆動し、駆動中は、ガス導入口16から導入された被測定ガス中の酸素分圧を調整するための空間として機能する。酸素分圧は、予備ポンプセル80が作動することによって調整される。
予備ポンプセル80は、予備調整室21に面する第2固体電解質層28の下面の略全体に設けられた予備ポンプ電極82と、外側ポンプ電極44と、第2固体電解質層28とによって構成される、予備的な電気化学的ポンプセルである。
なお、予備ポンプ電極82についても、主内側ポンプ電極42と同様に、被測定ガス中のNOx成分に対する還元能力を弱めた材料を用いて形成される。
予備ポンプセル80は、予備ポンプ電極82と外側ポンプ電極44との間に所望の予備電圧Vp0を印加することにより、予備調整室21内の雰囲気中の酸素を外部空間に汲み出し、あるいは、外部空間から予備調整室21内に汲み入れることが可能となっている。
また、このガスセンサ10は、予備調整室21内における雰囲気中の酸素分圧を制御するために、予備ポンプ制御用の予備酸素分圧検出センサセル84を有する。このセンサセル84は、予備ポンプ電極82と、基準電極48と、第2固体電解質層28と、スペーサ層26と、第1固体電解質層24とを有する。
なお、この予備酸素分圧検出センサセル84にて検出される予備起電力V0に基づいて電圧制御される予備可変電源86にて、予備ポンプセル80がポンピングを行う。これにより、予備調整室21内の雰囲気中の酸素分圧は、NOxの測定に実質的に影響がない低い分圧にまで制御されるようになっている。
また、これと共に、その予備ポンプ電流Ip0が、予備酸素分圧検出センサセル84の起電力の制御に用いられるようになっている。具体的には、予備ポンプ電流Ip0は、制御信号として予備酸素分圧検出センサセル84に入力され、その予備起電力V0が制御されることにより、第1拡散律速部30から予備調整室21内に導入される被測定ガス中の酸素分圧の勾配が常に一定となるように制御されている。
なお、予備調整室21は、緩衝空間としても機能する。すなわち、外部空間における被測定ガスの圧力変動(被測定ガスが自動車の排気ガスの場合であれば排気圧の脈動)によって生じる被測定ガスの濃度変動を、打ち消すことが可能である。
さらに、ガスセンサ10は、図2に模式的に示すように、酸素濃度調整室18内の酸素濃度を制御する酸素濃度制御手段100と、センサ素子12の温度を制御する温度制御手段102と、測定室20内の特定成分(NO)の濃度を測定する特定成分測定手段104と、予備酸素濃度制御手段106と、駆動制御手段108と、目的成分取得手段110とを有する。
なお、酸素濃度制御手段100、温度制御手段102、特定成分測定手段104、予備酸素濃度制御手段106、駆動制御手段108及び目的成分取得手段110は、例えば1つ又は複数のCPU(中央処理ユニット)と記憶装置等を有する1以上の電子回路にて構成される。電子回路は、例えば記憶装置に記憶されているプログラムをCPUが実行することにより、所定の機能が実現されるソフトウェア機能部でもある。もちろん、複数の電子回路を機能に合わせて接続したFPGA(Field-Programmable Gate Array)等の集積回路で構成してもよい。
従来は、NO、NHの目的成分に対して、酸素濃度調整室18内で全てをNOに変換した後、測定室20に導入し、これら2成分の総量を測定していた。つまり、2つの目的成分毎の濃度、すなわち、NO及びNHの各濃度を測定することができなかった。
これに対して、ガスセンサ10は、上述した酸素濃度調整室18、酸素濃度制御手段100及び温度制御手段102及び特定成分測定手段104に加えて、予備調整室21、予備酸素濃度制御手段106、駆動制御手段108及び目的成分取得手段110を具備することで、NO及びNHの各濃度を取得することができるようにしたものである。
酸素濃度制御手段100は、予め設定された酸素濃度の条件と、第1酸素分圧検出センサセル50(図1参照)において生じる第1起電力V1とに基づいて、第1可変電源46をフィードバック制御することにより、酸素濃度調整室18内の酸素濃度を、上記条件に従った濃度に調整する。
温度制御手段102は、予め設定されたセンサ温度の条件と、センサ素子12の温度を計測する温度センサ(図示せず)からの計測値とに基づいて、ヒータ72をフィードバック制御することにより、センサ素子12の温度を、上記条件に従った温度に調整する。
ガスセンサ10は、これら酸素濃度制御手段100又は温度制御手段102、あるいは酸素濃度制御手段100及び温度制御手段102によって、酸素濃度調整室18内のNOを分解させることなく、NHを全てNOに変換するように制御する。
予備酸素濃度制御手段106は、予め設定された酸素濃度の条件と、予備酸素分圧検出センサセル84(図1参照)において生じる予備起電力V0とに基づいて、予備可変電源86をフィードバック制御することにより、予備調整室21内の酸素濃度を、条件に従った濃度に調整する。
そして、目的成分取得手段110は、予備酸素濃度制御手段106の第1動作による特定成分測定手段104からのセンサ出力と、予備酸素濃度制御手段106の第2動作による特定成分測定手段104からのセンサ出力との差に基づいて、NO及びNHの各濃度を取得する。予備酸素濃度制御手段106の第1動作及び第2動作については後述する。
ここで、第1被測定ガス及び第2被測定ガスを供給した際に、予備電圧Vp0に対する測定ポンプ電流(センサ出力)Ip3の変化、すなわち、NO濃度及びNH濃度の変化について、図3を参照しながら説明する。
先ず、第1被測定ガスは、温度が250℃、酸素濃度が0.5%、HO濃度が3%、NO濃度が500ppm、流量が200リットル/minである。従って、以下の説明では、第1被測定ガスを「第1被測定ガス(NO)」と記す。
第2被測定ガスは、温度が250℃、酸素濃度が0.5%、HO濃度が3%、NH濃度が500ppm、流量が200リットル/minである。従って、以下の説明では、第2被測定ガスを「第2被測定ガス(NH)」と記す。
そして、第1被測定ガス(NO)を流し、予備電圧Vp0を0Vから0.4Vに変化させた場合のNO濃度の変化、すなわち、NOに関する測定ポンプ電流(センサ出力)Ip3NOの変化を図3の曲線LNOで示し、Vp0=0Vのときの測定ポンプ電流Ip3NOから、予備電圧Vp0の増加に伴って徐々に低下する測定ポンプ電流Ip3NOを差し引いた変化量ΔIp3NOの変化を図3の曲線LΔNOで示す。
同様に、第2被測定ガス(NH)を流し、予備電圧Vp0を0Vから0.4Vに変化させた場合のNH濃度の変化、すなわち、測定ポンプ電流Ip3NH3の変化を図3の曲線LNH3で示し、Vp0=0Vのときの測定ポンプ電流Ip3NH3から、予備電圧Vp0の増加に伴って徐々に低下する測定ポンプ電流Ip3NH3を差し引いた変化量ΔIp3NH3の変化を図3の曲線LΔNH3で示す。
NOに関する変化量ΔIp3NOの変化は曲線LΔNOに示すように、予備電圧Vp0が0Vから0.25V付近にかけてほぼ0μAを維持し、予備電圧Vp0が0.25Vから0.35V付近にかけて徐々に低下し、0.35V以降は急峻に低下している。
NHに関する変化量ΔIp3NH3の変化は曲線LΔNH3に示すように、予備電圧Vp0が0Vから0.15V付近にかけてほぼ0μAを維持し、予備電圧Vp0が0.15Vから0.35V付近にかけて徐々に低下している。これは、予備電圧Vp0が上がることで、予備調整室21内でNH→NOの酸化反応が起こり易くなり、ガス導入口16を通じて導入されたNHがNOに変換されるためである。
すなわち、図3中、第1領域Z1で示すVp0の第1電圧範囲は、NHがNHのまま、予備調整室21を通過して酸素濃度調整室18内に到達し、NOはNOのまま、予備調整室21を通過して酸素濃度調整室18内に到達する電圧の範囲である。
第2領域Z2で示すVp0の第2電圧範囲は、NHが予備調整室21内でNOに変化して酸素濃度調整室18内に到達し、NOはNOのまま、予備調整室21を通過して酸素濃度調整室18内に到達する電圧の範囲である。
第3領域Z3で示すVp0の第3電圧範囲は、NHが予備調整室21内でNOになった後、Nに分解して、酸素濃度調整室18内に到達し、NOは予備調整室21内でNに分解して、酸素濃度調整室18内に到達する電圧の範囲である。
そして、このガスセンサ10では、第1動作時において予備酸素濃度制御手段106に印加される第1電圧をVa、第2動作時において予備酸素濃度制御手段106に印加される第2電圧をVb、予備酸素濃度制御手段106の停止時に印加される電圧をVoffとしたとき、
Voff<Va<Vb
に設定する。
具体的には、第1電圧Vaを上述した第1電圧範囲から設定し、第2電圧Vbを第2電圧範囲から設定する。すなわち、第1電圧Vaは第1電圧範囲に含まれ、第2電圧Vbは第2電圧範囲に含まれる。
なお、第2電圧Vbを第3電圧範囲から設定してもよいが、例えば測定精度の向上の観点からみた場合、第2電圧Vbを第2電圧範囲から設定することが好ましい。
また、以下の関係を有することが好ましい。
第1電圧Vaは、該第1電圧Vaを印加したときの変化量ΔIp3NOと変化量ΔIp3NH3との差が、特定した第2電圧Vbを印加したときの変化量ΔIp3NOと変化量ΔIp3NH3との差(基準差分)の1/2以下、好ましくは1/10以下、さらに好ましくは1/100以下となる電圧とする。
あるいは、第1電圧Vaは、該第1電圧Vaを印加したときの変化量ΔIp3NOと変化量ΔIp3NH3との差が、0.05μA以下、好ましくは0.01μA以下、さらに好ましくは0.001μA以下となる電圧とする。
図3は、第2領域Z2に示す第2電圧範囲のうち、第2領域Z2と第3領域Z3との境界に対応する電圧V23を印加したときの変化量ΔIp3NOと変化量ΔIp3NH3との差の75%に対応する電圧を第2電圧Vbとした例を示す(矢印ΔB参照)。
具体的には、第1電圧Vaとして例えば20mV以上、180mV未満を選択することができ、第2電圧として例えば180mV以上、300mV以下を選択することができる。
ここで、実施例と比較例について、図4A及び図4Bを参照しながら説明する。
比較例及び実施例共に、検査用の被測定ガスを供給した。検査用の被測定ガスは、温度が250℃、酸素濃度が0.5%、HO濃度が3%、NO濃度が500ppm、NH濃度が500ppm、流量が200リットル/min、センサ温度が850℃である。
そして、比較例では、駆動時に印加される電圧が270mV、停止時に印加される電圧Voffが0Vである。一方、実施例では、第2動作時に印加される第2電圧Vbが270mV、第1動作時に印加される第1電圧Vaが100mVである。
先ず、比較例は、駆動制御手段108によって予備酸素濃度制御手段106の駆動及び停止を制御し、予備ポンプセル80をON/OFF制御した。すなわち、駆動制御手段108は、予備酸素濃度制御手段106に第1電圧Vaを印加して駆動した後、約5秒後に予備酸素濃度制御手段106に0V(=電圧Voff)を印加して停止させ、その後、約10秒後に、予備酸素濃度制御手段106に第1電圧Vaを印加して駆動した。
目的成分取得手段110は、予備酸素濃度制御手段106の駆動時における特定成分測定手段104からのセンサ出力と、予備酸素濃度制御手段106の停止時における特定成分測定手段104からのセンサ出力との差に基づいて、NO及びNHの各濃度を取得した。
このときの時間に対する測定ポンプ電流Ip3の変化を計測した。その結果を測定ポンプ電流Ip3の波形として図4Aに示す。この結果から、比較例は、OFF状態からON状態に切り替わる際に、急峻に立ち上がるオーバーシュートOSa(ピークPa)が発生し、ON状態からOFF状態に切り替わる際に、急峻に立ち下がるオーバーシュートOSb(ピークPb)が発生した。これらのオーバーシュートOSa及びOSbの発生により、低レベルではあったが、ノイズが生じた。また、コンデンサ構造の予備ポンプセル80によるCR時定数により、波形の立ち下り及び立ち上がりが遅くなり、予備酸素濃度制御手段106が停止状態になるまでに時間がかかった。比較例では、OFF状態からON状態に切り替わるまでにかかった時間がTa、ON状態からOFF状態に切り替わるまでにかかった時間がTbであった。
これに対して、実施例は、駆動制御手段108によって予備酸素濃度制御手段106の第1動作及び第2動作を制御し、予備ポンプセル80を制御した。すなわち、駆動制御手段108は、予備酸素濃度制御手段106に第2電圧Vbを印加して予備酸素濃度制御手段106を第2動作させた後、約5秒後に予備酸素濃度制御手段106に第1電圧Vaを印加して予備酸素濃度制御手段106を第1動作させ、その後、約10秒後に、予備酸素濃度制御手段106に第2電圧Vbを印加して第2動作させた。
目的成分取得手段110は、予備酸素濃度制御手段106の第2動作時における特定成分測定手段104からのセンサ出力と、予備酸素濃度制御手段106の第1動作における特定成分測定手段104からのセンサ出力との差に基づいて、NO及びNHの各濃度を取得した。
このときの時間に対する測定ポンプ電流Ip3の変化を計測した。その結果を測定ポンプ電流Ip3の波形として図4Bに示す。この結果から、実施例は、第2動作状態から第1動作状態に切り替わる際、並びに第1動作状態から第2動作状態に切り替わる際に、急峻に立ち上がるオーバーシュートOSc及びOSdが発生したが、これらのピーク(Pc、Pd)は比較例のピーク(Pa、Pb)よりも小さく、ノイズも抑制された。また、コンデンサ構造の予備ポンプセル80によるCR時定数の影響はあったが、第1動作状態から第2動作状態に切り替わるまでにかかった時間がTc、第2動作状態から第1動作状態に切り替わるまでにかかった時間がTdであった。
比較例の時間Ta及びTbと、実施例の時間Tc及びTdとを比較すると、Tc=(2/3)×Ta、Td=(2/3)×Tbであった。すなわち、第1動作状態から第2動作状態に切り替わるまで、並びに、第2動作状態から第1動作状態に切り替わるまでに、比較例の2/3の時間で済んだ。
上述のことから、実施例は、排気ガスのような未燃成分、酸素の存在下に共存する複数成分(例えばNO、NH等)の濃度を長期間にわたり精度よく測定することができるガスセンサ10において、ノイズの発生を抑えることができ、しかも、センシングの応答性を高めることができることがわかる。
ここで、ガスセンサ10の処理動作について、図5及び図6も参照しながら説明する。
先ず、駆動制御手段108によって予備酸素濃度制御手段106が第2動作している期間では、図5に示すように、ガス導入口16を通じて導入したNHは、酸素濃度調整室18まで到達する。酸素濃度調整室18では、酸素濃度制御手段100によって、NHを全てNOに変換するように制御されていることから、予備調整室21から酸素濃度調整室18に流入したNHは酸素濃度調整室18内でNH→NOの酸化反応が起こり、酸素濃度調整室18内の全てのNHがNOに変換される。従って、ガス導入口16を通じて導入されたNHは、第1拡散律速部30及び第2拡散律速部32をNHの拡散係数2.2cm/secの速度で通過し、酸素濃度調整室18内でNOに変換された後は、第3拡散律速部34をNOの拡散係数1.8cm/secの速度で通過して、隣接する測定室20内に移動する。
一方、駆動制御手段108によって予備酸素濃度制御手段106が第1動作している期間では、図6に示すように、予備調整室21内でNH→NOの酸化反応が起こり、ガス導入口16を通じて導入された全てのNHがNOに変換される。従って、NHは第1拡散律速部30をNHの拡散係数2.2cm/secで通過するが、予備調整室21より奥にある第2拡散律速部32以降はNOの拡散係数1.8cm/secの速度で測定室20に移動する。
すなわち、予備酸素濃度制御手段106が第2動作状態から第1動作状態に切り替わることで、NHの酸化反応が起こる場所が酸素濃度調整室18から予備調整室21に移動する。
NHの酸化反応が起こる場所が酸素濃度調整室18から予備調整室21に移動することは、被測定ガス中のNHが第2拡散律速部32を通過する際の状態がNHからNOに変わることに等しい。そして、NO、NHは各々異なる拡散係数を持つため、第2拡散律速部32をNOで通過するか、NHで通過するかの違いは、測定室20に流れ込むNO量の違いに相当するため、測定用ポンプセル61に流れる測定ポンプ電流Ip3を変化させる。
この場合、予備ポンプセル80の第1動作時の測定ポンプ電流Ip3(1)と、予備ポンプセル80の第2動作時の測定ポンプ電流Ip3(2)の変化量ΔIp3は、被測定ガス中のNHの濃度によって一義的に決まる。そのため、予備ポンプセル80のON時又はOFF時の測定ポンプ電流Ip3(1)又はIp3(2)と、上述した測定ポンプ電流Ip3の変化量ΔIp3とからNOとNHの各濃度を算出することができる。
従って、目的成分取得手段110では、予備ポンプセル80の第1動作時の測定ポンプ電流Ip3(1)と、該測定ポンプ電流Ip3(1)と予備ポンプセル80の第2動作時の測定ポンプ電流Ip3(2)との変化量ΔIp3と、マップ112(図2参照)とに基づいてNO及びNHの各濃度を取得する。
マップ112は、グラフ化して示すと、図7に示すように、横軸に、被測定ガス中のNH濃度(ppm)が設定され、縦軸に、予備ポンプセル80の第1動作時の測定ポンプ電流Ip3(1)と予備ポンプセル80の第2動作時の測定ポンプ電流Ip3(2)との差、すなわち、変化量ΔIp3が設定されたグラフとなる。図7では、代表的に、予備ポンプセル80の第2動作時における測定ポンプ電流値のNO濃度換算値が例えば100ppm系、50ppm系、25ppm系、0ppm系であるポイントをプロットしたグラフを示す。分かり易くテーブルの形式で示すと、図8に示すような内容となる。これらの濃度は、実験あるいはシミュレーションにて求めている。
図8からわかるように、マップ112を使用することで、予備ポンプセル80の第2動作時の測定ポンプ電流Ip3(2)(すなわち、従来の直列2室型NOxセンサと同様の測定ポンプ電流値)に基づいて、100ppm系、50ppm系、25ppm系、0ppm系のいずれかを割り出し、変化量ΔIp3に基づいてNOとNHの各濃度を同定する。
すなわち、予備ポンプセル80の第2動作時の測定ポンプ電流Ip3(2)と、変化量ΔIp3とからマップ112上のポイントを特定することで、NO濃度とNH濃度を同定することができる。例えば従来の直列2室型NOxセンサと同様の測定ポンプ電流Ip3(2)が2.137μAであった場合、上記直列2室型NOxセンサでは、NOとNHの合計濃度が概ね100ppmであることしかわからなかった。しかし、ガスセンサ10においては、変化量ΔIp3を組み合わせることで、ポイントp1では、NO濃度が100ppm、NH濃度が0ppm、ポイントp2では、NO濃度が80ppm、NH濃度が17.6ppm、ポイントp3では、NO濃度が60ppm、NH濃度が35.2ppmのようにNO濃度とNH濃度を個別に特定することができる。マップ112上に該当するポイントが存在しない場合は、最も近いポイントを特定し、例えば既知の近似計算にてNO濃度とNH濃度を求めればよい。
また、以下の手法にてNO濃度とNH濃度を求めてもよい。すなわち、上述した図7に示すように、予め実験あるいはシミュレーションにて、変化量ΔIp3とNH濃度との関係を求めておき、予備ポンプセル80の第1動作時と第2動作時の変化量ΔIp3からNH濃度を求める。そして、予備ポンプセル80の第2動作時におけるセンサ出力から得られるNO濃度、すなわち、NOとNHの濃度の全てをNOに換算した総NO濃度から、上述して求めたNH濃度を差し引いてNO濃度を求めてもよい。
なお、測定ポンプ電流Ip3の大きさは、測定電極62に到達するNOの量であるため、そのガスの量は第1拡散律速部30、第2拡散律速部32、第4拡散律速部36及び第3拡散律速部34の各拡散抵抗によって決まる。図3、図4A及び図4Bで示したガスセンサは、図7及び図8で計算したガスセンサよりも拡散抵抗が大きく設計されているため、変化量ΔIp3の絶対値に違いが出ているが、その傾向は、拡散抵抗の大小に拘わらず、限界電流式のガスセンサであれば変わらない。
ここで、ガスセンサ10によるNO及びNHの測定処理について図9のフローチャートを参照しながら説明する。
先ず、図9のステップS1において、ガスセンサ10は、ガス導入口16を通じて予備調整室21内にNO及びNHが混在する被測定ガスを導入する。
ステップS2において、駆動制御手段108は、予備酸素濃度制御手段106に第2電圧Vbを印加する。これにより、予備ポンプセル80が第2動作状態となる。
ステップS3において、特定成分測定手段104は、予備ポンプセル80の第2動作時におけるNO濃度を測定する。すなわち、測定ポンプ電流Ip3(2)を得る。この測定ポンプ電流Ip3(2)は目的成分取得手段110に入力される。
ステップS4において、駆動制御手段108は、予備酸素濃度制御手段106に第1電圧Vaを印加する。これにより、予備ポンプセル80が第1動作状態となる。
ステップS5において、特定成分測定手段104は、予備ポンプセル80の第1動作時におけるNO濃度を測定する。すなわち、測定ポンプ電流Ip3(1)を得る。この測定ポンプ電流Ip3(1)は目的成分取得手段110に入力される。
ステップS6において、目的成分取得手段110は、予備ポンプセル80の第2動作時の測定ポンプ電流Ip3(2)と、該測定ポンプ電流Ip3(2)と予備ポンプセル80の第1動作時の測定ポンプ電流Ip3(1)との変化量ΔIp3と、マップ112とに基づいてNO濃度及びNH濃度を取得する。
すなわち、目的成分取得手段110は、測定ポンプ電流Ip3(2)と、変化量ΔIp3とからマップ112上のポイントを特定する。そして、マップ112から、特定したポイントに対応するNO濃度及びNH濃度を読み出して、今回、測定したNO濃度及びNH濃度とする。マップ112上に該当するポイントが存在しない場合は、上述したように、最も近いポイントを特定し、例えば既知の近似計算にてNO濃度とNH濃度を求める。
あるいは、図7に示す変化量ΔIp3とNH濃度との関係に基づいて、予備ポンプセル80の第1動作時と第2動作時の変化量ΔIp3からNH濃度を求める。そして、予備ポンプセル80の第2動作時におけるセンサ出力から得られるNO濃度、すなわち、NOとNHの濃度の全てをNOに換算した総NO濃度から、上述して求めたNH濃度を差し引いてNO濃度を求めてもよい。
ステップS7において、ガスセンサ10は、NO及びNHの測定処理の終了要求(電源断、メンテナンス等)があるか否かを判別する。終了要求がなければ、ステップS1以降の処理を繰り返す。そして、ステップS7において、終了要求があった段階で、ガスセンサ10でのNO及びNHの測定処理を終了する。
このように、ガスセンサ10は、予め実験的に測定した、予備酸素濃度制御手段106の第2動作時における特定成分測定手段104からのセンサ出力(Ip3(2))と、予備酸素濃度制御手段106の第1動作時と第2動作時における特定成分測定手段104からのセンサ出力の差(ΔIp3)とで特定されるポイント毎にそれぞれNO濃度及びNH濃度の関係が登録されたマップ112を使用するようにしている。あるいは、図7に示すように、予め実験的に求めた変化量ΔIp3とNH濃度との関係を使用するようにしている。もちろん、マップ112で兼用してもよい。
そして、実使用中の予備酸素濃度制御手段106の第2動作時における特定成分測定手段104からのセンサ出力(Ip3(2))と、予備酸素濃度制御手段106の第1動作時と第2動作時における特定成分測定手段104からのセンサ出力の差(ΔIp3)を、マップ112と比較して、NO及びNHの各濃度を求めるようにしている。
これにより、排気ガスのような未燃成分、酸素の存在下に共存する複数目的成分(例えばNO、NH)の雰囲気下においても、複数目的成分の各濃度を長期間にわたり精度よく測定することができる。
また、ガスセンサ10は、従来では実現できなかったNOとNHの各濃度を測定する処理を、ハードウェアとしての各種測定装置等を別途付加することなく、ガスセンサ10の制御系のソフトウェアを変更するだけで、容易に実現することができる。その結果、NOx浄化システムの制御並びに故障検知に対する精度を高めることができる。特に、SCRシステム下流の排気ガス中のNOとNHとを区別することが可能となり、SCRシステムの尿素注入量の精密制御、及び劣化検知に寄与する。
しかも、上述のように、第1動作時において予備酸素濃度制御手段106に印加される第1電圧をVa、第2動作時において予備酸素濃度制御手段106に印加される第2電圧をVb、予備酸素濃度制御手段106の停止時に印加される電圧をVoffとしたとき、
Voff<Va<Vb
としたので、排気ガスのような未燃成分、酸素の存在下に共存する複数成分(例えばNO、NH等)の濃度を長期間にわたり精度よく測定することができるガスセンサにおいて、ノイズの発生を抑えることができると共に、センシングの応答性を高めることができる。
その他、ガスセンサ10は、以下の特徴を有する。
(a) NHがNOに変化する反応はセンサ出力の変動が得られる範囲から任意に選ぶことができる。
(b) NHがNOに変化する反応を、所定の拡散抵抗を持った拡散律速部の前後で意図的に発生させる。
(c) (b)によって、NOとNHの拡散係数の違いによって生ずるセンサ出力の変動からNHの濃度を求める。
(d) さらに、センサ出力自身によって得られるNOとNHの合計濃度と前記変動によって得られるNHの濃度を比較してNO濃度を得る。
なお、本発明に係るガスセンサ及びガスセンサの制御方法は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
上述の例では、副調整室18bに隣接して測定室20を設け、測定室20内に測定電極62を配置するようにしたが、その他、図10に示す変形例に係るガスセンサ10aに示すように、副調整室18b内に測定電極62を配置し、測定電極62を被覆するように、第3拡散律速部34となるアルミナ(Al23)等のセラミックス多孔体にて構成される膜を形成してもよい。この場合、測定電極62の周囲が測定室20として機能することになる。
また、上述の例では予備調整室21内にて第2目的成分であるNHが変換率100%でNOに変換される例を示したが、NHの変換率は100%である必要はなく、被測定ガス中のNH濃度と再現性の良い相関が得られる範囲で変換率を任意に設定することができる。
また、予備酸素濃度制御手段106の駆動は、予備調整室21内から酸素を汲み出す方向でも、汲み入れる方向でも良く、第2目的成分であるNHの存在によって、測定用ポンプセル61の出力である測定ポンプ電流Ip3が再現性良く変化すれば良い。
なお、本発明の実施に当たっては、本発明の思想を損なわない範囲で自動車用部品としての信頼性向上のための諸手段が付加されても良い。
10、10a…ガスセンサ 12…センサ素子
14…構造体 16…ガス導入口
18…酸素濃度調整室 20…測定室
21…予備調整室 61…測定用ポンプセル
62…測定電極 72…ヒータ
80…予備ポンプセル 82…予備ポンプ電極
84…予備酸素分圧検出センサセル 100…酸素濃度制御手段
102…温度制御手段 104…特定成分測定手段
106…予備酸素濃度制御手段 108…駆動制御手段
110…目的成分取得手段 Ip0…予備ポンプ電流
Ip3…測定ポンプ電流(センサ出力) Va…第1電圧
Vb…第2電圧 Vp0…予備電圧

Claims (10)

  1. 少なくとも酸素イオン伝導性の固体電解質からなる構造体と、前記構造体に形成され、被測定ガスが導入されるガス導入口と、前記ガス導入口に連通する酸素濃度調整室と、前記酸素濃度調整室に連通する測定室と、前記ガス導入口と前記酸素濃度調整室との間に設けられ、前記ガス導入口に連通する予備調整室とを有するセンサ素子と、
    前記酸素濃度調整室内の酸素濃度を制御する酸素濃度制御手段と、
    前記センサ素子の温度を制御する温度制御手段と、
    前記測定室内の特定成分の濃度を測定する特定成分測定手段と、
    前記固体電解質と該固体電解質の両面に形成された2つの電極とを有し、前記予備調整室内の酸素濃度を制御する予備酸素濃度制御手段と、
    前記予備酸素濃度制御手段を制御する駆動制御手段と、
    前記予備酸素濃度制御手段の第1動作時における前記特定成分測定手段からのセンサ出力と、前記予備酸素濃度制御手段の第2動作時における前記特定成分測定手段からのセンサ出力との差、及び前記各々のセンサ出力の一方に基づいて、第1目的成分と第2目的成分の濃度を取得する目的成分取得手段とを有するガスセンサであって、
    前記第1動作時において前記予備酸素濃度制御手段に印加される第1電圧をVa、前記第2動作時において前記予備酸素濃度制御手段に印加される第2電圧をVb、前記予備酸素濃度制御手段の停止時に印加される電圧をVoffとしたとき、
    Voff<Va<Vb
    であることを特徴とするガスセンサ。
  2. 請求項1記載のガスセンサにおいて、
    前記予備酸素濃度制御手段に印加される電圧の範囲であって、前記第2目的成分が前記第2目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達し、前記第1目的成分が前記第1目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達する電圧の範囲を第1電圧範囲とし、
    前記予備酸素濃度制御手段に印加される電圧の範囲であって、前記第2目的成分が前記予備調整室で前記第1目的成分に変化して前記酸素濃度調整室内に到達し、前記第1目的成分が前記第1目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達する電圧の範囲を第2電圧範囲としたとき、
    前記第1電圧Vaは前記第1電圧範囲に含まれ、前記第2電圧Vbは前記第2電圧範囲に含まれることを特徴とするガスセンサ。
  3. 請求項2記載のガスセンサにおいて、
    前記第1目的成分を含み、且つ、前記第2目的成分を含まない第1被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(1)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(1)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(1)とし、
    前記第2目的成分を含み、且つ、前記第1目的成分を含まない第2被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(2)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(2)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(2)とし、
    Ip3off(1)−Ip3va(1)=ΔIp3(1)、Ip3off(2)−Ip3vb(2)=ΔIp3(2)とし、
    前記第2動作時において前記予備酸素濃度制御手段に前記第2電圧Vbが印加された際の|ΔIp3(1)−ΔIp3(2)|を基準差分としたとき、
    前記第1動作時において前記予備酸素濃度制御手段に前記第1電圧Vaが印加された際の|ΔIp3(1)−ΔIp3(2)|が前記基準差分の1/2以下であることを特徴とするガスセンサ。
  4. 請求項2記載のガスセンサにおいて、
    前記第1目的成分を含み、且つ、前記第2目的成分を含まない第1被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(1)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(1)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(1)とし、
    前記第2目的成分を含み、且つ、前記第1目的成分を含まない第2被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(2)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(2)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(2)とし、
    Ip3off(1)−Ip3va(1)=ΔIp3(1)、Ip3off(2)−Ip3vb(2)=ΔIp3(2)としたとき、
    前記第1動作時において前記予備酸素濃度制御手段に前記第1電圧Vaが印加された際の|ΔIp3(1)−ΔIp3(2)|が0.05μA以下であることを特徴とするガスセンサ。
  5. 請求項1〜4のいずれか1項に記載のガスセンサにおいて、
    前記特定成分がNO、前記第1目的成分がNO、前記第2目的成分がNHであることを特徴とするガスセンサ。
  6. 少なくとも酸素イオン伝導性の固体電解質からなる構造体と、前記構造体に形成され、被測定ガスが導入されるガス導入口と、前記ガス導入口に連通する酸素濃度調整室と、前記酸素濃度調整室に連通する測定室と、前記ガス導入口と前記酸素濃度調整室との間に設けられ、前記ガス導入口に連通する予備調整室とを有するセンサ素子と、
    前記酸素濃度調整室内の酸素濃度を制御する酸素濃度制御手段と、
    前記センサ素子の温度を制御する温度制御手段と、
    前記測定室内の特定成分の濃度を測定する特定成分測定手段と、
    前記固体電解質と該固体電解質の両面に形成された2つの電極とを有し、前記予備調整室内の酸素濃度を制御する予備酸素濃度制御手段と、
    前記予備酸素濃度制御手段を制御する駆動制御手段と、
    前記予備酸素濃度制御手段の第1動作時における前記特定成分測定手段からのセンサ出力と、前記予備酸素濃度制御手段の第2動作時における前記特定成分測定手段からのセンサ出力との差、及び前記各々のセンサ出力の一方に基づいて、第1目的成分と第2目的成分の濃度を取得する目的成分取得手段とを有するガスセンサの制御方法において、
    前記第1動作時において前記予備酸素濃度制御手段に印加される第1電圧をVa、前記第2動作時において前記予備酸素濃度制御手段に印加される第2電圧をVb、前記予備酸素濃度制御手段の停止時に印加される電圧をVoffとしたとき、
    Voff<Va<Vb
    に設定して実施することを特徴とするガスセンサの制御方法。
  7. 請求項6記載のガスセンサの制御方法において、
    前記予備酸素濃度制御手段に印加される電圧の範囲であって、前記第2目的成分が前記第2目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達し、前記第1目的成分が前記第1目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達する電圧の範囲を第1電圧範囲とし、
    前記予備酸素濃度制御手段に印加される電圧の範囲であって、前記第2目的成分が前記予備調整室で前記第1目的成分に変化して前記酸素濃度調整室内に到達し、前記第1目的成分が前記第1目的成分のまま、前記予備調整室を通過して前記酸素濃度調整室内に到達する電圧の範囲を第2電圧範囲としたとき、
    前記第1電圧Vaを前記第1電圧範囲から設定し、前記第2電圧Vbを前記第2電圧範囲から設定することを特徴とするガスセンサの制御方法。
  8. 請求項7記載のガスセンサの制御方法において、
    前記第1目的成分を含み、且つ、前記第2目的成分を含まない第1被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(1)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(1)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(1)とし、
    前記第2目的成分を含み、且つ、前記第1目的成分を含まない第2被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(2)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(2)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときセンサ出力をIp3vb(2)とし、
    Ip3off(1)−Ip3va(1)=ΔIp3(1)、Ip3off(2)−Ip3vb(2)=ΔIp3(2)とし、
    前記第2動作時において前記予備酸素濃度制御手段に前記第2電圧Vbが印加された際の|ΔIp3(1)−ΔIp3(2)|を基準差分としたとき、
    前記第1動作時において前記予備酸素濃度制御手段に前記第1電圧Vaが印加された際の|ΔIp3(1)−ΔIp3(2)|を前記基準差分の1/2以下にすることを特徴とするガスセンサの制御方法。
  9. 請求項7記載のガスセンサの制御方法において、
    前記第1目的成分を含み、且つ、前記第2目的成分を含まない第1被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(1)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(1)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(1)とし、
    前記第2目的成分を含み、且つ、前記第1目的成分を含まない第2被測定ガスが供給される環境で、前記電圧Voffを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3off(2)、前記第1電圧Vaを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3va(2)、前記第2電圧Vbを前記予備酸素濃度制御手段に印加したときのセンサ出力をIp3vb(2)とし、
    Ip3off(1)−Ip3va(1)=ΔIp3(1)、Ip3off(2)−Ip3vb(2)=ΔIp3(2)としたとき、
    前記第1動作時において前記予備酸素濃度制御手段に前記第1電圧Vaが印加された際の|ΔIp3(1)−ΔIp3(2)|を0.05μA以下にすることを特徴とするガスセンサの制御方法。
  10. 請求項6〜9のいずれか1項に記載のガスセンサの制御方法において、
    前記特定成分がNO、前記第1目的成分がNO、前記第2目的成分がNHであることを特徴とするガスセンサの制御方法。
JP2018064970A 2018-03-29 2018-03-29 ガスセンサ及びガスセンサの制御方法 Active JP6991091B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018064970A JP6991091B2 (ja) 2018-03-29 2018-03-29 ガスセンサ及びガスセンサの制御方法
US16/365,763 US10845326B2 (en) 2018-03-29 2019-03-27 Gas sensor and method of controlling gas sensor
DE102019002274.2A DE102019002274A1 (de) 2018-03-29 2019-03-28 Gassensor und verfahren zum steuern eines gassensors
CN201910241414.6A CN110320261B (zh) 2018-03-29 2019-03-28 气体传感器以及气体传感器的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018064970A JP6991091B2 (ja) 2018-03-29 2018-03-29 ガスセンサ及びガスセンサの制御方法

Publications (2)

Publication Number Publication Date
JP2019174371A true JP2019174371A (ja) 2019-10-10
JP6991091B2 JP6991091B2 (ja) 2022-02-03

Family

ID=67910089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018064970A Active JP6991091B2 (ja) 2018-03-29 2018-03-29 ガスセンサ及びガスセンサの制御方法

Country Status (4)

Country Link
US (1) US10845326B2 (ja)
JP (1) JP6991091B2 (ja)
CN (1) CN110320261B (ja)
DE (1) DE102019002274A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7399769B2 (ja) 2020-03-26 2023-12-18 日本碍子株式会社 センサ素子及びガスセンサ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7022010B2 (ja) * 2018-06-15 2022-02-17 日本碍子株式会社 ガスセンサ
DE102019204771A1 (de) * 2019-04-03 2020-10-08 Vitesco Technologies GmbH Verfahren zum Ermitteln des Ammoniakanteils im Abgas einer Brennkraftmaschine und Abgassensor hierfür

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038773A1 (fr) * 2006-09-29 2008-04-03 Ngk Insulators, Ltd. Procédé de traitement de capteur de gaz
JP2008191043A (ja) * 2007-02-06 2008-08-21 Ngk Spark Plug Co Ltd ガスセンサ
JP2016014655A (ja) * 2014-06-30 2016-01-28 日本特殊陶業株式会社 ガスセンサ制御装置、ガスセンサシステム及びガスセンサ素子の劣化判定方法
JP2017190986A (ja) * 2016-04-12 2017-10-19 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
WO2017222002A1 (ja) * 2016-06-23 2017-12-28 日本碍子株式会社 ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3561149B2 (ja) * 1998-06-02 2004-09-02 日本特殊陶業株式会社 NOxガス濃度測定方法
DE102008006633A1 (de) * 2008-01-29 2009-07-30 Volkswagen Ag Sensor zur Konzentrationsbestimmung von im Abgas enthaltenen Bestandteilen und Verfahren zum Betreiben eines Sensors
JP5367044B2 (ja) * 2011-10-13 2013-12-11 株式会社日本自動車部品総合研究所 ガスセンサ素子および内燃機関用ガスセンサ
JP6390560B2 (ja) * 2014-10-01 2018-09-19 株式会社デンソー ガス濃度検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008038773A1 (fr) * 2006-09-29 2008-04-03 Ngk Insulators, Ltd. Procédé de traitement de capteur de gaz
JP2008191043A (ja) * 2007-02-06 2008-08-21 Ngk Spark Plug Co Ltd ガスセンサ
JP2016014655A (ja) * 2014-06-30 2016-01-28 日本特殊陶業株式会社 ガスセンサ制御装置、ガスセンサシステム及びガスセンサ素子の劣化判定方法
JP2017190986A (ja) * 2016-04-12 2017-10-19 日本特殊陶業株式会社 ガスセンサ素子及びガスセンサ
WO2017222002A1 (ja) * 2016-06-23 2017-12-28 日本碍子株式会社 ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7399769B2 (ja) 2020-03-26 2023-12-18 日本碍子株式会社 センサ素子及びガスセンサ

Also Published As

Publication number Publication date
US10845326B2 (en) 2020-11-24
CN110320261B (zh) 2023-05-02
DE102019002274A1 (de) 2019-10-02
US20190302049A1 (en) 2019-10-03
JP6991091B2 (ja) 2022-02-03
CN110320261A (zh) 2019-10-11

Similar Documents

Publication Publication Date Title
WO2017222002A1 (ja) ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法
JP6401644B2 (ja) ガスセンサ
JP4980974B2 (ja) ガスセンサおよびその制御装置ならびにNOx濃度測定方法
WO2017222003A1 (ja) 排ガス浄化システム及び排ガス浄化方法
WO2017222001A1 (ja) ガスセンサ及び被測定ガス中の複数目的成分の濃度測定方法
EP1239282A2 (en) Gas sensor and method of heating the same
JP2000321238A (ja) ガスセンサ
JP2019174371A (ja) ガスセンサ及びガスセンサの制御方法
US20190383765A1 (en) Gas sensor and gas concentration measurement method
US11054381B2 (en) Gas sensor
JP2019215380A (ja) ガスセンサ
JP2020008558A (ja) ガスセンサ
JP5844719B2 (ja) NOx検出装置及びNOxセンサシステム
CN110672697B (zh) 气体传感器
JP2020159881A (ja) ガスセンサ及びセンサ素子
JP5876430B2 (ja) センサ素子の処理方法
CN110609075B (zh) 气体传感器及其制造方法
US10830729B2 (en) Sensor control device and gas detection system
JP2010230516A (ja) ガスセンサおよびガスセンサの電極電位の制御方法
WO2017068919A1 (ja) 排出ガスセンサの制御装置及び排出ガスセンサシステム
JP2014098657A (ja) NOx検出装置及びNOxセンサシステム
WO2021033709A1 (ja) ガスセンサ
JP6298659B2 (ja) NOxセンサの処理方法
US20230273148A1 (en) NOx SENSOR AND NOx SENSOR OPERATION METHOD
CN111103344B (zh) 气体传感器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6991091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150