JP2019157839A - 制御装置、水流発電システム、及び水流発電装置の制御方法 - Google Patents

制御装置、水流発電システム、及び水流発電装置の制御方法 Download PDF

Info

Publication number
JP2019157839A
JP2019157839A JP2018049807A JP2018049807A JP2019157839A JP 2019157839 A JP2019157839 A JP 2019157839A JP 2018049807 A JP2018049807 A JP 2018049807A JP 2018049807 A JP2018049807 A JP 2018049807A JP 2019157839 A JP2019157839 A JP 2019157839A
Authority
JP
Japan
Prior art keywords
blade
rotation
pod
generator
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018049807A
Other languages
English (en)
Other versions
JP6988609B2 (ja
Inventor
智之 片桐
Tomoyuki Katagiri
智之 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2018049807A priority Critical patent/JP6988609B2/ja
Publication of JP2019157839A publication Critical patent/JP2019157839A/ja
Application granted granted Critical
Publication of JP6988609B2 publication Critical patent/JP6988609B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Control Of Water Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

【課題】出力電力の変動幅を低減させる。【解決手段】制御装置は、ブレード11Aの回転に基づき電力を生成する発電機と、ブレード11Bの回転に基づき電力を生成する発電機と、ポッド6Aとポッド6Bとを連結する連結部8と、を備える発電装置2を制御する。ブレード11Aが回転する領域DAは、ブレード11Aが連結部8に重なる領域D1を含み、ブレード11Bが回転する領域DBは、ブレード11Bが連結部8に重なる領域D3を含む。制御装置は、ブレード11Aが領域D1を通過するタイミングとブレード11Bが領域D3を通過するタイミングとが互いに異なるようにブレード11Aの回転数及びブレード11Bの回転数を制御する。【選択図】図5

Description

本発明は、制御装置、水流発電システム、及び水流発電装置の制御方法に関する。
海等の水中に設置され、水の流れを利用して発電を行う水流発電装置が知られている。例えば、特許文献1には、2つのパワーポッドを含む潜水可能なプラットフォーム(水流発電装置)が記載されている。特許文献1に記載の水流発電装置では、水の流れによって回転するロータアセンブリが各パワーポッドの端部に設けられている。ロータアセンブリはロータブレード(ブレード)を含んでおり、各パワーポッドの内部にはロータアセンブリが回転することによって電力を生成する発電機が設けられている。2つのパワーポッドは、横断構造としての翼(連結部)によって連結されている。
特表2014−534375号公報
上述のような水流発電装置において、パワーポッドの両端部のうちのロータアセンブリが設けられた一方の端部が下流に位置するように、水流発電装置が設置される場合がある。この場合、上流からみて連結部の後方には流速が低下する領域(流速低下領域)が生じる。このような流速低下領域をブレードが通過する間、流速低下領域以外にブレードが位置する場合に比べて水の流れによってブレードに加わる力は低下するので、発電機によって生成される電力が変動(低下)する。このため、各発電機から生成された電力が合成されて外部の電力系統に出力電力として出力される場合において、2つのパワーポッドそれぞれのブレードが同じタイミングで流速低下領域を通過してしまうと、出力電力の変動幅が大きくなるおそれがある。
本発明は、出力電力の変動幅を低減することが可能な制御装置、水流発電システム、及び水流発電装置の制御方法を提供する。
本発明の一側面に係る制御装置は、第1回転軸周りに回転する第1ブレードと、第1ブレードの回転に基づき第1電力を生成する第1発電機と、第1ブレード及び第1発電機が設けられる第1ポッドと、第2回転軸周りに回転する第2ブレードと、第2ブレードの回転に基づき第2電力を生成する第2発電機と、第2ブレード及び第2発電機が設けられる第2ポッドと、第1ポッドと第2ポッドとを連結する連結部と、を備える水流発電装置を制御する制御装置である。第1回転軸が延びる方向からみて、第1ブレードが回転する領域は、第1ブレードが連結部に重なる第1領域を含み、第2回転軸が延びる方向からみて、第2ブレードが回転する領域は、第2ブレードが連結部に重なる第2領域を含む。制御装置は、第1ブレードが第1領域を通過するタイミングと第2ブレードが第2領域を通過するタイミングとが互いに異なるように第1ブレードの第1回転数及び第2ブレードの第2回転数を制御する。
この制御装置では、第1ブレードが連結部に重なる第1領域を第1ブレードが通過するタイミングと第2ブレードが連結部に重なる第2領域を第2ブレードが通過するタイミングとが互いに異なるように第1ブレードの第1回転数及び第2ブレードの第2回転数が制御される。このため、第1ブレード及び第2ブレードが同じタイミングで連結部に重なってしまう可能性が低減される。これにより、第1ブレードの回転に基づき生成される第1電力及び第2ブレードの回転に基づき生成される第2電力が合成された出力電力の変動幅は、第1電力及び第2電力それぞれにおける変動幅に略等しくなる。その結果、出力電力の変動幅を低減することが可能となる。
制御装置は、第1領域に位置するときの第1ブレードを基準とした第1ブレードの第1回転角度を取得してもよく、第2領域に位置するときの第2ブレードを基準とした第2ブレードの第2回転角度を取得してもよい。制御装置は、第1回転角度と第2回転角度との差である位相差が予め定められた閾値よりも小さくなった場合に、位相差が閾値よりも大きくなるように第1回転数又は第2回転数を設定してもよい。
第1ブレードの第1回転角度と第2ブレードの第2回転角度との差である位相差が小さいほど、第1ブレード及び第2ブレードのそれぞれが連結部に重なるタイミング同士の時間間隔が短くなる。上記構成では、位相差が閾値よりも小さくなっても、位相差が閾値よりも大きくなるように第1回転数又は第2回転数が設定される。つまり、第1ブレード及び第2ブレードのそれぞれが連結部に重なるタイミング同士の時間間隔が短くなったとしても、位相差が次第に大きくなり、位相差が閾値よりも大きくなる。これにより、第1ブレードが連結部に重なるタイミングと第2ブレードが連結部に重なるタイミングとが互いに異なった状態が維持される。その結果、出力電力の変動幅を低減することが可能となる。
制御装置は、位相差が閾値よりも大きい場合、水流発電装置に設けられた流速検出部によって検出された流速に応じて第1回転数及び第2回転数を互いに同一の値である通常値に設定してもよい。制御装置は、位相差が閾値よりも小さくなった場合に、第1回転数及び第2回転数が互いに異なるように第1回転数又は第2回転数を設定してもよい。
上記構成では、位相差が閾値よりも大きい場合には流速に応じた通常値の回転数で第1ブレード及び第2ブレードが回転する。位相差が閾値よりも小さくなった場合、第1ブレードの第1回転数及び第2ブレードの第2回転数が互いに異なる値に設定される。このため、互いの回転数が異なることにより第1回転角度と第2回転角度との差である位相差が大きくなり、位相差が閾値よりも大きくなる。これにより、第1ブレード及び第2ブレードが同じタイミングで連結部に重なることが抑制される。その結果、出力電力の変動幅を低減しつつ、効率的に第1電力及び第2電力を生成することが可能となる。
本発明の別の側面に係る水流発電システムは、水流発電装置と、水流発電装置を制御する制御装置と、を備える。水流発電装置は、第1回転軸周りに回転する第1ブレードと、第1ブレードの回転に基づき第1電力を生成する第1発電機と、第1ブレード及び第1発電機が設けられる第1ポッドと、第2回転軸周りに回転する第2ブレードと、第2ブレードの回転に基づき第2電力を生成する第2発電機と、第2ブレード及び第2発電機が設けられる第2ポッドと、第1ポッドと第2ポッドとを連結する連結部と、を有する。第1回転軸が延びる方向からみて、第1ブレードが回転する領域は、第1ブレードが連結部に重なる第1領域を含み、第2回転軸が延びる方向からみて、第2ブレードが回転する領域は、第2ブレードが連結部に重なる第2領域を含む。制御装置は、第1ブレードが第1領域を通過するタイミングと第2ブレードが第2領域を通過するタイミングとが互いに異なるように第1ブレードの第1回転数及び第2ブレードの第2回転数を制御する。
この水流発電システムでは、第1ブレードが連結部に重なる第1領域を第1ブレードが通過するタイミングと第2ブレードが連結部に重なる第2領域を第2ブレードが通過するタイミングとが互いに異なるように第1ブレードの第1回転数及び第2ブレードの第2回転数が制御される。このため、第1ブレード及び第2ブレードが同じタイミングで連結部に重なってしまう可能性が低減される。これにより、第1ブレードの回転に基づき生成される第1電力及び第2ブレードの回転に基づき生成される第2電力が合成された出力電力の変動幅は、第1電力及び第2電力それぞれにおける変動幅に略等しくなる。その結果、出力電力の変動幅を低減することが可能となる。
第1ブレードと第2ブレードとは、互いに反対方向に回転してもよい。
この場合、第1ブレード及び第2ブレードの回転によって生じるそれぞれのトルクが、互いに反対向きとなるので、水流発電装置の姿勢を安定させることが可能となる。
水流発電装置は、第1電力と第2電力とを合成することにより得られる出力電力を外部に出力してもよい。
この場合、水流発電装置において生成される電力を水流発電装置から外部に送るためのケーブルの本数を、第1電力及び第2電力をそれぞれ送る場合に比べて減らすことができる。その結果、水中でのケーブルの設置作業を簡略化することが可能となる。
本発明のさらに別の側面に係る水流発電装置の制御方法は、第1回転軸周りに回転する第1ブレードと、第1ブレードの回転に基づき第1電力を生成する第1発電機と、第1ブレード及び第1発電機が設けられる第1ポッドと、第2回転軸周りに回転する第2ブレードと、第2ブレードの回転に基づき第2電力を生成する第2発電機と、第2ブレード及び第2発電機が設けられる第2ポッドと、第1ポッドと第2ポッドとを連結する連結部と、を備える水流発電装置の制御方法である。第1回転軸が延びる方向からみて、第1ブレードが回転する領域は、第1ブレードが連結部に重なる第1領域を含み、第2回転軸が延びる方向からみて、第2ブレードが回転する領域は、第2ブレードが連結部に重なる第2領域を含む。水流発電装置の制御方法は、第1ブレードが第1領域を通過するタイミングと第2ブレードが第2領域を通過するタイミングとが互いに異なるように第1ブレードの第1回転数及び第2ブレードの第2回転数を制御するステップを備える。
この水流発電装置の制御方法では、第1ブレードが連結部に重なる第1領域を第1ブレードが通過するタイミングと第2ブレードが連結部に重なる第2領域を第2ブレードが通過するタイミングとが互いに異なるように第1ブレードの第1回転数及び第2ブレードの第2回転数が制御される。このため、第1ブレード及び第2ブレードが同じタイミングで連結部に重なってしまう可能性が低減される。これにより、第1ブレードの回転に基づき生成される第1電力及び第2ブレードの回転に基づき生成される第2電力が合成された出力電力の変動幅は、第1電力及び第2電力それぞれにおける変動幅に略等しくなる。その結果、出力電力の変動幅を低減することが可能となる。
本発明によれば、出力電力の変動幅を低減することが可能となる。
図1は、一実施形態に係る制御装置を含む発電システムの概略構成を示す図である。 図2は、図1に示される発電システムに含まれる発電装置の斜視図である。 図3は、図1に示される発電システムのシステム構成図である。 図4は、図2に示される発電装置の正面図である。 図5の(a)は、一方のブレードが連結部に重なるときの発電装置の正面図である。図5の(b)は、他方のブレードが連結部に重なるときの発電装置の正面図である。 図6は、制御装置によって実施される処理の一例を示すフローチャートである。
以下、本発明の実施形態について、図面を参照しながら説明する。なお、図面の説明において同一要素には同一符号を付し、重複する説明を省略する。
以下の説明において、「上流」又は「下流」との語は、水の流れを基準として用いられる。「前」との語は、水の流れの上流側を意味し、「後」との語は、水の流れの下流側を意味する。「右」又は「左」との語は、水の流れに対して垂直で、かつ水平な方向を意味し、後方すなわち下流側からみた場合を基準として用いられる。「上」又は「下」との語は、後述の発電装置2が安定した状態における鉛直方向線を基準として用いられる。
図1〜図4を参照して、一実施形態に係る制御装置を含む発電システムを説明する。図1は、一実施形態に係る制御装置を含む発電システムの概略構成を示す図である。図2は、図1に示される発電システムに含まれる発電装置の斜視図である。図3は、図1に示される発電システムのシステム構成図である。図4は、図2に示される発電装置の正面図である。
図1に示される発電システム1(水流発電システム)は、水の流れである海流FWを利用して発電を行い、発電することで得られた出力電力Poutを例えば外部の電力系統に送るシステムである。発電システム1は、海中に設置された発電装置2(水流発電装置)と、地上に設けられた地上装置21(図3参照)と、を備えている。発電装置2と地上装置21とは、ケーブル4a,4bによって接続されている。
発電装置2は、海等の水中に浮遊した状態で設置される水中浮遊式の発電装置である。発電装置2は、海底Bに設置されたシンカー5に係留索3を介して接続されている。なお、シンカー5に代えて海底Bに固定されたアンカーに係留索3が接続されてもよい。発電装置2は、海流FWを受けて出力電力Poutを生成する。
発電装置2は、ケーブル4a,4bを介して出力電力Poutを地上装置21に送る。ケーブル4aの一端は、発電装置2に接続されている。ケーブル4aの他端は、例えばシンカー5に設けられた中継器に接続されている。シンカー5の中継器には、海底Bに敷設されて地上装置21まで延びるケーブル4bが接続されている。発電システム1は、発電装置2によって生成された出力電力Poutを、地上装置21を介して電力系統に送る。
図2に示されるように、発電装置2は、ポッド6A(第1ポッド)及びポッド6B(第2ポッド)と、中央ポッド7と、連結部8と、タービン9A及びタービン9Bと、を備えている。発電装置2は、タービン9A及びタービン9Bの回転に基づき電力を生成する双発式の海流発電装置である。
ポッド6A及びポッド6Bは、内部空間を有する円筒状の容器である。ポッド6A及びポッド6Bは、左右方向に離間して配置されている。ポッド6Aは、タービン9Aを回転可能に支持するとともに、タービン9Aに適正な浮力を付与する。ポッド6Bは、タービン9Bを回転可能に支持するとともに、タービン9Bに適正な浮力を付与する。ポッド6A及びポッド6Bは、例えば互いに同一の構造を有している。
中央ポッド7は、内部空間を有する円筒状の容器である。中央ポッド7は、左右方向においてポッド6Aとポッド6Bとの間に配置されており、ポッド6A及びポッド6Bよりも上方に配置されている。中央ポッド7には、例えば浮力調整用のタンクが設けられており、タンクに海水が注排水されることで浮体としての発電装置2に加わる浮力が調整される。ポッド6A、ポッド6B、及び中央ポッド7の中心軸線が互いに略平行となるように、ポッド6A、ポッド6B、及び中央ポッド7は配置されている。
連結部8は、ポッド6Aとポッド6Bとを連結する構造体である。連結部8は、クロスビーム8Aとクロスビーム8Bとを含んでいる。クロスビーム8Aは、ポッド6Aと中央ポッド7との間に延在する板状の構造体である。クロスビーム8Aは、ポッド6Aと中央ポッド7とを連結している。具体的には、クロスビーム8Aの延在方向における一端は、ポッド6Aの上下方向の略中央に接続されており、クロスビーム8Aの他端は、中央ポッド7のポッド6Aと対向する胴部に接続されている。
クロスビーム8Bは、ポッド6Bと中央ポッド7との間に延在する板状の構造体である。クロスビーム8Bは、ポッド6Bと中央ポッド7とを連結している。具体的には、クロスビーム8Bの延在方向における一端は、ポッド6Bの上下方向の略中央に接続されており、クロスビーム8Bの他端は、中央ポッド7のポッド6Bと対向する胴部に接続されている。ポッド6Aとポッド6Bとは、中央ポッド7を介してクロスビーム8A及びクロスビーム8Bによって連結されている。
タービン9A及びタービン9Bは、海流FWから受ける力を機械的な回転動力に変換する。タービン9Aは、ポッド6Aの後端に設けられている。タービン9Aは、ハブ10Aと、ハブ10Aに設けられたブレード11A(第1ブレード)と、を含んでいる。ブレード11Aは、羽根11aと羽根11bとを含んでいる。ハブ10Aは、回転軸12A(図3参照)に接続されている。ブレード11Aは、海流FWを受けることによって、ハブ10Aと一体となって回転軸12A(第1回転軸)周りに回転する。回転軸12Aは、例えばポッド6Aの中心軸線に沿って設けられている。
タービン9Bは、ポッド6Bの後端に設けられている。タービン9Bは、ハブ10Bと、ハブ10Bに設けられたブレード11B(第2ブレード)と、を含んでいる。ブレード11Bは、羽根11cと羽根11dとを含んでいる。ハブ10Bは、回転軸12B(図3参照)に接続されている。ブレード11Bは、海流FWを受けることによって、ハブ10Bと一体となって回転軸12B(第2回転軸)周りに回転する。回転軸12Bは、例えばポッド6Bの中心軸線に沿って設けられている。回転軸12A及び回転軸12Bは、互いに略平行に設けられている。
このように発電装置2では、ブレード11A(タービン9A)はポッド6Aよりも後方に配置されており、ブレード11B(タービン9B)はポッド6Bよりも後方に配置されている。つまり、発電装置2ではダウンウィンド型タービンが採用されている。
ブレード11Aとブレード11Bとでは、それぞれのピッチが互いに逆向きに構成されている。このため、ブレード11A及びブレード11Bは、海流FWを受けて互いに逆向きに回転する。具体的には、下流(後方)からみて、ブレード11Aは時計回り(回転方向R1)に回転し、ブレード11Bは反時計回り(回転方向R2)に回転する。
図3に示されるように、発電装置2は、さらに増速機13A及び増速機13Bと、発電機15A(第1発電機)及び発電機15B(第2発電機)と、電力調整部16A及び電力調整部16Bと、制御部17A及び制御部17Bと、回転検出部18A及び回転検出部18Bと、流速検出部19A及び流速検出部19Bと、変圧器20と、を備えている。
増速機13Aは、回転軸12A及び回転軸14Aが接続された歯車装置である。増速機13Aは、ポッド6Aの内部に設けられている。増速機13Aには、ブレード11A(タービン9A)と一体となって回転する回転軸12Aの回転が伝達される。増速機13Aは、回転軸12Aの回転数を増加させて回転軸14Aを回転させる。回転軸14Aの回転は発電機15Aに伝達される。
増速機13Bは、回転軸12B及び回転軸14Bが接続された歯車装置である。増速機13Bは、ポッド6Bの内部に設けられている。増速機13Bには、ブレード11B(タービン9B)と一体となって回転する回転軸12Bの回転が伝達される。増速機13Bは、回転軸12Bの回転数を増加させて回転軸14Bを回転させる。回転軸14Bの回転は発電機15Bに伝達される。増速機13A,13Bは、例えばブレード11A,11Bによる回転の回転数を数十倍に増加させる。
発電機15A及び発電機15Bは、回転による運動エネルギーを電気エネルギーに変換する。発電機15Aは、ポッド6Aの内部に設けられている。発電機15Aは例えば永久磁石を含んでおり、回転軸14Aの回転に伴い永久磁石が回転することによって、発電機15Aは電力P1(第1電力)を生成する。このように、発電機15Aはブレード11Aの回転に基づき電力P1を生成する。発電機15Aは、電力調整部16Aを介して電力P1を変圧器20に出力する。
発電機15Bは、ポッド6Bの内部に設けられている。発電機15Bは例えば永久磁石を含んでおり、回転軸14Bの回転に伴い永久磁石が回転することによって、発電機15Bは電力P2(第2電力)を生成する。このように、発電機15Bはブレード11Bの回転に基づき電力P2を生成する。発電機15Bは、電力調整部16Bを介して電力P2を変圧器20に出力する。
電力調整部16A及び電力調整部16Bは、発電機によって生成される電力における電圧の周波数(位相)及び電圧値等を調整するPCS(Power Conditioning System)である。電力調整部16Aは、ポッド6Aの内部に設けられており、制御部17Aと通信可能に接続されている。電力調整部16Bは、ポッド6Bの内部に設けられており、制御部17Bを介して制御部17Aと通信可能に接続されている。電力調整部16A及び電力調整部16Bのそれぞれは、例えばインバータと、インバータを制御するインバータ制御回路と、コンバータと、コンバータを制御するコンバータ制御回路と、を含んでいる。各インバータ制御回路及び各コンバータ制御回路は、制御部17Aと通信可能に接続されている。例えば制御部17Aからの周波数及び電圧値に関する指令値に基づき、電力調整部16Aにおいてコンバータが電気的に制御されることによって、電力P1における電圧の周波数及び電圧値等が調整される。電力調整部16Bにおいても、同様にコンバータが電気的に制御されることによって、電力P2における電圧の周波数及び電圧値等が調整される。
また、電力調整部16A及び電力調整部16Bは、発電機の回転数を調整する。例えば制御部17Aからの回転数に関する指令値に基づき、インバータが電気的に制御されることによって、発電機の回転数が調整される。発電機は、海流FWから得られるタービントルクと発電機が発生させる電気トルクとの関係から回生状態又は力行状態となる。電力調整部16Aによる発電機15Aの回転数の調整によって、ブレード11Aの回転数N1(第1回転数)が調整される。電力調整部16Bによる発電機15Bの回転数の調整によって、ブレード11Bの回転数N2(第2回転数)が調整される。
制御部17A(制御装置)及び制御部17Bは、所定の制御を行うコンピュータである。制御部17Aは、ポッド6Aの内部に設けられている。制御部17Bは、ポッド6Bの内部に設けられている。制御部17A及び制御部17Bは、互いに通信可能に接続されている。制御部17A及び制御部17Bのそれぞれは、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、及びRAM(Random Access Memory)等のハードウェアと、ROMに記憶されたプログラム等のソフトウェアとから構成されるコンピュータである。本実施形態において、発電システム1では制御部17Aによって、ブレード11A及びブレード11Bそれぞれの回転の制御が行われる。この場合、制御部17Bは、制御部17AのリモートI/O(Input/Output)として構成されてもよい。制御部17Aが行う具体的な処理手順については後述する。
回転検出部18Aは、回転数N1及び回転角度θ1を検出するセンサである。回転検出部18Aは、例えばレゾルバ又はパルスエンコーダである。回転検出部18Aは、例えば回転軸12Aに設けられ、回転軸12Aの回転に基づき回転数N1及び回転角度θ1を検出する。図4に示されるように、回転角度θ1は、クロスビーム8Aと重なるときのブレード11Aの位置(基準位置)を基準としたブレード11Aの回転角度であり、ここでは羽根11aの回転角度である。ブレード11Aの基準位置からブレード11A(羽根11a)が回転方向R1に位置するとき、回転角度θ1は正の値を有する。羽根11bの回転角度θ2は、羽根11aの回転角度θ1と180°異なっている。回転角度θ1及び回転角度θ2のそれぞれは、例えば−180°から180°までの範囲を有している。回転検出部18Aは、制御部17Aと通信可能に接続されており、検出した回転数N1及び回転角度θ1を制御部17Aに出力する。
回転検出部18Bは、回転数N2及び回転角度θ3を検出するセンサである。回転検出部18Bは、例えばレゾルバ又はパルスエンコーダである。回転検出部18Bは、例えば回転軸12Bに設けられ、回転軸12Bの回転に基づき回転数N2及び回転角度θ3を検出する。図4に示されるように、回転角度θ3は、クロスビーム8Bと重なるときのブレード11Bの位置(基準位置)を基準とした羽根11cの回転角度である。ブレード11Bの基準位置から羽根11cが回転方向R2に位置するとき、回転角度θ3は正の値を有する。羽根11dの回転角度θ4は、羽根11cの回転角度θ3と180°異なっている。回転角度θ3及び回転角度θ4のそれぞれは、例えば−180°から180°までの範囲を有している。回転検出部18Bは、制御部17Bと通信可能に接続されており、検出した回転数N2及び回転角度θ3を、制御部17Bを介して制御部17Aに出力する。
流速検出部19A及び流速検出部19Bは、発電装置2が受ける海流FWの流速を検出するセンサである。流速検出部19Aは、例えばポッド6Aの下端に設けられる。流速検出部19Aは、制御部17Aと通信可能に接続されており、検出した流速を制御部17Aに出力する。流速検出部19Bは、例えばポッド6Bの下端に設けられる。流速検出部19Bは、制御部17Bと通信可能に接続されており、検出した流速を、制御部17Bを介して制御部17Aに出力する。
変圧器20は、電力P1及び電力P2における電圧を昇圧させるとともに、電力P1と電力P2とを合成することで出力電力Poutを生成する。変圧器20は、出力電力Poutを発電装置2の外部に出力する。出力電力Poutは、ケーブル4a,4bを介して地上装置21に送られる。
地上装置21は、変圧器22を有している。変圧器22は、発電装置2から出力された出力電力Poutを外部の電力系統に適した電圧値に変換する。変圧器22は、変換した電圧値を有する出力電力Poutを外部の電力系統に出力する。
発電装置2ではダウンウィンド型タービンが採用されているので、連結部8(クロスビーム8A及びクロスビーム8B)の後方には、クロスビーム8A及びクロスビーム8Bによって海流FWの流速が低下する領域(流速低下領域)が生じる。このため、ブレード11A及びブレード11Bのそれぞれが流速低下領域を通過する間、一時的にブレード11A及びブレード11Bのそれぞれが海流FWから受ける力が低下する。ブレード11A及びブレード11Bのそれぞれは周期的に流速低下領域を通過するので、電力P1及び電力P2のそれぞれは周期的に変動する。
発電装置2の初期状態では、ブレード11Aの基準位置からの初期角度とブレード11Bの基準位置からの初期角度とが互いに異なるブレード11A及びブレード11Bの初期位置からブレード11A及びブレード11Bの回転が開始される。あるいは、初期角度が互いに同じ位置から互いに異なる回転数でブレード11A及びブレード11Bの回転が開始される。つまり、ブレード11A及びブレード11Bが回転する状態においてブレード11Aがクロスビーム8Aを通過するタイミングとブレード11Bがクロスビーム8Bを通過するタイミングとが互いに異なるように、ブレード11A及びブレード11Bの回転が開始される。そして、発電装置2では、回転数N1及び回転数N2が、例えば制御部17Aからの指令値と等しくなるように調整される。回転数N1及び回転数N2の指令値は、発電装置2の姿勢が安定するように互いに同一の値に設定されるとともに、流速に応じて変更される。電力調整部16Aは、例えば指令値と海流FWから受ける力によって回転するブレード11Aの回転数との差分に基づいて、ブレード11Aが回転数N1の指令値で回転するようにブレード11Aの回転を調整する。電力調整部16Bは、例えば指令値と海流FWから受ける力によって回転するブレード11Bの回転数との差分に基づいて、ブレード11Bが回転数N2の指令値で回転するようにブレード11Bの回転を調整する。
このとき、ブレード11A及びブレード11Bのそれぞれが受ける海流FWの流速は、同一であるとは限らない。このため、回転数N1及び回転数N2が指令値に等しくなる前では、海流FWによるブレード11Aの回転とブレード11Bの回転とのそれぞれの回転数が互いに異なっている場合がある。これにより、回転数N1及び回転数N2が指令値に調整される過程で、ブレード11Aがクロスビーム8Aに重なるタイミングとブレード11Bがクロスビーム8Bに重なるタイミングとの時間間隔ΔTが初期状態から変化する場合がある。その結果、時間間隔ΔTが短くなってしまう可能性がある。そこで、発電装置2では、時間間隔ΔTが所定値以上である状態が維持されるようにブレード11A及びブレード11Bの回転が制御される。
次に、図5及び図6を用いて制御部17Aが行うブレード11A及びブレード11Bの回転の制御方法について説明する。図5の(a)は、一方のブレードが連結部に重なるときの発電装置の正面図である。図5の(b)は、他方のブレードが連結部に重なるときの発電装置の正面図である。図6は、制御装置によって実施される処理の一例を示すフローチャートである。なお、制御部17Aには、流速の各値と各流速値に適したブレード11A,11Bの回転数とを対応づけた周速比テーブルが記憶されている。制御部17Aには、閾値δthが予め記憶されている。閾値δthは、例えば、ブレード11Aがクロスビーム8Aに重なるタイミングとブレード11Bがクロスビーム8Bに重なるタイミングとが互いに同じになる位相差(例えば0°)よりも大きい値に設定される。
図5の(a)及び図5の(b)には、回転軸12A(回転軸12B)が延びる方向(後方)からみた発電装置2の正面図が示されている。後方からみて、ブレード11Aが回転する領域DAは、ブレード11Aがクロスビーム8Aに重なる領域D1(第1領域)とブレード11Aがクロスビーム8Aに重ならない領域D2とを含んでいる。ブレード11Aが領域D2に位置するとき、ブレード11Aとクロスビーム8Aとが回転方向R1に沿って所定間隔離間している。ブレード11Bが回転する領域DBは、ブレード11Bがクロスビーム8Bに重なる領域D3(第2領域)とブレード11Bがクロスビーム8Bに重ならない領域D4とを含んでいる。ブレード11Bが領域D4に位置するとき、ブレード11Bとクロスビーム8Bとが回転方向に沿って所定間隔離間している。
制御部17Aは、ブレード11Aが領域D1を通過するタイミングとブレード11Bが領域D3を通過するタイミングとが互いに異なるように回転数N1及び回転数N2を制御する。具体的には、図5の(a)に示されるように、ブレード11Aが領域D1を通過するタイミングではブレード11Bが領域D4に位置するように、制御部17Aは回転数N1及び回転数N2を制御する。さらに、図5の(b)に示されるように、ブレード11Bが領域D3を通過するタイミングではブレード11Aが領域D2に位置するように、制御部17Aは、回転数N1及び回転数N2を制御する。
より詳細に説明すると、図6に示されるように、まず制御部17Aは流速を取得する(ステップS01)。具体的には、制御部17Aは、流速検出部19A及び流速検出部19Bのそれぞれによって検出された流速を取得する。
続いて、制御部17Aは、ステップS01において取得した流速に応じて回転数N1及び回転数N2を、互いに同じ値である通常値に設定する(ステップS02)。通常値は流速に適した回転数であり、流速に適した回転数は周速比テーブルを参照することによって得られる。例えば、制御部17Aは、周速比テーブルを参照することで、流速検出部19Aから出力された流速に適した回転数を通常値として取得する。そして、制御部17Aは、取得した通常値を指令値として電力調整部16A及び電力調整部16Bに送信する。電力調整部16Aは、回転数N1が指令値(通常値)となるようにブレード11Aの回転を調整し、電力調整部16Bは、回転数N2が指令値(通常値)となるようにブレード11Bの回転を調整する。これにより、回転数N1及び回転数N2が互いに同じ値(通常値)に設定される。
続いて、制御部17Aはブレード11Aの回転角度及びブレード11Bの回転角度を取得する(ステップS03)。具体的には、制御部17Aは、回転検出部18Aによって検出された回転角度θ1を取得し、回転検出部18Bによって検出された回転角度θ3を取得する。また、制御部17Aは回転角度θ3に180°を加えることで回転角度θ4を取得する。回転角度θ3に180°を加えることで得られた加算値が180°を超える場合には、制御部17Aは、さらに加算値から360°を減算することで、回転角度θ4を取得する。
続いて、制御部17Aは位相差δを算出する(ステップS04)。ステップS04では、例えば制御部17Aは、回転角度θ1と回転角度θ3との差Δθa(絶対値)と、回転角度θ1と回転角度θ4との差Δθb(絶対値)と、を算出する。そして、制御部17Aは、差Δθaと差Δθbとを比較する。
差Δθaが差Δθbよりも小さい場合、制御部17Aは、回転角度θ1(第1回転角度)と回転角度θ3(第2回転角度)との差Δθaを位相差δとして算出する。このとき、回転角度θ3が、ブレード11Bがクロスビーム8Bに重なる基準位置からのブレード11Bの回転角度となる。一方、差Δθaが差Δθb以上である場合、制御部17Aは、回転角度θ1と回転角度θ4(第2回転角度)との差Δθbを位相差δとして算出する。このとき、回転角度θ4が、ブレード11Bがクロスビーム8Bに重なる基準位置からのブレード11Bの回転角度となる。これにより、羽根11c,11dのどちらかと羽根11aとの組合せのうちの互いの回転角度の差が小さいほうの組合せに基づいて、位相差δが算出される。
なお、制御部17Aは、回転角度θ1に180°を加えることで回転角度θ2(第1回転角度)を取得してもよい。回転角度θ1に180°を加えた加算値が180°を超える場合には、制御部17Aは、さらに加算値から360°を減算することで、回転角度θ2を取得してもよい。制御部17Aは、回転角度θ2と回転角度θ3との差と、回転角度θ2と回転角度θ4との差と、に基づいて上述と同様に位相差δを算出してもよい。また、制御部17Aは、回転角度θ3及び回転角度θ4のうちのいずれか一方と、回転角度θ1及び回転角度θ2のそれぞれと、の差に基づいて上述と同様に位相差δを算出してもよい。
続いて、制御部17Aは、位相差δと閾値δthとを比較する(ステップS05)。具体的には、制御部17Aは、ステップS04で算出した位相差δが、予め定められた閾値δthよりも小さいかどうかを判断する。
位相差δが閾値δthよりも小さいと判断された場合(ステップS05:YES)、制御部17Aは、位相差δが閾値δthよりも大きくなるように回転数N1及び回転数N2の少なくとも一方を変更する。具体的には、制御部17Aは、回転数N1及び回転数N2が互いに異なるように回転数N1又は回転数N2を設定する。例えば、制御部17Aは、回転数N1を通常値と異なる値に設定するとともに、回転数N2を通常値に維持する。制御部17Aは、ブレード11Aの位相(回転角度)がブレード11Bの位相(回転角度)よりも進んでいる場合、回転数N1を通常値よりも大きい値に設定する。一方、ブレード11Aの位相がブレード11Bの位相よりも遅れている場合、制御部17Aは、回転数N1を通常値よりも小さい値に設定する。なお、例えば回転角度θ1と回転角度θ3とによって位相差δが算出された場合において、羽根11aが羽根11cよりも先に連結部8を通過するようにブレード11A,11Bが回転しているときに、ブレード11Aの位相がブレード11Bの位相よりも進んでいる。例えば、制御部17Aは、発電装置2の姿勢が崩れない範囲で回転数N1及び回転数N2の少なくとも一方を通常値と異なる値に設定する。
なお、制御部17Aは、回転数N2を通常値と異なる値に設定するとともに、回転数N1を通常値に維持してもよい。制御部17Aは、回転数N1及び回転数N2が互いに異なるように、回転数N1及び回転数N2をともに通常値と異なる値に設定してもよい。このように、位相差δが閾値δthよりも小さくなると、回転数N1及び回転数N2の少なくとも一方は、通常値と異なる値に設定される。例えば、位相差δが閾値δthより小さい間、制御部17Aは、ステップS06において、互いに異なる値に変更された回転数N1及び回転数N2の値を所定時間維持する。制御部17Aは、所定時間経過後に、ステップS01の処理を再び行う。
一方、ステップS05において、位相差δが閾値δth以上であると判断された場合(ステップS05:NO)、制御部17AはステップS01の処理を再び行う。このように、位相差δが閾値δth以上であると判断された場合、ブレード11A及びブレード11Bの回転数N1,N2は、通常値に維持される。制御部17Aは、ステップS01からステップS05までの処理を例えば所定の間隔で繰り返す。
以上説明したように、制御部17Aを含む発電システム1では、ブレード11Aが領域D1を通過するタイミングとブレード11Bが領域D3を通過するタイミングとが互いに異なるように、回転数N1及び回転数N2が制御される。このため、ブレード11A及びブレード11Bが同じタイミングで連結部8に重なってしまう可能性が低減される。ブレード11A及びブレード11Bが同じタイミングで連結部8に重なってしまうと、出力電力Poutの変動幅は、ブレード11A及びブレード11Bのそれぞれが連結部8を通過することによって生じる電力P1及び電力P2の変動幅同士を合算した値に略等しくなる。つまり、出力電力Poutの変動幅が大きくなってしまう。しかしながら、上述の構成では、出力電力Poutの変動幅は、ブレード11A及びブレード11Bのそれぞれが単独で連結部8を通過することによって生じる電力P1及び電力P2の変動幅に略等しくなる。その結果、出力電力Poutの変動幅を低減することが可能となる。つまり、出力電力Poutの変動によって外部の電力系統に与える影響(外乱)を低減することが可能となる。
位相差δが小さいほど、ブレード11A及びブレード11Bのそれぞれが連結部8に重なるタイミング同士の時間間隔ΔTが短くなる。上述の発電システム1では、位相差δが閾値δthよりも小さくなっても、位相差δが閾値δthよりも大きくなるように回転数N1又は回転数N2が設定される。具体的には、回転数N1及び回転数N2が互いに異なる値となるように回転数N1又は回転数N2が設定される。このため、位相差δが次第に大きくなることで、位相差δが閾値δthよりも大きくなる。これにより、ブレード11Aが連結部8に重なるタイミングと、ブレード11Bが連結部8に重なるタイミングとが互いに異なった状態が維持される。その結果、出力電力Poutの変動幅を低減することが可能となる。
ブレード11Aとブレード11Bとは互いに反対方向に回転している。このため、ブレード11A及びブレード11Bの回転によって生じるそれぞれのトルクが、互いに反対向きとなるので、発電装置2の姿勢を安定させることが可能となる。
高い発電効率が得られる回転数N1及び回転数N2は、流速に応じて異なる。位相差δが閾値δth以上である場合には、流速に応じて回転数N1及び回転数N2が互いに同じ値である通常値に設定される。このため、通常値が高い発電効率が得られる回転数に設定されることで、その回転数でブレード11A及びブレード11Bが回転する。その結果、効率的に電力P1及び電力P2を生成することが可能となる。また、ブレード11A及びブレード11Bの回転によって生じるそれぞれのトルクの値が互いに略同一となるので、発電装置2の姿勢をさらに安定させることが可能となる。
発電装置2は、電力P1と電力P2とを合成した出力電力Poutを、ケーブル4a,4bを介して地上装置21に出力している。このため、発電装置2において生成される電力を発電装置2から地上装置21に送るためのケーブルの本数を、電力P1及び電力P2をそれぞれ送る場合に比べて減らすことができる。その結果、海中でのケーブル4a,4bの設置作業を簡略化することが可能となる。
本発明の一実施形態について説明したが、本発明は上記実施形態に限られない。
中央ポッド7は、ポッド6A及びポッド6Bよりも上方に配置されているが、中央ポッド7はポッド6A及びポッド6Bと略同一の高さに配置されもよい。この場合、クロスビーム8A及びクロスビーム8Bは略同一の方向に延在してもよい。
連結部8は、ポッド6Aからポッド6Bまで一方向に延在し、中央ポッド7を介さずにポッド6Aとポッド6Bとを直接連結するクロスビームでもよい。この場合、クロスビームの上方に中央ポッド7が設けられてもよい。発電装置2は、中央ポッド7を備えていなくてもよい。この場合、変圧器20は、ポッド6A及びポッド6Bのいずれか一方の内部に設けられてもよい。
クロスビーム8A,8Bの延在方向と交差する方向におけるクロスビーム8A,8Bの断面形状は矩形状でなくてもよい。断面形状における縁が曲線であってもよく、例えば流線形状であってもよい。
後方(下流)からみたクロスビーム8A,8Bの形状は矩形状でなくてもよい。後方からみたクロスビーム8A,8Bの形状における縁が曲線であってもよい。クロスビーム8A,8Bの厚さ(高さ)は、ブレード11A,11Bの回転方向に沿った最大幅よりも大きくてもよく、回転方向に沿った最大幅以下であってもよい。
ブレード11Aは、3枚以上の羽根を含んでもよく、ブレード11Bは、3枚以上の羽根を含んでもよい。ブレード11A(ブレード11B)が、3枚の羽根によって構成される場合、制御部17Aは、ブレード11Aにおける3枚の羽根のうちのいずれかの羽根の回転角度と、ブレード11Bにおける3枚の羽根のそれぞれの回転角度との差に基づいて、位相差δを算出してもよい。ブレード11A(ブレード11B)が4枚以上の羽根によって構成される場合も、制御部17Aは、同様にして位相差δを算出してもよい。
制御部17B(制御装置)によって、回転数N1及び回転数N2の制御が行われてもよい。この場合、制御部17Aは、制御部17BのリモートI/Oとして構成されてもよい。発電装置2は、中央ポッド7に他の制御部を備えてもよい。この場合、中央ポッド7に設けられた制御部(制御装置)によって、回転数N1及び回転数N2の制御が行われてもよい。発電システム1は、地上に設けられ、発電装置2の管理を行うための他の制御部と、ケーブル4a,4bに沿って設けられ、発電装置2及び他の制御部を通信可能に接続する通信ケーブルと、を備えてもよい。この場合、地上に設けられた制御部(制御装置)によって、回転数N1及び回転数N2の制御が行われてもよい。
ステップS06にて回転数N1及び回転数N2が互いに異なる値に設定された後、所定時間経過後に制御部17Aが行う処理はステップS01の処理に戻るが、ステップS01の処理に戻るための条件は、これに限られない。制御部17Aは、回転数N1及び回転数N2を互いに異なる値に設定した後、位相差δが閾値δth以上となったことを判断することによって、再度ステップS01の処理を行ってもよい。つまり、制御部17Aは、ステップS06の処理の後に、位相差δが閾値δht以上となるまでステップS03からステップS05の処理を繰り返してもよい。あるいは、制御部17Aは、ステップS01の処理に戻るかどうかを判断するために、閾値δthよりも大きい値を有する別の閾値を用いてもよい。この場合、回転数N1及び回転数N2が通常値に戻った後にすぐに位相差δが閾値δthを下回ってしまう可能性を低減することができる。
回転検出部18Aは、回転軸14Aに設けられてもよい。この場合、制御部17Aは回転軸14Aの回転に基づいて回転数N1及び回転角度θ1,θ2を取得してもよい。回転検出部18Bは、回転軸14Bに設けられてもよい。この場合、制御部17Aは回転軸14Bの回転に基づいて回転数N2及び回転角度θ3,θ4を取得してもよい。制御部17Aは、電力P1における周期的に変化する電圧値から永久磁石の回転位置(磁極位置)を算出することによって、回転数N1及び回転角度θ1,θ2を取得してもよい。制御部17Aは、電力P2における周期的に変化する電圧値から永久磁石の回転位置(磁極位置)を算出することによって、回転数N2及び回転角度θ3,θ4を検出してもよい。
電力調整部16A及び電力調整部16Bによって、それぞれ回転数N1及び回転数N2が調整されるが、回転数N1,N2の調整手段は、これに限られない。発電装置2は、回転数N1及び回転数N2を機械的な機構によって調整する装置を備えてもよい。例えば発電装置2は、回転軸14A(回転軸14B)に接続され、摩擦力を用いて回転数N1(回転数N2)を低減させることで回転数N1(回転数N2)を調整するブレーキ装置を備えてもよい。
発電装置2は、電力P1及び電力P2をそれぞれ異なるケーブルによって地上装置21に送ってもよい。この場合、地上装置21は、地上装置21において電力P1及び電力P2が合成されることにより得られる出力電力Poutを外部の電力系統に出力してもよい。
発電システム1は、出力電力Poutを平滑にするための蓄電装置を備えてもよい。この蓄電装置は、例えば二次電池又はキャパシタであり、出力電力Poutの変動に応じて充電と放電とを切り替える。これにより、外部の電力系統に出力される電力が平滑化される。発電システム1では、出力電力Poutの変動幅が低減されるので、蓄電装置の容量を小さくすることが可能となる。
1 発電システム
2 発電装置
6A ポッド
6B ポッド
8 連結部
8A クロスビーム
8B クロスビーム
11A ブレード
11B ブレード
12A 回転軸
12B 回転軸
15A 発電機
15B 発電機
17A 制御部
18A 回転検出部
18B 回転検出部
19A 流速検出部
19B 流速検出部
N1 回転数
N2 回転数
θ1 回転角度
θ2 回転角度
θ3 回転角度
θ4 回転角度
δ 位相差
δth 閾値

Claims (7)

  1. 第1回転軸周りに回転する第1ブレードと、前記第1ブレードの回転に基づき第1電力を生成する第1発電機と、前記第1ブレード及び前記第1発電機が設けられる第1ポッドと、第2回転軸周りに回転する第2ブレードと、前記第2ブレードの回転に基づき第2電力を生成する第2発電機と、前記第2ブレード及び前記第2発電機が設けられる第2ポッドと、前記第1ポッドと前記第2ポッドとを連結する連結部と、を備える水流発電装置を制御する制御装置であって、
    前記第1回転軸が延びる方向からみて、前記第1ブレードが回転する領域は、前記第1ブレードが前記連結部に重なる第1領域を含み、
    前記第2回転軸が延びる方向からみて、前記第2ブレードが回転する領域は、前記第2ブレードが前記連結部に重なる第2領域を含み、
    前記第1ブレードが前記第1領域を通過するタイミングと前記第2ブレードが前記第2領域を通過するタイミングとが互いに異なるように前記第1ブレードの第1回転数及び前記第2ブレードの第2回転数を制御する、
    制御装置。
  2. 前記第1領域に位置するときの前記第1ブレードを基準とした前記第1ブレードの第1回転角度を取得し、
    前記第2領域に位置するときの前記第2ブレードを基準とした前記第2ブレードの第2回転角度を取得し、
    前記第1回転角度と前記第2回転角度との差である位相差が予め定められた閾値よりも小さくなった場合に、前記位相差が前記閾値よりも大きくなるように前記第1回転数又は前記第2回転数を設定する、
    請求項1に記載の制御装置。
  3. 前記位相差が前記閾値よりも大きい場合、前記水流発電装置に設けられた流速検出部によって検出された流速に応じて前記第1回転数及び前記第2回転数を互いに同一の値である通常値に設定し、
    前記位相差が前記閾値よりも小さくなった場合に、前記第1回転数及び前記第2回転数が互いに異なるように前記第1回転数又は前記第2回転数を設定する、
    請求項2に記載の制御装置。
  4. 水流発電装置と、前記水流発電装置を制御する制御装置と、を備え、
    前記水流発電装置は、第1回転軸周りに回転する第1ブレードと、前記第1ブレードの回転に基づき第1電力を生成する第1発電機と、前記第1ブレード及び前記第1発電機が設けられる第1ポッドと、第2回転軸周りに回転する第2ブレードと、前記第2ブレードの回転に基づき第2電力を生成する第2発電機と、前記第2ブレード及び前記第2発電機が設けられる第2ポッドと、前記第1ポッドと前記第2ポッドとを連結する連結部と、を有し、
    前記第1回転軸が延びる方向からみて、前記第1ブレードが回転する領域は、前記第1ブレードが前記連結部に重なる第1領域を含み、
    前記第2回転軸が延びる方向からみて、前記第2ブレードが回転する領域は、前記第2ブレードが前記連結部に重なる第2領域を含み、
    前記制御装置は、前記第1ブレードが前記第1領域を通過するタイミングと前記第2ブレードが前記第2領域を通過するタイミングとが互いに異なるように前記第1ブレードの第1回転数及び前記第2ブレードの第2回転数を制御する、
    水流発電システム。
  5. 前記第1ブレードと前記第2ブレードとは、互いに反対方向に回転する、
    請求項4に記載の水流発電システム。
  6. 前記水流発電装置は、前記第1電力と前記第2電力とを合成することにより得られる出力電力を外部に出力する、
    請求項4又は請求項5に記載の水流発電システム。
  7. 第1回転軸周りに回転する第1ブレードと、前記第1ブレードの回転に基づき第1電力を生成する第1発電機と、前記第1ブレード及び前記第1発電機が設けられる第1ポッドと、第2回転軸周りに回転する第2ブレードと、前記第2ブレードの回転に基づき第2電力を生成する第2発電機と、前記第2ブレード及び前記第2発電機が設けられる第2ポッドと、前記第1ポッドと前記第2ポッドとを連結する連結部と、を備える水流発電装置の制御方法であって、
    前記第1回転軸が延びる方向からみて、前記第1ブレードが回転する領域は、前記第1ブレードが前記連結部に重なる第1領域を含み、
    前記第2回転軸が延びる方向からみて、前記第2ブレードが回転する領域は、前記第2ブレードが前記連結部に重なる第2領域を含み、
    前記第1ブレードが前記第1領域を通過するタイミングと前記第2ブレードが前記第2領域を通過するタイミングとが互いに異なるように前記第1ブレードの第1回転数及び前記第2ブレードの第2回転数を制御するステップを備える、
    水流発電装置の制御方法。
JP2018049807A 2018-03-16 2018-03-16 制御装置、水流発電システム、及び水流発電装置の制御方法 Active JP6988609B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018049807A JP6988609B2 (ja) 2018-03-16 2018-03-16 制御装置、水流発電システム、及び水流発電装置の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018049807A JP6988609B2 (ja) 2018-03-16 2018-03-16 制御装置、水流発電システム、及び水流発電装置の制御方法

Publications (2)

Publication Number Publication Date
JP2019157839A true JP2019157839A (ja) 2019-09-19
JP6988609B2 JP6988609B2 (ja) 2022-01-05

Family

ID=67995908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018049807A Active JP6988609B2 (ja) 2018-03-16 2018-03-16 制御装置、水流発電システム、及び水流発電装置の制御方法

Country Status (1)

Country Link
JP (1) JP6988609B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234845A (ja) * 2000-02-22 2001-08-31 Okinawa Electric Power Co Ltd 風力発電装置の複数台運転における出力制御方法
JP2016084793A (ja) * 2014-10-29 2016-05-19 三菱重工業株式会社 海中浮遊式海流発電装置
JP2017044101A (ja) * 2015-08-25 2017-03-02 株式会社Ihi 発電装置
JP2018001821A (ja) * 2016-06-28 2018-01-11 株式会社Ihi 水中浮遊式発電装置の姿勢制御システムおよび姿勢制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234845A (ja) * 2000-02-22 2001-08-31 Okinawa Electric Power Co Ltd 風力発電装置の複数台運転における出力制御方法
JP2016084793A (ja) * 2014-10-29 2016-05-19 三菱重工業株式会社 海中浮遊式海流発電装置
JP2017044101A (ja) * 2015-08-25 2017-03-02 株式会社Ihi 発電装置
JP2018001821A (ja) * 2016-06-28 2018-01-11 株式会社Ihi 水中浮遊式発電装置の姿勢制御システムおよび姿勢制御方法

Also Published As

Publication number Publication date
JP6988609B2 (ja) 2022-01-05

Similar Documents

Publication Publication Date Title
US10584675B2 (en) Underwater floating-type ocean current power generation device
JP4102278B2 (ja) 風力発電システム
JP5022102B2 (ja) 風力発電装置、風力発電システムおよび風力発電装置の発電制御方法
US10590912B2 (en) Counteracting tower oscillations of an idling wind turbine
JP4365394B2 (ja) 風力発電システムおよびその運転方法
JP6506664B2 (ja) 風力発電システムまたは風力発電システムの制御方法
JP2015505006A (ja) 浮体式風力タービンの協調制御
US20100332041A1 (en) Power control protocol for a hydrokinetic device including an array thereof
EP3306076A1 (en) Wind turbine system or method of controlling wind turbine system
TW201809460A (zh) 風力發電系統
JP2007124780A (ja) 蓄電システム及び風力発電所
JP2019183802A (ja) 風力発電システム
WO2016135800A1 (ja) 発電システム
KR20140042658A (ko) 풍력 발전 시스템
JP6388759B2 (ja) 浮体式風力発電装置
JP2005351087A (ja) 水上風力発電装置
EP3054152B1 (en) Wind power generation apparatus
JP2017053274A (ja) 風力発電システムまたは風力発電システムの制御方法
JP6988609B2 (ja) 制御装置、水流発電システム、及び水流発電装置の制御方法
JP2020148092A (ja) 風力発電装置、風力発電装置の制御方法
KR101709126B1 (ko) 부유식 해상용 풍력발전기의 자세안정화 제어방법
JP2017180153A (ja) 風力発電装置またはウィンドファーム
WO2021039188A1 (ja) 風力発電装置およびその停止方法
JP2012087643A (ja) 発電電力平準化システム付ジャイロ式波力発電装置
JP7484607B2 (ja) 水流発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211115

R151 Written notification of patent or utility model registration

Ref document number: 6988609

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151