JP2019157676A - 燃料噴射弁および燃料噴射システム - Google Patents

燃料噴射弁および燃料噴射システム Download PDF

Info

Publication number
JP2019157676A
JP2019157676A JP2018042226A JP2018042226A JP2019157676A JP 2019157676 A JP2019157676 A JP 2019157676A JP 2018042226 A JP2018042226 A JP 2018042226A JP 2018042226 A JP2018042226 A JP 2018042226A JP 2019157676 A JP2019157676 A JP 2019157676A
Authority
JP
Japan
Prior art keywords
fuel
valve
fuel injection
needle
nozzle hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018042226A
Other languages
English (en)
Other versions
JP7124350B2 (ja
Inventor
浩行 原田
Hiroyuki Harada
浩行 原田
孝範 鬼頭
Takanori Kito
孝範 鬼頭
啓太 今井
Keita Imai
啓太 今井
誠 西前
Makoto Nishimae
誠 西前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2018042226A priority Critical patent/JP7124350B2/ja
Priority to DE102019103245.8A priority patent/DE102019103245A1/de
Priority to US16/291,249 priority patent/US20190277236A1/en
Priority to CN201910167550.5A priority patent/CN110242463A/zh
Publication of JP2019157676A publication Critical patent/JP2019157676A/ja
Application granted granted Critical
Publication of JP7124350B2 publication Critical patent/JP7124350B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0671Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature having an elongated valve body attached thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0625Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures
    • F02M51/0664Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding
    • F02M51/0685Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of mobile armatures having a cylindrically or partly cylindrically shaped armature, e.g. entering the winding; having a plate-shaped or undulated armature entering the winding the armature and the valve being allowed to move relatively to each other or not being attached to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/04Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00 having valves, e.g. having a plurality of valves in series
    • F02M61/10Other injectors with elongated valve bodies, i.e. of needle-valve type
    • F02M61/12Other injectors with elongated valve bodies, i.e. of needle-valve type characterised by the provision of guiding or centring means for valve bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/165Filtering elements specially adapted in fuel inlets to injector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1813Discharge orifices having different orientations with respect to valve member direction of movement, e.g. orientations being such that fuel jets emerging from discharge orifices collide with each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1826Discharge orifices having different sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1833Discharge orifices having changing cross sections, e.g. being divergent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1886Details of valve seats not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1893Details of valve member ends not covered by groups F02M61/1866 - F02M61/188
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/02Fuel-injection apparatus having means for reducing wear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/09Fuel-injection apparatus having means for reducing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/27Fuel-injection apparatus with filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/188Spherical or partly spherical shaped valve member ends
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

【課題】弁体のバウンス低減を図った燃料噴射弁を提供する。【解決手段】燃料噴射弁は、噴孔11aが形成された噴孔ボデー11と、噴孔ボデー11の着座面11sに離着座するニードル20(弁体)と、燃料通路11bと、第1バネ部材(弾性部材)と、を備える。燃料通路11bは、噴孔ボデー11とニードル20との間に形成され、噴孔11aの流入口に連通しており、ニードル20の離着座により開閉される。第1バネ部材は、ニードル20を着座面11sに押し付ける弾性力を発揮する。着座面11sのうちニードル20の軸線C1(中心軸線)を含む断面に現れる2本の直線がなす角度であるシート角度θは、90度以下である。【選択図】図11

Description

この明細書における開示は、燃料噴射弁および燃料噴射システムに関する。
特許文献1には、内燃機関の燃焼に用いる燃料を噴孔から噴射する燃料噴射弁が開示されている。この燃料噴射弁は、噴孔が形成された噴孔ボデー、弁体および弾性部材を備える。弁体は、噴孔に連通する燃料通路を噴孔ボデーの内面との間で形成し、噴孔ボデーの着座面に離着座することで燃料通路を開閉する。弾性部材は、弁体を着座面に押し付ける弾性力を発揮する。
特開2016−98702号公報
さて、弁体が着座面に着座している状態においては、燃料噴射弁に供給される燃料の圧力(供給燃圧)が弁体を着座面に押し付ける向きに作用する。このような燃料圧力により弁体に作用する力を燃圧閉弁力と呼ぶ。また、弾性部材による上述した弾性力を弾性閉弁力と呼ぶ。そして近年では、燃料の高圧化が進んでおり、燃圧閉弁力が高くなってきているので、弁体を着座面から離座させるのに要する力(所要開弁力)が大きい。所要開弁力の増大を抑制するためには、弾性閉弁力を小さくすればよい。
しかしながら、例えば100MPa程度の高圧燃料を噴射可能な燃料噴射弁であっても、例えば40MPa程度の燃料を噴射させる場合もあり、供給燃圧の最大圧と最小圧とには幅がある。そして、最大圧の時に所要開弁力が最も高くなるので、最大圧の場合を想定して弾性閉弁力を設定している。しかしながら、このように弾性閉弁力を設定すると、最小圧の時には、弾性閉弁力に加えて燃圧閉弁力も小さくなっているので、弁体に付与される閉弁力が小さくなる。その結果、閉弁作動する弁体が着座面に当接(衝突)した直後に跳ね返って離座するといったバウンスの現象が生じやすくなる。
開示される1つの目的は、弁体のバウンス低減を図った、燃料噴射弁および燃料噴射システムを提供することである。
上記目的を達成するため、開示された第1の態様は、
内燃機関における燃焼に用いる燃料が噴射される噴孔(11a、11a3、11a4)が形成された噴孔ボデー(11)と、
噴孔ボデーの着座面(11s)に離着座する弁体(20)と、
噴孔ボデーと弁体との間に形成され、噴孔の流入口(11in)に連通しており、弁体の離着座により開閉される燃料通路(11b)と、
弁体を着座面に押し付ける弾性力を発揮する弾性部材(SP1)と、
を備え、
着座面のうち弁体の中心軸線を含む断面に現れる2本の直線がなす角度であるシート角度(θ)は、90度以下である燃料噴射弁とされる。
さて、閉弁作動する弁体が着座面に衝突してバウンスするにあたり、その弁体を、着座面に衝突する質点と仮定し、以下、この質点についての運動量について説明する。バウンス直前の質点の運動量(衝突前運動量)は、バウンス直前の質点速度に質点質量を乗算した値であり、衝突前運動量を持つ質点の移動方向は、中心軸線方向に沿って着座面に向かう方向である。これに対し、バウンス直後の質点の運動量(衝突後運動量)は、バウンス直後の質点速度に質点質量を乗算した値であり、衝突後運動量を持つ質点の移動方向は、以下に説明する反射方向である。すなわち、質点の着座面への衝突角度が入射角度に相当し、入射角度は、衝突前運動量を持つ質点の移動方向に延びる線と着座面の垂線とのなす角度である。また、着座面に衝突した質点がバウンスする角度が反射角度に相当し、反射角度は、衝突後運動量を持つ質点の移動方向に延びる線と着座面の垂線とのなす角度である。
そして、入射角度と反射角度は同一であり、衝突前運動量を持つ質点の移動方向は中心軸線方向に特定されているため、シート角度を特定して着座面の角度を特定すれば、反射角度も特定され、衝突後運動量を持つ質点の移動方向も特定されることになる。この知見に基づけば、シート角度が90度であれば、衝突後運動量を持つ質点の移動方向は、中心軸線に対して垂直な方向(以下、水平方向と呼ぶ)ということになる。そして、シート角度が90度より大きければ、衝突後運動量を持つ質点の移動方向は、水平方向に対して上側(弁体が開弁する側)へ向かう方向となる。シート角度が90度より小さければ、衝突後運動量を持つ質点の移動方向は、水平方向に対して下側(弁体が閉弁する側)へ向かう方向となる。
この点に着目された上記第1の態様では、シート角度を90度以下にしている。そのため、着座面に衝突した弁体が開弁側にバウンスすることが抑制され、弁体のバウンス低減を図ることができる。
また、開示された第2の態様である燃料噴射システムは、上記第1の態様に係る燃料噴射弁(1、1A、1B)と、弁体の着座面への離着座状態を制御することで噴孔からの燃料噴射状態を制御する制御装置(90)と、を備える。よって、上記第1の態様と同様の効果が発揮される。
尚、上記括弧内の参照番号は、後述する実施形態における具体的な構成との対応関係の一例を示すものにすぎず、技術的範囲を何ら制限するものではない。
第1実施形態に係る燃料噴射弁の断面図。 図1の噴孔部分における拡大図。 図1の可動コア部分における拡大図。 第1実施形態に係る燃料噴射弁の作動を示す模式図であり、図中の(a)は閉弁状態を示し、(b)は磁気吸引力で移動する可動コアが弁体に衝突した状態を示し、(c)は磁気吸引力でさらに移動する可動コアがガイド部材に衝突した状態を示す。 第1実施形態に係る燃料噴射弁の作動を示すタイムチャートであり、図中の(a)は駆動パルスの変化を示し、(b)は駆動電流の変化を示し、(c)は磁気吸引力の変化を示し、(d)は可動部の挙動を示す。 ニードルが開弁した状態を示す、図2の拡大図である。 第1実施形態に係る噴孔ボデーを、噴孔の流入口側から見た上面図である。 第1実施形態において、ニードルが最大開弁位置にある状態を示す断面図である。 第1実施形態において、ニードルが閉弁した状態を示す断面図である。 第1実施形態に係るフィルタの模式図であって、メッシュ間隔を説明する図である。 第1実施形態において、ニードルが閉弁した状態を示す断面図であって、シート角度を説明する図である。 第1実施形態に係る噴孔ボデーおよびニードルの断面図であって、噴孔直上体積を説明する図である。 第1比較例に係る燃料噴射弁が備える噴孔ボデーおよびニードルを模式的に示す断面図であって、横流入燃料の流入角度を説明する図である。 第2比較例に係る燃料噴射弁が備える噴孔ボデーおよびニードルを模式的に示す断面図であって、横流入燃料の流入角度を説明する図である。 第1実施形態に係る燃料噴射弁が備える噴孔ボデーおよびニードルを模式的に示す断面図であって、横流入燃料の流入角度を説明する図である。 第2実施形態に係る燃料噴射弁が備える、噴孔ボデーおよびニードルの断面図である。 第3実施形態に係る燃料噴射弁の噴孔ボデーを、噴孔の流入口側から見た上面図である。 第3比較例に係る燃料噴射弁が備える噴孔ボデーおよびニードルを模式的に示す断面図であって、横流入燃料の流入角度を説明する図である。 第3実施形態に係る燃料噴射弁が備える噴孔ボデーおよびニードルを模式的に示す断面図であって、横流入燃料の流入角度を説明する図である。 第4実施形態に係る燃料噴射弁の噴孔ボデーを、噴孔の流入口側から見た上面図である。 第5実施形態に係る噴孔ボデーおよびニードルの断面図であって、噴孔形状を説明する図である。 第6実施形態に係る噴孔ボデーおよびニードルの断面図であって、噴孔形状を説明する図である。 第7実施形態に係る燃料噴射弁の断面図である。 第8実施形態に係る燃料噴射弁の断面図である。 他の実施形態に係る燃料噴射弁の断面図である。 他の実施形態に係る燃料噴射弁の断面図である。 他の実施形態に係る燃料噴射弁の断面図である。
以下、本開示の複数の実施形態を図面に基づいて説明する。尚、各実施形態において対応する構成要素には同一の符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。
(第1実施形態)
図1に示す燃料噴射弁1は、車両に搭載された点火着火式内燃機関のシリンダヘッドに取り付けられており、内燃機関の燃焼室2へ直接燃料を噴射する直噴式である。車載燃料タンクに貯留されている液体のガソリン燃料は、図示しない燃料ポンプにより加圧されて燃料噴射弁1へ供給され、供給された高圧燃料は、燃料噴射弁1に形成された噴孔11aから燃焼室2へ噴射される。
また、燃料噴射弁1は、燃焼室2の中央に配置されたセンター配置式である。詳細には、内燃機関のピストンの軸線方向から見て、吸気ポートと排気ポートの間に噴孔11aが位置する。燃料噴射弁1の軸線方向(図1の上下方向)がピストンの軸線方向に平行となるように、燃料噴射弁1はシリンダヘッドに取り付けられている。燃料噴射弁1は、ピストンの軸線上、またはピストンの軸線上に位置する点火プラグの近傍に位置する。
燃料噴射弁1の作動は、車両に搭載された制御装置90により制御される。制御装置90は、少なくとも1つの演算処理装置(プロセッサ90a)と、プロセッサ90aにより実行されるプログラムおよびデータを記憶する記憶媒体としての少なくとも1つの記憶装置(メモリ90b)とを有する。燃料噴射弁1および制御装置90は、燃料噴射システムを提供する。
プロセッサ90aおよびメモリ90bはマイクロコンピュータ(マイコン)によって提供されてもよい。記憶媒体は、プロセッサ90aによって読み取り可能なプログラムを非一時的に格納する非遷移的実体的記憶媒体である。記憶媒体は、半導体メモリまたは磁気ディスクなどによって提供されうる。制御装置90は、1つのコンピュータ、またはデータ通信装置によってリンクされた一組のコンピュータ資源により提供されうる。プログラムは、制御装置90によって実行されることによって、制御装置90をこの明細書に記載される装置として機能させ、この明細書に記載される方法を実行するように制御装置90を機能させる。
燃料噴射弁1は、噴孔ボデー11、本体ボデー12、固定コア13、非磁性部材14、コイル17、支持部材18、フィルタ19、第1バネ部材SP1(弾性部材)、カップ50、ガイド部材60および可動部M(図3参照)等を備える。可動部Mは、ニードル20(弁体)、可動コア30、第2バネ部材SP2、スリーブ40およびカップ50を組み付けた組付体である。噴孔ボデー11、本体ボデー12、固定コア13、支持部材18、ニードル20、可動コア30、スリーブ40、カップ50およびガイド部材60は金属製である。
図2に示すように、噴孔ボデー11は、燃料を噴射する複数の噴孔11aを有する。噴孔11aは、噴孔ボデー11にレーザ加工を施すことにより形成されている。噴孔ボデー11の内部にはニードル20が位置している。ニードル20の外面と噴孔ボデー11の内面との間で、噴孔11aの流入口11inに連通する燃料通路11bが形成されている。燃料通路11bは、噴孔ボデー11とニードル20との間に形成され、噴孔11aの流入口11inに連通する「所定空間」に相当する。
噴孔ボデー11の内周面には、ニードル20に形成されたシート面20sが離着座する着座面11sが形成されている。シート面20sおよび着座面11sは、ニードル20の中心軸線(軸線C1)周りに環状に延びる形状である。ニードル20が着座面11sに離着座することで、燃料通路11bが開閉されて噴孔11aが開閉されることとなる。具体的には、ニードル20が着座面11sに接触し、着座すると、燃料通路11bと噴孔11aとが連通しなくなる。そして、ニードル20が着座面11sから離れ、離座すると、燃料通路11bと噴孔11aとが連通する。この際、噴孔11aから燃料が噴射される。
ニードル20を閉弁作動させてシート面20sが着座面11sに接触した時点では、シート面20sと着座面11sとは、図8および図9の一点鎖線に示すシート位置R1で線接触する。その後、第1バネ部材SP1の弾性力によりシート面20sが着座面11sに押し付けられると、その押付力でニードル20および噴孔ボデー11は弾性変形して面接触する。その面接触している面積で押付力を除算した値がシート面圧であり、所定以上のシート面圧が確保されるように第1バネ部材SP1は設定されている。
図1の説明に戻り、本体ボデー12および非磁性部材14は円筒形状である。本体ボデー12のうち噴孔11aに近づく側(噴孔側)の部分である円筒端部は、噴孔ボデー11に溶接して固定されている。具体的には、本体ボデー12の内周面に、噴孔ボデー11の外周面が装着される。そして、本体ボデー12と噴孔ボデー11とは溶接される。本実施形態では、本体ボデー12の内周面に噴孔ボデー11の外周面が圧入されている。本体ボデー12のうち噴孔11aから遠ざかる側(反噴孔側)の円筒端部は、非磁性部材14の円筒端部に溶接して固定されている。非磁性部材14のうち反噴孔側の円筒端部は、固定コア13に溶接して固定されている。
ナット部材15は、本体ボデー12の係止部12cに係止された状態で、固定コア13のネジ部13Nに締結されている。この締結により生じる軸力は、ナット部材15、本体ボデー12、非磁性部材14および固定コア13に対し、軸線C1方向(図1の上下方向)に互いに押し付け合う面圧を生じさせている。
本体ボデー12は、ステンレス等の磁性材で形成され、燃料を噴孔11aへ流通させる流路12bを内部に有する。流路12bには、ニードル20が軸線C1方向に移動可能な状態で収容されている。可動室12aには、ニードル20、可動コア30、第2バネ部材SP2、スリーブ40およびカップ50を組み付けた組付体である可動部M(図4参照)が、移動可能な状態で収容されている。
流路12bは、可動室12aの下流側に連通し、軸線C1方向に延びる形状である。流路12bおよび可動室12aの中心線は、本体ボデー12の円筒中心線(軸線C1)と一致する。ニードル20のうちの噴孔側部分は、噴孔ボデー11の内壁面11cに摺動支持され、ニードル20のうちの反噴孔側部分は、カップ50の内壁面に摺動支持されている。このようにニードル20の上流端部と下流端部の2箇所が摺動支持されることにより、ニードル20の径方向への移動が制限され、本体ボデー12の軸線C1に対するニードル20の傾倒が制限される。
ニードル20は、燃料通路11bを開閉することで噴孔11aを開閉する「弁体」に相当し、ステンレス等の磁性材で形成され、軸線C1方向に延びる形状である。ニードル20の下流側端面には、先述したシート面20sが形成されている。ニードル20が軸線C1方向の下流側へ移動(閉弁作動)すると、シート面20sが着座面11sに着座して、燃料通路11bおよび噴孔11aが閉弁される。ニードル20が軸線C1方向の上流側へ移動(開弁作動)すると、シート面20sが着座面11sから離座して、燃料通路11bおよび噴孔11aが開弁される。
カップ50は、円板形状の円板部52および円筒形状の円筒部51を有する。円板部52は、軸線C1方向に貫通する貫通穴52aを有する。円板部52の反噴孔側の面は、第1バネ部材SP1と当接するバネ当接面52bとして機能する。円板部52の噴孔側の面は、ニードル20と当接して第1弾性力(閉弁弾性力)を伝達する閉弁力伝達当接面52cとして機能する。円筒部51は、円板部52の外周端から噴孔側へ延びる円筒形状である。円筒部51の噴孔側端面は、可動コア30と当接するコア当接端面51aとして機能する。円筒部51の内壁面は、ニードル20の当接部21の外周面と摺動する。
固定コア13は、ステンレス等の磁性材で形成され、燃料を噴孔11aへ流通させる流路13aを内部に有する。流路13aは、ニードル20の内部に形成されている内部通路20a(図3参照)および可動室12aの上流側に連通し、軸線C1方向に延びる形状である。流路13aには、ガイド部材60、第1バネ部材SP1および支持部材18が収容されている。
支持部材18は円筒形状であり、固定コア13の内壁面に圧入固定されている。第1バネ部材SP1は、支持部材18の下流側に配置されたコイルスプリングであり、軸線C1方向に弾性変形する。第1バネ部材SP1の上流側端面は支持部材18に支持され、第1バネ部材SP1の下流側端面はカップ50に支持されている。第1バネ部材SP1の弾性変形により生じた力(第1弾性力)により、カップ50は下流側に付勢される。支持部材18の軸線C1方向における圧入量を調整することで、カップ50を付勢する弾性力の大きさ(第1セット荷重)が調整されている。
フィルタ19は、メッシュ状であり、燃料噴射弁1へ供給された燃料に含まれている異物を捕捉する。フィルタ19は保持部材19aに保持され、保持部材19aは、固定コア13の内壁面のうち支持部材18の上流側部分に圧入固定されている。フィルタ19は円筒形状であり、図1中の矢印Y1に示すように、フィルタ19の円筒軸線方向から円筒内部へ流入した燃料は、フィルタ19の円筒径方向に流れてフィルタ19を通過する。
図3に示すように、ガイド部材60は、ステンレス等の磁性材で形成された円筒形状であり、固定コア13に圧入固定されている。ガイド部材60の噴孔側端面は、可動コア30と当接するストッパ当接端面61aとして機能する。ガイド部材60の内壁面は、カップ50に係る円筒部51の外周面51dと摺動する。要するに、ガイド部材60は、軸線C1方向に移動するカップ50の外周面を摺動させるガイド機能と、軸線C1方向に移動する可動コア30に当接して可動コア30の反噴孔側への移動を規制するストッパ機能と、を有する。
固定コア13の外周面には樹脂部材16が設けられている。樹脂部材16はコネクタハウジング16aを有し、コネクタハウジング16aの内部には端子16bが収容されている。端子16bはコイル17と電気接続されている。コネクタハウジング16aには、図示しない外部コネクタが接続され、端子16bを通じてコイル17へ電力が供給される。コイル17は、電気絶縁性を有するボビン17aに巻き回されて円筒形状をなし、固定コア13、非磁性部材14および可動コア30の径方向外側に配置されている。固定コア13、ナット部材15、本体ボデー12および可動コア30は、コイル17への電力供給(通電)に伴い生じる磁束を流す磁気回路を形成する(図3中の点線矢印参照)。
図3に示すように、可動コア30は、固定コア13に対して噴孔側に配置され、軸線C1方向に移動可能な状態で可動室12aに収容されている。可動コア30はアウタコア31およびインナコア32を有する。アウタコア31は、ステンレス等の磁性材で形成された円筒形状であり、インナコア32は、磁性を有するステンレス等の非磁性材で形成された円筒形状である。アウタコア31は、インナコア32の外周面に圧入固定されている。
インナコア32の円筒内部にはニードル20が挿入配置されている。インナコア32は、ニードル20に対して軸線C1方向に摺動可能な状態でニードル20に組み付けられている。インナコア32は、ストッパ部材としてのガイド部材60、カップ50およびニードル20に当接する。そのため、インナコア32には、アウタコア31に比べて高硬度の材質が用いられている。アウタコア31は、固定コア13に対向するコア対向面31cを有し、コア対向面31cと固定コア13との間にはギャップが形成されている。したがって、上述の如くコイル17へ通電して磁束が流れた状態では、上記ギャップが形成されていることにより、固定コア13に吸引される磁気吸引力がアウタコア31に作用する。
スリーブ40は、ニードル20に圧入固定され、第2バネ部材SP2の噴孔側端面を支持する。第2バネ部材SP2は、支持部43の反噴孔側に配置されたコイルスプリングであり、軸線C1方向に弾性変形する。第2バネ部材SP2の反噴孔側端面はアウタコア31に支持され、第2バネ部材SP2の噴孔側端面は支持部43に支持されている。第2バネ部材SP2の弾性変形により生じた力(第2弾性力)により、アウタコア31は反噴孔側に付勢される。スリーブ40の軸線C1方向における圧入量を調整することで、閉弁時に可動コア30を付勢する第2弾性力の大きさ(第2セット荷重)が調整されている。なお、第2バネ部材SP2に係る第2セット荷重は、第1バネ部材SP1に係る第1セット荷重より小さい。
<作動の説明>
次に、燃料噴射弁1の作動について、図4および図5を用いて説明する。
先ず、燃料噴射弁1の作動の概略を説明する。コイル17への通電により磁気吸引力を生じさせて可動コア30を吸引させると、可動コア30は、反噴孔側へ所定量移動した時点でニードル20に当接して、ニードル20を開弁作動させる。つまり、可動コア30が所定量移動した後にニードル20は開弁作動を開始する。コイル17への通電をオフさせると、カップ50は、可動コア30とともに噴孔側へ所定量移動した時点でニードル20に当接して、ニードル20を閉弁作動させる。つまり、カップ50および可動コア30が所定量移動した後にニードル20は閉弁作動を開始する。要するに、燃料噴射弁1は可動コア30およびニードル20を備える直動式である。可動コア30は、通電により生じる磁気力により吸引されて移動し、ニードル20は、可動コア30とともに移動することで着座面11sから離座して開弁作動する。
次に、燃料噴射弁1の作動の詳細を説明する。図4中の(a)欄に示すように、コイル17への通電をオフにした状態では、磁気吸引力が生じないので、可動コア30には、開弁側へ付勢される磁気吸引力は作用しない。そして、第1バネ部材SP1による第1弾性力で閉弁側に付勢されたカップ50は、ニードル20の閉弁時弁体当接面21b(図3参照)およびインナコア32に当接して第1弾性力を伝達している。
可動コア30は、カップ50から伝達された第1バネ部材SP1の第1弾性力により閉弁側へ付勢されるとともに、第2バネ部材SP2の第2弾性力により開弁側へ付勢されている。第2弾性力より第1弾性力の方が大きいため、可動コア30はカップ50に押されて噴孔側へ移動(リフトダウン)した状態になる。ニードル20は、カップ50から伝達された第1弾性力により閉弁側へ付勢され、カップ50に押されて噴孔側へ移動(リフトダウン)した状態、つまり着座面11sに着座して閉弁した状態となる。この閉弁状態では、ニードル20の開弁時弁体当接面21a(図3参照)とインナコア32との間には隙間が形成されており、閉弁状態での隙間の軸線C1方向長さをギャップ量L1と呼ぶ。
図4中の(b)欄に示すように、コイル17への通電をオフからオンに切り替えた直後の状態では、開弁側へ付勢される磁気吸引力が可動コア30に作用して、可動コア30が開弁側への移動を開始する。そして、可動コア30がカップ50を押し上げながら移動し、その移動量がギャップ量L1に達すると、ニードル20の開弁時弁体当接面21aにインナコア32が衝突する。この衝突時点では、ガイド部材60とインナコア32との間には隙間が形成されており、この隙間の軸線C1方向長さをリフト量L2と呼ぶ。
上記衝突の後、可動コア30は磁気吸引力によりさらに移動を続け、衝突後の移動量がリフト量L2に達すると、図4中の(c)欄に示すように、ガイド部材60にインナコア32が衝突して移動停止する。この移動停止時点での、着座面11sとシート面20sとの軸線C1方向における離間距離は、ニードル20のフルリフト量に相当し、先述したリフト量L2と一致する。この離間距離は、図8に示すニードル離間距離Ha(弁体離間距離)に相当する。
図5を用いて上述した作動を詳述すると、先ず、図5の(a)欄に示すようにt1時点で通電オンに切り替えると、コイル17に流れる駆動電流が上昇を開始し((b)欄参照)、その上昇に伴い磁気吸引力も上昇を開始する((c)欄参照)。そして、第1弾性力(閉弁弾性力)から第2弾性力を差し引いた値を実閉弁弾性力F0とした場合、磁気吸引力が実閉弁弾性力F0にまで上昇したt2時点で、可動コア30が開弁側への移動を開始する。なお、駆動電流がピーク値に達する前に、可動コア30は移動を開始する。駆動電流がピーク値に達するまでは、バッテリ電圧を昇圧したブースト電圧がコイル17に印加され、ピーク値に達した以降では、バッテリ電圧がコイル17に印加される。
その後、可動コア30の移動量がギャップ量L1に達したt3時点で、可動コア30がニードル20に衝突してニードル20が開弁作動を開始する。これにより、噴孔11aから燃料が噴射される。その後、可動コア30が閉弁弾性力に抗してニードル20をリフトアップさせ、可動コア30がガイド部材60に衝突したt4時点で、ニードル20のリフト量はフルリフト量(リフト量L2)に達する。その後、磁気吸引力によりニードル20のフルリフト状態が維持され、燃料噴射が継続される。その後、t5時点で通電オフに切り替えると、駆動電流の低下とともに磁気吸引力も低下する。そして、磁気吸引力が実閉弁弾性力F0に達したt6時点で、可動コア30がカップ50とともに閉弁側へ移動を開始する。ニードル20は、カップ50との間に充填された燃料の圧力に押されて、カップ50の移動開始と同時にリフトダウン(閉弁作動)を開始する。
その後、ニードル20がリフト量L2の分だけリフトダウンしたt7時点で、シート面20sが着座面11sに着座して、燃料通路11bおよび噴孔11aが閉弁される。その後、可動コア30はカップ50とともに閉弁側への移動を継続し、カップ50がニードル20に当接したt8時点で、カップ50の閉弁側への移動が停止する。その後、可動コア30は、慣性力で閉弁側への移動(慣性移動)をさらに継続した後、第2バネ部材SP2の弾性力により開弁側へ移動(リバウンド)する。その後、可動コア30は、t9時点でカップ50に衝突してカップ50とともに開弁側へ移動(リバウンド)するが、閉弁弾性力により迅速に押し戻されて、図4の(a)欄に示す初期状態に収束する。
したがって、このようなリバウンドが小さく、収束に要する時間が短いほど、噴射終了から初期状態に復帰するまでの時間が短くなる。そのため、内燃機関の1燃焼サイクルあたりに燃料を複数回噴射する多段噴射を実行するにあたり、噴射間のインターバルを短くでき、多段噴射に含まれる噴射回数を多くできる。
上述した通電オンオフは、プロセッサ90aがメモリ90bに記憶されたプログラムを実行することで制御される。基本的には、内燃機関の負荷および回転数に基づき、1燃焼サイクルでの燃料噴射量、噴射時期および多段噴射に係る噴射回数が、プロセッサ90aにより算出される。さらにプロセッサ90aが各種プログラムを実行することで、以下に説明する多段噴射制御、パーシャルリフト噴射制御(PL噴射制御)、圧縮行程噴射制御、および圧力制御を実行する。これらの制御を実行している時の制御装置90は、図1に示す多段噴射制御部91、パーシャルリフト噴射制御部(PL噴射制御部92)、圧縮行程噴射制御部93、および圧力制御部94に相当する。
多段噴射制御部91は、内燃機関の1燃焼サイクル中に噴孔11aから燃料を複数回噴射させるように、コイル17への通電オンオフを制御する。PL噴射制御部92は、ニードル20が着座面11sから離座した後、最大開弁位置に達する前に閉弁作動を開始するように、コイル17への通電オンオフを制御する。例えば、多段噴射の回数が多くなるほど、1回の噴射に係る噴射量が微少量になってくるので、そのような微少量の噴射の場合に、PL噴射制御を実行する。
圧縮行程噴射制御部93は、内燃機関の圧縮行程期間の一部を含む期間に噴孔11aから燃料を噴射させるように、コイル17への通電オンオフを制御する。このように圧縮行程期間に燃焼室2へ燃料を噴射させる場合、噴射開始時期から点火時期までの時間が短いので、燃料と空気とを十分に混合させる時間が短い。そのため、この種の燃料噴射弁1には、燃料と空気との混合性を促進させるべく、貫徹力の高い状態で燃料を噴孔11aから噴射することが要求される。また、短時間で噴霧を分裂させるべく、噴射圧力を高くすることが要求される。
圧力制御部94は、燃料噴射弁1へ供給する燃料の圧力(供給燃圧)を、所定範囲内の任意の目標圧力に制御する。具体的には、先述した燃料ポンプによる燃料吐出量を制御することで、供給燃圧を制御する。目標圧力が所定範囲の最小値に設定されている場合の燃料圧力により、ニードル20が着座面11sに押し付けられる力を最小燃圧閉弁力とした場合に、第1バネ部材SP1による第1弾性力(閉弁弾性力)は、最小燃圧閉弁力より小さく設定されている。
<燃料通路11bの詳細説明>
以下、図6〜図12を用いて、燃料通路11bの詳細について説明する。燃料通路11bは、後述するテーパ面111、ボデー底面112および連結面113と、弁体先端面22との間の空間を少なくとも含む。図6に示すように、燃料通路11bを流れる燃料は、矢印Y2に示すようにシート面20sに向けて流れた後、シート面20sと着座面11sとの隙間(シート隙間)を通過する。シート隙間に到達するまでの燃料は、軸線C1に近づく向きに流れる。シート隙間を通過した燃料は、矢印Y3に示すように、軸線C1から遠ざかる向きに方向転換して流れ、噴孔11aの流入口11inへ流入する。流入口11inから流入した燃料は、噴孔11a内で整流化され、矢印Y4に示すように、噴孔11aの流出口11outから燃焼室2へ噴射される。また、軸線C1から遠ざかる向きに方向転換して流入口11inへ流入(矢印Y3参照)することに加え、図9中の矢印Y5に示すようにサック室Q22から流入口11inへ流入する燃料も存在する。
噴孔11aは複数設けられている。複数の噴孔11aの流入口11inは、軸線C1を中心とした仮想円(流入中心仮想円R2)上に等間隔で配置されている。複数の噴孔11aの流出口11outも同様にして、軸線C1周りに等間隔で配置されている。つまり、流入口11inおよび流出口11outのいずれについても同心円上に等間隔で配置されている。複数の噴孔11aの形状および大きさは全て同一である。具体的には、噴孔11aは、流入口11inから流出口11outに至るまで、通路断面形状が真円かつ真円の直径が変化せずに同一のストレート形状である。ここで言う通路断面とは、噴孔11aの中心を通る軸線C2に対して垂直に切った断面のことである。
図7に示すように、流入口11inおよび流出口11outの形状は、軸線C1を中心とした径方向の向きを長軸とする楕円形状である。図8に示すように、流入口11inの楕円中心であって軸線C2を通る点を流入口中心点Aとする。楕円中心とは、楕円の長辺と短辺の交わる点のことである。流入口中心点Aを通る軸線C1と平行な線が、ニードル20の外面と交わる点を、流入中心対向点Bとする。図7に示すように、複数の噴孔11aの流入口中心点Aを通る円は、先述した流入中心仮想円R2に相当する。複数の流入中心対向点Bを結ぶ円を対向仮想円R3とする。軸線C1方向視において、流入中心仮想円R2と対向仮想円R3は一致する。
図7に示すように、軸線C1周りに並ぶ複数の噴孔11aのうち、隣り合う噴孔11aの流入口11inの間隔の大きさを噴孔間距離Lとする。この噴孔間距離Lは、流入中心仮想円R2に沿った長さのことである。図8および図9に示すように、ニードル20が離着座する方向、つまり軸線C1方向におけるニードル20と噴孔ボデー11との距離をニードル離間距離Haとする。ニードル20外面と流入口11inとの隙間の大きさを流入口隙間距離Hとする。つまり、流入口11inの部分でのニードル離間距離Ha、より詳細には流入口11inのうち軸線C1から最も離れた部分、つまり図7および図8の符号A1に示す部分でのニードル離間距離Haが、流入口隙間距離Hに相当する。
噴孔間の流入中心仮想円R2に沿った長さのこととして定義される噴孔間距離Lが流入口隙間距離Hより小さいことに加えて、以下に説明する第2噴孔間距離についても、流入口隙間距離Hより小さい。第2噴孔間距離は、隣合う流入口11inの外周縁の最短直線長さとして定義される。
符号A1に示す部分でのニードル離間距離Haとして定義される流入口隙間距離Hより噴孔間距離Lが小さいことに加えて、以下に説明する第2流入口隙間距離についても、その第2流入口隙間距離より噴孔間距離Lが小さい。第2流入口隙間距離は、流入口中心点Aでのニードル離間距離Haとして定義される。さらに、第2流入口隙間距離より第2噴孔間距離が小さくなるようにも設定されている。
噴孔間距離Lは流入口隙間距離Hよりも小さい。詳細には、ニードル20が着座面11sから最も離れた位置まで離座した状態、つまり最大開弁位置(フルリフト位置)における流入口隙間距離Hよりも、噴孔間距離Lは小さい。最大開弁位置とは、ストッパ当接端面61aにインナコア32が当接し、かつ、開弁時弁体当接面21aがインナコア32に当接した状態での、ニードル20の軸線C1方向位置のことである。
さらに、ニードル20が着座面11sに着座した状態、つまり閉弁状態における流入口隙間距離Hよりも、噴孔間距離Lは小さい。また、閉弁状態における流入口隙間距離Hは、フィルタ19のメッシュ間隔Lmより大きい。図10に示すように、フィルタ19は、複数本の線材19bを編み込んで形成されており、メッシュ間隔Lmとは、隣り合う線材19b同士の最短距離のことである。また、噴孔間距離Lは流入口11inの直径よりも小さい。流入口11inが楕円である場合、楕円の短辺を流入口11inの直径とみなす。
噴孔ボデー11の内面とニードル20の外面との間で形成される燃料通路11bのうち、着座面11sおよびシート面20sより上流側の部分をシート上流通路Q10と呼び、着座面11sおよびシート面20sより下流側の部分をシート下流通路Q20と呼ぶ。シート下流通路Q20は、テーパ室Q21およびサック室Q22を有する。
図8に示すように、噴孔ボデー11の内面のうち着座面11sを含む部分であって、シート上流通路Q10の一部およびテーパ室Q21の全体を形成する部分をテーパ面111と呼ぶ。テーパ面111は、軸線C1を含む断面において直線形状、かつ、軸線C1に対して交差する向きに延びる形状であり、軸線C1方向で見て円環形状である(図7参照)。
噴孔ボデー11の内面のうち軸線C1を含む部分であって、サック室Q22を形成する部分をボデー底面112と呼び、ボデー底面112とテーパ面111とを連結する部分を連結面113と呼ぶ。連結面113は、軸線C1を含む断面において直線形状、かつ、軸線C1に対して交差する向きに延びる形状であり、軸線C1方向で見て円環形状である(図7参照)。厳密には、連結面113とテーパ面111との境界、および連結面113とボデー底面112との境界は、軸線C1を含む断面において湾曲した形状である。
ニードル20の外面のうちシート面20sおよびシート面20sよりも下流側の部分を含む面を弁体先端面22とする。ニードル20が離着座する方向における弁体先端面22と噴孔ボデー11との距離、具体的には、ボデー底面112と弁体先端面22との軸線C1方向距離をニードル離間距離Haとする。
弁体先端面22は、ボデー底面112の側に膨らむ向きに湾曲する形状である。弁体先端面22の曲率半径R22(図11参照)は、弁体先端面22の全体に亘って同一である。この曲率半径R22は、シート面20sのシート位置R1における直径であるシート径Dsより小さく、かつ、シート半径より大きい。
ボデー底面112は、弁体先端面22の側に凹む向きに湾曲する形状、つまり弁体先端面22と同じ向きに湾曲する形状である。ボデー底面112の曲率半径R112(図11参照)は、ボデー底面112の全体に亘って同一である。ボデー底面112の曲率半径R112は、弁体先端面22の曲率半径R22より大きい。したがって、ニードル離間距離Haは、流入中心仮想円R2の周縁から径方向において軸線C1に向かう方向に沿って連続的に小さくなっていく。
噴孔ボデー11の外面であるボデー外面114のうち、流出口11outより径方向において軸線C1に近い部分の領域を外面中央領域114aとする(図12参照)。外面中央領域114aは、ボデー底面112と同じ向きに湾曲する形状である。外面中央領域114aの曲率半径は、外面中央領域114aの全体に亘って同一である。曲率半径の中心を同じ場所にするという条件下において、外面中央領域114aの曲率半径は、ボデー底面112の曲率半径R112よりも大きい。ボデー外面114の肉厚寸法は、外面中央領域114aにおいては均一である。すなわち、ボデー外面114の曲率半径方向の長さは、外面中央領域114aにおいては均一である。
噴孔ボデー11のうち燃料通路11bを形成する部分の表面粗さは、噴孔11aを形成する部分の表面粗さよりも粗い。詳細には、ボデー底面112の表面粗さは、噴孔11aの内壁面の表面粗さよりも粗い。なお、噴孔11aがレーザ加工により形成されているのに対し、噴孔ボデー11の内面は切削加工により形成されている。
複数の流入口11inそれぞれの周縁のうち、径方向において、軸線C1に最も近い部分に接する仮想円であって軸線C1を中心とする仮想円を、ボデー底面112から弁体先端面22まで軸線C1方向に沿って真っ直ぐ延ばした円筒を仮想円筒とする。そして、燃料通路11bのうち、仮想円筒、ボデー底面112および弁体先端面22で囲まれる部分の体積を中心円柱体積V1aとする(図7参照)。また、複数の流入口11inそれぞれの周縁のうち、径方向において、軸線C1に最も近い部分を結んだ直線で囲まれる領域を仮想領域とし、仮想領域を噴孔ボデー11からニードル20まで軸線C1の方向に延ばしてできる体積を中心体積V1とする。中心円柱体積V1aおよび中心体積V1には噴孔11aの体積V2aは含まれない。
本実施形態に係る上記仮想円とは、複数の流入口11inに内接する仮想内接円R4のことである。また、燃料通路11bのうち着座面11sより下流側の全ての部分の体積、つまりシート下流通路Q20の体積をシート下流体積V3とする(図8参照)。先述した通り、シート下流通路Q20は、テーパ室Q21およびサック室Q22を有する。したがって、燃料通路11bのうち着座面11sより下流側の全ての部分の体積とは、テーパ室Q21の体積とサック室Q22の体積を合わせた体積のことである。中心体積V1、中心円柱体積V1aおよびシート下流体積V3は、ニードル20のリフト量L2に応じて変化し、リフト量L2が最大の時に最大になる。
複数の噴孔11aの体積V2aの合計を総噴孔体積V2とする。本実施形態では噴孔11aが10個形成され、全ての噴孔11aの体積V2aが同一であるため、1つの噴孔11aの体積V2aの10倍の値が総噴孔体積V2に相当する。噴孔11aの体積V2aは、噴孔11aのうち流入口11inと流出口11outとの間の領域の体積に相当する。噴孔11aの体積V2aは、例えばX線を照射することで得られる噴孔ボデー11の断層画像から算出され得る。同様にして、本実施形態で定義される他の体積についても、断層画像から算出され得る。
総噴孔体積V2は、ニードル20が着座面11sに着座した状態における中心体積V1より大きく、かつ、ニードル20が着座面11sから最も離れた状態(つまりフルリフト状態)における中心体積V1よりも大きい。さらに総噴孔体積V2は、着座状態におけるシート下流体積V3より大きく、かつ、フルリフト状態におけるシート下流体積V3よりも大きい。中心円柱体積V1aについても、中心体積V1と同様にして、フルリフト状態および着座状態のいずれであっても総噴孔体積V2より小さい。
図12中のドットを付した部分は、燃料通路11bのうち流入口11inから軸線C1方向に沿って真っ直ぐ延びる柱状空間(噴孔直上領域)に相当する。燃料通路11bのうち、噴孔直上領域の体積を噴孔直上体積V4aとし、複数の噴孔11aの噴孔直上体積V4aの合計を噴孔直上総体積V4とする。噴孔直上総体積V4は中心体積V1より大きい。中心円柱体積V1aについても、中心体積V1と同様にして噴孔直上総体積V4より小さい。
複数の噴孔11aの流入口11inの周縁長L5a(図7参照)の合計を総周縁長L5とする。本実施形態では噴孔11aが10個形成され、全ての噴孔11aの周縁長L5aがほぼ同一であるため、1つの噴孔11aの周縁長L5aの10倍の値が総周縁長L5に相当する。複数の流入口11inそれぞれの周縁のうち径方向において軸線C1に最も近い部分に接する仮想円であって軸線C1を中心とする仮想円、つまり先述した仮想内接円R4の周長を仮想周長L6とする。総周縁長L5は仮想周長L6よりも長い。
弁体先端面22のうちシート位置R1での接線方向は、テーパ面111のうちシート位置R1での接線方向と同一である。弁体先端面22が、軸線C1を含む断面において湾曲した形状であるのに対し、テーパ面111は、軸線C1を含む断面において直線形状である。テーパ面111の延長線が交わる頂点での頂角をシート角度θとする(図11参照)。つまり、着座面11sは、上記断面において2本の直線で表される円錐面であり、それら2本の直線がなす角度がシート角度θである。シート角度θは90度以下の角度、より具体的には90度より小さい角度に設定されている。軸線C1を含む断面においてテーパ面111と軸線C1との交差角度は、シート角度θの半分(θ/2)であり、この交差角度は、軸線C1を含む断面において連結面113と軸線C1との交差角度よりも大きい。
ここで、噴孔11aのうち、噴孔11aの軸線C2に対して垂直な面の面積を通路断面積とする。そして、複数の噴孔11aの各々の通路断面積の合計を総噴孔面積とする。本実施形態では、噴孔11aの形状が、軸線C2方向の位置に拘らず通路断面積を同一とする形状であるが、軸線C2方向の位置に応じて通路断面積を異にする形状の場合には、その最小の通路断面積の合計を総噴孔面積とする。
また、ニードル20の可動範囲のうち着座面11sから最も離れた位置にニードル20がある状態、つまりフルリフト状態で、燃料通路11bのうち着座面11sに位置する環状の通路の断面積をシート部環状面積とする。シート部環状面積は、シート位置R1を通るテーパ面111と弁体先端面22との最短距離の仮想線を、軸線C1周りに環状に延ばした面の面積のことである。
そして、シート径Dsを同一にしたままシート角度θを大きくしていくと、上述した最短距離の仮想線が短くなり、シート部環状面積は小さくなっていく。逆に、シート径Dsを同一にしたままシート角度θを小さくしていくと、上述した最短距離の仮想線が長くなり、シート部環状面積は大きくなっていく。シート角度θは、シート部環状面積が総噴孔面積より大きくなるように設定されている。
<作用効果>
さて、閉弁作動するニードル20が着座面11sに衝突してバウンスするにあたり、そのニードル20を、着座面11sに衝突する質点と仮定した場合には、シート角度θについて以下の点が言える。すなわち、シート角度θが90度より大きければ、衝突後運動量を持つ質点の移動方向は、水平方向に対して上側(弁体が開弁する側)へ向かう方向となる。シート角度θが90度より小さければ、衝突後運動量を持つ質点の移動方向は、水平方向に対して下側(弁体が閉弁する側)へ向かう方向となる。この点に着目し、本実施形態では、シート角度θを90度以下にしている。そのため、着座面11sに衝突したニードル20が開弁側にバウンスすることを抑制でき、ニードル20のバウンス低減を図ることができる。
さらに本実施形態では、ニードル20の外面のうちシート位置R1を含む面である弁体先端面22は、ボデー底面1とともに移動する12の側に膨らむ向きに湾曲する形状である。そのため、弁体先端面22を、異なるテーパ角度のテーパ面をシート位置R1で連結した非湾曲形状とした場合に比べて、ニードル20および噴孔ボデー11が弾性変形して面接触するにあたり、その面接触面積を大きくできる。そのため、弁体先端面22を湾曲形状にした本実施形態によれば、シート面20sと着座面11sとのシール性を向上でき、閉弁時にシート上流通路Q10からシート下流通路Q20へ燃料が漏れ出るおそれを低減できる。
さらに本実施形態では、燃料通路11bへ流入する燃料に含まれている異物を捕捉するフィルタ19を備え、噴孔11aの各々の通路断面積が最小となる部分の直径は、フィルタ19のメッシュ間隔Lmより大きい。上記通路断面積とは、軸線C2に対して垂直に切った断面の面積のことである。これによれば、フィルタ19を通過した異物はメッシュ間隔Lmより小さい可能性が高く、噴孔11aの直径はメッシュ間隔Lmより大きいので、上記異物が噴孔11aに詰まる懸念を低減できる。
さらに本実施形態では、複数の噴孔11aの各々の通路断面積の合計を総噴孔面積とし、フルリフト状態で、燃料通路11bのうち着座面11sに位置する環状の通路の断面積をシート部環状面積とする。そして、シート角度θを小さくするほどシート部環状面積が大きくなることは先述した通りであり、シート角度θは、シート部環状面積が総噴孔面積より大きくなるように設定されている。そのため、シート角度θが90度以下であることに加え、シート部環状面積が総噴孔面積より大きくなる程度にシート角度θが小さくなっているので、ニードル20のバウンス低減を促進できる。
さて、シート下流通路Q20の燃料が閉弁直後に慣性で流出口11outから流出し、その後さらに、自重で流出口11outから漏出し、その漏出した燃料が、ボデー外面114に付着し、デポジットとして堆積していく懸念があることは先述した通りである。この懸念に対し、流入口隙間距離Hを小さくしてシート下流通路Q20の体積を小さくすれば、漏出対象となる燃料の量を少なくでき、漏出量を低減できるので、デポジット堆積を抑制できる。
その一方で、シート上流通路Q10およびテーパ室Q21での燃料の流れ方向と、噴孔11aでの燃料の流れ方向とは大きく異なるので、サック室Q22から流入口11inへ燃料が流入する際に燃料の流れ方向が急激に変化する(折れ曲がる)ことになる。そして、先述した漏出量の低減を図るべく流入口隙間距離Hを小さくすると、流れ方向の急激な変化(折れ曲がり)が促進され、圧力損失の増大が促進されてしまう。つまり、燃料漏出量の低減を図るべく流入口隙間距離Hを小さくすることと、圧力損失の低減を図ることとは背反する。
ここで、シート位置R1を通過してシート下流通路Q20へ流入する燃料は、図6および図7中の矢印Y3に示すように方向転換して流入口11inへ流入することは、先述した通りである。このようにシート下流通路Q20へ流入する燃料は、図7に示す縦流入燃料Y3aおよび横流入燃料Y3bに大別できる。縦流入燃料Y3aは、着座面11sから流入口11inへ向かって最短距離で流れる燃料である。横流入燃料Y3bは、着座面11sから、隣り合う2つの噴孔11aの流入口11inの間の部分(噴孔間部分112a)へ向かって流れ、その後、噴孔間部分112aから流入口11inへと向きを変えて流れる燃料である。
縦流入燃料Y3aおよび横流入燃料Y3bのいずれについても、シート下流通路Q20の体積を小さくするべく流入口隙間距離Hを小さくするほど圧力損失が増大する。しかし、横流入燃料Y3bについては、噴孔間距離Lを小さくすることで、圧力損失の増大を緩和できる。よって、流入口隙間距離Hを小さくすることによる圧力損失増大を、噴孔間距離Lを小さくすることで緩和できる。
この緩和について、図13〜図15を用いて詳細に説明する。図13〜図15は、流入中心仮想円R2および対向仮想円R3を含む、軸線C1に平行な曲面で切った、噴孔ボデー11およびニードル20の断面を示す模式図である。図13〜図15中の矢印は、開弁状態における燃料の流れ方向を示す。図13に示す第1比較例では、本実施形態と比較して流入口隙間距離Hが大きいため、シート下流通路Q20の体積が大きく、閉弁直後における噴孔11aからの燃料漏出量が多い。そこで、図14に示す第2比較例では、第1比較例と比較して流入口隙間距離Hを小さくしている。これにより、シート下流通路Q20の体積が小さくなり、閉弁直後における燃料漏出量を第1比較例より少なくできる。
図中の右欄に示すベクトルは、横流入燃料Y3bの流速をベクトルで表現したものであり、横流入燃料Y3bの流速ベクトルは、軸線C1に対して垂直な成分である横成分Y3bxと、軸線C1に対して平行な成分である縦成分Y3byとに分解できる。また、軸線C1に対する横流入燃料Y3bの流速ベクトルの角度を流入角度θ2とし、横成分Y3bxに対する縦成分Y3byの比率が大きいほど、流入角度θ2は小さくなる。図14の右欄に示すように、流入口隙間距離Hを小さくしただけでは、燃料漏出量を少なくできるものの、流入角度θ2が大きくなるので圧力損失が大きい。
以上の点に着目した本実施形態では、図15に示すように、第1比較例と比較して流入口隙間距離Hを小さくし、かつ、噴孔間距離Lを流入口隙間距離Hより小さくしている。なお、第1比較例に係る流入口隙間距離Hは噴孔間距離Lと同一であり、第2比較例に係る流入口隙間距離Hは噴孔間距離Lより小さい。
このように、本実施形態によれば、噴孔間距離Lが流入口隙間距離Hより小さいので、噴孔間距離Lが流入口隙間距離Hより大きい場合に比べて、横流入燃料Y3bの圧力損失を緩和できる。よって、流入口隙間距離Hを小さくしてシート下流通路Q20の体積を小さくしつつも、流入口隙間距離Hを小さくすることに起因した圧力損失の増大を緩和できる。つまり、本実施形態によれば、シート下流通路Q20の体積を小さくすることによる燃料漏出量低減と、噴孔間距離Lを小さくすることによる圧力損失低減との両立を図ることができる。
しかも、上述の如く圧力損失が低減されることに伴い、サック室Q22から噴孔11aへ流入する燃料の流速が速くなる。そのため、燃料に混入している異物がサック室Q22に滞留することを抑制でき、噴孔11aからの異物排出性を向上できる。また、シート下流通路Q20の体積を小さくすることにより残留燃料の低減も図ることができ、また、噴孔間距離Lを小さくすることによる圧力損失低減により、残留燃料の排出性向上も図ることができる。
さらに本実施形態では、噴孔間距離Lは、ニードル20が着座面11sに着座した状態における流入口隙間距離Hよりも小さい。そのため、着座状態では噴孔間距離Lが流入口隙間距離Hより大きい場合に比べて、横流入燃料Y3bの流入角度θ2が小さくなるので、横流入燃料Y3bの圧力損失増大緩和の効果を促進できる。
さらに本実施形態では、複数の流入口11inそれぞれの周縁のうち軸線C1に最も近い部分に接する仮想円であって軸線C1を中心とする仮想円を、軸線C1方向に沿って流入口11inからニードル20まで真っ直ぐ延ばした円筒を仮想円筒とする。燃料通路11bのうち仮想円筒で囲まれる空間の体積を中心体積V1とする。複数の噴孔11aの体積の合計を総噴孔体積V2とする。そして、総噴孔体積V2を中心体積V1より大きくしている。
そのため、総噴孔体積V2を中心体積V1より小さくする場合に比べて上記主流の流量を増大でき、かつ、総噴孔体積V2を中心体積V1より小さくする場合に比べて上記主流に引き寄せられにくい燃料を少なくできる。よって、主流とともに速い流速で噴孔11aから勢い良く噴出できずに残留する燃料を低減できるので、ボデー外面114や噴孔11a内面に付着する燃料を低減でき、ボデー外面114にデポジットが堆積することの抑制を図ることができる。
さらに本実施形態では、ニードル20が着座面11sからニードル20の可動範囲のうち最も離れた位置、つまりフルリフト位置まで離座した状態における中心体積V1よりも、総噴孔体積V2を大きくしている。そのため、フルリフト状態での中心体積V1より総噴孔体積V2を小さくした場合に比べて、上記主流の流量をより一層増大でき、かつ、主流に引き寄せられにくい燃料をより一層少なくでき、残留燃料の排出性向上を促進できる。
さらに本実施形態では、閉弁状態におけるシート下流体積V3よりも総噴孔体積V2を大きくしている。そのため、総噴孔体積V2をシート下流体積V3より小さくする場合に比べて、上記主流の流量をより一層増大でき、かつ、主流に引き寄せられにくい燃料をより一層少なくできるので、残留燃料の排出性向上を促進できる。
さらに本実施形態では、ニードル20が着座面11sからニードル20の可動範囲のうち最も離れた位置、つまりフルリフト位置まで離座した状態におけるシート下流体積V3よりも、総噴孔体積V2を大きくしている。そのため、フルリフト状態でのシート下流体積V3より総噴孔体積V2を小さくする場合に比べて、上記主流の流量をより一層増大でき、かつ、主流に引き寄せられにくい燃料をより一層少なくできるので、残留燃料の排出性向上を促進できる。
さらに本実施形態では、噴孔直上体積V4aの総体積である噴孔直上総体積V4を、ニードル20が着座面11sに着座した状態つまり閉弁状態における中心体積V1よりも大きくしている。そのため、閉弁状態における中心体積V1より噴孔直上総体積V4を小さくする場合に比べて、上記主流の流量をより一層増大でき、かつ、主流に引き寄せられにくい燃料をより一層少なくできるので、残留燃料の排出性向上を促進できる。
さらに本実施形態では、複数の流入口11inの周縁長L5aの合計を総周縁長L5とし、複数の流入口11inそれぞれの周縁のうち軸線C1に最も近い部分に接する仮想円であって軸線C1を中心とする仮想円の周長を仮想周長L6とする。そして、総周縁長L5を仮想周長L6よりも長くしている。そのため、総周縁長L5を仮想周長L6より短くする場合に比べて、上記主流の流量をより一層増大でき、かつ、主流に引き寄せられにくい燃料をより一層少なくできるので、残留燃料の排出性向上を促進できる。
さらに本実施形態では、軸線C1方向から見て、複数の噴孔11aが軸線C1の周りに同心円上に等間隔で配置されている。つまり、全ての噴孔11aについて噴孔間距離Lが等しい。そのため、全ての噴孔11aに燃料が均等に流入することが促進されるので、サック室Q22から流入口11inへ燃料が流入する際の圧力損失を低減できる。
さらに本実施形態では、噴孔間距離Lは、流入口11inの直径(短辺長さ)よりも小さい。そのため、噴孔間距離Lが流入口11inの直径より大きい場合に比べて、横流入燃料Y3bの流入角度θ2が小さくなるので、横流入燃料Y3bの圧力損失増大緩和の効果を促進できる。
さらに本実施形態では、噴孔ボデー11のうち燃料通路11bを形成する部分の表面粗さは、噴孔11aの内壁面を形成する部分の表面粗さよりも粗い。そのため、両者を同じ表面粗さにした場合に比べて、噴孔11a内を流通する燃料の圧力損失を低減して流速を速くできる。その結果、噴孔直上体積V4aの部分に存在する燃料は流れ、つまりサック室Q22での主流を速くでき、主流周囲の燃料を主流へ引き寄せる作用を促進できる。よって、閉弁直後にサック室Q22の燃料を勢い良く排出するといった残留燃料の排出性向上、および、サック室Q22に滞留する異物の排出性向上を促進できる。
さらに、本実施形態に係る燃料噴射システムは、ニードル20の着座面11sへの離着座状態を制御することで噴孔11aからの燃料噴射状態を制御する制御装置90と、燃料噴射弁1と、を備える。その制御装置90は、内燃機関の1燃焼サイクル中に噴孔11aから燃料を複数回噴射させるように燃料噴射弁1を制御する多段噴射制御部91を有する。このような多段噴射の場合、1燃焼サイクル中に生じる燃料漏出の回数が多くなり、しかも、噴射毎に噴射圧力が低下していくので、ボデー外面114に漏出燃料が付着しやすくなり、デポジットが堆積しやすくなる。よって、多段噴射を行う燃料噴射システムに、噴孔間距離Lを流入口隙間距離Hより小さくするといった構成を適用させる本実施形態によれば、先述した燃料漏出量低減の効果が好適に発揮される。
さらに本実施形態では、制御装置90は、ニードル20が着座面11sから離座した後、最大開弁位置(フルリフト位置)に達する前に閉弁作動を開始するように燃料噴射弁1を制御するPL噴射制御部92を有する。このようなPL噴射の場合、低圧力での噴射になりやすいので、ボデー外面114に漏出燃料が付着しやすくなり、デポジットが堆積しやすくなる。よって、PL噴射を行う燃料噴射システムに、噴孔間距離Lを流入口隙間距離Hより小さくするといった構成を適用させる本実施形態によれば、先述した燃料漏出量低減の効果が好適に発揮される。
さらに本実施形態では、制御装置90は、内燃機関の圧縮行程期間の一部を含む期間に噴孔11aから燃料を噴射させるように燃料噴射弁1を制御する圧縮行程噴射制御部93を有する。このような圧縮行程噴射の場合、閉弁直後も噴孔11a外部の圧力、つまり燃焼室2の圧力が上昇し続けるので、残留燃料が排出されにくくなる。よって、圧縮行程噴射を行う燃料噴射システムに、噴孔間距離Lを流入口隙間距離Hより小さくするといった構成を適用させる本実施形態によれば、先述した残留燃料排出性向上の効果が好適に発揮される。
(第2実施形態)
上記第1実施形態では、ボデー底面112の全体が湾曲した形状である。これに対し本実施形態では、図16に示すように、ボデー底面112の少なくとも一部は、軸線C1に対して垂直に拡がる平坦な形状である。厳密には、ボデー底面112のうち仮想内接円R4より内周側の領域が少なくとも平坦形状である。さらに本実施形態では、ボデー底面112のうち流入中心仮想円R2より内周側の領域についても平坦形状である。
(第3実施形態)
上記第1実施形態では、複数の噴孔11aの全てが同一の形状である。これに対し本実施形態では、図17に示すように、大きさの異なる複数種類の噴孔11aを備えている。具体的には、噴孔11aには、流入口11inの面積が小さい複数の小噴孔11a3、および流入口11inの面積が小噴孔11a3の流入口11inの面積より大きい複数の大噴孔11a4が含まれている。複数の小噴孔11a3および複数の大噴孔11a4は噴孔ボデー11の軸線C1周りに環状に並べられ、かつ、複数の大噴孔11a4は隣同士に並べられている。
このような配置による作用効果について、以下、図17〜図19を用いて説明する。図17では、噴孔間部分112aのうち、隣り合う小噴孔11a3と大噴孔11a4との間の噴孔間部分を第1噴孔間部分112a1とし、隣り合う大噴孔11a4の間の噴孔間部分を第2噴孔間部分112a2とする。また、隣り合う小噴孔11a3の間の噴孔間部分を第3噴孔間部分112a3とする。
シート上流通路Q10から第1噴孔間部分112a1へ流入した燃料は、小噴孔11a3および大噴孔11a4に分岐するにあたり、小噴孔11a3よりも大噴孔11a4へ多く流れるように分岐する。そのため、図18に示すように、第1噴孔間部分112a1から分岐して大噴孔11a4へ流入する横流入燃料Y3bについては、流入角度θ2が大きくなる。
一方、シート上流通路Q10から第2噴孔間部分112a2へ流入した燃料は、2つの大噴孔11a4の各々へ分岐するにあたり、均等な流量で流れるように分岐する。そのため、図19に示すように、第2噴孔間部分112a2から分岐して大噴孔11a4へ流入する横流入燃料Y3bについては、第1噴孔間部分112a1から分岐して大噴孔11a4へ流入する横流入燃料Y3bに比べて、流入角度θ2が大きい。
したがって、本実施形態に反して大噴孔11a4および小噴孔11a3を交互に配置した場合には、図19の如く流入角度θ2を大きくできる第2噴孔間部分112a2が存在しなくなる。これに対し本実施形態では、複数の大噴孔11a4は隣同士に並べられているので、流入角度θ2を大きくできる第2噴孔間部分112a2が存在するようになる。よって、サック室Q22から噴孔11aへ流入する燃料の圧力損失を低減できる。
なお、上記第1実施形態では、図7に示すように、全ての噴孔11aについて噴孔間距離Lが同一である。これに対し本実施形態では、図17に示すように、第1噴孔間部分112a1、第2噴孔間部分112a2および第3噴孔間部分112a3の各々で噴孔間距離Lが異なる。このように異なる噴孔間距離Lが存在する場合、最も小さい噴孔間距離Lが、フルリフト時の流入口隙間距離Hより小さくなるように設定される。また、本実施形態では、最も大きい噴孔間距離Lについても、フルリフト時の流入口隙間距離Hより小さくなるように設定される。
また、例えば図17に示す場合には、第1噴孔間部分112a1の両隣における噴孔間距離Lは異なる。具体的には、両隣の一方である大噴孔11a4での噴孔間距離Lは、両隣の他方である小噴孔11a3での噴孔間距離Lより大きい。このように、両隣における噴孔間距離Lが異なる場合、大きい方の噴孔間距離Lが流入口隙間距離Hより小さくなるように設定される。さらに本実施形態では、小さい方の噴孔間距離Lについても流入口隙間距離Hより小さくなるように設定される。
(第4実施形態)
上記第1実施形態では、複数の噴孔11aの全てが、同一の流入中心仮想円R2上に配置されている。これに対し本実施形態では、図20に示すように、大きさの異なる仮想円上に各々の噴孔11aが配置されている。具体的には、第1流入中心仮想円R2a上に8個の噴孔11aが配置され、第2流入中心仮想円R2c上に2個の噴孔11aが配置されている。そして、第1流入中心仮想円R2aは、第2流入中心仮想円R2cより小さい。換言すると、噴孔11aには、軸線C1を中心とした仮想円のうち直径が所定未満である第1流入中心仮想円R2a上に配置された内側噴孔11a5、および直径が所定以上である第2流入中心仮想円R2c上に配置された外側噴孔11a6が含まれている。複数の内側噴孔11a5および複数の外側噴孔11a6は噴孔ボデー11の軸線C1周りに環状に並べられ、かつ、複数の外側噴孔11a6は隣同士に並べられている。
このような配置による作用効果は、上記第3実施形態と同様であり、流入角度θ2を大きくして圧力損失の低減を図ることにある。つまり、本実施形態に反して内側噴孔11a5および外側噴孔11a6を交互に配置した場合には、流入角度θ2を大きくできる噴孔間部分112aが存在しなくなる。これに対し本実施形態では、複数の外側噴孔11a6は隣同士に並べられているので、流入角度θ2を大きくできる噴孔間部分112aが存在するようになる。よって、サック室Q22から噴孔11aへ流入する燃料の圧力損失を低減できる。
なお、上記第3実施形態と同様にして本実施形態においても、異なる噴孔間距離Lが存在する場合、最も小さい噴孔間距離Lが、フルリフト時の流入口隙間距離Hより小さくなるように設定される。さらに本実施形態では、最も大きい噴孔間距離Lについても、フルリフト時の流入口隙間距離Hより小さくなるように設定される。また、噴孔11aの両隣における流入口隙間距離Hが異なる場合、大きい方の流入口隙間距離Hが噴孔間距離Lより大きくなるように設定される。さらに本実施形態では、小さい方の流入口隙間距離Hについても噴孔間距離Lより大きくなるように設定される。
(第5実施形態)
上記第1実施形態に係る噴孔11aは、通路断面積が流入口11inから流出口11outにかけて均一であるストレート形状である。通路断面積とは、噴孔11aの軸線C2に対して垂直な方向の面積のことである。軸線C2は、流入口11inの中心と流出口11outの中心とを結ぶ線である。これに対し本実施形態では、図21に示すように、軸線C2を含む断面において噴孔11aの形状は、流入口11inから流出口11outにかけて徐々に直径が小さくなるテーパ形状であり、流入口11inの開口面積は流出口11outの開口面積より大きい。
このように、本実施形態では、流入口11inの開口面積は流出口11outの開口面積より大きいので、閉弁直後においてサック室Q22の燃料が流入口11inへ流入することが、ストレート形状の場合に比べて促進される。よって、先述した残留燃料の排出性を向上できる。また、流入口11inの開口面積が流出口11outの開口面積より大きいことに起因して、先述した貫徹力を増大できる。
(第6実施形態)
本実施形態では、図22に示すように、軸線C2を含む断面において噴孔11aの形状は、通路断面積の大きい部分である噴孔上流部11a1と、通路断面積の小さい部分である噴孔下流部11a2とを有する段付形状である。通路断面積とは、噴孔11aの軸線C2に対して垂直な方向の面積のことであり、軸線C2とは、流入口11inの中心と流出口11outの中心とを結ぶ線のことである。噴孔上流部11a1および噴孔下流部11a2は、軸線C2方向に一定の直径で延びるストレート形状であり、噴孔上流部11a1の直径は噴孔下流部11a2の直径より大きい。よって、流入口11inの開口面積は流出口11outの開口面積より大きい。
このように、本実施形態によっても上記第5実施形態と同様にして、流入口11inの開口面積は流出口11outの開口面積より大きいので、残留燃料の排出性向上および貫徹力の増大を図ることができる。
(第7実施形態)
上記第1実施形態に係る燃料噴射弁1は、1つのコア対向面31cを有する可動コア30を備える(図3参照)。この構成に起因して、可動コア30に入る磁束(入磁束)と、可動コア30から出る磁束(出磁束)とは異なる向きになる(図3中の点線矢印参照)。すなわち、入磁束および出磁束の一方は、軸線C1方向に出入りして可動コア30に開弁力を作用させる磁束であるのに対し、入磁束および出磁束の他方は、可動コア30の径方向に出入りして開弁力として寄与しない磁束となる。
これに対し、図23に示す本実施形態の燃料噴射弁1Aは、2つのコア対向面、つまり第1コア対向面31c1(第1吸引面)および第2コア対向面31c2(第2吸引面)を有する可動コア30Aを備える。さらに燃料噴射弁1Aは、第1コア対向面31c1に対向する吸引面を有する第1固定コア131、および第2コア対向面31c2に対向する吸引面を有する第2固定コア132を備える。非磁性部材14は、第1固定コア131と第2固定コア132の間に配置されている。この構成により、入磁束および出磁束のいずれもが、軸線C1方向に出入りして可動コア30Aに開弁力を作用させる磁束となる(図23中の点線矢印参照)。なお、可動コア30Aとニードル20とは連結部材70により連結され、連結部材70にはオリフィス部材71が取り付けられている。
ニードル20を開弁作動させるべくコイル17へ通電すると、第1コア対向面31c1および第2コア対向面31c2の両方により、可動コア30Aは固定コア131、132に吸引される。これにより、ニードル20は、可動コア30A、連結部材70およびオリフィス部材71とともに開弁作動する。ニードル20のフルリフト位置では、第1固定コア131に固定されたストッパ131aに連結部材70が当接し、第1コア対向面31c1および第2コア対向面31c2は固定コア131、132に当接しない。
ニードル20を閉弁作動させるべくコイル17への通電を停止させると、可動コア30に付与されている第2バネ部材SP2の弾性力がオリフィス部材71に付与される。これにより、ニードル20は、可動コア30A、連結部材70およびオリフィス部材71とともに閉弁作動する。
摺動部材72は、可動コア30Aに取り付けられて可動コア30Aとともに開閉作動する。摺動部材72は、第2固定コア132に固定されたカバー132aに対して、軸線C1方向に摺動する。要するに、可動コア30A、摺動部材72、連結部材70およびオリフィス部材71とともに開閉作動するニードル20は、摺動部材72により径方向に支持されていると言える。
固定コア13の内部に形成されている流路13aへ流入した燃料は、オリフィス部材71の内部通路71a、オリフィス部材71に形成されたオリフィス71b、および移動部材73に形成されたオリフィス73aを順に流れ、流路12bへ流入する。移動部材73はオリフィス71bを開閉するように軸線C1方向に移動する部材であり、移動部材73がオリフィス71bを開閉することで、流路13aと流路12bとの間の流路の絞り度合が変更される。
そして、本実施形態に係る燃料噴射弁1Aにおいても、ニードル20の外周面と噴孔ボデー11の内周面との間で形成される燃料通路11bの形状は、上記第1実施形態に係る燃料噴射弁1と同様であり、噴孔間距離Lが流入口隙間距離Hより小さい。したがって、2つの吸引面を有する可動コア30Aを備える燃料噴射弁1Aにおいても、シート下流通路Q20の体積を小さくすることによる燃料漏出量低減と、噴孔間距離Lを小さくすることによる圧力損失低減との両立を図ることができる。
(第8実施形態)
上記第1実施形態に係る燃料噴射弁1は、コイル17、固定コア13および可動コア30を有するアクチュエータを1つ備え、そのアクチュエータがニードル20に閉弁力を作用させている。これに対し、図24に示す本実施形態の燃料噴射弁1Bは、ニードル20に閉弁力を作用させるアクチュエータを2つ備えている。すなわち、第1実施形態と同様のコイル17、固定コア13および可動コア30を備えることに加え、第2のコイル170、固定コア130および可動コア30Bを備える。
具体的には、本体ボデー12のうち軸線C1方向に異なる位置に、各々の固定コア13、130およびコイル17、170が固定されている。また、2つの可動コア30、30Bは、各々の固定コア13、130の吸引面に対向する位置に、軸線C1方向に並べて配置されている。可動コア30、30Bは、ニードル20に固定され、かつ、本体ボデー12の内部にて軸線C1方向に摺動可能に配置されている。
ニードル20を開弁作動させる場合には、2つのコイル17、170へ通電し、2つの可動コア30、30Bを固定コア13、130へ吸引させる。これにより、可動コア30、30Bに固定されたニードル20は、第1バネ部材SP1の弾性力に抗して開弁作動する。ニードル20を閉弁作動させる場合には、2つのコイル17、170への通電を停止させ、可動コア30に付与されている第1バネ部材SP1の弾性力により、ニードル20は閉弁作動する。
そして、本実施形態に係る燃料噴射弁1Bにおいても、ニードル20の外周面と噴孔ボデー11の内周面との間で形成される燃料通路11bの形状は、上記第1実施形態に係る燃料噴射弁1と同様であり、噴孔間距離Lが流入口隙間距離Hより小さい。したがって、2つのアクチュエータを備える燃料噴射弁1Bにおいても、シート下流通路Q20の体積を小さくすることによる燃料漏出量低減と、噴孔間距離Lを小さくすることによる圧力損失低減との両立を図ることができる。
(他の実施形態)
以上、本開示の複数の実施形態について説明したが、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。そして、複数の実施形態及び変形例に記述された構成同士の明示されていない組み合わせも、以下の説明によって開示されているものとする。
上記第1実施形態では、シート角度θは90度より小さい角度に設定されているが、90度に設定されていてもよい。この場合、加工精度や組付け精度の許容範囲内であれば、シート角度θは90度から大きい側または小さい側にずれた角度になっていてもよい。
図7および図8に示す例では、全ての噴孔11aが、共通する流入中心仮想円R2を有している。これに対し、図17に示すように、異なる流入中心仮想円R2a、R2bが混在する場合においては、噴孔間距離Lは次のように定義される。例えば、2つの大噴孔11a4の間の噴孔間距離Lや、2つの小噴孔11a3の間の噴孔間距離Lの場合には、共通する流入中心仮想円R2a、R2bを有するので、それらの仮想円に沿う最短円弧距離が、噴孔間距離Lとして定義される。一方、大噴孔11a4と小噴孔11a3との間の噴孔間距離Lは、共通する仮想円が無いので、大噴孔11a4と小噴孔11a3との最短直線距離が、噴孔間距離Lとして定義される。流入中心仮想円R2、R2a、R2bは、シート位置R1に係る円と同心であるため、最短円弧距離は、シート面20sに沿って平行に延びる円弧の距離であるとも言える。
上記第1実施形態では、流入口隙間距離Hは、流入口中心点Aでの隙間距離として定義されている。これに対し、流入口11inの周縁のうち軸線C1から最も離れた位置での隙間距離として定義されていてもよいし、流入口11inの周縁のうち軸線C1に最も近い位置での隙間距離として定義されていてもよい。また、流入口11inの周縁のうち流入中心仮想円R2と交差する位置での隙間距離として定義されていてもよい。
上記第1実施形態では、複数の噴孔11aの各々の噴孔間距離Lおよび流入口隙間距離Hが同一である場合において、噴孔間距離Lが流入口隙間距離Hより小さく設定されている。これに対し、異なる噴孔間距離および流入口隙間距離が存在する場合において、少なくとも1つの噴孔間距離が少なくとも1つの流入口隙間距離より小さく設定されていればよい。或いは、隣同士の2つの噴孔11aの噴孔間距離が、それら2つの噴孔11aのいずれか一方の流入口隙間距離より小さく設定されていればよい。
上記第1実施形態では、ニードル20外面と流入口11inとの隙間の大きさである流入口隙間距離Hは、流入口11inの中心点Aでのニードル20との離間距離である。これに対し、噴孔11aのうち中心点A以外の部分におけるニードル20との離間距離であってもよい。例えば、流入口隙間距離Hは、噴孔11aのうちニードル20に最も遠い位置での軸線C1方向における離間距離であってもよいし、最も近い位置での軸線C1方向における離間距離であってもよい。
上記各実施形態では、ガソリン燃料を噴孔11aから噴射させる燃料噴射弁1、1A、1Bとしているが、エタノール燃料またはメタノール燃料を噴孔11aから噴射させる燃料噴射弁であってもよい。エタノール燃料やメタノール燃料はガソリン燃料に比べて粘性が高いので、燃料通路11bおよび噴孔11aを流れる燃料の圧力損失が大きい。特に、サック室Q22から流入口11inへ燃料が折れ曲がって流入する際の圧力損失が大きい。そのため、流入口隙間距離Hを小さくしてシート下流通路Q20の体積を小さくすると、流入口11inから流入した直後の流速変化が大きくなり、噴孔11a内でのキャビテーション発生が懸念される。この懸念に対し本実施形態では、噴孔間距離Lを流入口隙間距離Hより小さくしているので、先述した通り、噴孔間距離Lを小さくすることで圧力損失増大を緩和できる。よって、噴孔間距離Lを流入口隙間距離Hより大きくした場合に比べて、上記キャビテーション発生の懸念を低減できる。
上記第1実施形態では、燃料噴射弁1は、シリンダヘッドのうち燃焼室2の中心に位置する部分に取り付けられて、燃焼室2の上方からピストンの中心線方向に燃料を噴射するセンター配置式である。これに対し、シリンダブロックのうち燃焼室2の側方に位置する部分に取り付けられて、燃焼室2の側方から燃料を噴射するサイド配置式の燃料噴射弁であってもいい。
上記第1実施形態では、噴孔11aが10個形成されているが、2個以上であれば10個に限定されるものではなく、例えば8個であってもよい。
上記第1実施形態では、ニードル20のうち噴孔ボデー11の内壁面11cに対向する部分(ニードル先端部)と、カップ50の外周面51dとの2箇所で、可動部Mは径方向に支持されている。また、上記第7実施形態では、ニードル先端部と摺動部材72との2箇所で、可動部は径方向に支持されている。これに対し、可動コア30の外周面とニードル先端部との2箇所で、可動部Mは径方向から支持されていてもよい。
上記第1実施形態では、インナコア32が非磁性材で形成されているが、磁性材で形成されていてもよい。また、インナコア32が磁性材で形成される場合、アウタコア31に比べて磁性の弱い弱磁性材で形成されてもよい。同様にして、ニードル20およびガイド部材60が、アウタコア31に比べて磁性の弱い弱磁性材で形成されてもよい。
上記第1実施形態では、可動コア30が所定量移動した時点で、可動コア30をニードル20に当接させて開弁作動を開始させるコアブースト構造を実現するにあたり、第1バネ部材SP1と可動コア30との間にカップ50を介在させている。これに対し、カップ50を廃止して、第1バネ部材SP1とは別の第3バネ部材を設け、第3バネ部材により可動コア30を噴孔側へ付勢させるコアブースト構造であってもよい。
図25に示すように、ボデー外面114に凹部11dが形成されていてもよい。凹部11dは軸線C2方向から見て円形であり、流出口11outを内部に含むよう、凹部11dの直径は流出口11outの直径より大きい。凹部11dの円形中心は噴孔11aの軸線C2と一致する。このように凹部11dを形成することで、噴孔11aの長さを短くし、流出口11outから噴射される燃料の貫徹力を低減させている。それでいて、噴孔ボデー11のうち噴孔11a以外の部分で厚さ寸法が短くなることを回避できるので、噴孔ボデー11の著しい強度低下を回避できる。
図25に示す構造の場合においても上記各実施形態と同様にして、噴孔11aの体積V2aは、流入口11inから流出口11outまでの体積のことであり、凹部11dの体積は噴孔11aの体積V2aには含まれない。凹部11dに存在する燃料は圧力開放された状態であり、圧力開放された状態の燃料が存在する部分は、噴孔11aの一部とはみなされない。そして、総噴孔体積V2は、着座状態における中心体積V1よりも大きい。
また、図25に示す凹部dを備える構造において、噴孔11aの形状は、図25および図8に示すストレート形状であってもよいし、図21に示すテーパ形状であってもよいし、図21とはテーパの向きを逆にした逆テーパ形状であってもよい。
図26に示すように、ボデー底面112に凹部112bが形成されていてもよい。凹部112bは、軸線C1と同心となる位置に形成されている。凹部112b内の領域はサック室Q22の一部を形成する。換言すると、凹部112b内の領域は、サック室Q22に含まれ、かつ、シート下流通路Q20に含まれ、かつ、燃料通路11bに含まれる。そして、総噴孔体積V2との大小比較対象である中心体積V1には、凹部112b内の体積も含まれ、総噴孔体積V2は、着座状態における中心体積V1よりも大きい。
図27に示すように、テーパ面111の上流側に拡径テーパ面111aが形成されていてもよい。拡径テーパ面111aは、縦断面視において軸線C1と非平行であり、軸線C1に対して傾斜するテーパ形状であり、かつ、テーパ面111の直径を拡大させた形状である。図27に示す例では、拡径テーパ面111aはテーパ面111と平行な面であるが、テーパ面111と非平行でもよい。いすれの場合でも、シート角度θは、拡径テーパ面111aの頂角ではなく、テーパ面111の頂角として定義される。
流入口11inそれぞれの周縁のうち軸線C1に最も近い部分を結んだ直線L10で囲まれる領域を仮想領域と呼ぶことは先述した通りである。この仮想領域は、図7に示すように、軸線C1を対称中心とした点対称かつ正多角形であってもよいし、図17および図25に示すように、非点対称の形状であってもよい。
上記各実施形態では、燃料通路11bを形成するテーパ面111、ボデー底面112および連結面113のうち、ボデー底面112に噴孔11aが形成されている。これに対し、テーパ面111のうち着座面11sの下流側部分、または連結面113に噴孔11aが形成されていてもよい。
上記各実施形態では、ニードル20が可動コア30に対して相対移動可能に構成されているが、相対移動できないように可動コア30とニードル20が一体に構成されていてもよい。分割噴射に係る2回目以降の噴射を行う際には、可動コア30が初期位置に戻ってくる必要がある。しかしながら、上述の如く可動コア30とニードル20とが一体に構成されている場合、ニードル20が重くなり、閉弁バウンスしやすくなる。そのため、シート角度θを90度以下とすることによるバウンス抑制の効果は、上記一体構成の場合に好適に発揮される。
θ シート角度、 1 燃料噴射弁、 11 噴孔ボデー、 11a、11a3、11a4 噴孔、 11b 燃料通路、 11in 流入口、 11s 着座面、 17、170 コイル、 19 フィルタ、 1A、1B 燃料噴射弁、 20 弁体、 20s シート面、 30、30A、30B 可動コア、 31c1 第1吸引面、 31c2 第2吸引面、 90 制御装置、 94 圧力制御部、 Lm メッシュ間隔、 SP1 弾性部材。

Claims (13)

  1. 内燃機関における燃焼に用いる燃料が噴射される噴孔(11a、11a3、11a4)が形成された噴孔ボデー(11)と、
    前記噴孔ボデーの着座面(11s)に離着座する弁体(20)と、
    前記噴孔ボデーと前記弁体との間に形成され、前記噴孔の流入口(11in)に連通しており、前記弁体の離着座により開閉される燃料通路(11b)と、
    前記弁体を前記着座面に押し付ける弾性力を発揮する弾性部材(SP1)と、
    を備え、
    前記着座面のうち前記弁体の中心軸線を含む断面に現れる2本の直線がなす角度であるシート角度(θ)は、90度以下である燃料噴射弁。
  2. 前記弁体の外面は、前記着座面に離着座する部分であるシート面(20s)を有し、
    前記シート面は、前記着座面の側に膨らむ向きに湾曲する形状である請求項1に記載の燃料噴射弁。
  3. 前記燃料通路へ流入する燃料に含まれている異物を捕捉するフィルタ(19)を備え、
    前記弁体が可動範囲のうち前記着座面から最も離れた位置にある状態で、前記着座面と前記弁体の外面との最短距離は、前記フィルタのメッシュ間隔(Lm)より大きい請求項1または2に記載の燃料噴射弁。
  4. 前記噴孔は複数形成されており、
    複数の前記噴孔の各々の最小の通路断面積の合計を総噴孔面積とし、前記弁体が可動範囲のうち前記着座面から最も離れた位置にある状態で、前記燃料通路のうち前記着座面に位置する環状の通路の断面積をシート部環状面積とし、
    前記シート角度は、前記シート部環状面積が前記総噴孔面積より大きくなるように設定されている請求項1〜3のいずれか1つに記載の燃料噴射弁。
  5. 磁気力により吸引されて移動する可動コア(30、30A、30B)を備え、
    前記弁体は、前記可動コアとともに移動することで前記着座面から離座する請求項1〜4のいずれか1つに記載の燃料噴射弁。
  6. 前記磁気力により移動する可動コアは、前記弁体が前記着座面に着座した状態のまま所定量移動し、その後、前記弁体とともに移動して前記弁体を前記着座面から離座する請求項5に記載の燃料噴射弁。
  7. 前記可動コアは、前記中心軸線の方向に異なる位置に設けられた、前記磁気力により吸引される第1吸引面(31c1)および第2吸引面(31c2)を有する請求項5または6に記載の燃料噴射弁。
  8. 前記磁気力を生じさせるコイル(17、170)を備え、
    前記可動コアおよび前記コイルを複数備える請求項5〜7のいずれか1つに記載の燃料噴射弁。
  9. 請求項1〜8のいずれか1つに記載の燃料噴射弁(1、1A、1B)と、
    前記弁体の前記着座面への離着座状態を制御することで前記噴孔からの燃料噴射状態を制御する制御装置(90)と、
    を備える燃料噴射システム。
  10. 前記制御装置は、前記燃料噴射弁へ供給する燃料の圧力を、所定範囲内の任意の目標圧力に制御する圧力制御部(94)を有し、
    前記目標圧力が前記所定範囲の最小値に設定されている場合の燃料圧力により、前記弁体が前記着座面に押し付けられる力を最小燃圧閉弁力とし、
    前記弾性力が前記最小燃圧閉弁力より小さい請求項9に記載の燃料噴射システム。
  11. 前記制御装置は、前記内燃機関の1燃焼サイクル中に前記噴孔から燃料を複数回噴射させるように前記燃料噴射弁を制御する多段噴射制御部(91)を有する請求項9または10に記載の燃料噴射システム。
  12. 前記制御装置は、前記弁体が前記着座面から離座した後、最大開弁位置に達する前に閉弁作動を開始するように前記燃料噴射弁を制御するパーシャルリフト噴射制御部(92)を有する請求項9〜11のいずれか1つに記載の燃料噴射システム。
  13. 前記制御装置は、前記内燃機関の圧縮行程期間の一部を含む期間に前記噴孔から燃料を噴射させるように前記燃料噴射弁を制御する圧縮行程噴射制御部(93)を有する請求項9〜12のいずれか1つに記載の燃料噴射システム。
JP2018042226A 2018-03-08 2018-03-08 燃料噴射システム Active JP7124350B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018042226A JP7124350B2 (ja) 2018-03-08 2018-03-08 燃料噴射システム
DE102019103245.8A DE102019103245A1 (de) 2018-03-08 2019-02-11 Kraftstoffeinspritzventil und Kraftstoffeinspritzsystem
US16/291,249 US20190277236A1 (en) 2018-03-08 2019-03-04 Fuel injection valve and fuel injection system
CN201910167550.5A CN110242463A (zh) 2018-03-08 2019-03-06 燃料喷射阀及燃料喷射系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018042226A JP7124350B2 (ja) 2018-03-08 2018-03-08 燃料噴射システム

Publications (2)

Publication Number Publication Date
JP2019157676A true JP2019157676A (ja) 2019-09-19
JP7124350B2 JP7124350B2 (ja) 2022-08-24

Family

ID=67701798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018042226A Active JP7124350B2 (ja) 2018-03-08 2018-03-08 燃料噴射システム

Country Status (4)

Country Link
US (1) US20190277236A1 (ja)
JP (1) JP7124350B2 (ja)
CN (1) CN110242463A (ja)
DE (1) DE102019103245A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6662364B2 (ja) * 2017-03-03 2020-03-11 株式会社デンソー 燃料噴射弁および燃料噴射システム
JP7439399B2 (ja) * 2019-06-20 2024-02-28 株式会社デンソー 燃料噴射弁

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914090A (ja) * 1995-04-27 1997-01-14 Nippondenso Co Ltd 流体噴射ノズル
JP2005083201A (ja) * 2003-09-04 2005-03-31 Denso Corp 燃料噴射弁
JP2007224746A (ja) * 2006-02-21 2007-09-06 Isuzu Motors Ltd インジェクタノズル
JP2009257314A (ja) * 2008-03-27 2009-11-05 Denso Corp 燃料噴射弁
JP2010101267A (ja) * 2008-10-24 2010-05-06 Mitsubishi Electric Corp 燃料噴射弁
JP2016020649A (ja) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 筒内噴射式内燃機関の制御装置
JP2016065539A (ja) * 2014-09-17 2016-04-28 株式会社デンソー 燃料噴射弁
JP2017008860A (ja) * 2015-06-24 2017-01-12 株式会社日本自動車部品総合研究所 燃料噴射ノズル
JP2017145819A (ja) * 2016-02-12 2017-08-24 トヨタ自動車株式会社 燃料圧力制御装置
JP2018025184A (ja) * 2016-07-28 2018-02-15 株式会社デンソー 燃料噴射弁

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224605A1 (en) * 2004-04-07 2005-10-13 Dingle Philip J Apparatus and method for mode-switching fuel injector nozzle
AT501914B1 (de) * 2005-10-03 2006-12-15 Bosch Gmbh Robert Vorrichtung zum einspritzen von kraftstoff in den brennraum einer brennkraftmaschine
JP4906466B2 (ja) * 2006-10-16 2012-03-28 日立オートモティブシステムズ株式会社 燃料噴射弁およびそれを搭載した内燃機関の燃料噴射装置
DE102009003081A1 (de) * 2009-05-13 2010-11-18 Robert Bosch Gmbh Kompakte Einspritzvorrichtung mit nach innen öffnendem Injektor
GB2502283B (en) * 2012-05-21 2018-12-12 Ford Global Tech Llc An engine system and a method of operating a direct injection engine
JP5880872B2 (ja) * 2013-01-14 2016-03-09 株式会社デンソー 燃料噴射弁及び燃料噴射装置
JP2016098702A (ja) 2014-11-20 2016-05-30 株式会社日本自動車部品総合研究所 燃料噴射弁

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0914090A (ja) * 1995-04-27 1997-01-14 Nippondenso Co Ltd 流体噴射ノズル
JP2005083201A (ja) * 2003-09-04 2005-03-31 Denso Corp 燃料噴射弁
JP2007224746A (ja) * 2006-02-21 2007-09-06 Isuzu Motors Ltd インジェクタノズル
JP2009257314A (ja) * 2008-03-27 2009-11-05 Denso Corp 燃料噴射弁
JP2010101267A (ja) * 2008-10-24 2010-05-06 Mitsubishi Electric Corp 燃料噴射弁
JP2016020649A (ja) * 2014-07-14 2016-02-04 トヨタ自動車株式会社 筒内噴射式内燃機関の制御装置
JP2016065539A (ja) * 2014-09-17 2016-04-28 株式会社デンソー 燃料噴射弁
JP2017008860A (ja) * 2015-06-24 2017-01-12 株式会社日本自動車部品総合研究所 燃料噴射ノズル
JP2017145819A (ja) * 2016-02-12 2017-08-24 トヨタ自動車株式会社 燃料圧力制御装置
JP2018025184A (ja) * 2016-07-28 2018-02-15 株式会社デンソー 燃料噴射弁

Also Published As

Publication number Publication date
JP7124350B2 (ja) 2022-08-24
DE102019103245A1 (de) 2019-09-12
US20190277236A1 (en) 2019-09-12
CN110242463A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
US10400723B2 (en) Fuel injection valve
JP6753432B2 (ja) 燃料噴射装置
WO2019171747A1 (ja) 燃料噴射弁および燃料噴射システム
JP2010180758A (ja) 燃料噴射弁
JP7124350B2 (ja) 燃料噴射システム
JP7124351B2 (ja) 燃料噴射弁および燃料噴射システム
JP2004211682A (ja) 燃料噴射装置
US11300088B2 (en) Fuel injection valve
JP7206601B2 (ja) 燃料噴射弁および燃料噴射システム
JP6268185B2 (ja) 燃料噴射弁
JP2015078603A (ja) 燃料噴射弁
JP6233481B2 (ja) 燃料噴射弁
JP6945078B2 (ja) 燃料噴射弁
JP2010159677A (ja) 燃料噴射弁
CN114008317A (zh) 燃料喷射阀
JP4160594B2 (ja) 電磁式燃料噴射弁
JP6339461B2 (ja) 燃料噴射弁
JP2017036678A (ja) 電磁式弁
JP2007303442A (ja) 燃料噴射弁
CN107532557B (zh) 燃料喷射装置
JP2010156260A (ja) 高圧ポンプ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R151 Written notification of patent or utility model registration

Ref document number: 7124350

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151