JP2019154203A - 電動車両の充電制御装置 - Google Patents

電動車両の充電制御装置 Download PDF

Info

Publication number
JP2019154203A
JP2019154203A JP2018039916A JP2018039916A JP2019154203A JP 2019154203 A JP2019154203 A JP 2019154203A JP 2018039916 A JP2018039916 A JP 2018039916A JP 2018039916 A JP2018039916 A JP 2018039916A JP 2019154203 A JP2019154203 A JP 2019154203A
Authority
JP
Japan
Prior art keywords
assembled battery
power
charging
power storage
ecu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018039916A
Other languages
English (en)
Inventor
嘉崇 新見
Yoshitaka Niimi
嘉崇 新見
廣江 佳彦
Yoshihiko Hiroe
廣江  佳彦
啓司 海田
Keiji Kaida
啓司 海田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018039916A priority Critical patent/JP2019154203A/ja
Priority to EP19156949.0A priority patent/EP3536543B1/en
Priority to CN201910115460.1A priority patent/CN110233507A/zh
Priority to US16/281,395 priority patent/US20190275900A1/en
Publication of JP2019154203A publication Critical patent/JP2019154203A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0025Sequential battery discharge in systems with a plurality of batteries
    • H02J7/0077
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/91Battery charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】電動車両の外部の直流電源により車載の蓄電装置を充電する際に、充電の開始当初の一定期間に充電できる充電量を増加させることである。【解決手段】電動車両の制御装置は、車載の蓄電装置のDC充電が行なわれていない場合には、蓄電装置に含まれる組電池B1,B2のうち、一方の組電池(たとえば、組電池B1)のSOCを他方の組電池(たとえば、組電池B2)のSOCよりも意図的に小さくするSOC調整処理を実行する。具体的には、制御装置は、切替リレーを制御して、モータジェネレータ(MG)の回生電力を組電池B2に供給する(S150,170)。制御装置は、切替リレーを制御して、MGの力行に用いられる電力を組電池B1から供給する(S110,130)。【選択図】図4

Description

本開示は、車両に搭載された蓄電装置の充電を制御する充電制御装置に関する。
特開2017−192272号公報(特許文献1)には、複数の組電池を含む蓄電装置を備えた電動車両が開示されている。この電動車両に搭載される複数の組電池は、電動車両の駆動部などの電気負荷に対して並列に接続される。
特開2017−192272号公報
電動車両のなかには、車外のDC(直流)充電器に接続可能に構成され、DC充電器から供給される直流電力によって車載の蓄電装置を充電する処理(以下「DC充電」ともいう)を実行可能に構成されるものが存在する。DC充電が可能な電動車両には、蓄電装置の保護のために、組電池のSOC(State Of Charge)が高い場合にDC充電器から供給される充電電力を制限する制限制御を行なうものがある。
一方、公共の充電ステーションなどに設置されたDC充電器でDC充電を行なう場合、DC充電の開始当初の比較的短い期間(たとえば、数分から数十分程度の期間、以下においては「当初期間」ともいう)に、ある程度の量の電力を充電したいというユーザのニーズが存在し得る。
特許文献1に開示された電動車両のように複数の組電池が電動車両の電気負荷に対して並列に接続される場合、組電池が単体で電動車両の電気負荷に接続される場合と比べて、同じ電力が電動車両で使用されたとしても各組電池のSOCが高い状態に保たれることが想定される。
そのため、複数の組電池が電動車両の電気負荷に対して並列に接続されている場合には、複数の組電池のSOCが高い状態でDC充電が開始されやすくなることが想定される。そうすると、DC充電の開始時においてDC充電器から供給される充電電力が上述の制限制御によって制限されるため、当初期間における充電量が小さいものとなってしまうことが懸念される。それゆえに、当初期間において、蓄電装置のSOCをユーザが所望するSOCまで充電することができない可能性がある。
本開示は、上記問題を解決するためになされたものであり、その目的は、電動車両の外部の直流電源により車載の蓄電装置を充電する際に、充電の開始当初の一定期間に充電できる充電量を増加させることである。
この開示に係る電動車両の充電制御装置は、電動車両の外部の直流電源から供給される直流電力を受電できるように構成された電動車両の充電制御装置であって、複数の蓄電体を含み、直流電源による充電が行なわれるように構成された蓄電装置と、蓄電装置の蓄電量が高いほど、直流電源による充電電力を制限する制御を行なう制御装置とを備える。制御装置は、直流電源による充電が行なわれていない場合には、複数の蓄電体のうちの特定の蓄電体の蓄電量を、特定の蓄電体でない他の蓄電体の蓄電量よりも所定量以上小さい蓄電量にするSOC調整処理を実行する。制御装置は、直流電源による充電が行なわれる場合には、他の蓄電体よりも優先して特定の蓄電体を充電する。
上記構成によれば、直流電源による充電が開始される前に、特定の蓄電体の蓄電量を、他の蓄電体の蓄電量よりも意図的に小さくするSOC調整処理が実行される。これによって、特定の蓄電体の蓄電量を、他の蓄電体の蓄電量よりも直流電源による充電が開始される前に予め小さくしておくことができる。そして、直流電源による充電が行なわれる場合には、他の蓄電体よりも優先して特定の蓄電体を充電する。これによって、当初期間に大きな充電電力で充電することができる。それゆえに、当初期間に充電できる充電量を増加させることができる。
好ましくは、制御装置は、直流電源による充電が行なわれていない場合であり、かつ、直流電源による充電が行なわれることを予測した場合にSOC調整処理を実行する。
たとえば、電動車両の走行時に常時SOC調整処理が実行されると、SOC調整処理が実行されていないときと比べて各蓄電体への充電電力の入出力による損失が大きくなり得る。上記構成によれば、近い将来に蓄電装置のDC充電が行なわれることが予測される場合に限って、SOC調整処理が実行される。それゆえに、SOC調整処理が不必要に実行されることが抑制される。これによって、当初期間に充電できる充電量を増加させつつ、各組電池への電力の入出力による損失を抑制することができる。
好ましくは、制御装置は、SOC調整処理の実行を指示する操作が電動車両のユーザによってなされた場合に、直流電源による充電が行なわれると予測する。
上記構成によれば、ユーザの指示操作に応じてSOC調整処理が実行される。これによって、ユーザの意思によってSOC調整処理が実行されるようにすることができる。
好ましくは、蓄電装置は、電動車両と直流電源とが接続されている場合において、複数の蓄電体と直流電源との接続関係を切り替え可能な切替リレーを含む。SOC調整処理は、電動車両の駆動軸に接続された回転電機が回生制御される場合には、当該回生制御による回生電力により他の蓄電体が充電されるように切替リレーを制御し、回転電機が力行制御される場合には、当該力行制御により用いられる電力を特定の蓄電体から供給するように切替リレーを制御する処理を含む。
上記構成によれば、制御装置は、切替リレーを制御することによって、回転電機の回生電力を他の蓄電体に供給する。また、制御装置は、切替リレーを制御することによって、回転電機の力行に用いられる電力を特定の蓄電体から供給する。このように、回転電機の制御状態によって切替リレーを制御することで、特定の蓄電体と他の蓄電体との蓄電量の差が大きくなるように調整される。これによって、電動車両の充電制御装置の構成を複雑化させることなく、SOC調整処理を実行することが可能となる。
好ましくは、電動車両の充電制御装置は、複数の蓄電体間に設けられた電圧変換装置をさらに備える。SOC調整処理は、電圧変換装置を介して特定の蓄電体から他の蓄電体へ電力を供給する処理を含む。
上記構成によれば、複数の蓄電体間に設けられた電圧変換装置を用いて、複数の蓄電体間で電力の授受を行なうことができる。これによって、回転電機の制御状態によらず、SOC調整処理の実行が可能となる。
本開示によれば、電動車両の外部の直流電源により車載の蓄電装置を充電する際に、充電の開始当初の一定期間に充電できる充電量を増加させることができる。
実施の形態1に係る充電制御装置が搭載される電動車両1とDC充電器とを含む充電システムの全体構成図である。 SOC調整処理を実行する前の蓄電装置をDC充電する場合におけるSOC、充電電流および充電量の時間変化を概略的に示す図である。 SOC調整処理を実行した後の蓄電装置をDC充電する場合におけるSOC、充電電流および充電量の時間変化を概略的に示す図である。 実施の形態1に係る電動車両1のECUで実行される処理を示すフローチャートである。 図4のS180(DC充電)における詳細な処理を示すフローチャートである。 実施の形態1に係る充電制御装置の制御を概略的に示す図である。 並列状態における組電池B1,B2のバッテリ損失とSOC調整処理の実行時における組電池B1,B2のバッテリ損失とを比較した図である。 変形例1に係る電動車両1のECUで実行される処理を示すフローチャートである。 解除処理においてECUで実行される処理を示すフローチャート(その1)である。 変形例2に係る電動車両1のECUで実行される処理を示すフローチャートである。 変形例3に係る電動車両のECUで実行される処理を示すフローチャートである。 変形例4に係る電動車両のECUで実行される処理を示すフローチャートである。 変形例5に係る電動車両のECUで実行される処理を示すフローチャートである。 実施の形態2に係る充電制御装置が搭載される電動車両とDC充電器とを含む充電システムの全体構成図である。 実施の形態2に係る電動車両のECUで実行される処理を示すフローチャートである。 解除処理においてECU100で実行される処理を示すフローチャート(その2)である。 実施の形態3に係る充電制御装置が搭載される電動車両とDC充電器とを含む充電システムの全体構成図である。 解除処理においてECUで実行される処理を示すフローチャート(その3)である。
以下、実施の形態1について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態1]
図1は、実施の形態1に係る充電制御装置が搭載される電動車両1とDC充電器300とを含む充電システムの全体構成図である。電動車両1は、電気自動車およびプラグインハイブリッド自動車などの電動車両である。電動車両1は、DC充電器300に接続可能に構成される。電動車両1は、DC充電器300から供給される直流電力によって車載の蓄電装置を充電する「DC充電」を実行可能に構成される。
電動車両1は、蓄電装置10と、パワーコントロールユニット(以下「PCU(Power Control Unit)」ともいう)40と、モータジェネレータ50と、駆動輪60と、車両インレット90と、ECU(Electronic Control Unit)100と、メインリレー装置20と、監視ユニット70とを備える。
蓄電装置10は、2個の組電池B1,B2と、切替リレーR1,R2とを含む。組電池B1は、複数の電池が積層されている。電池は、たとえば、ニッケル水素、リチウムイオン等の二次電池である。また、電池は、正極と負極との間に液体電解質を有するものであってもよいし、固体電解質を有するものであってもよい。実施の形態1においては、電池は、液体電解質を有するリチウムイオン二次電池である例について説明する。
組電池B1には、DC充電器300から供給されて車両インレット90から入力される電力の他、モータジェネレータ50において発電される電力が蓄えられる。組電池B2についても組電池B1と同様である。なお、実施の形態1においては、蓄電装置10には2個の組電池B1,B2が含まれる例について説明するが、蓄電装置10に含まれる組電池の数は2個に限られない。蓄電装置10に含まれる組電池の数は3個以上であってもよい。また、組電池は、複数の電池が積層されていることに限られるものではなく、1個の電池から構成されてもよい。また、組電池B1,B2としては、再充電可能な直流電源であればよく、大容量のキャパシタも採用可能である。
切替リレーR1,R2は、それぞれが個別にオンオフ状態を制御可能に構成されている。切替リレーR1は、メインリレー装置20のメインリレー21と組電池B1の正極端子との間に設けられている。切替リレーR2は、メインリレー装置20のメインリレー21と組電池B2の正極端子との間に設けられている。
実施の形態1においては、切替リレーR1,R2の双方がオン状態にされると、組電池B1,B2がメインリレー装置20に対して並列に接続された状態となる。切替リレーR1をオン状態、かつ、切替リレーR2をオフ状態にすると、組電池B1の両端がメインリレー装置20と電気的に接続され、かつ、組電池B2の両端がメインリレー装置20と電気的に切り離された状態となる。切替リレーR1をオフ状態、かつ、切替リレーR2をオン状態にすると、組電池B1の両端がメインリレー装置20と電気的に切り離され、かつ、組電池B2の両端がメインリレー装置20と電気的に接続された状態となる。
切替リレーR1,R2には、IGBT(Insulated Gate Bipolar Transistor)、および、MOSFET(metal oxide semiconductor field effect transistor)等のトランジスタが用いられる。また、切替リレーR1,R2には、機械式リレーが用いられてもよい。
PCU40は、蓄電装置10から電力を受けてモータジェネレータ50を駆動するための電力変換装置を総括して示したものである。たとえば、PCU40は、モータジェネレータ50を駆動するためのインバータや、蓄電装置10から出力される電力を昇圧してインバータへ供給するコンバータなどを含む。
モータジェネレータ(Motor Generator:MG)50は、交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。モータジェネレータ50のロータは、動力伝達ギア(図示せず)を介して駆動輪60に機械的に接続される。モータジェネレータ50は、電動車両1の回生制動動作時には、駆動輪60の回転力によって発電することができ、その発電された電力をPCU40へ出力する。以下においては、モータジェネレータ50および駆動輪60を総称して「駆動部」ともいう。また、PCU40およびモータジェネレータ50は、電動車両1の電気負荷である。
車両インレット90は、電動車両1に直流電力を供給するためのDC充電器300の充電コネクタ200と接続可能に構成される。DC充電時に、車両インレット90は、DC充電器300から供給される電力を受ける。
メインリレー装置20は、蓄電装置10と駆動部との間に設けられる。メインリレー装置20は、メインリレー21およびメインリレー22を含む。メインリレー21およびメインリレー22は、それぞれ正極線PLおよび負極線NLに設けられる。
メインリレー21,22が開状態であると、蓄電装置10から駆動部への電力の供給ができず、電動車両1の走行が不能であるREADY−OFF状態となる。メインリレー21,22が閉状態であると、蓄電装置10から駆動部への電力の供給が可能となり、電動車両1の走行が可能であるREADY−ON状態にすることができる。
監視ユニット70は、蓄電装置10の端子間電圧VB、組電池B1の端子間電圧、および組電池B2の端子間電圧を検出し、その検出値をECU100に出力する。また、監視ユニット70は、蓄電装置10に入出力される電流IB、組電池B1に入出力される電流IB1、および組電池B2に入出力される電流IB2を検出し、その検出値をECU100に出力する。なお、以下においては、蓄電装置10に入力される電流IBを充電電流IB、蓄電装置10から出力される電流IBを放電電流IBともいう。組電池B1,B2においても同様である。
ECU100は、いずれも図示しないがCPU(Central Processing Unit)、メモリおよび入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で構築して処理することも可能である。
ECU100は、切替リレーR1,R2およびメインリレー装置20に含まれるメインリレー21,22のオンオフ状態を制御する。
ECU100は、蓄電装置10の充電を制御する。具体的には、ECU100は、組電池B1,B2のSOCが高い場合にDC充電器300から供給される充電電力を制限する制限制御を行なう。実施の形態1においては、DC充電時にDC充電器300から一定の充電電圧が印加されるものと推定し、ECU100は、DC充電器300から供給される充電電流を制御することによって、充電電力を制限する。このような制限制御を行なうのは、以下の理由による。組電池のSOCが高いと、電池の負極表面に金属リチウムを析出させるリチウム析出電圧と電池の開放電圧(Open Circuit Voltage:OCV)とが近くなる。そのため、たとえば、充電電圧が一定の場合において、充電電流を制限制御することなく常に一定の充電電流でDC充電を行なった場合、各電池のOCVがリチウム析出電圧を超えてしまうことが懸念される。そこで、制限制御を行ない、組電池B1,B2のSOCが高い場合には、各電池のOCVがリチウム析出電圧を超えないように制御を行なう。
(電動車両1のDC充電について)
ECU100は、DC充電器300に要求する電流値を示す充電電流指令値を、DC充電器300に送信する。電動車両1のDC充電時においては、一定の周期で電動車両1から充電電流指令値が送信される。ECU100は、充電電流指令値を変化させることによって、充電電流を制御する。つまり、ECU100は、充電電流指令値を変化させることによって、制限制御を行なう。
DC充電器300は、電動車両1に直流電力を供給するための充電器である。充電器300は、電動車両1から受信した充電電流指令値に応じた充電電流を出力する。
(SOC調整処理について)
電動車両1に搭載された蓄電装置10に含まれる組電池B1,B2は、航続距離を長くするために、電動車両1の電気負荷に対して並列に接続して使用されることが想定される。以下においては、組電池B1,B2が電気負荷に対して並列に接続して使用される状態を「並列状態」ともいう。
図2は、SOC調整処理を実行する前の蓄電装置10をDC充電する場合におけるSOC、充電電流および充電量の時間変化を概略的に示す図である。図2においては、組電池B1,B2が並列状態にされており、組電池B1,B2のSOCがともに80%の状態でDC充電開始される例について説明する。
上述したとおり、ECU100は、蓄電装置10(組電池B1,B2)のDC充電時に制限制御を行なう。そのため、組電池B1,B2のSOCが比較的高いSOCである80%の場合には、充電電流IB1,IB2がECU100によって制限され、小さい充電電流IB1,IB2でDC充電が開始される。そして、図2に示されたように、組電池B1,B2のSOCが80%から満充電(たとえば100%)に近づくにつれて充電電流IB1,IB2がさらに小さくなるように制御される。
それゆえに、DC充電の開始当初の比較的短い期間(たとえば、数分から数十分程度の期間)である「当初期間」に充電できる充電量が小さくなってしまう可能性がある。
一方で、公共の充電ステーションなどに設置されたDC充電器300でDC充電を行なう場合には、当初期間に、ある一定量の充電を行ないたいというユーザのニーズが存在し得る。組電池B1,B2を並列状態にして使用すると、当該ユーザのニーズを満たすことができない場合が生じ得る。
そこで、実施の形態1においては、蓄電装置10のDC充電が行なわれていない場合には、組電池B1,B2のうち、組電池B1のSOC1を組電池B2のSOC2よりも意図的に小さくするSOC調整処理が実行される。具体的には、SOC調整処理は、組電池B1のSOC1を組電池B2のSOC2よりも後述する所定量以上小さい蓄電量にする処理である。なお、SOC調整処理は、組電池B1のSOC1を小さくし、かつ、組電池B2のSOC2を高くすることに限られるのもでなはい。SOC調整処理は、組電池B1のSOC1を高くし、かつ、組電池B2のSOC2を低くしてもよい。
SOC調整処理は、モータジェネレータ50が回生制御される場合には、切替リレーR1,R2を制御して、組電池B1を電気負荷と電気的に切り離し、かつ、組電池B2を電気負荷と電気的に接続する。これによって、モータジェネレータ50の回生電力を組電池B2に供給する。SOC調整処理は、モータジェネレータ50が力行制御される場合には、切替リレーR1,R2を制御して、組電池B1を電気負荷と電気的に接続し、かつ、組電池B2を電気負荷と電気的に切り離す。これによって、モータジェネレータ50の力行に用いられる電力を組電池B1から供給する。
SOC調整処理が実行されることによって、組電池B1のSOC1が低くなり、かつ、組電池B2のSOC2が高くなるので、組電池B1と組電池B2とのSOCの差が大きくなるように調整される。
(SOC調整処理を実行した後のDC充電について)
上記のSOC調整処理を実行して組電池B1と組電池B2とのSOCの差を大きくした後に、組電池B2よりも優先して組電池B1のDC充電が行なわれる。これによって、当初期間において制限制御により充電電流が制限される程度を小さくできる。それゆえに、当初期間に大きな充電電力でDC充電を行なうことができるので、当初期間に充電できる充電量を増加させることができる。
図3は、SOC調整処理を実行した後の蓄電装置10をDC充電する場合におけるSOC、充電電流および充電量の時間変化を概略的に示す図である。図3では、DC充電が開始される前に電動車両1において図2における場合と同様の電力が使用された場合を想定する。図3においては、組電池B1のSOCが60%、組電池B2のSOCが100%の状態でDC充電開始される。
図3においては、切替リレーR1がオン状態、かつ、切替リレーR1がオフ状態にされる。これによって、組電池B2よりも優先して、SOC調整処理によってSOCが低くなっている組電池B1のDC充電を実行することができる。つまり、図3においては、組電池B1のみがDC充電される。
組電池B1のSOCは60%であるので、図2で説明した組電池B1,B2のSOCが80%である場合よりも、大きな充電電流IBでDC充電が行なわれる。具体的には、図2における充電電流IB(=IB1+IB2)よりも大きな図3における充電電流IB(=IB1)でDC充電が行なわれる。それゆえに、DC充電が行なわれる前にSOC調整処理が実行されることによって、DC充電が行なわれる前にSOC調整処理が実行されない場合と比べて、当初期間に充電できる充電量を大きくすることができる。
(ECUで実行される処理)
図4は、実施の形態1に係る電動車両1のECU100で実行される処理を示すフローチャートである。図4に示すフローチャートの各ステップは、ECU100によるソフトウェア処理によって実現される場合について説明するが、その一部あるいは全部がECU100内に作製されたハードウェア(電気回路)によって実現されてもよい。図5、図8〜13、図15、図16および図18においても同様である。
ECU100は、DC充電開始操作がなされたか否かを判定する(ステップ100、以下ステップを「S」と略す)。DC充電開始操作とは、たとえば、車両インレット90に充電コネクタ200を接続する操作および車両インレット90を覆う充電リッドを開く操作などである。
ECU100は、DC充電開始操作がなされていないと判定すると(S100においてNO)、SOC調整処理を実行する。SOC調整処理は、具体的にはS110〜S170の処理である。
ECU100は、DC充電開始操作がなされていないと判定すると(S100においてNO)、モータジェネレータ50が力行制御されているか否かを判定する(S110)。
ECU100は、モータジェネレータ50が力行制御されていると判定すると(S110においてYES)、組電池B1を電気負荷と電気的に接続する(S130)。具体的には、ECU100は、切替リレーR1をオン状態にし、かつ、切替リレーR2をオフ状態にする。これによって、モータジェネレータ50の力行に用いられる電力を組電池B1から供給する。
ECU100は、S110においてモータジェネレータ50が力行制御されていないと判定すると(S110においてNO)、モータジェネレータ50が回生制御されているか否かを判定する(S150)。
ECU100は、モータジェネレータ50が回生制御されていると判定すると(S150においてYES)、組電池B2を電気負荷と電気的に接続する(S170)。具体的には、ECU100は、切替リレーR1をオフ状態にし、かつ、切替リレーR2をオン状態にする。これによって、モータジェネレータ50の回生電力を組電池B2に供給する。
ECU100は、S150においてモータジェネレータ50が回生制御されていないと判定すると(S150においてNO)、処理をリターンに返す。
このように、ECU100は、切替リレーR1,R2を制御することによってSOC調整処理を実行して、組電池B1のSOCを低くし、かつ、組電池B2のSOCを高くすることにより、組電池B1と組電池B2とのSOCの差が大きくなるように調整する。
ECU100は、S100において、DC充電開始操作がなされたと判定すると(S100においてYES)、DC充電を開始する(S180)。DC充電の処理の詳細については、図5を用いて説明する。
図5は、図4のS180(DC充電)における詳細な処理を示すフローチャートである。
ECU100は、組電池B1のSOC1と組電池B2のSOC2との差分が所定量以上か否かを判定する(S182)。所定量は、組電池B1,B2を並列状態にしてDC充電を行なうよりも、組電池B2よりもSOCが低くなっている組電池B1のみのDC充電を行なうほうが当初期間に大きな充電電力でDC充電を行なうことができる閾値として設定される。つまり、組電池B1のSOC1と組電池B2のSOC2との差分が所定量以上である場合は、組電池B1のみDC充電を行なう方が当初期間に充電できる充電量が増加する。一方、組電池B1のSOC1と組電池B2のSOC2との差分が所定量より小さい場合は、組電池B1,B2を並列状態にしてDC充電を行なう方が当初期間に充電できる充電量が増加する。
ECU100は、組電池B1のSOC1と組電池B2のSOC2との差分が所定量以上であると判定すると(S182においてYES)、切替リレーR1をオン状態、かつ切替リレーR2をオフ状態にして、組電池B1を車両インレット90と電気的に接続する(S184)。そして、ECU100は、組電池B1のDC充電を行なう(S186)。
ECU100は、S182において、組電池B1のSOC1と組電池B2のSOC2との差分が所定量以上でないと判定すると(S182においてNO)、切替リレーR1をオン状態、かつ切替リレーR2をオン状態にして、組電池B1,B2を並列状態にする(S188)。そして、ECU100は、組電池B1および組電池B2のDC充電を行なう(S186)。
以上のように、ECU100は、DC充電を行なう前にSOC1とSOC2との差分が大きくなるように調整する(SOC1<SOC2)。そして、DC充電時において組電池B1のSOC1と組電池B2のSOC2との差分が所定量以上である場合には、ECU100は、組電池B2より優先して組電池B1のDC充電を行なう。これによって、当初期間において制限制御により充電電流が制限される程度を小さくできる。ゆえに、当初期間に大きな充電電流IBでDC充電を行なうことができ、当初期間に充電できる充電量を増加させることができる。
また、ECU100は、DC充電により組電池B1のSOC1と組電池B2のSOC2との差分が所定量より小さくなると、組電池B1,B2を並列状態にしてDC充電を行なう。これによって、単位時間当たりの充電量を増加させることができる。
図6は、実施の形態1に係る充電制御装置の制御を概略的に示す図である。図6には、モータジェネレータ50の力行制御時、回生制御時、および充電時における組電池B1,B2のそれぞれのSOCの時間変化が概略的に示されている。
力行制御時においては、充電制御装置に含まれるECU100は、組電池B1を電気負荷と電気的に接続し、かつ組電池B2を電気負荷と電気的に切り離す。これによって、電動車両1(モータジェネレータ50)の力行に組電池B1の電力が用いられるため、図6に示されるように、組電池B1のSOC1が時刻T0から時刻T1にかけて減少している。組電池B2のSOC2は、組電池B2が電気負荷と電気的に切り離されているため、時刻T0から時刻T1において変化していない。
回生制御時においては、ECU100は、組電池B1を電気負荷と電気的に切り離し、かつ組電池B2を電気負荷と電気的に接続する。これによって、モータジェネレータ50の回生による電力が組電池B2に供給されるため、組電池B2のSOCが時刻T1からT2にかけて増加している。組電池B1のSOC1は、組電池B1が電気負荷と電気的に切り離されているため、時刻T1からT2において変化していない。
このように、ECU100は、力行制御時にはモータジェネレータ50の力行に組電池B1の電力を用いるように制御し、回生制御時にはモータジェネレータ50の回生による電力が組電池B2に供給されるように制御することにより、組電池B1のSOC1と組電池B2のSOC2との差が大きくなるように調整する。
そして、DC充電時においては、ECU100は、組電池B1を車両インレット90と電気的に接続し、かつ組電池B2を車両インレット90と電気的に切り離す。このように、SOC調整処理によってSOCが低い状態にされた組電池B1をDC充電することによって、当初期間において制限制御により充電電流が制限される程度を小さくできる。そのため、図3に示されたように、当初期間に大きな充電電力で充電することが可能となる。ゆえに、図6に示されたように、充電開始(時刻T2)後の当初期間において充電量を増加させることができるため、当初期間において組電池B1のSOC1の増加量が大きくすることができる。
<変形例1>
実施の形態1においては、DC充電が行なわれていない場合に電動車両1がSOC調整処理を常時実行する例について説明した。しかしながら、SOC調整処理の実行時における組電池B1,B2のバッテリ損失と、並列状態における組電池B1,B2のバッテリ損失(SOC調整処理を実行していないときの損失)とを比較すると、SOC調整処理の実行時における組電池B1,B2のバッテリ損失の方が大きくなる。そのため、DC充電が行なわれていない場合に電動車両1がSOC調整処理を常時実行すると蓄電装置10の損失が大きくなってしまう可能性がある。
図7は、並列状態における組電池B1,B2のバッテリ損失L1とSOC調整処理の実行時における組電池B1,B2のバッテリ損失L2とを比較した図である。図7においては、電力一定のもと、並列状態における組電池B1,B2のバッテリ損失L1およびSOC調整処理の実行時における組電池B1,B2のバッテリ損失L2の計算式が示されている。
並列状態においては、たとえば、モータジェネレータ50の力行時において、組電池B1,B2のそれぞれの内部抵抗を「r」、蓄電装置10からの放出電流を「IB」とすると、バッテリ損失L1は下記の式(1)となる。
L1=2×r×(IB/2) …(1)
SOC調整処理の実行時においては、たとえば、モータジェネレータ50の力行時において、組電池B1,B2のそれぞれの内部抵抗を「r」、蓄電装置10からの放出電流を「IB」とすると、バッテリ損失L2は下記の式(2)となる。
L2=r×(IB) …(2)
このように、SOC調整処理の実行時における組電池B1,B2のバッテリ損失L2は、並列状態における組電池B1,B2のバッテリ損失L1よりも大きくなる。このため、SOC調整処理が常時実行されると蓄電装置10の損失が大きくなってしまう可能性がある。
そこで、変形例1においては、特定の条件を満たした場合に限ってSOC調整処理が実行される例について説明する。具体的には、電動車両1は、実行スイッチ(以下「SW」ともいう)80をさらに備え、SW80がプッシュ操作された場合に限ってSOC調整処理が実行される。
SW80は、SOC調整処理の実行を開始させるためのスイッチである。SW80は、たとえば、電動車両1の車内に設けられ、プッシュ式の機械スイッチなどで構成される。SW80は、ユーザによってプッシュ操作がなされると、プッシュ操作がなされたことを示すプッシュ信号をECU100に送信する。SW80がプッシュ操作されると、近い将来に電動車両1がDC充電されることが予測される。そのため、ECU100は、プッシュ信号を受信すると、SOC調整処理を実行する。
ECU100は、プッシュ信号を受信すると、後述する解除処理が実行されるまでプッシュ信号を受信した履歴を記憶する。ECU100は、解除処理が実行されると、当該履歴をリセットする。
上述のように、ユーザがSW80をプッシュ操作したときに限ってSOC調整処理が実行されるので、ユーザの意思によってSOC調整処理が実行されるようにすることができる。また、必要とされるときにのみSOC調整処理が実行されるようにすることで、不必要にSOC調整処理が実行されないため、組電池B1,B2のバッテリ損失(蓄電装置10の損失)を抑制することができる。
また、ユーザが気づかないうちにSW80を誤ってプッシュ操作してしまうような場面も想定される。そのような場合にSOC調整処理が継続して実行されると、蓄電装置10の損失が大きくなり、ユーザに不利益を与えかねない。そこで、変形例1においては、一定の条件を満たした場合に、組電池B1のSOC1と組電池B2のSOC2との差分を意図的に小さくする処理(以下、「解除処理」ともいう)が実行される。具体的には、解除処理は、組電池B1のSOC1と組電池B2のSOC2との差分を後述する規定量より小さくする処理である。これによって、ユーザが気づかないうちにSW80を誤ってプッシュ操作してしまったような場合に、SOC調整処理を解除して、蓄電装置10の損失を抑制することができる。なお、SW80はプッシュ式の機械スイッチに限られるものではなく、たとえば、電動車両1のナビゲーションシステムの表示部に表示されるように構成されてもよい。この場合、ユーザのナビゲーションシステムに対する操作によってオン状態が検出される。
図8は、変形例1に係る電動車両1のECU100で実行される処理を示すフローチャートである。図8に示すフローチャートは、図4のフローチャートに対して、S200(SOC調整処理を実行するか否かを判定するステップ)、S270、S250(解除処理を実行するか否かを判定するステップ)、およびS260(解除処理)が追加されたものとなっている。その他の各ステップについては、図4のフローチャートにおける各ステップと同様であるため、繰り返し説明しない。
ECU100は、S100において、DC充電開始操作がなされていないと判定すると(S100においてNO)、SW80のプッシュ操作を検出したか否かを判定する(S200)。
ECU100は、SW80のプッシュ操作を検出したと判定すると(S200においてYES)、SOC調整処理を実行する。なお、S200において、ECU100は、プッシュ信号を受信した履歴を記憶している場合にもSW80のプッシュ操作を検出したと判定する。
ECU100は、SOC調整処理の実行開始から一定時間が経過したか否かを判定する(S250)。ECU100は、一定時間経過したと判定すると(S250においてYES)、後述の解除処理を実行する(S260)。ECU100は、一定時間経過していないと判定すると(S250においてNO)、処理をリターンに返す。
このように、SOC調整処理の実行開始から一定時間が経過したか否かによって、解除処理を実行するか否かを決定するのは以下の理由のためである。SOC調整処理を実行し続けると蓄電装置10の損失が大きくなり得ることから、ユーザは、DC充電を行なおうとする少し前にSW80をプッシュ操作することが考えられる。それにも関わらず、SOC調整処理の実行開始から一定時間経過しても未だDC充電が開始されないときには、ユーザが誤ってSW80をプッシュ操作したことが推測される。このため、SOC調整処理の実行開始から一定時間が経過したか否かによって、解除処理を実行するか否かが決定される。なお、一定時間は任意の時間に設定することが可能である。
一方、ECU100は、SW80がプッシュ操作されていないと判定すると(S200においてNO)、組電池B1,B2を並列状態にする(S270)。具体的には、ECU100は、切替リレーR1をオン状態、かつ切替リレーR2をオン状態にして、組電池B1,B2を並列状態にする。
図9は、解除処理においてECU100で実行される処理を示すフローチャートである。このフローチャートは、SOC調整処理の実行開始から一定時間が経過したと判定されたときに実行される。
ECU100は、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分があるか否かを判定する(S261)。組電池B1のSOC1と組電池B2のSOC2とに差分が大きい状態で組電池B1,B2を並列状態にすると、組電池B2(SOCが高い方)から組電池B1(SOCが低い方)に瞬間的に過大な電流が流れる可能性がある。組電池B1,B2および組電池B1,B2の接続経路に過大な電流が流れると、過大な電流が流れるケーブルおよび部品等(以下「通電部品」ともいう)に故障などの影響が生じる恐れがある。規定量は、組電池B1のSOC1と組電池B2のSOC2とに差分がある状態で組電池B1,B2を並列状態にしても、組電池B1,B2および組電池B1,B2の通電部品に影響を与えないことを判定するための閾値として設定される。
ECU100は、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分があると判定すると(S261においてYES)、モータジェネレータ50が力行制御されている否かを判定する(S262)。
ECU100は、モータジェネレータ50が力行制御されていると判定すると(S262においてYES)、組電池B2を電気負荷と電気的に接続する(S264)。具体的には、ECU100は、切替リレーR1をオフ状態にし、かつ、切替リレーR2をオン状態にする。これによって、モータジェネレータ50の力行に用いられる電力を組電池B2から供給する。そして、ECU100は、処理をS261に戻す。
ECU100は、S262においてモータジェネレータ50が力行制御されていないと判定すると(S262においてNO)、モータジェネレータ50が回生制御されているか否かを判定する(S266)。
ECU100は、モータジェネレータ50が回生制御されていると判定すると(S266においてYES)、組電池B1を電気負荷と電気的に接続する(S268)。具体的には、ECU100は、切替リレーR1をオン状態にし、かつ、切替リレーR2をオフ状態にする。これによって、モータジェネレータ50の回生電力を組電池B1に供給する。そして、ECU100は、処理をS261に戻す。
ECU100は、S150においてモータジェネレータ50が回生制御されていないと判定すると(S266においてNO)、処理をS261に戻す。
ECU100は、S261において、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分がないと判定すると(S261においてNO)、組電池B1および組電池B2を並列状態にする(S269)。具体的には、ECU100は、切替リレーR1をオン状態、かつ切替リレーR2をオン状態にして、組電池B1および組電池B2を電動車両1の電気負荷と電気的に接続する。
上述したとおり、組電池B1のSOC1と組電池B2のSOC2との差分が大きい状態で組電池B1,B2を並列状態にすると、組電池B2(SOCが高い方)から組電池B1(SOCが低い方)に瞬間的に過大な電流が流れる可能性がある。組電池B1,B2および組電池B1,B2の接続経路に過大な電流が流れると、通電部品に故障などの影響が生じる恐れがある。
そのため、解除処理においてECU100は、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分がついている場合は、モータジェネレータ50の力行に用いられる電力を組電池B2から供給し、モータジェネレータ50の回生電力を組電池B1に供給するように制御する。このようにして、ECU100は、組電池B1のSOC1と組電池B2のSOC2との差分を小さくする制御を行ない、両者の差分を規定量より小さくする処理(解除処理)を行なう。そして、ECU100は、組電池B1のSOC1と組電池B2のSOC2との差分が規定量より小さくなったときに組電池B1,B2を並列状態にする。このように解除処理が実行されることによって、通電部品に影響を与えることなく組電池B1,B2を並列状態にすることができる。
<変形例2>
変形例1においては、SW80を設けて、SW80のプッシュ操作に応じてSOC調整処理を実行するか否かを判定する例について説明した。しかしながら、SOC調整処理を実行するか否かの判定はSW80を用いる方法に限られるものでなはい。変形例2においては、SOC調整処理を実行するか否かを判定する他の方法の例について説明する。
図10は、変形例2に係る電動車両1のECU100で実行される処理を示すフローチャートである。図10に示すフローチャートは、図8のフローチャートに対して、S200がS210に変更されたものとなっている。その他の各ステップについては、図8のフローチャートにおける各ステップと同様であるため、繰り返し説明しない。
ECU100は、S100において、DC充電開始操作がなされていないと判定すると(S100においてNO)、電動車両1とDC充電器300との距離が所定距離以内であるか否かを判定する(S210)。
ECU100は、電動車両1とDC充電器300との距離が所定距離以内であると判定すると(S210においてYES)、SOC調整処理を実行する。ECU100は、たとえば、GPS(Global Positioning System)を用いて取得した電動車両1の現在位置の情報と、電動車両1のナビゲーションシステムに予め記憶されているDC充電器300の位置情報とを用いてS210の判定処理を実行する。
なお、ECU100は、S210において電動車両1とDC充電器300との距離が所定距離以内であると判定すると、解除処理が実行されるまで当該判定の履歴を記憶する。ECU100は、解除処理が実行されると、当該履歴をリセットする。S210において、ECU100は、電動車両1とDC充電器300との距離が所定距離以内であると判定した履歴を記憶している場合にも、電動車両1とDC充電器300との距離が所定距離以内であると判定する。
一方、ECU100は、DC充電器300との距離が所定距離以内でないと判定すると(S210においてNO)、組電池B1,B2を並列状態にする(S270)。
以上のように、ECU100は、電動車両1とDC充電器300との距離が所定距離以内になると、近い将来に蓄電装置10のDC充電が行なわれると予測してSOC調整処理を実行する。これによって、ユーザの電動車両1に対する操作を必要とすることなく、SOC調整処理が実行されるようにすることができる。
<変形例3>
変形例1においては、SW80を設けて、SW80のプッシュ操作に応じてSOC調整処理を実行するか否かを判定する例について説明した。変形例2においては、電動車両1とDC充電器300との距離に応じてSOC調整処理を実行するか否かを判定する例について説明した。変形例3においては、SOC調整処理を実行するか否かを判定するさらに他の方法の例について説明する。
図11は、変形例3に係る電動車両1のECU100で実行される処理を示すフローチャートである。図11に示すフローチャートは、図10のフローチャートに対して、S220が追加されたものとなっている。換言すると、SOC調整処理の実行開始を判定するステップ(S220)を追加し、S220およびS210の双方の条件を満たした場合にSOC調整処理が実行される。その他の各ステップについては、図10のフローチャートにおける各ステップと同様であるため、繰り返し説明しない。
ECU100は、S100において、DC充電開始操作がなされていないと判定すると(S100においてNO)、蓄電装置10のSOC(組電池B1,B2の合計容量に対する組電池B1,B2の合計蓄電量)が所定SOC以下であるか否かを判定する(S220)。所定SOCは、任意に設定される値であり、たとえば、電動車両1とDC充電器300との距離に応じて、近い将来にDC充電が行なわれる可能性があるか否かを判定するための閾値として設定される。
ECU100は、蓄電装置10のSOCが所定SOC以下であると判定すると(S220においてYES)、DC充電器300との距離が所定距離以内であるか否かを判定する(S210)。ECU100は、電動車両1とDC充電器300との距離が所定距離以内であると判定すると(S210においてYES)、SOC調整処理を実行する。
ECU100は、S220において、蓄電装置10のSOCが所定SOC以下でないと判定すると(S220においてNO)、組電池B1,B2を並列状態にする(S270)。
以上のように、ECU100は、蓄電装置10のSOCが所定SOC以下であり、かつ電動車両1とDC充電器300との距離が所定距離以内になると、SOC調整処理を実行する。電動車両1とDC充電器300との距離が所定距離以内となっても、ユーザがDC充電器300でDC充電を行なうことを意図していない場合も想定される。
蓄電装置10のSOCが所定SOC以下であるときは、近い将来に蓄電装置10のDC充電が行なわれる可能性が高いと予測される。そこで、S210の判定に加えて、さらに蓄電装置10のSOCが所定SOC以下であるか否かを判定することによって、ユーザが近い将来にDC充電を行なうことを意図していない場合にまでSOC調整処理が実行されることを抑制することができる。これによって、当初期間に充電できる充電量を増加させつつ、SOC調整処理の実行に伴なう各組電池への電力の入出力による損失(蓄電装置10の損失)の増加を抑制することができる。
<変形例4>
変形例1〜3においては、SOC調整処理の実行開始から一定時間が経過すると解除処理が実行される例について説明した。しかしながら、解除処理を実行するか否かの判定は、SOC調整処理の実行開始から一定時間が経過したか否かによる方法に限られるものでなはい。変形例4においては、解除処理を実行するか否かを判定する他の方法の例について説明する。
図12は、変形例4に係る電動車両1のECU100で実行される処理を示すフローチャートである。図12に示すフローチャートは、図8のフローチャートに対して、S252およびS254が追加されたものとなっている。その他の各ステップについては、図8のフローチャートにおける各ステップと同様であるため、繰り返し説明しない。
ECU100は、SOC調整処理の実行開始から一定時間が経過したと判定すると(S250においてYES)、ユーザにSOC調整処理を継続するか否かの継続確認を行なう(S252)。継続確認は、たとえば、電動車両1のナビゲーションシステムの表示部に表示させてユーザに継続の可否を選択させるものであってもよいし、音声によるアナウンスに対してユーザに音声応答させるものであってもよく、ユーザの継続するか否かの意思を確認できるものであればよい。
ECU100は、ユーザから継続指示があったか否かを判定する(S254)。ECU100は、ユーザがSOC調整処理を継続する選択をしたことを示す継続指示があったと判定すると(S254においてYES)、処理をリターンに返す。一方、ECU100は、継続指示がなかったと判定すると(S254においてNO)、解除処理を実行する(S260)。
以上のように、SOC調整処理の実行開始から一定時間が経過したと判定したときに一律に解除処理が実行されるのではなく、ユーザに継続確認が行なわれる。これによって、解除処理を実行するか否かの判定にユーザの意思を反映させることができる。
<変形例5>
変形例1〜3においては、SOC調整処理の実行開始から一定時間が経過すると解除処理が実行される例について説明した。変形例4においては、SOC調整処理の実行開始から一定時間が経過した後にユーザに継続確認が行なわれる例について説明した。変形例5においては、解除処理を実行するか否かを判定するさらに他の方法の例について説明する。
図13は、変形例5に係る電動車両1のECU100で実行される処理を示すフローチャートである。図13に示すフローチャートは、図8のフローチャートに対して、S250がS280に変更されたものとなっている。その他の各ステップについては、図8のフローチャートにおける各ステップと同様であるため、繰り返し説明しない。
ECU100は、SOC調整処理の実行時に、電動車両1とDC充電器300との距離が所定距離以上か否かを判定する(S280)。ECU100は、電動車両1とDC充電器300との距離が所定距離以上であると判定すると(S280においてYES)、解除処理を実行する(S260)。
一方、ECU100は、電動車両1とDC充電器300との距離が所定距離以上でないと判定すると(S280においてNO)、処理をリターンに返す。
以上のように、ECU100は、電動車両1とDC充電器300との距離が所定距離以上になったときは、ユーザがDC充電器300を実行する意思を有していないと推定して解除処理を実行する。これによって、ユーザの電動車両1に対する操作を必要とすることなく、解除処理を実行することができる。
[実施の形態2]
実施の形態1においては、ECU100が切替リレーR1,R2を制御することによって、SOC調整処理が実行された。また、変形例1〜5においては、ECU100が切替リレーR1,R2を制御することによって、SOC調整処理および解除処理が実行された。しかしながら、SOC調整処理および解除処理を実行する方法は、切替リレーR1,R2の制御に限られるものではない。組電池B1と組電池B2との間に両者のSOCを調整するためのSOC調整回路を設けてもよい。実施の形態2においては、SOC調整回路として、組電池B1と組電池B2との間に昇降圧コンバータを備える例について説明する。
図14は、実施の形態2に係る充電制御装置が搭載される電動車両1とDC充電器300とを含む充電システムの全体構成図である。
電動車両1Aは、蓄電装置10Aと、PCU40と、モータジェネレータ50と、駆動輪60と、車両インレット90と、ECU100と、メインリレー装置20A,20Bと、監視ユニット70とを備える。電動車両1Aは、蓄電装置10Aおよびメインリレー装置20A,20Bを除き、その他の構成は実施の形態1に係る電動車両1と同様であるため、繰り返し説明しない。
蓄電装置10Aは、組電池B1,B2と、組電池B1,B2との間に昇降圧コンバータ35を備える。昇降圧コンバータ35は、正極線PL1および負極線NL1と正極線PL2および負極線NL2との間で電圧変換を行なう。具体的には、組電池B1から供給される電力の電圧を変圧して組電池B2に供給したり、組電池B2から供給される電力の電圧を変圧して組電池B1に供給したりする。
昇降圧コンバータ35を用いて組電池B1および組電池B2間で電力の授受が行われることによって、SOC調整処理および解除処理を実行することができる。
なお、図示しないが、昇降圧コンバータ35と正極線PL1,PL2および負極線NL1,NL2のそれぞれの間には昇降圧コンバータ35を用いるための変換リレーが設けられてもよい。この場合、ECU100の制御に従って変換リレーのオンオフ状態が切り替えられることにより昇降圧コンバータ35が用いられるように構成される。
メインリレー装置20Aは、蓄電装置10Aと駆動部との間に設けられる。メインリレー装置20Aは、メインリレー21Aおよびメインリレー22Aを含む。メインリレー21Aおよびメインリレー22Aは、それぞれ正極線PL1および負極線NL1に設けられる。
メインリレー装置20Bは、蓄電装置10Aと駆動部との間に設けられる。メインリレー装置20Bは、メインリレー21Bおよびメインリレー22Bを含む。メインリレー21Bおよびメインリレー22Bは、それぞれ正極線PL2および負極線NL2に設けられる。
図15は、実施の形態2に係る電動車両1AのECU100で実行される処理を示すフローチャートである。なお、図15のS100、S180、S200およびS250は、図8のS100、S180、S200およびS250と同様であるため、繰り返し説明しない。
ECU100は、S200において、SW80のプッシュ操作を検出したと判定すると(S200においてYES)、SOC調整処理を実行する(S300)。具体的には、ECU100は、SOC調整処理として組電池B1から組電池B2に電力を供給するように昇降圧コンバータ35を制御する。
これによって、組電池B1のSOCが低くなり、かつ、組電池B2のSOCが高くなるので、組電池B1と組電池B2とのSOCの差が大きくなるように調整される。なお、SOC調整処理は、組電池B1のSOCを小さくし、かつ、組電池B2のSOCを高くすることに限られるのもでなはい。SOC調整処理は、組電池B1のSOCを高くし、かつ、組電池B2のSOCを低くしてもよい。
ECU100は、SOC調整処理の実行開始から一定時間が経過したか否かを判定し(S250)、一定時間経過したと判定すると(S250においてYES)、後述の解除処理を実行する(S350)。
図16は、解除処理においてECU100で実行される処理を示すフローチャートである。このフローチャートは、SOC調整処理が実行されてから一定時間が経過したと判定されたときに実行される。
ECU100は、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分があるか否かを判定する(S352)。ECU100は、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分があると判定すると(S352においてYES)、組電池B2から組電池B1に電力を供給するように昇降圧コンバータ35を制御する。これによって、組電池B1のSOC1が高くなり、かつ組電池B2のSOC2が低くなる。つまり、組電池B1のSOC1と組電池B2のSOC2との差分が小さくなる。そして、ECU100は、処理をS352に戻す。
ECU100は、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分がないと判定すると(S352においてNO)、組電池B1および組電池B2を並列状態にする(S356)。具体的には、ECU100は、切替リレーR1をオン状態、かつ切替リレーR2をオン状態にして、組電池B1および組電池B2を電動車両1の電気負荷と電気的に接続する。
以上のように、ECU100は、組電池B1のSOC1と組電池B2のSOC2との差を小さくする処理を行なう(解除処理)。そして、ECU100は、組電池B1のSOC1と組電池B2のSOC2との差分が規定量より小さくなったときに組電池B1,B2を並列状態にする。このように解除処理が実行されることによって、通電部品に影響を与えることなく組電池B1,B2を並列状態にすることができる。
[実施の形態3]
変形例1〜5においては、ECU100が切替リレーR1,R2を制御することによって、解除処理が実行された。また、実施の形態2においては、ECU100が昇降圧コンバータ35を制御することによって、解除処理が実行された。しかしながら、解除処理を実行する方法は、これらに限られるものではない。実施の形態3においては、抵抗素子を用いる例について説明する。
図17は、実施の形態3に係る充電制御装置が搭載される電動車両1とDC充電器300とを含む充電システムの全体構成図である。
電動車両1Bは、蓄電装置10と、PCU40と、モータジェネレータ50と、駆動輪60と、車両インレット90と、ECU100と、メインリレー装置30A,30Bと、監視ユニット70とを備える。電動車両1Bは、メインリレー装置30A,30Bを除き、その他の構成は実施の形態1に係る電動車両1と同様であるため、繰り返し説明しない。
メインリレー装置30Aは、組電池B1と駆動部との間に設けられる。メインリレー装置30Aは、メインリレー31A、メインリレー32Aおよび抵抗素子RAを含む。メインリレー31Aは、正極線PL1上に設けられる。メインリレー32Aは、負極線NL1上に設けられる。そして、抵抗素子RAは、メインリレー32Aに並列に接続される。なお、抵抗素子RAは、メインリレー31Aに並列に接続されてもよい。
メインリレー装置30Bは、組電池B2と駆動部との間に設けられる。メインリレー装置30Bは、メインリレー31B、メインリレー32Bおよび抵抗素子RBを含む。メインリレー31Bは、正極線PL2上に設けられる。メインリレー32Bは、負極線NL2上に設けられる。そして、抵抗素子RBは、メインリレー32Bに並列に接続される。なお、抵抗素子RBは、メインリレー31Bに並列に接続されてもよい。
組電池B1のSOC1と組電池B2のSOC2とに差分が大きい状態で組電池B1,B2を並列状態にすると、組電池B2(SOCが高い方)から組電池B1(SOCが低い方)に瞬間的に過大な電流が流れる可能性がある。組電池B1および組電池B2の接続経路に過大な電流が流れると、通電部品に故障などの影響が生じる恐れがある。
そこで、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分がある場合には、組電池B1と組電池B2とを並列状態にした際に流れる電流が抵抗素子RA,RBを流れるようにすることで、瞬間的に過大な電流が流れることを抑制する。
図18は、解除処理においてECU100で実行される処理を示すフローチャートである。このフローチャートは、SOC調整処理が実行されてから一定時間が経過したと判定されたときに実行される。
ECU100は、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分があるか否かを判定する(S400)。ECU100は、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分があると判定すると(S400においてYES)、メインリレー32Aおよびメインリレー32Bをオフ状態にする(S420)。メインリレー32Aおよびメインリレー32Bがオフ状態であるため、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分がある状態で組電池B1と組電池B2とを並列状態にした際に流れる電流は抵抗素子RA,RBを流れることになる。これによって、組電池B1のSOC1と組電池B2のSOC2との差を小さくしつつ(解除処理)、組電池B1および組電池B2の接続経路に瞬間的に過大な電流が流れることが抑制される。ただし、適切な大きさの抵抗値を有する抵抗素子RA,RBを用いることで、過大な電流の流入が抑制される。そして、ECU100は、処理をS400に戻す。
ECU100は、組電池B1のSOC1と組電池B2のSOC2とに規定量以上の差分がないと判定すると(S400においてNO)、メインリレー32Aおよびメインリレー32Bをオン状態にする(S440)。これにより、電流は、抵抗素子RA,RBに代えて、主にメインリレー32A,32Bを流れるようになる。そのため、抵抗素子RA,RBにおいて電流が消費されることによる電力損失が低減される。
以上のように、ECU100は、組電池B1と組電池B2とを並列状態にする際に、組電池B1のSOC1と組電池B2のSOC2との差が規定量以上大きい場合には、抵抗素子RA,RBを用いて、過大な電流が流れないように制御する。これによって、組電池B1のSOC1と組電池B2のSOC2との差を小さくしつつ(解除処理)、組電池B1および組電池B2の接続経路に瞬間的に過大な電流が流れることが抑制される。
そして、ECU100は、組電池B1のSOC1と組電池B2のSOC2との差が規定量より小さくなった場合には、抵抗素子RA,RBを用いずに電流が流れるようにメインリレー装置30A,30Bを制御することによって、抵抗素子RA,RBにおいて電流が消費されることによる電力損失の発生を抑制することができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,1A,1B 電動車両、10,10A 蓄電装置、B1,B2 組電池、20,20A,20B,30A,30B メインリレー装置、21,21A,21B,22,22A,22B,31A,31B,32A,32B メインリレー、35 昇降圧コンバータ、40 PCU、50 モータジェネレータ、60 駆動輪、70 監視ユニット、80 SW、90 車両インレット、100 ECU、200 充電コネクタ、300 DC充電器、NL,NL1,NL2 負極線、PL,PL1,PL2 正極線、R1,R2 切替リレー、RA,RB 抵抗素子。

Claims (5)

  1. 電動車両の外部の直流電源から供給される直流電力を受電できるように構成された前記電動車両の充電制御装置であって、
    複数の蓄電体を含み、前記直流電源による充電が行なわれるように構成された蓄電装置と、
    前記蓄電装置の蓄電量が高いほど、前記直流電源による充電電力を制限する制御を行なう制御装置とを備え、
    前記制御装置は、
    前記直流電源による充電が行なわれていない場合には、前記複数の蓄電体のうちの特定の蓄電体の蓄電量を、前記特定の蓄電体でない他の蓄電体の蓄電量よりも所定量以上小さい蓄電量にするSOC調整処理を実行し、
    前記直流電源による充電が行なわれる場合には、前記他の蓄電体よりも優先して前記特定の蓄電体を充電する、電動車両の充電制御装置。
  2. 前記制御装置は、前記直流電源による充電が行なわれていない場合であり、かつ、前記直流電源による充電が行なわれることを予測した場合に前記SOC調整処理を実行する、請求項1に記載の電動車両の充電制御装置。
  3. 前記制御装置は、前記SOC調整処理の実行を指示する操作が前記電動車両のユーザによってなされた場合に、前記直流電源による充電が行なわれると予測する、請求項2に記載の電動車両の充電制御装置。
  4. 前記蓄電装置は、前記電動車両と前記直流電源とが接続されている場合において、前記複数の蓄電体と前記直流電源との接続関係を切り替え可能な切替リレーを含み、
    前記SOC調整処理は、
    前記電動車両の駆動軸に接続された回転電機が回生制御される場合には、当該回生制御による回生電力により前記他の蓄電体が充電されるように前記切替リレーを制御し、
    前記回転電機が力行制御される場合には、当該力行制御により用いられる電力を前記特定の蓄電体から供給するように前記切替リレーを制御する処理を含む、請求項1から請求項3のいずれか1項に記載の電動車両の充電制御装置。
  5. 前記複数の蓄電体間に設けられた電圧変換装置をさらに備え、
    前記SOC調整処理は、前記電圧変換装置を介して前記特定の蓄電体から前記他の蓄電体へ電力を供給する処理を含む、請求項1から請求項3のいずれか1項に記載の電動車両の充電制御装置。
JP2018039916A 2018-03-06 2018-03-06 電動車両の充電制御装置 Pending JP2019154203A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018039916A JP2019154203A (ja) 2018-03-06 2018-03-06 電動車両の充電制御装置
EP19156949.0A EP3536543B1 (en) 2018-03-06 2019-02-13 Electrically driven vehicle and method of controlling electrically driven vehicle
CN201910115460.1A CN110233507A (zh) 2018-03-06 2019-02-14 电驱动车辆和控制电驱动车辆的方法
US16/281,395 US20190275900A1 (en) 2018-03-06 2019-02-21 Electrically driven vehicle and method of controlling electrically driven vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039916A JP2019154203A (ja) 2018-03-06 2018-03-06 電動車両の充電制御装置

Publications (1)

Publication Number Publication Date
JP2019154203A true JP2019154203A (ja) 2019-09-12

Family

ID=65433601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039916A Pending JP2019154203A (ja) 2018-03-06 2018-03-06 電動車両の充電制御装置

Country Status (4)

Country Link
US (1) US20190275900A1 (ja)
EP (1) EP3536543B1 (ja)
JP (1) JP2019154203A (ja)
CN (1) CN110233507A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110834551A (zh) * 2019-11-15 2020-02-25 北京理工大学 一种纯电动汽车能量管理控制系统
JP2021114837A (ja) * 2020-01-17 2021-08-05 トヨタ自動車株式会社 車両

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112124144B (zh) * 2020-08-24 2022-04-12 奇瑞新能源汽车股份有限公司 纯电动汽车及其蓄电池补电方法、系统和存储介质
JP2022052846A (ja) * 2020-09-24 2022-04-05 株式会社Subaru 充電制御装置
US20230112801A1 (en) * 2021-10-13 2023-04-13 Ford Global Technologies, Llc Systems and methods for predicting charging events and preparing electrified vehicles for charging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070077A (ja) * 2015-09-29 2017-04-06 本田技研工業株式会社 蓄電装置、輸送機器及び制御方法
JP2017070078A (ja) * 2015-09-29 2017-04-06 本田技研工業株式会社 駆動装置、輸送機器、電装装置及び制御方法
JP2017163652A (ja) * 2016-03-08 2017-09-14 本田技研工業株式会社 電源システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179352B2 (ja) * 2006-07-10 2008-11-12 トヨタ自動車株式会社 車両の電力制御装置
JP5168308B2 (ja) * 2010-04-14 2013-03-21 トヨタ自動車株式会社 電源システムおよびそれを搭載する車両
JP6662694B2 (ja) 2016-04-15 2020-03-11 日野自動車株式会社 電源制御装置
JP6410757B2 (ja) * 2016-05-23 2018-10-24 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017070077A (ja) * 2015-09-29 2017-04-06 本田技研工業株式会社 蓄電装置、輸送機器及び制御方法
JP2017070078A (ja) * 2015-09-29 2017-04-06 本田技研工業株式会社 駆動装置、輸送機器、電装装置及び制御方法
JP2017163652A (ja) * 2016-03-08 2017-09-14 本田技研工業株式会社 電源システム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110834551A (zh) * 2019-11-15 2020-02-25 北京理工大学 一种纯电动汽车能量管理控制系统
JP2021114837A (ja) * 2020-01-17 2021-08-05 トヨタ自動車株式会社 車両
JP7317731B2 (ja) 2020-01-17 2023-07-31 トヨタ自動車株式会社 車両

Also Published As

Publication number Publication date
EP3536543A1 (en) 2019-09-11
EP3536543B1 (en) 2021-09-08
US20190275900A1 (en) 2019-09-12
CN110233507A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN110190658B (zh) 使用牵引驱动部件的车载dc充电电路
CN110014996B (zh) 电动车辆及电动车辆的控制方法
JP5660102B2 (ja) 車両の電源装置
JP2019154203A (ja) 電動車両の充電制御装置
CN105730212B (zh) 车辆动力传动系
JP4525809B2 (ja) 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
EP3614524B1 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
JP4894656B2 (ja) 車両
JP5287983B2 (ja) 電源システムおよびそれを備える車両
CN109070761B (zh) 用于车辆的可切换的储存器系统
JP5234179B2 (ja) 電動車両の電源システムおよびその制御方法
JP5772781B2 (ja) 車両、電源システムおよび電源システムの制御方法
JP2019129568A (ja) 電池システム
WO2008041471A1 (fr) Véhicule hybride et procédé de commande de déplacement de véhicule hybride
EP3514005A1 (en) Vehicle charging device
JP2009201197A (ja) 車両、二次電池の充電状態推定方法および車両の制御方法
JP2014143817A (ja) 車両の電源システム
JP2012244875A (ja) 車両の電源システムおよびそれを備える車両
JP5783129B2 (ja) 電動車両
JP2019140721A (ja) 電動車両
JP2010004667A (ja) 電源システム
JP2009296820A (ja) 二次電池の充電制御装置および充電制御方法ならびに電動車両
JP5299166B2 (ja) 電源システムおよびそれを備える電動車両、ならびに電源システムの制御方法
JP2013031248A (ja) バッテリ装置のヒステリシス低減システム
JP7056385B2 (ja) 電動車両

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220524