JP2019151396A - 二重殻構造の新設埋設タンク及び二重配管構造を備えたmchステーション - Google Patents

二重殻構造の新設埋設タンク及び二重配管構造を備えたmchステーション Download PDF

Info

Publication number
JP2019151396A
JP2019151396A JP2018043676A JP2018043676A JP2019151396A JP 2019151396 A JP2019151396 A JP 2019151396A JP 2018043676 A JP2018043676 A JP 2018043676A JP 2018043676 A JP2018043676 A JP 2018043676A JP 2019151396 A JP2019151396 A JP 2019151396A
Authority
JP
Japan
Prior art keywords
mch
double
tank
pipe
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018043676A
Other languages
English (en)
Other versions
JP2019151396A5 (ja
Inventor
秀雄 上野
Hideo Ueno
秀雄 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanfreund Corp
Original Assignee
Sanfreund Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanfreund Corp filed Critical Sanfreund Corp
Publication of JP2019151396A publication Critical patent/JP2019151396A/ja
Publication of JP2019151396A5 publication Critical patent/JP2019151396A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 内部にMCH(メチルシクロヘキサン)検知器を備えた新設の二重殻構造の埋設タンクを使用することによって、タンクに生じる腐蝕や孔蝕を容易に知ることができ、更に二重に配管を施設した二重配管構造において、MCH漏れを検出できる検知器を備え、配管の欠陥も検出できる二重配管構造を備えたMCHステーションであることを特徴とする。【解決手段】 二重殻構造の新設埋設タンクであって、内殻と、外殻と、該内殻と外殻間に配設された液検知線と、該液検知線に接続された液検知器とを備え、上記内殻から漏れた液を上記検知線によって検知し、上記液検知器によって検知した液検知情報を外部に通知することを特徴とすると共に、新設の埋設タンクに通じる配管も二重配管構造であり、MCHの漏れを検知する検知器も備えているこを特徴とする。【選択図】 図1

Description

本発明は内部にMCH(メチルシクロヘキサン)の漏洩検知器を備えた二重殻構造の新設埋設タンク及び二重配管構造のMCHステーションに関する。
近年、炭酸ガス等の有害物質を排出しない燃料電池自動車(FCV(Fuel Cell Vehicle))の開発が盛んに行なわれている。燃料電池自動車は水素を燃料とし、搭載する燃料電池によって空気中の酸素と反応させて発電を行ない、電動機(モータ)を駆動して車を走行させる構造である。この為、燃料となる水素の運搬や貯留が重要であるが、気体のまま運搬し、貯留することは安全面や貯留施設の面から困難である。この為、トルエンに水素を反応させ、MCH(メチルシクロヘキサン)に転換し、液体の状態で運搬、貯留を行っている。
このように処理することによって、常温、常圧の水素ガスを常温、常圧の液体状態として運搬、貯留することができる。この為、水素ステーション等で燃料電池自動車に水素を供給する際にはタンクに貯留していたMCHを触媒反応によって水素を分離して供給している。
したがって、このようなステーションにはMCHの液体を貯留するタンクが必要であり、特にこのような貯留タンクは、内側を耐溶剤性材料で保護する必要がある。尚、特許文献1にはこのような場合の既存の燃料タンクを改修する方法が開示されている。
特開2002−211685号公報
しかしながら、上記従来の改修方法では、検査用の治具をタンクに合わせて制作しなければならず、装置が大がかりになり、作業性も悪い。
そこで、本考案は地下に埋設するタンクとして当初より二重殻構造の埋設タンクを使用し、更に埋設タンクに通じる配管も二重配管とし、夫々にMCHの漏れ検知器を設け、MCHの漏れを未然に防ぐ新設埋設タンクを備えたMCHステーションを提案するものである。
本発明は上記課題を解決するため、内殻と、外殻と、該内殻と外殻間に配設されたMCH検知線と、該MCH検知線に接続されたMCH検知器と、を備えた新設の埋設タンクであって、例えば内殻から漏れたMCH成分を上記検知線によって検知し、MCH検知器によって検知したMCH検知情報を外部に通知する二重殻構造の新設埋設タンクを提供することによって達成できる。
また、内部に少なくともMCHの液体が流れる1次配管と、該1次配管の外側に所定の隙間を保持して覆設された2次配管と、前記1次配管の下部下面と前記2次配管の下部上面に位置する前記隙間に沿って直線状に配設され、前記1次配管からの前記MCHの漏れを検知するMCH漏れ検知線と、該MCH漏れ検知線により検知された信号に基づいて配管からのMCH漏れを外部に報知するMCH漏報知装置と、を有する新規の二重配管構造を提供することによって達成できる。
本発明によれば、内部にMCHの漏れ検知器を備えた新設の二重殻構造の埋設タンクを使用することによって、以後補修等により埋設タンクの内側にFRP等の内殻を設置する必要がなく、タンクに生じる腐蝕や孔蝕を容易に知ることができる。さらに、上記埋設タンクに通じる配管にMCHの漏れ検知器を備えた二重配管構造とすることによって、以後補修等により二重配管に生じる腐蝕や孔蝕を容易に知ることができる。
第1の実施形態の新設埋設タンクの例を示す図である。 地下タンクの断面構成を示す図である。 地下タンクの底部の拡大図を示す図である。 検知器の構成を示す図である。 液漏れ検知回路の回路例を示す図である。 本実施形態の新設埋設タンクの変形例を示す図である。 液漏れ検知回路の他の回路例を示す図である。 第2の実施形態の二重配管構造を説明する為のMCHステーションの地下構造を示す模式図である。 第2の実施形態の二重配管構造を説明する図である。 (a)は図3のB−B線断面図であり、 (b)は同図(a)の点線丸印部Aの拡大図である。 1次配管と2次配管の隙間に配設された油漏れ検知線の配線構成を説明する図である。 液漏れ検知線を外部に取り出す配管の構造を示す図である。
以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
(第1の実施形態)
図1は本実施形態の新設埋設タンクの例を示す図であり、内部にMCH(メチルシクロヘキサン)の検知器を備えた二重殻構造の新設タンクである。尚、本例の二重殻構造の埋設タンクは、例えば水素ステーションやガソリンスタンド等の地下タンクを備えた場所に新設される。
同図において、地下タンク1には、例えばMCHを入れる注入管2、地下タンク1からMCHを吸引する送出管3、地下タンク1の通気を行う通気管4、及び地下タンク1に貯蔵されたMCHの液面高を計測する液面計5が設置されている。また、地下タンク1は地表から所定の深さに埋設され、地下タンク1上はコンクリートが施設されている。
注入管2には地表に注入口7が設けられ、注入口7からMCHの注入を行う。また、送出管3には地表に計量器、ポンプ等の機器類8が設けられ、地下タンク1からMCHを送出し、MCHの計量を行う。また、上記注入管2にはバルブ9が設けられ、送出管3にはバルブ10が設けられている。尚、通気管4には通気口12が設けられ、地下タンク1内で発生するガスを排出する。
また、図1には事務所19に配設されたモニタ18に延びる信号線25が記載されており、この信号線25は地下タンク1に腐蝕穴や孔蝕穴からの漏洩が発生したことを示す情報を信号として送り、モニタ18に通知する。
図2は、地下タンク1の断面構成を示す図であり、図1に示す地下タンク1のD−D断面近傍を示す斜視図である。同図に示すように、地下タンク1は鋼板で形成された内殻14とFRP(繊維強化複合材)で形成された外殻15で構成され、内殻14と外殻15間にはスペーサ16が介装されている。
尚、FRP(繊維強化複合材)は、例えばプラスチック、金属、ゴム等を高強度繊維で補強した複合材であり、ガラス繊維複合材(GFRP (Glass fiber reinforced plastics))や炭素繊維複合材等を使用する。また、上記スペーサ16の材料もFRPを使用することによって、外殻15とスペーサ16を同じ金型を使用して一体形成することができる。
さらに、内殻14を鋼材に代えてFRPを使用することによって、内殻14と外殻15とスペーサ16全てを一体形成することも可能となる。このように構成すれば、本実施形態の新設埋設タンクの製造コストを低減することができる。
上記構成の二重殻構造の新設埋設タンクにおいては、内殻14と外殻15間に所定の隙間17が形成される。この隙間17に検知線20が配設されている。この検知線20は地下タンク1の底部に沿って配設され、地下タンク1の長手方向全長に渡って配設されている。
図3に本例の地下タンク1の底部(A部)の拡大図を示す。同図に示すように、検知線20は内殻14と外殻15間の隙間17に配設され、地下タンク1の底に溜まった水やMCHを後述する検知器に導く。同図に示すように、検知線20は、内殻14の下部外周面と外殻15の下部内周面間に形成された隙間17に直線状に配設されている。
検知器22は、例えば地下タンク1の底部に沿って配設された検知線20の中央部に設置する。図4は検知器22の構成を示す図である。同図に示すように、検知器22は両側の導体センサ23a、23bと、導体センサ23a、23b間に設けられた検出回路24で構成され、水やMCHが何れかのセンサ23a又は23bに触れると、例えば静電容量等の物性値が変化する。検出回路24はこの物性値の変化を検出し、鋼製タンク14の腐蝕穴や孔蝕穴の存在を検知する。
一方、地下タンク1の上部には不図示の点検口が設けられ、検知器22によって検知された検知信号が信号線25を介して、この点検口を経由して事務所20内のモニタ18に送られる。
モニタ18はLED表示部やスピーカ等を備え、例えば検知器22がMCHを検知し、鋼製タンク1の腐蝕穴や孔蝕穴からの漏洩の発生を検知すると、発光し、更にスピーカから予め録音された警告音を発生する。
以上の構成の地下タンク1において、以下に内殻14の腐蝕や孔蝕による腐蝕穴や孔蝕穴の発生を検知する検知動作を説明する。
長年の使用によって地下タンク1の内殻14に劣化が生じると、内殻14の鋼板に腐蝕穴や孔蝕穴が発生し、当該箇所からMCHが浸入する。しかし、本例の二重殻構造によれば、内殻14の外周面に外殻15が覆設されており、地下タンク1(内殻14)からMCHの液体が外部に漏れ出すことがない。したがって、MCHの漏れによるトラブルの発生を未然に防止することができる。
例えば、鋼製タンク14の左側に発生した穴から侵入した水やMCHは地下タンク1(内殻14)左側底面に達し、検知線20を通って導体センサ23aに到達する。導体センサ23aは水やMCHを検知すると物性値が変化し、検出回路24はこの物性値の変化を検出し、地下タンク1の不良を検出する。
また、上記実施形態の説明では検知器22としてMCHを検出する導体センサを使用したが、導体センサに限らず、MCHや水等を検出するセンサであれば適用することができる。
例えば、図5に示す回路の分圧抵抗R3、R4の抵抗R3に並行に端子P1、P2を設け、また分圧抵抗R5、R6の抵抗R5に並行に端子P3、P4を設け、端子P1、P2を前述の導体センサ23aに代えて使用し、端子P3、P4を前述の導体センサ23bに代えて使用する。
このように構成することによって、例えば端子P1とP2間にMCHや水等が浸入するとトランジスタTr1のベース(B)容量が変化し、出力1から検知信号が出力され、腐蝕穴や孔蝕穴の発生を報知することができる。同様に、端子P3とP4間にMCHや水等が浸入するとトランジスタTr2のベース(B)容量が変化し、出力2から検知信号が出力され、腐蝕穴や孔蝕穴からの漏洩の発生を報知することができる。この場合も、鋼製タンク14に発生した穴が鋼製タンク14の右側であるか、又は左側であるかの検出を行なうこともできる。
また、上記実施形態の説明では地下タンク1の腐蝕や孔蝕について説明したが、例えば検知線や検知器としてガス漏れを検知することができる場合、液漏れ検知に代えて、ガス漏れ検知に使用することもできる。
図6は本例の検知器を備えた二重殻構造の新設埋設タンクの変形例を示す図である。同図に示すように、地下タンク1の下部には検知センサ33が一定間隔で設けられている。検知センサ33は、例えば半導体センサであり、MCHを検知すると内部の抵抗値が変化する。
上記のように検知センサ33は内殻14と外殻15の隙間17に一定間隔で取り付けられ、各検知センサ33−1、33−2、・・には対応して信号線が接続されている。この信号線はMCHの漏れ検知装置に接続され、各ガス検知センサ33−1、33−2、・・からのMCH漏れの検知信号を通知する。
図7はMCH漏れ検知装置35の回路図である。同図に示すように、MCH漏れ防止装置35は各ガス検知センサ33−1、33−2、・・に対応してMCH漏れ検知回路35−1、35−2、・・35−nで構成され、対応する検知センサ33−1、33−2、・・33−nからの検知信号に基づいてMCH漏れの検知を行う。
例えば、MCH漏れ検知回路35−1はトランジスタTr1、抵抗R1、r1、及びMCH検知センサ33−1で構成され、検知センサ33−1の抵抗値と抵抗R1の抵抗値によって電源Eの電圧値Vを分割し、検知センサ33−1の抵抗値が予め設定された所定値以上に達するとトランジスタTr1のコレクタからMCH漏れ検知信号が出力(出力1)される。
同様に、MCH漏れ検知回路35−2についても、トランジスタTr2、抵抗R2、r2、及びガス検知センサ33−2で構成され、ガス検知センサ33−2の抵抗値と抵抗R2の抵抗値によって電源Eの電圧値Vを分割し、ガス検知センサ33−2の抵抗値が予め設定された所定値以上に達するとトランジスタTr2のコレクタからガス漏れ検知信号を出力(出力2)する。
以下、他のMCH漏れ検知回路35−3、35−4、・・35−nについても同様であり、ガス検知センサ33−3、33−4、・・33−nがガス漏れを検知すると、静電容量が変化し、対応するMCH漏れ検知回路35−3、35−4、・・35−nから出力(出力3、出力4、・・出力n)を行い、MCH漏れを外部に報知する。
このMCH漏れの報知には前述と同様、LEDやスピーカが使用され、LEDを点灯させ(又はLEDを点滅させ)、スピーカから警告音を発生し、MCH漏れを外部に報知する。したがって、このように構成すれば地下タンク内の何れの位置からMCHの外部への漏れを未然に防止し、欠陥補修を容易に行うことができる。
(第2の実施形態)
次に、本発明の第2の実施形態について説明する。本例はMCHステーションにおいて使用する二重配管構造に関する。
図8は前述の図1の断面構造を説明する図である。尚、図8に示す断面図は、特に前述の注入管2及び電送ケーブル13を含む断面構造を示す。前述のように、注入管2には注入口7が設けられ、注入口7からMCH(メチルシクロヘキサン)が注入され、注入管2を通って地下タンク1にMCHが貯蔵される。同図に示すように、注入管2は二重構造であり、樹脂製の1次配管45を基管とし、同じ樹脂製の2次配管46を1次配管45に覆設した構造である。ここで、更に本例の注入管2の二重構造の特徴を詳しく説明する。
図9本例の注入管2の斜視図である。上記のように、注入管2は樹脂製の1次配管45に対して同じ樹脂製の2次配管46が覆設され、1次配管45と2次配管46間には所定幅の隙間47が形成されている。この隙間47には前述の液漏れ検知線41が配設されている。尚、1次配管45及び2次配管46は、ポリエチレンやポリアミド等の熱可塑性樹脂に限らず、フェノール樹脂やエポキシ樹脂等の熱硬化性樹脂を材料として使用することができる。
図10(a)は上記注入管2の断面図(図3のB−B線断面図)であり、図10(b)は同図(a)の点線丸印部Aの拡大図である。上述のように注入管2は二重構造であり、1次配管45に2次配管46が覆設されている。また、同図(a)及び(b)に示すように、1次配管45と2次配管46の隙間47には上記液漏れ検知線41が配設され、1次配管45からのMCH漏れを検知する。このMCH漏れ検知線41は1次配管45の下面(2次配管46の上面)に直線状に配設されている。
したがって、1次配管45内を流れるMCHが、例えば1次配管45に形成された欠陥部から漏れ出たとしても、漏れたMCHは1次配管45の外側面に沿って流れ落ち、確実にMCH漏れ検知線41によって検知することができる構造である。また、2次配管46が受け皿となり、漏れたMCHが外部に流れだすことも防止できる。
図11は上記図10(b)の断面図(C−C線断面図)であり、前述の1次配管45と2次配管46の隙間47に配設されたMCH漏れ検知線41の配線構成を示す。同図に示すように、MCH漏れ検知線41は1次配管45の下部下面(2次配管46の下部上面)に沿って直線状に配設され、1次配管45の欠陥部から漏れ出たMCHを確実に検知することができる。
また、同図に示す丸印E部を拡大してMCH漏れ検知線41の構成を説明すると、MCH漏れ検知線41は吸入部49と検知部50で構成されている。吸入部49はMCHを吸う性質を有する、例えばフッ素樹脂膜で構成され、検知部50は吸入部49で吸引した液類の検知を行う。この構成は、更に同図の丸印E部を拡大した模式図に示すように、吸入部49を介して液類が検知部50に接すると、検知部50の素子51に液分が浸透し、検知部50の静電容量を変化させる。この静電容量変化はケーブル13を介して前述の液漏れ検知モニタ14に通知される。
図12は上記MCH液漏れ検知線41を外部に取り出す配管の構造を示し、この配管53は基本的に前述の1次配管45と2次配管46で構成される二重配管構造であるが、MCH漏れ検知線41を外部に取り出す配線取出部52が設けられている。尚、同図に示す配管53には前後に前述の通常の二重配管、例えば54が接続され、これらの配管53及び54を複数接続し、上記MCH漏れ検知線41を全ての二重配管に通して配線する。尚、MCH漏れ検知線41は前述のようにフッ素樹脂製であり、耐候性や耐薬品性に優れている。
このようにMCH漏れ検知線41を注入管2の下面に沿って直線状に配線することによって、配管の欠陥部からのMCH漏れが発生してもMCH漏れ検知線41が液漏れを確実に検知し、ケーブル13を介して液漏れ検知モニタ14に通知することができる。
すなわち、図11の模式図に示すように、吸入部49を介して液が検知部50に接触すると、検知部50の素子51に液分が浸透し、検知部50の容量値を変化させる。この容量値変化は前述のように液漏れ検知モニタ14に通知される。例えばLEDを点灯又は点滅してMCH漏れを外部に報知する。また、スピーカを使用してMCH漏れを外部に通知する。したがって、本例によれば配管を二重構造とし、配管の隙間に検知センサを配設し、早期にMCH漏れの発生を検知でき、MCH漏れを未然に防ぐことができる。
1・・・地下タンク
2・・・注入管
3・・・注出管
4・・・通気管
5・・・液面計
7・・・注入口
8・・・機器類
9、10・・バルブ
11・・信号線
12・・通気口
14・・内殻
15・・外殻
16・・スペーサ
17・・隙間
18・・モニタ
19・・スペース
20・・信号線
22・・検知器
23a、23b・・フッ素ポリマーセンサ
24・・検知回路
25・・信号線
33、33−1、33−2、・・検知センサ
35・・MCH漏れ検知装置
35−1、35−2、・・MCH漏れ検知回路
41・・MCH漏れ検知線
45・・1次配管
46・・2次配管
47・・隙間
49・・吸入部
50・・検知部
51・・素子
53・・配管
54・・配管

Claims (10)

  1. 内殻と、外殻と、該内殻と外殻間に配設されたMCH検知線と、該MCH検知線に接続されたMCH検知器と、を備えた新設の埋設タンクであって、
    前記内殻から漏れたMCH成分を前記検知線によって検知し、前記MCH検知器によって検知したMCH検知情報を外部に通知する
    ことを特徴とする二重殻構造の新設埋設タンク。
  2. 前記MCH検知線は、前記内殻の下部外周面と前記外殻の下部内周面間に形成された隙間に直線状に配設されていることを特徴とする請求項1に記載の二重殻構造の新設埋設タンク。
  3. 前記内殻と外殻は鋼板又はFRPで構成されていることを特徴とする請求項1、又は2に記載の二重殻構造の新設埋設タンク。
  4. 前記内殻と外殻間には所定間隔を保持するためのスペーサが設けられていることを特徴とする請求項1、2、又は3に記載の二重殻構造の新設埋設タンク。
  5. 前記MCH検知器の出力は外部のモニタに送信され、埋設タンクの欠陥箇所の表示が行われることを特徴とする請求項1、2、3、又は4に記載の二重殻構造の新設埋設タンク。
  6. 前記MCH検知器は異なる位置に複数設けられ、該複数のMCH検知器の出力に基づいて、前記モニタは埋設タンクの欠陥箇所の表示を行うことを特徴とする請求項5に記載の二重殻構造の新設埋設タンク。
  7. 内部に少なくともMCHの液体が流れる1次配管と、
    該1次配管の外側に所定の隙間を保持して覆設された2次配管と、
    前記1次配管の下部下面と前記2次配管の下部上面に位置する前記隙間に沿って直線状に配設され、前記1次配管からの前記MCHの漏れを検知するMCH漏れ検知線と、
    該MCH漏れ検知線により検知された信号に基づいて配管からの液漏れを外部に報知するMCH漏報知装置と、
    を有することを特徴とする二重配管構造。
  8. 前記MCH漏れ検知線は吸入部と検知部で構成され、吸入部によってMCHを吸引し、前記検知部によってMCH漏れを検知することを特徴とする請求項7に記載の二重配管構造。
  9. 前記検知部は前記液分の浸透に従って変化する抵抗値に基づいて前記液漏れを検知することを特徴とする請求項7に記載の二重配管構造。
  10. 前記1次配管及び2次配管は樹脂材料によって構成されていることを特徴とする請求項7、8、又は9に記載の二重配管構造。
JP2018043676A 2018-03-03 2018-03-11 二重殻構造の新設埋設タンク及び二重配管構造を備えたmchステーション Pending JP2019151396A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018038111 2018-03-03
JP2018038111 2018-03-03

Publications (2)

Publication Number Publication Date
JP2019151396A true JP2019151396A (ja) 2019-09-12
JP2019151396A5 JP2019151396A5 (ja) 2021-04-22

Family

ID=67948045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043676A Pending JP2019151396A (ja) 2018-03-03 2018-03-11 二重殻構造の新設埋設タンク及び二重配管構造を備えたmchステーション

Country Status (1)

Country Link
JP (1) JP2019151396A (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920786A (en) * 1989-05-08 1990-05-01 Danielson Ricky E Method of retrofitting existing fuel tanks
JPH0678852U (ja) * 1993-04-08 1994-11-04 株式会社ユニシアジェックス 液体密度測定装置
JP2016105069A (ja) * 2014-11-20 2016-06-09 株式会社サンフロイント 二重配管構造
JP2017020560A (ja) * 2015-07-09 2017-01-26 Jxエネルギー株式会社 水素ステーションの管理装置
JP3216167U (ja) * 2018-02-25 2018-05-17 株式会社サンフロイント 二重殻構造の新設埋設タンク及び二重配管構造を備えたmchステーション

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920786A (en) * 1989-05-08 1990-05-01 Danielson Ricky E Method of retrofitting existing fuel tanks
JPH0678852U (ja) * 1993-04-08 1994-11-04 株式会社ユニシアジェックス 液体密度測定装置
JP2016105069A (ja) * 2014-11-20 2016-06-09 株式会社サンフロイント 二重配管構造
JP2017020560A (ja) * 2015-07-09 2017-01-26 Jxエネルギー株式会社 水素ステーションの管理装置
JP3216167U (ja) * 2018-02-25 2018-05-17 株式会社サンフロイント 二重殻構造の新設埋設タンク及び二重配管構造を備えたmchステーション

Similar Documents

Publication Publication Date Title
JP6134128B2 (ja) 鋼製タンク内面frp二重殻構造
JP2014163458A (ja) 油類の配管構造
JP3196696U (ja) 鋼製タンク内面frp二重殻構造
JP3216167U (ja) 二重殻構造の新設埋設タンク及び二重配管構造を備えたmchステーション
KR20090067303A (ko) 배관재 연결부 감지장치
US7011102B2 (en) Contained pipeline system with brine filled interstitial space and method for detecting leakage in same
JP6280523B2 (ja) 二重配管構造
AU2016100193A4 (en) Double pipe structure
JP5995149B2 (ja) 漏洩検知装置
TWI668168B (zh) Oil leakage notification method for underground double-layered shell pipe with leak detection and double-shell structure of underground oil tank
JP2019151396A (ja) 二重殻構造の新設埋設タンク及び二重配管構造を備えたmchステーション
JP3183085U (ja) 二重配管構造
JP3242830U (ja) 新規及び既設の埋設タンクのcfrp二重殻構造
JP2016216047A (ja) 二重殻構造の新設埋設タンク
CN113028287A (zh) 双层配管结构
JP3199105U (ja) 二重殻構造の新設埋設タンク
JP3242722U (ja) 新規及び既設の埋設タンクのcfrp二重殻構造
US8038028B2 (en) Additional containment system for storage tank
JP3243459U (ja) フッ素樹脂を使用した既設鋼製埋設タンクの内面ライニング。
TWI642607B (zh) FRP double-layer shell structure inside steel oil tank
JP3204958U (ja) 漏洩検知付き地下埋設二重殻配管及び地下タンク二重殻構造
US7290676B1 (en) Secondary containment system for liquid storage tank
JP4421711B2 (ja) 二重配管構造
KR102206801B1 (ko) 지중 시설물의 누출에 의한 토양 오염 감지 방법
TWM614733U (zh) 地下油管警示監控裝置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220923

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221213