JP2019144189A - 路面状態判別装置、路面状態判別方法および路面状態判別プログラム - Google Patents

路面状態判別装置、路面状態判別方法および路面状態判別プログラム Download PDF

Info

Publication number
JP2019144189A
JP2019144189A JP2018030554A JP2018030554A JP2019144189A JP 2019144189 A JP2019144189 A JP 2019144189A JP 2018030554 A JP2018030554 A JP 2018030554A JP 2018030554 A JP2018030554 A JP 2018030554A JP 2019144189 A JP2019144189 A JP 2019144189A
Authority
JP
Japan
Prior art keywords
road surface
antenna
surface state
moving
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018030554A
Other languages
English (en)
Other versions
JP7039323B2 (ja
Inventor
祐治 神取
Yuji Kamitori
祐治 神取
徹也 谷嵜
Tetsuya Tanizaki
徹也 谷嵜
上田 浩次
Koji Ueda
浩次 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Electric Works Co Ltd
Original Assignee
Nagoya Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Electric Works Co Ltd filed Critical Nagoya Electric Works Co Ltd
Priority to JP2018030554A priority Critical patent/JP7039323B2/ja
Publication of JP2019144189A publication Critical patent/JP2019144189A/ja
Application granted granted Critical
Publication of JP7039323B2 publication Critical patent/JP7039323B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

【課題】未知の路面状態を高精度に判別できる技術の提供。【解決手段】路面状態判別装置は、路面に電波を送信し、前記路面からの前記電波の反射による反射波を受信する送受信共用のアンテナと、予め決められた移動区間内において、前記路面に対する前記アンテナの高さが変化するように前記アンテナを移動させる移動部と、前記移動区間を移動する際に前記アンテナが受信した前記反射波の振幅の最大値と最小値に基づいて路面状態を判別する判別部と、を備える。【選択図】図5

Description

本発明は、路面上に存在する物体を判別する路面状態判別装置、路面状態判別方法および路面状態判別プログラムに関する。
従来、送信波が路面にて反射した反射波を受信アンテナで受信し、当該反射波の反射量に基づいて路面の凍結を判断する技術が知られている(特許文献1、参照)。特許文献1において、路面と受信アンテナとの距離(A点と路面までの距離)を固定し、当該受信アンテナが出力する電圧が変化した場合に、路面における反射率が変化し、乾燥状態から湿潤状態へと変化したと判断することが開示されている(図2,段落0019)。
特開2001−235555号公報
特許文献1のような計測形態においては、送信波と反射波の合成電界を計測することになる。計測される合成電界は、路面状態に応じて、反射波の振幅変化だけではなく定在波の位相変化の影響を同時に受ける。そのため、特許文献1のような固定されたセンサによる離散的な計測では、反射波の振幅変化と定在波の位相変化の影響を切り分けられないため、高精度に路面状態を判別できない。
本発明は、前記の問題を解決せんとするもので、未知の路面状態を高精度に判別できる技術を提供することを目的とする。
前記の目的を達成するため、本発明の路面状態判別装置は、路面に電波を送信し、かつ路面からの電波の反射により生じる反射波を受信する送受信共用のアンテナと、予め決められた移動区間内において、路面に対するアンテナの高さが変化するようにアンテナを移動させる移動部と、移動区間を移動する際にアンテナが受信した反射波の振幅に基づいて路面状態を判別する判別部と、を備える。
前記の構成において、アンテナが送受信共用で、サーキュレータが送受信信号を分離する機能を持っているが、送受信間の分離は完全でなく、送信波が受信回路に回り込む成分が存在する。そのため、反射波を受信すると回り込み信号と合成され、その合成電界の振幅は反射波の振幅変化だけではなく、電波の伝搬方向軸上の位置(定在波の位相)によって増減する。このような状況において、路面状態が未知である場合でも、移動区間内においてアンテナを移動させて連続した計測を行うことで、反射波と回り込み信号の合成電界の振幅の最大値と最小値を得ることができる。さらに、この合成電界の振幅の最大値と最小値の差の変化は、反射波の振幅変化に比例しており、定在波の位相による振幅変化に依存しない(空間定在波法)。すなわち、反射波と回り込み信号の合成電界の振幅の最大値と最小値の差の増減から、反射波の振幅変化を計測することができるため、未知の路面状態を高精度に判別できる。
移動区間の長さは、アンテナが送信した電波の波長の1/2以上であればよい。ここで、反射波と回り込み信号の合成電界の振幅の最大値が連続する空間周期、最小値が連続する空間周期は、アンテナが送信した電波の波長の1/2となり、最大値と最小値が交互に連続する空間周期は電波の波長の1/4となる。そのため、移動区間の長さをアンテナが送信した電波の波長の1/2以上とすることにより、合成電界の振幅が最大値となる位置と最小値となる位置とを、アンテナが少なくとも1回ずつは通過するようにすることができる。
また、移動区間の長さは、アンテナが送信した電波の波長の1/2であってもよい。これにより、反射波と回り込み信号の合成電界の振幅が最大値となる位置と最小値となる位置とを、アンテナが1回ずつ通過し、かつ、移動区間の長さを最小限に留めることができる。従って、路面状態を判別するのに要する所要期間を抑制することができる。
また、判別部は、アンテナが送信した電波と、反射波と回り込み信号の合成電界との乗算によって得られる差周波数成分(低周波数成分)に基づいて路面状態を判別してもよい(ヘテロダイン検波方式)。特に、送信した電波と反射波に周波数変化がない状況では、合成電界の振幅を直流電圧として取り出すことができる。また、周波数変化がある状況では、路面状態だけでなく、ドップラー効果により路面上における車両を検知でき、路面状態判別装置が車両検知装置を兼ねるようにすることができる。そのため、一般的な車両検知装置に使用されるドップラセンサを路面状態判別装置に流用できる。
定在波の発生に関する説明図である。 路面状態判別装置のブロック図である。 ドップラセンサの模式図である。 図4A〜図4Cはドップラセンサの出力電圧のグラフである。 路面状態判別処理のフローチャートである。 図6A〜図6Cはドップラセンサの出力電圧のグラフである。
ここでは、下記の順序に従って本発明の実施の形態について説明する。
(1)定在波の発生に関する説明:
(2)路面状態判別装置の構成:
(3)路面状態判別処理:
(4)車両検知:
(1)定在波の発生に関する説明:
はじめに、送信アンテナ1と受信アンテナ2の高さLと定在波との関係について説明する。図1のように送信波(電界)と反射波(電界)をそれぞれEi,Erと表し、路面Rの反射係数をΓと表し、高さ方向における送信波の波長をλと表す。k0は送信波の波数を表し、k0=2π/λである。送信アンテナ1と受信アンテナ2の位置を原点とした高さ方向の任意の位置Zにおける送信波Eiと反射波Erの合成電界Eは下記の(1)式のように任意の位置Zの関数で表すことができる。
前記の(1)式により、送信波Eiと反射波Erの合成電界Eの受信アンテナ2の位置(Z=0)における振幅(絶対値)は下記の(2)式によって表すことができる。φは初期位相を表す。
前記の(2)式に示すように、送信波Eiと反射波Erの合成電界Eの振幅は高さL方向において波長λの1/2の長さの空間周期を持つこととなる。すなわち、送信波Eiと反射波Erの合成電界Eの振幅が最大値となる位置の間隔は送信波の波長λの1/2となり、最小値となる位置の間隔も送信波の波長λの1/2となる。また、最大値となる位置と最小値となる位置との間隔は、送信波の波長λの1/4となる。このことから、送信波Eiと反射波Erの合成電界Eは定在波であることが分かる。
(2)路面状態判別装置の構成:
図2は、本実施形態にかかる路面状態判別装置10の概略構成を示している。同図において、路面状態判別装置10は、制御部20と記録媒体30と駆動装置40とドップラセンサ50と通信部60と支持部70とを備えている。
支持部70は、路面R上に駆動装置40とドップラセンサ50とを支持するための構造体である。支持部70は、車両が走行する走行車線上に駆動装置40とドップラセンサ50とを支持する。駆動装置40は、支持部70とドップラセンサ50との間に介在し、ドップラセンサ50を鉛直方向上下に移動させる。駆動装置40がドップラセンサ50を移動させるための機構は特に限定されない。通信部60は、外部のサーバ等と通信を行うための通信回路である。例えば、通信部60は、制御部20が判別した路面状態を示すデータ等を、道路情報を管理するサーバに送信する。
図3は、ドップラセンサ50の模式図である。ドップラセンサ50は、発振器51と分配器52とサーキュレータ53と送受信共用のアンテナ54(以下、単にアンテナ54と呼ぶ。)と乗算器55と増幅器56とを備える。発振器51は、予め決められた周波数で周期振動する送信波Eiを生成するオシレータである。本実施形態において、発振器51は、24.15GHzの送信波Eiを生成する。分配器52は、送信波Eiをアンテナ54と乗算器55に分配する。サーキュレータ53は、アンテナ54から電波の送信と受信の切替えを行う。アンテナ54は、路面Rに対して垂直に送信波Eiを送信し、路面Rにて反射した反射波Erを受信する。乗算器55は分配器52から分配された送信波Eiとアンテナ54にて受信した反射波Erとを乗算し、それらの差周波数信号を出力する。増幅器56は、乗算器55の出力を増幅するとともに、高周波数信号成分をフィルタする役割を持つ。これにより、増幅器56からは乗算器55が出力した差周波数信号成分のうち、低周波信号成分が出力されることとなる。この時、反射対象である路面が静止しており送信波Eiと反射波Erに周波数変化がない場合は、反射波Erの振幅が直流信号成分として出力される。
本実施形態において、サーキュレータ53が送受信信号を分離する機能を持っているが、送受信信号の分離は完全でなく、送信波Eiが受信回路に回り込む成分(回り込み信号Ec)が存在する。すなわち、実施形態のドップラセンサ50の乗算器55には反射波Erと回り込み信号Ecの合成電界Emが入力されるため、反射波Erと回り込み信号Ecの合成電界Emの振幅が乗算器55から出力される。
次に、反射波Erと回り込み信号Ecとの合成によって得られる反射波Erと回り込み信号Ecの合成電界Emについて説明する。ヘテロダイン方式のドップラセンサ50で得られるアンテナ位置(L=0)における反射波Erと回り込み信号Ecの合成電界Emは、図1のように送信アンテナ1と受信アンテナ2とが独立して備えられる場合の上記の送信波Eiと反射波Erとの合成電界Eと異なり、アンテナ54に反射波Erが入力されると回り込み信号Ecと合成され、E=Ec+Erの反射波Erと回り込み信号Ecの合成電界Emが計測されることとなる。そこで、アンテナ54の位置(L=0)における反射波Erと回り込み信号Ecの合成電界Emは次の式によって表される。
また、前記の(3)式により、反射波Erと回り込み信号Ecの合成電界Emの振幅(絶対値)は、次の式によって求めることができる。
よって、(4)式のように、反射波Erと回り込み信号Ecの合成電界Emの振幅は、送信波Eiと反射波Erの合成電界Eと同様の空間周期を持つ関数で表すことができる。このことから、反射波Erと回り込み信号Ecの合成電界Emは定在波の性質を持つことが分かる。
図3に示すように、駆動装置40がドップラセンサ50を移動させることにより、アンテナ54の路面Rに対する高さLが可変となっている。駆動装置40は、下限高さL2から上限高さL1までの間の区間である移動区間W内にて高さLが変化するように、アンテナ54を移動させる。上限高さL1となるときのドップラセンサ50を実線で示し、下限高さL2となるときのドップラセンサ50を破線で示している。移動区間Wの長さMは、上限高さL1から下限高さL2を減算した長さである。上限高さL1からの下降量mによって、アンテナ54の高さLを表すこととする。
図2に示す制御部20は、図示しないCPUやROMやRAMで構成されるコンピュータであり、記録媒体30に記録された各種情報を用いて路面状態の判別に必要な処理を実行する。図2に示すように、制御部20は、路面状態判別プログラム21を実行する。路面状態判別プログラム21のソフトウェア構成については後述する。制御部20は、ドップラセンサ50と駆動装置40と接続されている。
記録媒体30は、計測データ30aと閾値データ30bとを記録する。計測データ30aは、制御部20が計測した値を一時的に記録したデータである。閾値データ30bは、路面状態を判別するための判別閾値を示すデータである。
路面状態判別プログラム21は、移動モジュール21aと判別モジュール21bとを含む。移動モジュール21aと判別モジュール21bとを実行する制御部20は、本発明の移動部と判別部とを構成する。
移動モジュール21aの機能により制御部20は、予め決められた移動区間W内において、路面Rに対するアンテナ54の高さLが変化するようにアンテナ54を移動させる。具体的に、移動モジュール21aの機能により制御部20は、アンテナ54の上限高さL1からの下降量mが微少量Δmずつ増加するように駆動装置40を制御する。そして、制御部20は、アンテナ54の上限高さL1からの下降量mが移動区間Wの長さMと等しくなった場合に、ドップラセンサ50の移動を終了する。
次に、ドップラセンサ50の出力電圧Edについて考察する。上述したように、ドップラセンサ50は、乗算器55と増幅器56とを備えるヘテロダイン方式の検波器であり、増幅器56からは乗算器55が出力した差周波数信号成分のうち、低周波信号成分が出力されることとなる。この時、反射対象である路面が静止しており送信波Eiと反射波Erに周波数変化がない場合は、反射波Erと回り込み信号Ecの合成電界Emの振幅を増幅した直流電圧が出力電圧Edとして出力される。従って、ドップラセンサ50の出力電圧Edを計測することで、反射波Erと回り込み信号Ecの合成電界Emの振幅を計測することが可能である。
図4A〜図4Cは、任意の高さLにおけるドップラセンサ50の出力電圧Edを示すグラフである。図4A〜図4Cにおいて横軸は高さLを示し、縦軸はドップラセンサ50の出力電圧Edを示す。図4A〜図4Cに示すように、ドップラセンサ50の出力電圧Edは高さLの周期関数となり、その空間周期は送信波Eiの波長λの1/2となる。図4A〜図4Cは、実験的に、上限高さL1よりも高い位置において出力電圧Edを調査した結果をプロットしたものである。
次に、図4A〜図4Cを比較する。図4A〜図4Cにおいて、厚さ2mmの金属板(黒実線)と水膜(グレー実線)と氷膜(黒破線)のそれぞれに対して送信波Eiを送信した場合のドップラセンサ50の出力電圧Edを示す。図4Aは、下方に金属板が敷かれたアクリル容器上における金属板と水膜と氷膜のそれぞれに対して送信波Eiを送信した場合のドップラセンサ50の出力電圧Edを示す。図4Bは、下方に金属板が敷かれていないアクリル容器上における金属板と水膜と氷膜のそれぞれに対して送信波Eiを送信した場合のドップラセンサ50の出力電圧Edを示す。図4Cは、下方に金属板が敷かれていないアスファルト片上における金属板と水膜と氷膜のそれぞれに対して送信波Eiを送信した場合のドップラセンサ50の出力電圧Edを示す。なお、図4Cが実際の路面Rに最も近い状況での出力電圧Edを示す。
図4A〜図4Cから、反射係数Γに応じて、出力電圧Edは最大値と最小値の大きさだけでなく、それらの位置(位相)もずれていることが分かる。しかし、出力電圧Edの空間周期は反射係数Γに依存せず、送信波Eiの波長λの1/2ごとに、出力電圧Edの最大値と最小値とがそれぞれ出現することには変わりはない。
本実施形態において、移動区間Wの長さMを、送信波Eiの波長λの1/2の長さとしている。つまり、移動区間Wの長さMは、ドップラセンサ50の出力電圧Edとしての反射波Erと回り込み信号Ecの合成電界Emの空間周期と同じ長さとなっている。本実施形態のように、送信波Eiの周波数が24.15GHzである場合、移動区間Wの長さMは約6.2mmとなる。
上述したように、ドップラセンサ50の出力電圧Edの空間周期は反射係数Γに依存しないため、路面Rの反射係数Γが未知であっても移動区間Wの長さMを設定できる。なお、図4A〜図4Cに示された高さLのうち、高さLが最も低い区間が移動区間Wとして設定されており、ドップラセンサ50の出力電圧Edが最も減衰していない区間が移動区間Wとして設定されている。移動区間Wは、路面Rに近いほど望ましいが、路面R上を走行し得る車両の最大車高よりも高い位置に設けられる。
判別モジュール21bの機能により制御部20は、移動区間Wを移動する際にアンテナ54が受信した定在波Eの強度の最大値と最小値に基づいて路面状態を判別する。以下、判別モジュール21bの機能を、路面状態判別処理のフローチャートを用いて説明する。
(3)路面状態判別処理:
図5は、路面状態判別処理のフローチャートである。まず、移動モジュール21aの機能により制御部20は、下降量mを0にリセットする(ステップS100)。すなわち、図3にて実線で示すように、制御部20は、アンテナ54の高さLが上限高さL1となるように下降量mをリセットする。次に、移動モジュール21aの機能により制御部20は、ドップラセンサ50を移動させる(ステップS105)。すなわち、制御部20は、アンテナ54の高さLが下降量mに対応する高さとなるように、駆動装置40を駆動させる。制御部20は、アンテナ54の高さLが下降量mに対応する高さとなると、ドップラセンサ50の移動を停止させる。
次に、判別モジュール21bの機能により制御部20は、送信波Eiの送信を開始する(ステップS110)。すなわち、制御部20は、路面Rに対して送信波Eiを送信するようにドップラセンサ50を制御する。次に、判別モジュール21bの機能により制御部20は、反射波Erを受信する(ステップS120)。すなわち、制御部20は、ドップラセンサ50のアンテナ54にて反射波Erを受信させる。それにより、送信波Eiと、反射波Erと回り込み信号Ecの合成電界Emとを乗算して得られた差周波数信号成分のうち、低周波信号成分を増幅したものがドップラセンサ50の出力電圧Edとして出力される。
次に、判別モジュール21bの機能により制御部20は、ドップラセンサ50の出力電圧Edを取得する(ステップS130)。上述したように、反射対象である路面が静止しており送信波Eiと反射波Erに周波数変化がない場合は、ドップラセンサ50の出力電圧Edは、反射波Erと回り込み信号Ecの合成電界Emの振幅に比例した大きさの直流電圧である。
次に、判別モジュール21bの機能により制御部20は、ドップラセンサ50の出力電圧Edを記録する(ステップS140)。すなわち、制御部20は、ドップラセンサ50の出力電圧Edを記録媒体30の計測データ30aに記録する。
次に、移動モジュール21aの機能により制御部20は、下降量mが移動区間Wの長さMと等しいか否かを判定する(ステップS150)。すなわち、制御部20は、アンテナ54の高さLが下限高さL2まで下降したか否かを判定する。
下降量mが移動区間Wの長さMと等しいと判定しなかった場合(ステップS150:N)、移動モジュール21aの機能により制御部20は、下降量mに微少量Δmを加算する(ステップS160)。ここで、微少量Δmは、移動区間Wの長さMを予め決められた自然数(例えば10〜20)で除算した長さである。
次に、制御部20は、ステップS105に戻る。以上のループ処理(ステップS105〜S160)を行うことにより、移動区間W内における微少量Δmごとの位置のそれぞれにて得られた反射波Erと回り込み信号Ecの合成電界Emの振幅を計測データ30aに蓄積していくことができる。
図6A〜図6Cは、移動区間Wにおけるドップラセンサ50の出力電圧Edを示すグラフである。図6A〜図6Cにおいて横軸は高さLを示し、縦軸はドップラセンサ50の出力電圧Edを示す。計測データ30aには、図6A〜図6Cに示すドップラセンサ50の出力電圧Edが記録されている。図6A〜図6Cは、それぞれ図4A〜図4Cと同じ条件におけるドップラセンサ50の出力電圧Edを示す。
しかし、移動区間Wの長さMを送信波Eiの波長λの1/2の長さとすることにより、ドップラセンサ50の出力電圧Edの最大値と最小値を計測データ30aに記録することができる。つまり、計測データ30aに記録されている出力電圧Edの最大値・最小値が計測された際に、アンテナ54はそれぞれの位置に存在していたことになる。路面状態が未知であるため、反射波Erと回り込み信号Ecの合成電界Emの振幅が最大値・最小値になる位置は未知であるが、移動区間Wの長さMだけアンテナ54を移動させることにより、出力電圧Edの最大値・最小値とそれらの位置を得ることができる。
例えば、最も実際の路面Rの状況に近い図6Cにおいて、グレー実線で示す水膜でのドップラセンサ50の出力電圧Edの位相と、黒破線で示す氷膜でのドップラセンサ50の出力電圧Edの位相とがずれている。しかし、移動区間Wの長さMを送信波Eiの波長λの1/2の長さだけ確保することにより、水膜でのドップラセンサ50の出力電圧Edの最大値(白四角)と最小値(黒四角)とを得ることができる。また、水膜が凍結して氷膜に変化したとしても、氷膜でのドップラセンサ50の出力電圧Edの最大値(白三角)と最小値(黒三角)とを得ることができる。
下降量mが移動区間Wの長さMと等しいと判定した場合(ステップS150:Y)、移動モジュール21aの機能により制御部20は、ドップラセンサ50の出力電圧Edの最大値と最小値との差分Edifを算出する(ステップS170)。
前記の(2)式から差分Edifを導出すると、差分Edifは下記の(5)式で表すことができる。なお、前記の(2)式において、cos(2k0L−φ)が1となるときに、反射波Erと回り込み信号Ecの合成電界Emの振幅が最大値となり、ドップラセンサ50の出力電圧Edが最大値となる。一方、cos(2k0L−φ)が−1となるときに、反射波Erと回り込み信号Ecの合成電界Emの振幅が最小値となり、ドップラセンサ50の出力電圧Edが最小値となる。また、αは増幅器56による増幅率を表す係数である。
前記の(5)式に示すように、差分Edifは、反射係数Γに比例した値となっている。
次に、判別モジュール21bの機能により制御部20は、差分Edifが判別閾値以上であるか否かを判定する(ステップS180)。そして、差分Edifが判別閾値以上であると判定した場合(ステップS180:Y)、判別モジュール21bの機能により制御部20は、路面R上に水膜が存在すると判別する(ステップS190)。一方、差分Edifが判別閾値以上であると判定しなかった場合(ステップS180:N)、判別モジュール21bの機能により制御部20は、路面R上に氷膜が存在すると判別する(ステップS200)。なお、判別閾値は、予め実験等によって水膜と氷膜とが存在する状況での差分Edifを測定することにより設定しておくことができる。また、差分Edifを閾値判定することで、実質的に反射係数Γを閾値判定することができる。
(3)車両検知:
次に、車両検知について説明する。判別モジュール21bの機能により制御部20は、出力電圧Edの周波数に基づいて路面R上における車両を検知する。具体的に、判別モジュール21bの機能により制御部20は、ドップラセンサ50を一定の高さLに固定した状態で、ドップラセンサ50の出力電圧Edを一定期間取得し、その期間内において出力電圧Edが変動したか否かを判定する。送信波Eiが移動体としての車両に反射した場合、ドップラー効果によって反射波Erの周波数が送信波Eiの周波数から変化し、乗算器55の出力が直流ではなく、送信波Eiと反射波Erとの差周波数成分(低周波数成分)となる。つまり、出力電圧Edは、増幅器56のフィルタでは除去できない周波数成分を有することとなる。
そのため、制御部20は、ドップラセンサ50の出力電圧Edが変動していることをもって、路面R上を移動する車両を検知できる。なお、図5に示す路面状態判別処理のステップS140にて取得したドップラセンサ50の出力電圧Edが変動している場合、車両の通過が完了し、ドップラセンサ50の出力電圧Edが一定となるまで待機してもよい。
以上説明した本実施形態において、路面状態が未知であり、ドップラセンサ50の出力電圧Edの最大値と最小値となる位置が未知である状況においても、移動区間内においてアンテナ54を移動させて連続した計測を行うことで、出力電圧Edの最大値と最小値を得ることができる。出力電圧Edの最大値と最小値の差は、反射波Erの振幅変化に比例しており、定在波の位相の影響を受けない。すなわち、出力電圧Edの最大値と最小値の差の増減から、反射波Erの振幅の増減を検知できるため、未知の路面状態を高精度に判別できる。
また、移動区間Wの長さMは、送信波Eiの波長λの1/2である。これにより、出力電圧Edの最大値となる位置と最小値になる位置を、アンテナ54が1回通過し、かつ、移動区間Wの長さMを最小限に留めることができる。従って、路面状態を判別するのに要する所要期間を抑制することができる。
また、制御部20は、ドップラセンサ50の出力電圧Edから求めた差分Edifに基づいて路面状態を判別するとともに、出力電圧Edの周波数に基づいて路面R上における車両を検知している。これにより、路面状態だけでなく、路面R上における車両を検知でき、路面状態判別装置10が車両検知装置を兼ねるようにすることができる。また、一般的な車両検知装置に使用されるドップラセンサ50を路面状態判別装置10に流用できる。
(4)他の実施形態:
前記実施形態において、ドップラセンサ50の出力電圧Edから求めた差分Edifに基づいて路面状態を判別したが、前記の(5)式に基づいて反射係数Γを算出してもよい。そして、制御部20は、算出した反射係数Γを閾値判定することにより路面状態を判別してもよい。さらに、制御部20は、水膜か氷膜かを判別するに留まらず、乾燥状態を判別してもよい。むろん、路面状態判別装置10は、上述した実施形態の構成のみを備るものに限定されず、例えば赤外光によって乾燥状態であるか否かを判別するための構成が追加されてもよい。
また、必ずしも移動区間Wの長さMは送信波Eiの波長λの1/2でなくてもよく、駆動装置40の位置制御の誤差を考慮して波長λの1/2よりも長く確保されてもよい。また、必ずしもドップラセンサ50を用いて車両を検知しなくてもよく、路面状態判別装置10は、路面状態を判別する機能のみを有してもよい。さらに、路面状態判別装置10は、ドップラセンサ50を用いて車両の有無を検知するだけでなく、ドップラセンサ50の出力電圧Edの周波数に基づいて車両の速度も検知してもよい。また、車両の速度を検知する際に、送信波Eiの送信方向が水平方向に近くなるようにドップラセンサ50が回転可能に構成されてもよい。
前記実施形態では、ステップS140にてドップラセンサ50の出力電圧Edを記録したが、出力電圧Edと、反射波Erと回り込み信号Ecの合成電界Emの振幅は比例の関係にあるために、反射波Erと回り込み信号Ecの合成電界Emを記録してもよい。
送信波Eiの周波数は、必ずしも24.15GHzでなくてもよく、76.5GHzや79.5GHz等の他のミリ波の周波数を採用してもよい。さらに、送信波Eiの周波数は、必ずしもミリ波の周波数でなくてもよい。なお、送信波Eiの周波数に応じて移動区間Wの長さMを設定すればよく、例えば駆動装置40の位置制御の分解能(最小移動距離)に応じて送信波Eiの周波数が選択されてもよい。また、判別対象の路面R上の物質の誘電率に応じて反射係数Γが大きく変化する送信波Eiの周波数が選択されてもよい。
制御部20は、必ずしも高さLが順に低くなるようにアンテナ54を移動させなくてもよく、高さLが順に高くなるようにアンテナ54を移動させてもよい。また、制御部20は、必ずしも移動区間Wの全体にわたってアンテナ54を移動させなくてもよく、ドップラセンサ50の出力電圧Edが減少から増加に転じることと、ドップラセンサ50の出力電圧Edが増加から減少に転じること、とが双方とも生じた時点でアンテナ54の移動を終了させてもよい。従って、必ずしも移動区間Wの全体にわたってアンテナ54を移動させなくても、路面状態を高精度に判別できる。
10…路面状態判別装置、20…制御部、21…路面状態判別プログラム、21a…移動モジュール、21b…判別モジュール、30…記録媒体、30a…計測データ、30b…閾値データ、40…駆動装置、50…ドップラセンサ、51…発振器、52…分配器、53…サーキュレータ、54…アンテナ、55…乗算器、56…増幅器、60…通信部、70…支持部、Ei…送信波,Er…反射波,E…送信波Eiと反射波Erの合成電界、Ec…回り込み信号、Em…反射波Erと回り込み信号Ecの合成電界、Ed…出力電圧、Edif…差分、L…高さ、L1…上限高さ、L2…下限高さ、R…路面、W…移動区間、M…移動区間の長さ、Z…送信アンテナ1と受信アンテナ2(またはアンテナ54)を原点とした高さ方向の任意の位置、m…下降量、Γ…反射係数、Δm…微少量

Claims (6)

  1. 路面に電波を送信し前記路面からの前記電波の反射による反射波を受信する送受信共用のアンテナと、
    予め決められた移動区間内において、前記路面に対する前記アンテナの高さが変化するように前記アンテナを移動させる移動部と、
    前記移動区間を移動する際に前記アンテナが受信した前記反射波の振幅の最大値と最小値に基づいて路面状態を判別する判別部と、
    を備える路面状態判別装置。
  2. 前記移動区間の長さは、前記アンテナが送信した前記電波の波長の1/2以上である、
    請求項1に記載の路面状態判別装置。
  3. 前記移動区間の長さは、前記アンテナが送信した前記電波の波長の1/2である、
    請求項1に記載の路面状態判別装置。
  4. 前記判別部は、
    前記アンテナが送信した前記電波の回り込み信号と前記反射波との合成電界と、前記アンテナが送信した前記電波とが乗算された差周波数成分(低周波数成分)を入力し、当該差周波数成分(低周波数成分)の最大値と最小値との差分に基づいて路面状態を判別するとともに、
    前記差周波数成分(低周波数成分)の周波数に基づいて前記路面上における車両を検知する、
    請求項1から請求項3のいずれか一項に記載の路面状態判別装置。
  5. 路面に電波を送信し前記路面からの前記電波の反射による反射波を受信する送受信共用のアンテナを用いて路面状態を判別する路面状態判別方法であって、
    予め決められた移動区間内において、前記路面に対する前記アンテナの高さが変化するように前記アンテナを移動させる移動工程と、
    前記移動区間を移動する際に前記アンテナが受信した前記反射波の振幅の最大値と最小値に基づいて路面状態を判別する判別工程と、
    を含む路面状態判別方法。
  6. 路面に電波を送信し前記路面からの前記電波の反射による反射波を受信する送受信共用のアンテナを用いて路面状態を判別する機能をコンピュータに実現させる路面状態判別プログラムであって、
    予め決められた移動区間内において、前記路面に対する前記アンテナの高さが変化するように前記アンテナを移動させる移動機能と、
    前記移動区間を移動する際に前記アンテナが受信した前記反射波の振幅の最大値と最小値に基づいて路面状態を判別する判別機能と、
    をコンピュータに実現させる路面状態判別プログラム。
JP2018030554A 2018-02-23 2018-02-23 路面状態判別装置、路面状態判別方法および路面状態判別プログラム Active JP7039323B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018030554A JP7039323B2 (ja) 2018-02-23 2018-02-23 路面状態判別装置、路面状態判別方法および路面状態判別プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018030554A JP7039323B2 (ja) 2018-02-23 2018-02-23 路面状態判別装置、路面状態判別方法および路面状態判別プログラム

Publications (2)

Publication Number Publication Date
JP2019144189A true JP2019144189A (ja) 2019-08-29
JP7039323B2 JP7039323B2 (ja) 2022-03-22

Family

ID=67772217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018030554A Active JP7039323B2 (ja) 2018-02-23 2018-02-23 路面状態判別装置、路面状態判別方法および路面状態判別プログラム

Country Status (1)

Country Link
JP (1) JP7039323B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318766A (ja) * 1996-05-27 1997-12-12 Mitsubishi Heavy Ind Ltd 凍結検知システム
JP2000259981A (ja) * 1999-03-08 2000-09-22 Nec Corp 電波式道路情報検出装置
JP2001235555A (ja) * 2000-02-24 2001-08-31 Yokogawa Denshikiki Co Ltd 路面監視装置
JP2004077475A (ja) * 2002-08-01 2004-03-11 Nagoya Electric Works Co Ltd 路面状態判別方法およびその装置
EP2216659A1 (en) * 2008-09-11 2010-08-11 Valtion Teknillinen Tutkimuskeskus A method for road condition recognition
JP3190353U (ja) * 2014-02-14 2014-05-08 北海バネ株式会社 積雪量の監視装置
JP2018013467A (ja) * 2016-11-14 2018-01-25 株式会社Cq−Sネット 定在波レーダーによる状態検知装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09318766A (ja) * 1996-05-27 1997-12-12 Mitsubishi Heavy Ind Ltd 凍結検知システム
JP2000259981A (ja) * 1999-03-08 2000-09-22 Nec Corp 電波式道路情報検出装置
JP2001235555A (ja) * 2000-02-24 2001-08-31 Yokogawa Denshikiki Co Ltd 路面監視装置
JP2004077475A (ja) * 2002-08-01 2004-03-11 Nagoya Electric Works Co Ltd 路面状態判別方法およびその装置
EP2216659A1 (en) * 2008-09-11 2010-08-11 Valtion Teknillinen Tutkimuskeskus A method for road condition recognition
JP3190353U (ja) * 2014-02-14 2014-05-08 北海バネ株式会社 積雪量の監視装置
JP2018013467A (ja) * 2016-11-14 2018-01-25 株式会社Cq−Sネット 定在波レーダーによる状態検知装置

Also Published As

Publication number Publication date
JP7039323B2 (ja) 2022-03-22

Similar Documents

Publication Publication Date Title
US7145502B2 (en) Distance measurement method and device
JP5480629B2 (ja) 周波数応答整合を使用した無線周波数ナビゲーション
JP5022646B2 (ja) 壁面探査装置
US10401487B2 (en) Radar device for vehicle and target measurement method therefor
JPH08506894A (ja) 冶金工程における二以上の表面位置の同時測定方法
US20130278457A1 (en) Direction detection apparatus, direction detection method, and direction detection program
US11662452B2 (en) Method and apparatus with measuring of three-dimensional position using radar sensor
US9151720B2 (en) Device for testing a surface including an extraction unit for extracting a shifted frequency component and associated method
CN108981623B (zh) 一种基于微波信号的远距离微小位移探测方法
JP5932746B2 (ja) 媒質境界の位置計測システム
JP2019144189A (ja) 路面状態判別装置、路面状態判別方法および路面状態判別プログラム
JP2011232053A (ja) 距離測定装置
JP4555914B2 (ja) 定在波距離センサ
JP2008304329A (ja) 測定装置
JPWO2012056791A1 (ja) 距離測定装置
RU2621473C1 (ru) Устройство для дистанционного измерения взаимных смещений элементов конструкции зданий и сооружений
KR102328796B1 (ko) 건축 구조물 내의 수분 함량 측정 장치 및 수분 함량 측정 리더기
RU2350901C1 (ru) Способ определения толщины диэлектрического покрытия
US11385342B2 (en) Object sensing apparatus, object sensing method, and computer readable recording medium
JP4993431B2 (ja) 目標物の位置測定方法および位置測定装置
RU2376612C1 (ru) Способ гидрометеорологических наблюдений за акваторией морского полигона и устройство для его осуществления
JP2005233783A (ja) 電磁波レーダを用いた位置の遠隔計測方法
RU2350899C1 (ru) Способ определения толщины диэлектрического покрытия
KR101670474B1 (ko) 광학 장치 및 이의 동작 방법
JP6683964B1 (ja) 外壁診断システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220309

R150 Certificate of patent or registration of utility model

Ref document number: 7039323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150