JP2019143050A - ポリアリールエーテルケトン樹脂複合材料の製造方法 - Google Patents

ポリアリールエーテルケトン樹脂複合材料の製造方法 Download PDF

Info

Publication number
JP2019143050A
JP2019143050A JP2018028698A JP2018028698A JP2019143050A JP 2019143050 A JP2019143050 A JP 2019143050A JP 2018028698 A JP2018028698 A JP 2018028698A JP 2018028698 A JP2018028698 A JP 2018028698A JP 2019143050 A JP2019143050 A JP 2019143050A
Authority
JP
Japan
Prior art keywords
silica
amine compound
filler
composite material
ether ketone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018028698A
Other languages
English (en)
Inventor
朋直 清水
Tomonao Shimizu
朋直 清水
潤一郎 山川
Junichiro Yamakawa
潤一郎 山川
友康 永沢
Tomoyasu Nagasawa
友康 永沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Dental Corp
Original Assignee
Tokuyama Dental Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Dental Corp filed Critical Tokuyama Dental Corp
Priority to JP2018028698A priority Critical patent/JP2019143050A/ja
Publication of JP2019143050A publication Critical patent/JP2019143050A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】従来よりも高強度なポリアリールエーテルケトン樹脂複合材料を製造できる方法を提供すること。【解決手段】シリカ系フィラーとポリアリールエーテルケトン樹脂とを溶融混練してポリアリールエーテルケトン樹脂複合材料を製造する方法であって、分子量30〜200のアミン化合物の存在下で溶融混練することを特徴とする、シリカ系フィラーとポリアリールエーテルケトン樹脂とを含むポリアリールエーテルケトン樹脂複合材料の製造方法。【選択図】 なし

Description

本発明は、ポリアリールエーテルケトン樹脂複合材料の製造方法に関するものである。
スーパーエンジニアリング樹脂は、電気・電子分野、航空宇宙分野、自動車産業、医療分野、一般工業分野等、幅広い用途に使用されている。このスーパーエンジニアリング樹脂の中でも、特にポリアリールエーテルケトン樹脂は、優れた化学的性質、物理的性質を有することから様々な分野での利用が有望視されている。
さらに、スーパーエンジニアリング樹脂に、剛性、強度、寸法特性などを向上させることを目的として、無機フィラーを含有させ、樹脂複合材料として使用することが広く行われている。無機フィラーとしては、シリカ系フィラーなどが広く使用されている。
たとえば、歯科治療の分野においては、ポリアリールエーテルケトン樹脂にシリカ系フィラーなどを含有させたポリアリールエーテルケトン樹脂複合材料を歯科材料として用いる技術が提案されており、義歯、人工歯、義歯床、歯科用インプラント(フィクスチャー、アバットメント、上部構造)、歯冠修復材料、支台築造材料の歯科の各種用途に使用することが例示されている(例えば、特許文献1,2)。
ポリアリールエーテルケトン樹脂に無機フィラーを配合する方法としては、ポリアリールエーテルケトン樹脂を熱によって可塑化した状態で無機フィラーと混練する、溶融混練によって行われることが一般的である。溶融混練の際には、ポリアリールエーテルケトン樹脂と無機フィラーのなじみ性を向上させることが、ポリアリールエーテルケトン樹脂複合材料が高い強度などの良好な物性を得る上で重要である。例えば、特許文献1及び2では、ポリアリールエーテルケトン樹脂と無機フィラーのなじみ性を向上させることを目的として、無機フィラーをシランカップリング剤で表面処理することにより、ポリアリールエーテルケトン樹脂複合材料の強度が向上することが記載されている
特開2013−144783号公報 特開2013−144784号公報
上記のようにポリアリールエーテルケトン樹脂複合材料において、高い強度を得るための技術が提案されているが、より高強度なポリアリールエーテルケトン樹脂複合材料が求められている。
そこで本発明では、従来よりも高強度なポリアリールエーテルケトン樹脂複合材料を製造できる方法を提供することを課題とする。
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、分子量30〜200のアミン化合物の存在下でポリアリールエーテルケトン樹脂とシリカ系フィラーを溶融混練する事によって、高強度なポリアリールエーテルケトン樹脂複合材料が得られることを見出し、本発明に至った。
すなわち、本発明は、シリカ系フィラーとポリアリールエーテルケトン樹脂とを溶融混練してポリアリールエーテルケトン樹脂複合材料を製造する方法であって、分子量30〜200のアミン化合物アミン化合物の存在下で溶融混練することを特徴とする、シリカ系フィラーとポリアリールエーテルケトン樹脂とを含むポリアリールエーテルケトン樹脂複合材料の製造方法である。
本発明においては、シリカ系フィラーを分子量30〜200のアミン化合物で処理し、該分子量30〜200のアミン化合物で処理したシリカ系フィラーとポリアリールエーテルケトン樹脂とを溶融混練することが好ましい。
さらには、シリカ系フィラーと分子量30〜200のアミン化合物と揮発性溶媒とを含む溶液から揮発性溶媒を除去することでシリカ系フィラーを分子量30〜200のアミン化合物で処理することが好ましい。
また、シリカ系フィラーと分子量30〜200のアミン化合物とを、分子量30〜200のアミン化合物が揮発する条件で共存させることでシリカ系フィラーを分子量30〜200のアミン化合物で処理することも好ましい
本発明によれば、従来よりも高強度である、ポリアリールエーテルケトン樹脂とシリカ系フィラーとを含むポリアリールエーテルケトン樹脂複合材料の製造方法を提供することが出来る。
本発明のポリアリールエーテルケトン樹脂複合材料の製造方法を用いることによって、高い強度を有するポリアリールエーテルケトン樹脂複合材料が得られる理由は必ずしも明確ではないが、本発明者らは以下のように推察している。
すなわち、シリカ系フィラーとアミン化合物が共存することにより、アミン化合物がシリカ系フィラーの表面シラノール基と相互作用をする。その際、アミン化合物はシラノール基の水素原子と相互作用することで、シラノール基の酸素原子の反応性が向上し、ポリアリールエーテルケトン樹脂のカルボニル基との相互作用能が向上する。この状態で溶融混練が行われることによって、混練時のポリアリールエーテルケトン樹脂とシリカ系フィラーのなじみ性が向上し混練性が向上する。その結果、ポリアリールエーテルケトン樹脂とシリカ系フィラーのより複合化が高度に進行し、複合体の耐破断性が向上することによって強度(曲げ強さ)が向上すると推察される。
本発明のポリアリールエーテルケトン樹脂複合材料は、ポリアリールエーテルケトン樹脂とシリカ系フィラーを含む。
ポリアリールエーテルケトン樹脂は、その構造単位として、芳香族基、エーテル基(エーテル結合)およびケトン基(ケトン結合)を少なくとも含む熱可塑性樹脂であり、多くは、フェニレン基がエーテル基およびケトン基を介して結合した直鎖状のポリマー構造を持つ。ポリアリールエーテルケトン樹脂の代表例としては、ポリエーテルケトン(PEK)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルケトンケトン(PEKK)、ポリエーテルケトンエーテルケトンケトン(PEKEKK)などが挙げられる。なお、ポリアリールエーテルケトン樹脂の構造単位を構成する芳香族基は、ビフェニル構造などのようにベンゼン環を2つまたはそれ以上有する構造を持ったものでもよい。また、ポリアリールエーテルケトン樹脂の構造単位中には、スルホニル基または共重合可能な他の単量体単位が含まれていてもよい。
本発明のポリアリールエーテルケトン樹脂複合材料の製造方法により得られるポリアリールエーテルケトン樹脂複合材料を歯科用途で使用する際には、ポリアリールエーテルケトン樹脂複合材料の物性および色調の観点から、ポリアリールエーテルケトン樹脂としては、主鎖を構成するエーテル基とケトン基とが、エーテル・エーテル・ケトンの順に並んだ繰り返し単位を有するポリエーテルエーテルケトン、もしく、エーテル・ケトン・ケトンの順に並んだ繰り返し単位を有するポリエーテルケトンケトンが好ましい。
本発明の製造方法によって製造されるポリアリールエーテルケトン樹脂複合材料はシリカ系フィラーを含むものであり、本発明の効果が特に得られやすいことから、配合されるポリアリールエーテルケトン樹脂の配合量は90質量%以下であることが好ましく、85質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。下限値は特に限定されないが、高強度で破断しにくいなどのポリアリールエーテルケトン樹脂の特性を得るために、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。
シリカ系フィラーとは、シリカを主成分とする無機粒子である。シリカを主成分とするとは、フィラー中にシリカ成分を50質量%以上含むことを意味し、70質量%以上含まれることが好ましい。このようなシリカ系フィラーとしては、シリカ、シリカ−ジルコニア、シリカ−チタニア、シリカ−アルミナ、あるいはこれらに1族金属酸化物を添加した無機粒子などが挙げられる。
シリカ系フィラーの粒径は特に制限されないが、0.05μm〜5μmの範囲であることが好ましく、0.1μm〜3μmの範囲であることがより好ましい。
シリカ系フィラーは、シランカップリング剤で表面処理をすることも可能である。シランカップリング処理を行ったシリカ系フィラーを用いることで粘度の増大が抑制され、取り扱いが容易となるとともに、溶融混練時の負荷を抑制してポリアリールエーテルケトン樹脂複合材料の色調を良好なものとすることが容易となるため好ましい。なお、シリカ系フィラーは表面にシラノール基を有しており、シランカップリング処理を行うことによってシラノール基がシランカップリング剤によって被覆されるが、通常全てのシラノール基が被覆されることは無く、アミン化合物によってポリアリールエーテルケトン樹脂とシリカ系フィラーとの相互作用を向上させる効果は失われない。なお、本発明においてシラノール基がシランカップリング剤によって被覆されるとは、シランカップリング剤がシラノール基と化学結合している場合やシランカップリング剤がシラノール基と反応せずに相互作用して存在しているだけの場合を含む。
シランカップリング剤としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニルトリス(β−メトキシエトキシ)シラン、γ−メタクリロイルオキシプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ヘキサメチルジシラザン等を挙げることができる。
なお、シランカップリング処理が過剰に行われてシリカ系フィラーの有機成分が多くなると、溶融混練時に混練物に気泡が混入したり、変色や色むらが発生したりすることが起こりやすくなる。シリカ系フィラー表面の有機成分の量は、大気雰囲気下にて昇温速度10℃/分でシリカ系フィラーの熱重量分析を行い、120℃から800℃までの重量減少率を測定することで算出可能である。該方法で算出した熱重量減少率は、3質量%以下であることが好ましく、2質量%以下であることがより好ましく、1質量%以下であることがさらに好ましく、0.5質量%以下であることが最も好ましい。また、シランカップリング剤が少ない場合にはその効果が十分に得られないため、シランカップリング剤で表面処理された金属酸化物の熱重量減少が少ない場合は、該方法で算出した熱重量減少率は、0.03%以上であることが好ましく、0.07%以上であることがより好ましく、0.1%以上であることがさらに好ましい。
本発明の製造方法によって製造されるポリアリールエーテルケトン樹脂複合材料中に配合されるシリカ系フィラーの配合量は特に限定されないが、本発明の効果が特に得られやすいことから、10質量%〜70質量%の範囲であることが好ましく、15質量%〜50質量%の範囲であることがより好ましく、20質量%〜40質量%の範囲であることがさらに好ましい。
本発明においては、ポリアリールエーテルケトン樹脂とシリカ系フィラーの溶融混練を、アミン化合物の存在下で行う。この際に使用するアミン化合物は、分子内にアミノ基を有し、分子量が30〜200の化合物である。分子量が大きい場合、シリカ系フィラーのシラノール基とポリアリールエーテルケトン樹脂の相互作用を立体障害により一部阻害するため、本発明の効果を十分に得られない場合がある。また、分子量が大きい場合、通常揮発性が低いため、溶融混練時に余剰なアミン化合物が系外に排出されにくくなり、ポリアリールエーテルケトン樹脂複合材料の色調などの物性が低下する場合がある。また、分子量が小さい場合、通常揮発性が高いため、溶融混練時の初期にアミン化合物が揮発してしまい、本発明の効果が限定的になってしまう場合がある。アミン化合物の分子量は、40〜150の範囲であることがより好ましく、50〜100の範囲であることがさらに好ましい。なお、本明細書中では、特に断りがない限り、アミン化合物とは分子量が30〜200のアミン化合物のことを示す。
このようなアミン化合物としては、メチルアミン、エチルアミン、n−プロピルアミン、n−ブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミン、アマンタジン、アミノメチルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメチルシランなどの第1級脂肪族アミン、ジメチルアミン、ジエチルアミン、イソプロピルアミン、イソブチルアミンなどの第2級脂肪族アミン、トリメチルアミン、トリエチルアミン、トリエタノールアミン、N,N−ジイソプロピルエチルアミン、テトラメチルエチレンジアミンなどの第3級脂肪族アミン、スペルミジンなどが挙げられる。
アミン化合物の構造は特に限定されないが、立体的にシラノール基との相互作用を起こしやすい観点から、脂肪族アミンであることが好ましく、第1級脂肪族アミンであることがより好ましい。なお、本発明において脂肪族アミンとは、アミノ基が炭素原子に結合しており、且つ分子内に芳香族基を有さないもののことを言い、分子内の主鎖もしくは側鎖に、酸素、硫黄、窒素、リン、ケイ素、ホウ素、フッ素、塩素、臭素、ヨウ素などの炭化水素基やアミノ基以外の元素を含んでいても良い。
アミン化合物の存在下で溶融混練を行う方法としては、特に限定されず、いかなる方法を用いてもよく、ポリアリールエーテルケトン樹脂の融点以上の温度に設定した溶融混練装置にポリアリールエーテルケトン樹脂とシリカ系フィラーとアミン化合物とを投入し、混練する方法、シリカ系フィラーをアミン化合物で処理し、該アミン化合物で処理したシリカ系フィラーとポリアリールエーテルケトン樹脂とを溶融混練装置に投入し、混練する方法が挙げられる。溶融混練装置としては、例えば、加熱装置付きミキサーや押出機(単軸溶融混練装置、二軸溶融混練装置、三軸溶融混練装置、四軸溶融混練装置など)を使用することができる。これらの中でも、連続的に製造可能で、後述するように次工程での取り扱いが容易な粒状(ペレット状)の複合材料を得ることが容易である押出機による溶融混練が好ましく、二軸溶融混練装置による溶融混練が最も好ましい。
二軸溶融混練装置による溶融混練の条件としては、混練温度、スクリューの回転速度、スクリュー構成、原料投入速度などは適宜決定すれば良いが、混練温度は上述のようにポリアリールエーテルケトン樹脂の融点以上に設定する。ただし、温度が高すぎる場合には樹脂の劣化等が発生する虞がある。そのため、混練温度、すなわち、ニーディングスクリューを設置した部分の設定温度は、融点〜500℃の範囲であることが好ましく、融点+10℃〜450℃の範囲であることがより好ましい。すなわち、ポリアリールエーテルケトン樹脂としてポリエーテルエーテルケトン(融点340℃)を使用する場合、混練温度は340℃〜500℃であることが好ましく、350℃〜450℃であることがより好ましい。ポリアリールエーテルケトン樹脂としてポリエーテルケトンケトン(融点360℃)を使用する場合、混練温度は360℃〜500℃であることが好ましく、370℃〜450℃であることがより好ましい。
ポリアリールエーテルケトン樹脂とシリカ系フィラーとアミン化合物とを溶融混練装置に投入する方法はいかなる手法を用いてもよく、ポリアリールエーテルケトン樹脂とシリカ系フィラーとアミン化合物とを一括で投入する方法、ポリアリールエーテルケトン樹脂を投入して溶融させた後にシリカ系フィラーとアミン化合物を一括で投入する方法、ポリアリールエーテルケトン樹脂とシリカフィラーを一括で投入した後にアミン化合物を投入する方法、ポリアリールエーテルケトン樹脂とアミン化合物を一括で投入した後にシリカ系フィラーを投入する方法、ポリアリールエーテルケトン樹脂を投入して溶融させた後にシリカ系フィラーを投入しさらにアミン化合物を投入する方法、ポリアリールエーテルケトン樹脂を投入して溶融させた後にアミン化合物を投入しさらにシリカ系フィラーを投入する方法などが挙げられる。この中でも、高温での揮発や分解がおこるアミン化合物が効率的にシリカ系フィラーのシラノール基に作用しやすいとの観点から、ポリアリールエーテルケトン樹脂とシリカ系フィラーとアミン化合物とを一括で投入する方法もしくはポリアリールエーテルケトン樹脂を投入して溶融させた後にシリカ系フィラーとアミン化合物を一括で投入する方法が好ましい。
本発明においては、シリカ系フィラーの表面のシラノール基をアミン化合物が活性化することで効果が得られると考えられることから、シリカ系フィラーの表面にアミン化合物が吸着している状態で溶融混練が開始されることが、より高い強度のポリアリールエーテルケトン樹脂複合材料を得ることが容易となるため好ましい。そのため、シリカ系フィラーをアミン化合物で処理してシリカ系フィラーの表面にアミン化合物を吸着させ、該アミン化合物が表面に吸着したシリカ系フィラーとポリアリールエーテルケトン樹脂とを溶融混練することがより好ましい。
シリカ系フィラーをアミン化合物で処理する方法(以下、シリカ系フィラーのアミン処理方法ともいう。)は特に限定されないが、例えば、シリカ系フィラーと液状のアミン化合物とを混合する方法、シリカ系フィラーとアミン化合物とを溶媒中で混合した後溶媒を除去する方法、シリカ系フィラーをアミン化合物の蒸気で処理する方法などが挙げられる。これらの中でも、設備の点や試薬の取扱性の観点から実施が容易であること、シリカ系フィラーの表面に吸着させるアミン化合物の量を制御することが容易であること、シリカ系フィラー表面のアミン化合物の分布が均一になりやすいことなどから、シリカ系フィラーとアミン化合物とを溶媒中で混合した後溶媒を除去する方法もしくはシリカ系フィラーをアミン化合物の蒸気で処理する方法が好ましい。
シリカ系フィラーとアミン化合物を溶媒中で混合した後溶媒を除去する方法で用いる溶媒は、アミン化合物を溶解させることが出来、且つシリカ系フィラーを分散させることができれば、特に制限なく利用できるが、シリカ系フィラーの表面に十分な量のアミン化合物を吸着させたまま溶媒を除去することが容易であることから、揮発性溶媒であることが好ましい。本発明において、揮発性溶媒とは760mmHgでの沸点が100℃以下で、20℃における蒸気圧が1.0KPa以上であることを言う。
このような揮発性溶媒としては、例えば、アセトン、メチルエチルケトン、アセトニトリル、テトラヒドロフラン、ジエチルエーテル、ペンタン、ヘキサン、酢酸エチル、メタノール、エタノール、1−プロパノール、イソプロパノール、水、クロロホルム、ジクロロメタン、トリクロロエタンなどが挙げられる。これらの揮発性溶媒は単独で使用しても良いし、均一に混合できる場合には複数を混合しても良い。
シリカ系フィラーとアミン化合物を溶媒中で混合した後に溶媒を除去する方法としては、公知の方法を特に制限なく使用することが可能であり、例えば、ろ過法、加熱乾燥法、減圧乾燥法、加熱減圧乾燥法、凍結乾燥法、スプレードライ法などが挙げられる。これらの手法を目的に応じて使用すれば良いが、比較的簡単な設備で効率的に溶媒除去を行える観点からは加熱しつつ減圧することで溶媒を除去する加熱減圧乾燥法を好ましい方法としてあげることが出来、効率的に大量生産を行える観点からはシリカ系フィラーを含む溶液(スラリー)を霧状に噴霧して溶媒を除去するスプレードライ法を好ましい方法としてあげることが出来る。各手法の乾燥条件は、使用するアミン化合物と溶媒の性状を鑑みて、適宜決定すれば良い。
シリカ系フィラーとアミン化合物を溶媒中で混合した後に溶媒を除去する方法で使用するアミン化合物としては、揮発性が高すぎる場合には溶媒を除去する際に同時に除去されてしまい、シリカ系フィラーとポリアリールエーテルケトン樹脂との相互作用を十分に促進できない虞があるため、アミン化合物は沸点が30℃以上であることが好ましく、40℃以上であることがより好ましい。このような好ましいアミン化合物としては、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミン、n−ペンチルアミン、n−ヘキシルアミン、エチレンジアミン、トリエタノールアミン、N,N−ジイソプロピルエチルアミン、テトラメチルエチレンジアミン、ヘキサメチレンジアミン、スペルミジン、アマンタジン、アミノメチルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリメチルシランなどが挙げられる。その中でも特に、上述のアミン化合物の分子量や構造の観点も考慮すると、n−プロピルアミン、n−ブチルアミン、n−ペンチルアミンを、シリカ系フィラーとアミン化合物を溶媒中で混合した後溶媒を除去する方法で特に好ましいアミン化合物として例示することができる。
シリカ系フィラーとアミン化合物とを溶媒中で混合した後溶媒を除去する方法では、溶媒中で混合する際のシリカ系フィラーとアミン化合物の配合比は特に限定されないが、アミン化合物の配合量はシリカ系フィラーに対して0.01質量%〜10質量%の範囲であることが好ましく、0.03質量%〜7質量%の範囲であることがより好ましく、0.05質量%〜5質量%の範囲であることがさらに好ましい。溶媒中で混合する際のアミン化合物の配合量をシリカ系フィラーに対して0.01質量%〜10質量%の範囲とすることにより、シリカ系フィラーとポリアリールエーテルケトン樹脂との相互作用を十分に促進しつつ、ポリアリールエーテルケトン樹脂複合材料の色調を良好なものとすることが容易となる。また、反応効率の観点から、溶媒100質量部に対するシリカ系フィラーの配合量は、10質量部〜200質量部の範囲が好ましく、15質量部〜100質量部の範囲がより好ましく、25質量部〜75質量部の範囲がさらに好ましい。
シリカ系フィラーとアミン化合物とを溶媒中で混合する際の、シリカ系フィラー、アミン化合物、溶媒の添加順序に特に制限はない。例えば、シリカ系フィラーと溶媒とを混合してスラリーとし、これにアミン化合物を添加、混合してもよく、アミン化合物と溶媒とを混合してアミン化合物溶液とし、これにシリカ系フィラーを添加、混合してもよい。これらのうち、アミン化合物を添加する前にシリカ系フィラーと溶媒とを混合してスラリーとすることで、アミン化合物添加時にシリカ系フィラーがより分散した状態となり、より均一にシリカ系フィラーのアミン処理を行うことが容易となるため好ましい。
シリカ系フィラーをアミン化合物の蒸気で処理する方法では、シリカ系フィラーと気体状のアミン化合物を共存させれば良く、例えば、シリカ系フィラーに気体状のアミン化合物を噴きつけたり、シリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させたりすることで実施することができ、作業性の観点から、密閉容器中でシリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させる方法が好ましい。密閉容器中でシリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させる方法では、温度や圧力は使用するアミン化合物の性状に合わせてアミン化合物が揮発するよう適宜選択すれば良く、密閉容器中を加熱もしくは冷却したり、加圧もしくは減圧したりしてもよいが、操作が簡単なことから常温・常圧下で行うことが好ましい。使用するアミン化合物としては、効率的に常温・常圧下で処理することが容易であるため揮発性が高いものが好ましいが、揮発性が高すぎる場合にはシリカ系フィラーを処理した後の保管中や溶融混練の初期段階で揮発してしまい、シリカ系フィラーとポリアリールエーテルケトン樹脂との相互作用を十分に促進できない虞がある。そのため、アミン化合物のシリカ系フィラーと共存させる圧力下での沸点が、共存させる温度に対して、+100℃以下であるものが好ましく、+70℃以下であるものが好ましい。一方、アミン化合物の沸点は、常圧下で0℃以上であることが好ましく、30℃以上であることがより好ましい。すなわち、例えば常温(25℃)・常圧下でシリカ系フィラーとアミン化合物を共存させる場合、アミン化合物は沸点が0℃〜125℃の範囲にあるものが好ましく、30℃〜95℃の範囲にあるものがより好ましい。このような特に好ましいアミン化合物としては、常温・常圧下でシリカ系フィラーとアミン化合物を共存させる場合は、トリエチルアミン、n−プロピルアミン、イソプロピルアミン、n−ブチルアミン、イソブチルアミンなどが挙げられる。その中でも特に、上述のアミン化合物の分子量や構造の観点も考慮すると、n−プロピルアミン、n−ブチルアミンを、密閉容器中でシリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させる方法で特に好ましいアミン化合物として例示することができる。
シリカ系フィラーをアミン化合物の蒸気で処理する方法では、シリカ系フィラーとアミン化合物の配合比は特に限定されないが、アミン化合物の配合量はシリカ系フィラーに対して0.001質量%〜50質量%の範囲であることが好ましく、0.005質量%〜20質量%の範囲であることがより好ましく、0.01質量%〜1質量%の範囲であることがさらに好ましい。アミン化合物の配合量をシリカ系フィラーに対して0.001質量%〜50質量%の範囲とすることにより、シリカ系フィラーとポリアリールエーテルケトン樹脂との相互作用を十分に促進しつつ、ポリアリールエーテルケトン樹脂複合材料の色調を良好なものとすることが容易となる。例えば、密閉容器中でシリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させる方法では、密閉容器中に上記の配合量のアミン化合物をシリカ系フィラーと直接接触しないように配置すれば良い。
分子量が30〜200であるアミン化合物、すなわち、分子量が比較的小さなアミン化合物は揮発性が高いため、密閉容器中でシリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させる方法に使用することがとりわけ容易である。本方法は、他の方法と比較しても簡便な設備で実施することができ、特に好ましい方法として挙げることができる。
シリカ系フィラーがアミン化合物で処理されていることは、加熱脱着装置付きのガスクロマトグラフを使用することで確認可能である。具体的には、加熱脱着装置内にシリカ系フィラーを設置し、アミン化合物の沸点より100℃〜200℃程度高い温度で加熱して発生した気体をガスクロマトグラフで分析し、アミン化合物が検出されれば、シリカ系フィラーがアミン化合物で処理されているとみなすことができる。
なお、シリカ系フィラーをシランカップリング剤で表面処理する場合、アミン処理を行う前にシランカップリング処理を行っても良く、アミン処理を行った後にシランカップリング処理を行っても良く、アミン処理と同時にシランカップリング処理を行っても良い。
シリカ系フィラーのシランカップリング剤による表面処理は、シリカ系フィラーとシランカップリング剤を同一の容器内で混合することで実施可能であり、従来公知の方法で行うことができる。例えば、シリカ系フィラーとシランカップリング剤と、アミン処理とシランカップリング処理を同時に行う場合にはアミン化合物と、その他必要な助剤などを同一容器に投入して混合する方法が挙げられる。その際、溶媒を用いても良いし、用いなくても良い。
本発明の製造方法によって製造されたポリアリールエーテルケトン樹脂複合材料には、ポリアリールエーテルケトン樹脂とシリカ系フィラーとアミン化合物のほか、物性を大幅に低下させない範囲でいかなる物質を配合しても良い。
本発明の製造方法によって製造されたポリアリールエーテルケトン樹脂複合材料には、ポリアリールエーテルケトン樹脂以外の樹脂成分を配合することも可能である。配合可能なその他の樹脂としては、特に制限されるものではないが、剛性や強靭性などのポリアリールエーテルケトン樹脂の物性を大幅に劣化させるもので無い樹脂が好ましく、例えば、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリフタルアミド樹脂、ポリテトラフルオロエチレン樹脂、ポリフェニレンエーテル樹脂などが挙げられる。ポリアリールエーテルケトン樹脂複合材料にその他の樹脂を配合する場合、ポリアリールエーテルケトン樹脂は全樹脂の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることがより好ましく、99質量%以上であることがさらに好ましい。
本発明の製造方法によって製造されたポリアリールエーテルケトン樹脂複合材料には、シリカ系フィラー以外の無機粒子を配合することも可能である。無機粒子としては、充填材、顔料、X線造影剤、帯電防止剤、紫外線吸収剤、蛍光剤などが特に制限無く利用できる。例えば、アルミナ、チタニア、ジルコニア、酸化亜鉛、酸化バリウム、酸化鉄、酸化マンガン、Cr−Ti−Sbの複合酸化物、Ti−Ni−Sbの複合酸化物、Ti−Ni−Baの複合酸化物、Sn−Vの複合酸化物、Sn−Ti−Vの複合酸化物、Pr−Zr−Siの複合酸化物、Zr−Vの複合酸化物、Zr−V−Inの複合酸化物、Zr−Ti−V−Inの複合酸化物、Ti−Cr−Nbの複合酸化物、Cr−Ti−Wの複合酸化物、Cr−Ti−Sbの複合酸化物、Ti−W−Feの複合酸化物、Fe−Znの複合酸化物、Fe−Zn−Tiの複合酸化物、Cr−Feの複合酸化物、Zn−Cr−Feの複合酸化物、Zn−Al−Cr−Feの複合酸化物、Fe−Al−Tiの複合酸化物などの各種用途で使用される金属酸化物及び金属複合酸化物などが挙げられる。
ポリアリールエーテルケトン樹脂複合材料中の、シリカ系フィラーとその他の無機粒子を合わせた無機フィラーの配合量は、10質量%〜70質量%の範囲であることが好ましく、15質量%〜50質量%の範囲であることがより好ましく、20質量%〜40質量%の範囲であることがさらに好ましい。
本発明の製造方法によって製造されたポリアリールエーテルケトン樹脂複合材料は、溶融混練工程の後工程を必要に応じて実施してよい。例えば、溶融混練工程を経た直後の高温状態の溶融混練物を、そのまま射出成形や押出成形などにより所望の形状に成形する事ができる。また、溶融混練工程を経た直後の高温状態の溶融混練物を、一旦、ペレット状、パウダー状、あるいはブロック状などの二次加工部材に成形した後、これらの二次加工部材を用いてさらに射出成形、押出成形、レーザーフォーミング、切断加工、切削加工、研磨加工等の各種加工を実施して、所望の形状に成形しても良い。なお、二次加工部材の形状は、取り扱い易さの観点からペレット形状(特に直径0.5mm〜5mm、長さ1mm〜10mm程度の円柱状)であることが好ましい。ペレット形状の複合材料は、押出機(単軸溶融混練装置、二軸溶融混練装置、三軸溶融混練装置、四軸溶融混練装置など)からストランド状で押し出された複合材料を、所望の間隔で切断することで容易に得ることができる。ペレット状として得られた二次加工部材は、例えば射出成形、押出成形、加熱プレス成形などにより直接所望の形状に成形したり、射出成形、押出成形、加熱プレス成形などにより一旦ブロック形状やディスク形状に成形した後、これを切削加工して所望の形状にしたりすることが可能である。さらに、溶融混練物をそのまま所望の形状に成形した部材や、二次加工部材そのものや二次加工部材を経て所望の形状に成形した後に、成形時の応力を緩和して優れた強度を発揮させるために、熱処理工程を実施しても良い。熱処理工程は、ポリアリールエーテルケトン樹脂のガラス転移点以上で融点未満の温度で実施することが出来る。
本発明の製造方法によって製造されたポリアリールエーテルケトン樹脂複合材料の用途は特に限定されず、種々の用途に利用することができるが、例えば、歯科用材料として利用することが好ましい。本発明の製造方法によって製造されたポリアリールエーテルケトン樹脂複合材料は、高強度であることから口腔内での咀嚼に際して大きな押圧力に日常的に晒される歯科用材料として用いられた場合に優れた効果を発揮するとともに、シリカ系フィラーを含有しているため歯科用途として適度な弾性率と白色度を付与することが容易であるためである。歯科用途としては、義歯、人工歯、義歯床、歯科用インプラント、歯冠修復材料、支台築造材料など種々の用途に利用する事ができるが、強度、色調に対して特に高い要求がなされる歯冠修復用途に使用することが好ましい。
以下、実施例によって本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。実施例中に示した略号、称号については以下のとおりである。
[ポリアリールエーテルケトン樹脂]
・P1:ポリエーテルエーテルケトン樹脂(ダイセルエボニック社製:VESTAKEEP2000P)

[シリカ系フィラー]
・F1:SiO(球状、平均粒径1.0μm)
・F2:SiO(球状、平均粒径2.8μm)
・F3:SiO(球状、平均粒径0.4μm)
・F4:SiO−TiO(球状、平均粒径0.3μm、シリカ割合90質量%)
・F5:SiO−ZrO(不定形状、平均粒径1.0μm、シリカ割合73質量%)

[分子量30〜200のアミン化合物]
・A1:n−プロピルアミン(脂肪族1級アミン、分子量59、沸点48℃)
・A2:トリエチルアミン(脂肪族3級アミン、分子量101、沸点90℃)
・A3:n−ペンチルアミン(脂肪族1級アミン、分子量87、沸点104℃)
・A4:トリブチルアミン(脂肪族3級アミン、分子量185、沸点217℃)
・A5:3−アミノプロピルトリメトキシシラン(脂肪族1級アミン、分子量179、沸点210℃、91℃/15mmHg)

[分子量200を超えるアミン化合物]
・A6:3−(N−スチリルメチル−2−アミノエチルアミノ)−プロピルトリメトキシシラン(分子量339、沸点146℃/15mmHg)
・A7:トリオクチルアミン(分子量354、沸点365℃)

[シランカップリング剤]
・S1:γ−メタクリロイルオキシプロピルトリメトキシシラン
・S2:3−スチリルプロピルトリメトキシシラン

各試験方法については、以下のとおりである。
(シリカ系フィラーのアミン処理方法)
<シリカ系フィラーをアミン化合物の蒸気で処理する方法>
[方法1:密閉容器中でシリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させる方法(常圧下)]
密閉可能な10Lポットに、12cm×15cm×t3cmバットに入れた所定量のアミン化合物と、同サイズの別のバットに入れた100gのシリカ系フィラーを、アミン化合物を入れたバットを最下段に置き、その上に設置した網目状の架台にシリカ系フィラーを入れたバットを置き、アミン化合物とシリカ系フィラーが直接接触しないように設置後、容器の蓋を閉めて密閉して室温(25℃)で1時間静置した。その後、ポット内のシリカ系フィラーを回収して、アミン処理されたシリカ系フィラーを得た。
[方法2:密閉容器中でシリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させる方法(減圧下)]
密閉可能な10Lポットに、12cm×15cm×t3cmバットに入れた所定量のアミン化合物と、同サイズの別のバットに入れた100gのシリカ系フィラーを、アミン化合物を入れたバットを最下段に置き、その上に設置した網目状の架台にシリカ系フィラーを入れたバットを置き、アミン化合物とシリカ系フィラーが直接接触しないように設置後、容器の蓋を閉めて密閉した。ポット内部を、油回転真空ポンプを使用して約15mmHgまで減圧し、室温(25℃)で1時間静置した。その後、ポット内のシリカ系フィラーを回収して、アミン処理されたシリカ系フィラーを得た。
<シリカ系フィラーとアミン化合物を溶媒中で混合した後に溶媒を除去する方法>
[方法3:加熱減圧乾燥法による処理]
2.5kgのイソプロピルアルコールに、1kgのシリカ系フィラーを投入して、30分間攪拌してスラリーを調製した。該スラリーに、所定量のアミン化合物と、必要に応じて所定量のシランカップリング剤を投入し、2時間攪拌した。その後、該スラリーを、ロータリーエバポレーターを用いて、攪拌状態で、減圧度10ヘクトパスカル、加熱条件40℃(温水バス温度)の条件で1時間乾燥させ、溶媒を除去し、得られた固形分を回収した。該固形分を、さらに90℃24時間真空乾燥し、アミン処理されたシリカ系フィラーを得た。
[方法4:スプレードライ法による処理]
6kgの水に、4kgのシリカ系フィラーを投入して、30分間攪拌してスラリーを調製した。該スラリーに、所定量のアミン化合物と、必要に応じて所定量のシランカップリング剤を投入し、30分間攪拌した。その後、該スラリーをディスク式スプレードライヤー(坂本技研株式会社製:TSR−2W)を用いて、ディスクの回転速度10000rpm、乾燥温度200℃の条件でスプレードライを行い、アミン処理されたシリカ系フィラーを得た。
(シリカ系フィラーのシランカップリング剤による表面処理方法)
[方法5]
シリカ系フィラーを1kg、トルエンを2Lを計量混合してシリカ系フィラーを分散させた後、シランカップリング剤を24g加えて2時間の加熱攪拌を行った。その後、遠心分離機によって固形分を分別し、トルエンで2回洗浄を行った後、真空乾燥機にて90℃10時間乾燥を行った。
(ポリアリールエーテルケトン樹脂複合材料の製造)
所定量のポリアリールエーテルケトン樹脂と所定量のアミン処理されたもしくはアミン処理されていないシリカ系フィラーとを10Lの密閉可能な容器に投入した後2時間混合した。次いで、得られた混合物を二軸溶融混練装置(パーカーコーポレーション製:HK−25D)に投入し、原料投入速度4kg/h、バレル温度360℃、回転数500rpmの条件で溶融混練を行い、ポリアリールエーテルケトン樹脂複合材料を得た。ノズルから排出されたストランドは水槽で冷却後、ペレタイザーを使用して、直径1〜3mm程度、長さ2〜4mm程度の円柱状のペレットを得た。なお、本手法におけるポリアリールエーテルケトン樹脂とシリカ系フィラーとアミン化合物とを溶融混練装置に投入する方法は、ポリアリールエーテルケトン樹脂とシリカ系フィラーとアミン化合物とを一括で投入する方法に該当する。
(ポリアリールエーテルケトン樹脂複合材料の曲げ強さの評価)
射出成形機SE18DUZ(住友重機械工業社製)に、12×14×18mmのキャビティーを設けた金型ユニットを設置した。予備乾燥機付きホッパーにポリアリールエーテルケトン樹脂複合材料のペレットを投入し、成形温度(シリンダ温度)を360〜400℃、流動化温度360℃、金型温度を180℃に設定し、射出圧力180MPa、射出速度50mm/secの条件で射出充填を行った。180MPaの保圧かけを40秒間保持した。金型による冷却時間300秒の後、金型ユニットを開いてブロックを取り出した。
該ブロックを、ダイヤモンドカッターを用いて幅約4mm、厚さ約1.2mm、長さ約14mmに加工した。これを耐水研磨紙1500番で長さ方向に研磨して試験片とした。試験片の幅と厚さをマイクロメーターで測定し、万能引張試験機オートグラフ(島津製作所製:AG−I)を用いて、室温大気中、支点間距離12mm、クロスヘッドスピード1mm/minの条件で3点曲げ試験を行い、荷重−たわみ曲線を得た。
下式により、曲げ強度を求めた。
F = 3PS/2WB
ここで、F:曲げ強さ[Pa]、P:試験片破折時の荷重[N]、S:支点間距離[m]、W:試験片の幅[m]、B:試験片の厚さ[m]である。
試験は5個の試験片について行い、得られた結果より、平均および標準偏差を求めた。
(ポリアリールエーテルケトン樹脂複合材料の色調評価)
12×14×18mmに成形したポリアリールエーテルケトン樹脂複合材料のブロックをダイヤモンドカッターで12mm×14mm×t1mmに切断して内部面を露出し、その後バフ研磨を行った。バフ研磨を行った内部面に対し、色差計(東京電色社製:TC−1800MKII)を用いて、黒背景下にて標準の光Cを照射した際の反射光から色調データ(L値)を得た。L値は、試料の明度を表す指標であり、数値が低いほど黒色に、高いほど白色に近い。本試料においては、白色度が高いほど顔料等による調色の自由度が高まるため、色調の点で優位であると言える。なお、3個のブロックからそれぞれ1個ずつの試験片を作製してL値の測定を行い、その平均値をポリアリールエーテルケトン樹脂複合材料の色調データ(L値)とした。
<実施例1>
シリカ系フィラーF1を1kgと、アミン化合物A1を1gとを使用して方法1の密閉容器中でシリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させる方法(常圧下)による処理によりシリカ系フィラーのアミン処理を行い、アミン処理されたシリカ系フィラーF1A1−11を得た。その後、該アミン処理されたシリカ系フィラーF1A1−11を400gと、PEEK樹脂を600gとを溶融混練してポリアリールエーテルケトン樹脂複合材料を得て、該ポリアリールエーテルケトン樹脂複合材料の曲げ強さの評価を行った。シリカ系フィラーのアミン処理を行う条件を表1に、ポリアリールエーテルケトン樹脂複合材料の組成と曲げ強さと色調の評価結果を表2に示す。
<実施例2〜26、比較例1〜10>
シリカ系フィラーの種類、アミン化合物の種類、シリカ系フィラーをアミン化合物で処理する方法、ポリアリールエーテルケトン樹脂複合材料の組成を、それぞれ表1及び表2に示すとおりに変更した以外は、実施例1と同様にポリアリールエーテルケトン樹脂複合材料を得て、その曲げ強さと色調の評価を行った。シリカ系フィラーのアミン処理を行う条件を表1に、ポリアリールエーテルケトン樹脂複合材料の組成と曲げ強さと色調の評価結果を表2に示す。
Figure 2019143050
Figure 2019143050
評価結果について、シリカ系フィラーとポリアリールエーテルケトン樹脂とを分子量30〜200のアミン化合物の存在下で溶融混練した実施例1〜26は、シリカ系フィラーとポリアリールエーテルケトン樹脂と分子量30〜200のアミン化合物の非存在下で溶融混練した比較例1〜10と比較して、高い曲げ強さを示した。なお比較例6、7は、シリカ系フィラーとポリアリールエーテルケトン樹脂とを分子量が200を超えるアミン化合物の存在下で溶融混練をした場合である。
密閉容器中でシリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させる方法による処理する方法(方法1、2)を使用した実施例1,6,7,12,13を比較すると、分子量が40〜150の範囲である実施例1,6,7は、分子量が150を超える実施例12,13と比較して高い曲げ強さを示した。また、アミン化合物が、分子量が50〜100の範囲内であり、且つ脂肪族1級アミンである実施例1,7は、分子量が100以上であり、且つ脂肪族3級アミンである実施例6と比較して高い曲げ強さを示した。なお、アミン化合物の沸点が常圧下で0℃〜125℃の範囲である実施例1,6,7は常圧下でアミン処理を行うことができたが、沸点が常圧下で125℃を超える実施例12,13はアミン処理を減圧下で行う必要があった。
加熱減圧乾燥法による処理(方法3)を使用した実施例14〜18を比較すると、分子量が40〜150の範囲である実施例14〜16は、分子量が150を超える実施例17,18と比較して高い曲げ強さを示した。また、アミン化合物が、分子量が50〜100の範囲内であり、且つ脂肪族1級アミンである実施例14,16は、分子量が100以上であり、且つ脂肪族3級アミンである実施例15と比較して高い曲げ強さを示した。
スプレードライ法による処理(方法4)を使用した実施例19〜23を比較すると、分子量が40〜150の範囲である実施例19〜21は、分子量が150を超える実施例22,23と比較して高い曲げ強さを示した。また、アミン化合物が、分子量が50〜100の範囲内であり、且つ脂肪族1級アミンである実施例19,21は、分子量が100以上であり、且つ脂肪族3級アミンである実施例20と比較して高い曲げ強さを示した。
密閉容器中でシリカ系フィラーとアミン化合物をアミン化合物が揮発する条件で共存させる方法(常圧下)により処理する方法(方法1)を使用し、その際のアミン化合物の配合量が異なる以外は同一の組成・方法でポリアリールエーテルケトン樹脂複合材料を製造した実施例1〜5を比較すると、シリカフィラーに対するアミン化合物の配合量が0.01質量%以上である実施例1,3〜5は、0.01質量%未満である実施例2と比較して高い曲げ強さを示した。また、シリカフィラーに対するアミン化合物の配合量が1質量%以下である実施例1〜4は、1質量%を超える実施例5と比較して白色度が高く、良好な色調であると言える。

Claims (4)

  1. シリカ系フィラーとポリアリールエーテルケトン樹脂とを溶融混練してポリアリールエーテルケトン樹脂複合材料を製造する方法であって、分子量30〜200のアミン化合物の存在下で溶融混練することを特徴とする、シリカ系フィラーとポリアリールエーテルケトン樹脂とを含むポリアリールエーテルケトン樹脂複合材料の製造方法。
  2. シリカ系フィラーを分子量30〜200のアミン化合物で処理し、該分子量30〜200のアミン化合物で処理したシリカ系フィラーとポリアリールエーテルケトン樹脂とを溶融混練する、請求項1記載のシリカ系フィラーとポリアリールエーテルケトン樹脂とを含むポリアリールエーテルケトン樹脂複合材料の製造方法。
  3. シリカ系フィラーと分子量30〜200のアミン化合物と揮発性溶媒とを含む溶液から揮発性溶媒を除去することでシリカ系フィラーを分子量30〜200のアミン化合物で処理する、請求項2記載のシリカ系フィラーとポリアリールエーテルケトン樹脂とを含むポリアリールエーテルケトン樹脂複合材料の製造方法。
  4. シリカ系フィラーと分子量30〜200のアミン化合物とを、分子量30〜200のアミン化合物が揮発する状態で共存させることでシリカ系フィラーを分子量30〜200のアミン化合物で処理する、請求項2記載のシリカ系フィラーとポリアリールエーテルケトン樹脂とを含むポリアリールエーテルケトン樹脂複合材料の製造方法。
JP2018028698A 2018-02-21 2018-02-21 ポリアリールエーテルケトン樹脂複合材料の製造方法 Pending JP2019143050A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018028698A JP2019143050A (ja) 2018-02-21 2018-02-21 ポリアリールエーテルケトン樹脂複合材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018028698A JP2019143050A (ja) 2018-02-21 2018-02-21 ポリアリールエーテルケトン樹脂複合材料の製造方法

Publications (1)

Publication Number Publication Date
JP2019143050A true JP2019143050A (ja) 2019-08-29

Family

ID=67771874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018028698A Pending JP2019143050A (ja) 2018-02-21 2018-02-21 ポリアリールエーテルケトン樹脂複合材料の製造方法

Country Status (1)

Country Link
JP (1) JP2019143050A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143123A (ja) * 2018-02-21 2019-08-29 株式会社トクヤマデンタル ポリアリールエーテルケトン樹脂複合材料及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101335A (ja) * 1987-10-14 1989-04-19 Teijin Ltd 二軸配向ポリエーテルエーテルケトンフイルム
JP2005170771A (ja) * 2003-12-15 2005-06-30 Toyota Motor Corp 微塩基性シリカ粉体、その製造方法及び樹脂組成物
JP2008031309A (ja) * 2006-07-28 2008-02-14 Tokuyama Dental Corp 表面処理された無機フィラーの製造方法
JP2014152150A (ja) * 2013-02-12 2014-08-25 Tokuyama Dental Corp 歯科用樹脂複合材料
WO2015170649A1 (ja) * 2014-05-07 2015-11-12 株式会社トクヤマデンタル 樹脂複合材料および樹脂複合材料の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01101335A (ja) * 1987-10-14 1989-04-19 Teijin Ltd 二軸配向ポリエーテルエーテルケトンフイルム
JP2005170771A (ja) * 2003-12-15 2005-06-30 Toyota Motor Corp 微塩基性シリカ粉体、その製造方法及び樹脂組成物
JP2008031309A (ja) * 2006-07-28 2008-02-14 Tokuyama Dental Corp 表面処理された無機フィラーの製造方法
JP2014152150A (ja) * 2013-02-12 2014-08-25 Tokuyama Dental Corp 歯科用樹脂複合材料
WO2015170649A1 (ja) * 2014-05-07 2015-11-12 株式会社トクヤマデンタル 樹脂複合材料および樹脂複合材料の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019143123A (ja) * 2018-02-21 2019-08-29 株式会社トクヤマデンタル ポリアリールエーテルケトン樹脂複合材料及びその製造方法
JP7464218B2 (ja) 2018-02-21 2024-04-09 株式会社トクヤマデンタル ポリアリールエーテルケトン樹脂複合材料の製造方法

Similar Documents

Publication Publication Date Title
JP6576333B2 (ja) 樹脂複合材料および樹脂複合材料の製造方法
JP6013217B2 (ja) 歯科用樹脂複合材料
EP2759573B1 (en) Thermosetting silicone rubber composition
JP6778662B2 (ja) 造粒処理シリカの製造方法
TWI722198B (zh) 光硬化性氟聚醚系橡膠組成物及其硬化物、以及抑制氟聚醚系橡膠硬化物的密閉硬化時之發泡的方法
JP5367901B2 (ja) 樹脂複合材料、歯科用材料および樹脂複合材料の製造方法
Rodríguez et al. Formation of functionalized nanoclusters by solvent evaporation and their effect on the physicochemical properties of dental composite resins
JP5162879B2 (ja) 金属酸化物粒子−シリコーン樹脂複合体とそれを備えた光学部材及び発光装置並びに金属酸化物粒子−シリコーン樹脂複合体の製造方法
EP2799496B1 (en) Dental material, bone substitute material and methods for their manufacturing
WO2015034881A1 (en) Porous composite filler compositions
JP2019143050A (ja) ポリアリールエーテルケトン樹脂複合材料の製造方法
US11759404B2 (en) Porous composite filler compositions
JP4242075B2 (ja) シリカを重縮合加硫性シリコーンマトリックス中に分散させたエラストマー形成用懸濁液の製造法
JP7201177B2 (ja) ポリアリールエーテルケトン樹脂複合材料の評価方法
JP7493736B2 (ja) ポリアリールエーテルケトン樹脂複合材料
JP7464218B2 (ja) ポリアリールエーテルケトン樹脂複合材料の製造方法
JP2002533507A5 (ja)
JPH02292367A (ja) 水分保持基を含有するアルコキシ官能基によって架橋される2液型オルガノポリシロキサン組成物及びそれらの製造方法
Kleczewska et al. Dental composites based on dimethacrylate resins reinforced by nanoparticulate silica
JP6765102B2 (ja) 歯科用樹脂複合材料、およびその製造方法
JP7087686B2 (ja) 光硬化性フルオロポリエーテル系ゴム組成物及びその硬化物
Khaje et al. The effect of aging and silanization on the mechanical properties of fumed silica-based dental composite
JP5367902B2 (ja) 樹脂複合材料、歯科用材料および樹脂複合材料の製造方法
JPS6134062A (ja) 室温硬化性シリコ−ンゴム組成物
TWI306103B (en) Elastomeric resin compounds

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220301