1306103 玖'發明說明: 丨v > ㈠發明所屬之技術領域.......................................................... 本發明係關於新穎和改良之樹脂複合物’及更特定言 之,係關於具有改良之可加工性之具有高塡充劑添加量的 彈性體樹脂。也揭示用於製造此等新穎和改良之彈性體複 合物。本發明係進一步關於具有改良之阻燃性的彈性體樹 脂。 ㈡先前技術 製造彈性體複合物例如該等使用於密封材料、密封墊、 輪胎.、電纜及其他製自橡膠之物品時使用配料像塡充劑、 塑化劑、抗氧化劑、熟化劑等是眾所皆知的。所有的此等 複合物配料是用以獲得最終物品之某些性質,或在製造時 是需要的。但是某些此等物質確實會相互影響,結果導致 對物理性質或加工行爲會有不利的效果。功能性塡充劑(例 如某些碳黑和沉澱矽石)是用以改良硬度、拉伸強度、抗 撕裂性及其他吾所欲得之性質,但是彼等尤其是在高塡充 劑添加量下也會增加複合物的黏度,結果導致不良可加工 性和焦化安全性。此必須藉由倂用塑化劑和/或加工助劑 加以平衡。然而塑化劑和加工助劑對物理性質包括耐火性 會有負面的影響,且彼等會有「起霜現象」。直到目前爲 止並不知道任何材料是可克服具有高塡充劑添加量之彈性 體樹脂複合物的加工困難性,且仍然維持吾所欲得之物理 性質。 其係非常不易提供「高塡充劑添加量」之精確的定義, 因爲其係非常依賴所使用的聚合物及最終複合物的應用。 !3〇61〇3 然而’一般而言若一種高度充塡之彈性體複合物的塡充劑 3里是加以增加時’黏度將會提高至其中複合物之可加工 性將會強烈地降低的程度。因此,在高度充塡樹脂中之填 充劑的數量視聚合物而定,其可變化從約i 5至約5 00 %(以 樹脂之重量計)。 吾已知在彈性體中使用微矽石作爲半補強塡充劑以取代 例如MT (中等熱裂)碳黑或矽酸鈣。在此等實例中,微 矽石一直用作爲替代物以獲得一種具有相同強度且較少成 本的彈性體。因此’當使用微矽石作爲半補強塡充劑時, 總塡充劑添加量從未提高。 ㈢發明內容 本發明之一目的是提供一種高度充塡之彈性體複合物具 有低黏度以提供優良可加工性,但是並不會減少塡充劑含 量且並不會負面地影響到彈性體複合物之物理性質。在某 些實例中’甚至可增加塡充劑含量,但是並不會增加黏度 且並不會負面地影響到物理性質。其進一步目的是提供具 有改良之阻燃性的彈性體複合物。 根據本發明之一特點是關於具有高塡充劑含量之彈性體 複合物’該彈性體複合物之特徵爲··彼等額外地含有1至 4 0 0 %之微矽石(以樹脂之重量計)作爲改良劑以改良可加 工性。 根據較佳的具體實例’彈性體複合物含有5至300%之 微矽石(以樹脂之重量計)。 最佳的彈性體複合物含有1 0至1 5 〇 %之微矽石(以樹脂 130^¾ 9 ; I '..乙..: 根據本發明之另一特點是關於一種製造具有高塡充劑含 量之高度充塡之彈性體化合物的方法,該方法之特徵爲: 微矽石添加到彈性體化合物的數量爲1至4 〇 〇 % (以樹脂 之重量計)以改良可加工性。 根據本發明之較佳的具體實例,微矽石添加到彈性體化 合物的數量爲5至3 0 0 % (以樹脂之重量計)。 茲就最佳的結果而言,微矽石添加到彈性體化合物的數 量爲1 0至1 5 0 % (以樹脂之重量計)。 在說明書和本申請案之申請專利範圍中所使用術語「微 矽石」是一種獲自特定製法的非晶質s i 0 2,其中砍石(石 英)是加以還原成SiO-氣體,且將還原產物在氣相加以氧 化以形成非晶質矽石。微砂石可能含有至少7 0重量%矽石 (3丨02)’且比密度爲2.1-2.3£/(:1113’及表面積爲15-4〇1112/£。 主要的顆粒是大體上爲球狀,且平均粒徑爲約0.15微米。 微矽石較佳爲在電還原爐中製造砂或砂合金時作爲共產物 所獲得者。在此等製法中形成大量的微矽石。微矽石是以 慣用方法使用袋式濾網或其他收集裝置加以回收。 本發明也是關於使用微矽石作爲改良劑以改良彈性體化 合物的可加工性’及關於使用微矽石以改良以三水合鋁 (aluminum trihydrate)和/或氫氧化鎂加以充塡之阻燃性彈 性體化合物的極限耗氧指數。 其已經令人驚奇地發現根據本發明之彈性體化合物,與 具有相同高塡充劑含量但是並不含有微矽石之彈性體化合 物相比較,具有低黏度和優良加工性質。其進一步已經發 現添加入微矽石之具有高塡充劑含量的彈性體化合物是可 1306103 使用於全部類型之交聯化技術,且其並不會像其他含矽材 料(例如沉澱矽石)降低在硫硬化化合物中之交聯化速率。 對含有其他矽石類型塡充劑和矽烷偶合劑之彈性體化合物 而言,並不會增加用於偶合目的所需要之矽烷的配料量。 因此,除了達到目前爲止所不可能的塡充劑添加量以外, 本發明也可節省其他化合物配料及欲能具有較佳流動性之 彈性體化合物的加工成本。此外,也可改良高度充塡之彈 性體化合物的壓縮永久變形性。 其也令人驚奇地發現.在以二水合銘和/或氯氧化錶充 塡之阻燃性彈性體化合物中,將微矽石添加到此等彈性體 化合物中結果導致增加極限耗氧指數(LO 1 ),且當彈性體 化合物以三水合鋁和/或氫氧化鎂充塡之彈性體化合物是 燃燒時形成穩定的燒焦炭。 根據本發明之彈性體化合物是包括以彈性體爲基質例 如:天然橡膠(NR)、乙烯-丙烯-二烯橡膠(EPM和EPDM)、 苯乙烯·丁二烯橡膠(SBR)、丙烯腈-丁二烯橡膠(NBR)、聚 氯丁二烯樹脂(PCP),特用聚合物例如丙烯酸酯橡膠和乙 烯醋酸乙烯酯共聚物等及其摻合物,而且也包括以彈性體 與熱塑性塑膠之摻合物爲基質的化合物,亦即所謂的熱塑 性彈性體,及一種用於製造該等聚合物組成物的方法。 術語「彈性體」是不僅包括傳統的彈性體材料例如天然 橡膠或合成橡膠狀聚合物,而且也包括其摻合物與熱塑性 彈性體。 彈性體化合物之製造是可藉由使用慣用製法和設備例如 開放式碾磨機、全部類型之內部混合器及連續式單螺桿或 1306103 雙螺桿擠製機來完成。 含有改良劑之彈性體複合物的製法是可藉由使用慣用方 法,包括但是並不受限於擠製法、壓縮模製法、射出成形 模製法及其他方法來完成。 ㈣實施方式 實施例1 將30份(phr)之微矽石(以1〇〇份樹脂爲基準)添加到 —種以EPDM爲基質之配方含有140 phr鍛燒黏土連同抗 氧化劑、塑化劑和過氧化物硬化系統。複合物之混合是在 內部混合器中進行,且用於試驗之樣品是在180 °C加壓 固化爲期20分鐘。所獲得結果展示於表1。茲就比較用目 的而言,不含微矽石之EPDM橡膠是以與根據本發明之複 合物相同的方法加以試驗。試驗是根據下列規格來進行: 拉伸試驗:S2 DIN 5 3504、抗撕裂性(褲形撕裂)BS 6469。 表1 先前技術 本發明 量測性質 EPDM橡膠 含有140 phr 鍛燒黏土 塡充劑 EPDM橡膠 含有140 phr 鍛燒黏土 塡充劑 和 30 phr 微矽石 孟納黏度(@130 °C) 45 47 拉伸強度(MPa) 7.8 8.4 斷裂伸度(%) 283 276 抗撕裂性(N/min) 2.0 2.8 壓縮永久變形性(%) (10 分鐘、@200 0C) 16.6 16.8 在表1之結果證實:與不含微矽石之EPDM相比較,根 據本發明之EPDM橡膠是具有改良之物理性質,尤其是在 此高塡充劑含量下之低壓縮永久變形性,連同優良可加工 性(以黏度所表示)。 1306103 ^ 丨1306103 玖 'Invention Description: 丨v > (1) The technical field to which the invention belongs................................ ........................ The present invention relates to novel and improved resin composites' and, more particularly, to improved processability An elastomer resin having a high amount of ruthenium added. It is also disclosed to make such novel and improved elastomeric composites. The present invention is further directed to elastomeric resins having improved flame retardancy. (2) Prior art manufacturing of elastomer composites such as those used in sealing materials, gaskets, tires, cables, and other articles made from rubber, such as enamel, plasticizer, antioxidant, curing agent, etc. Everything is known. All of these composite ingredients are used to obtain certain properties of the final article or are desirable at the time of manufacture. However, some of these substances do interact with each other, resulting in adverse effects on physical properties or processing behavior. Functional chelates (such as certain carbon blacks and precipitated vermiculite) are used to improve hardness, tensile strength, tear resistance and other desirable properties, but they are especially added in sorghum fillings. The amount of the composite also increases the viscosity of the composite, resulting in poor processability and coking safety. This must be balanced by using plasticizers and/or processing aids. However, plasticizers and processing aids have a negative impact on physical properties, including fire resistance, and they have "blooming". Until now, it has not been known that any material is capable of overcoming the processing difficulty of an elastomer resin composite having a high amount of ruthenium added, and still maintains the physical properties desired. It is very difficult to provide a precise definition of "high strontium filling amount" because it is highly dependent on the polymer used and the application of the final composite. !3〇61〇3 However, 'in general, if the filler 3 of a highly-filled elastomer composite is added, the viscosity will increase until the workability of the composite will be strongly reduced. degree. Therefore, the amount of the filler in the highly filled resin depends on the polymer, which may vary from about i 5 to about 50,000% by weight of the resin. It is known to use micro vermiculite as a semi-reinforcing agent in the elastomer to replace, for example, MT (medium thermal cracking) carbon black or calcium silicate. In these examples, micro vermiculite has been used as a substitute to obtain an elastomer of the same strength and less cost. Therefore, when micro vermiculite is used as a semi-reinforcing agent, the total amount of the chelating agent is never increased. (III) SUMMARY OF THE INVENTION An object of the present invention is to provide a highly filled elastomer composite having low viscosity to provide excellent processability, but without reducing the amount of sputum and without adversely affecting the elastomer composite Physical properties. In some instances, the amount of sputum may even be increased, but does not increase the viscosity and does not negatively affect the physical properties. A further object is to provide an elastomer composite having improved flame retardancy. According to one feature of the invention, there is provided an elastomer composite having a high sputum content. The elastomer composite is characterized in that it additionally contains from 1 to 400% of micrometeorite (by weight of the resin). As a modifier to improve processability. According to a preferred embodiment, the elastomeric composite contains from 5 to 300% of vermiculite (based on the weight of the resin). The preferred elastomeric composite contains from 10 to 15% by mole of vermiculite (with resin 130^3⁄4 9 ; I '.. B..: another feature according to the invention relates to a manufacturing having a high charge A method of highly enriched elastomeric compound in a dosage form, characterized in that the amount of micro vermiculite added to the elastomeric compound is from 1 to 4% by weight (based on the weight of the resin) to improve processability. In a preferred embodiment of the invention, the amount of micro vermiculite added to the elastomeric compound is from 5 to 30,000 (based on the weight of the resin). For best results, the micro vermiculite is added to the elastomer. The amount of the compound is from 10 to 150% by weight of the resin. The term "micrometeorite" as used in the specification and the scope of the application of the present application is an amorphous si 0 obtained from a specific process. 2, wherein the chopped stone (quartz) is reduced to SiO-gas, and the reduced product is oxidized in the gas phase to form an amorphous vermiculite. The micro-sand may contain at least 70% by weight of vermiculite (3丨02) 'And the specific density is 2.1-2.3£/(:1113' and the surface area is 15-4〇1112/£. The particles are substantially spherical and have an average particle diameter of about 0.15 μm. The micro vermiculite is preferably obtained as a co-product in the production of sand or a sand alloy in an electric reduction furnace. Micro vermiculite. Micro vermiculite is recovered by a conventional method using a bag filter or other collecting device. The present invention also relates to the use of micro vermiculite as a modifier to improve the processability of an elastomer compound' and regarding the use of micrometeorites. To improve the ultimate oxygen consumption index of a flame retardant elastomer compound filled with aluminum trihydrate and/or magnesium hydroxide. It has been surprisingly found that the elastomer compound according to the present invention has the same Compared with the elastomer compound which does not contain micro vermiculite, it has low viscosity and excellent processing properties. It has been further found that an elastomer compound having a high cerium content added to micro vermiculite can be used 1306103. All types of cross-linking technology, and it does not reduce the rate of cross-linking in sulfur hardening compounds like other niobium-containing materials (such as precipitated vermiculite) For elastomer compounds containing other vermiculite type chelating agents and decane coupling agents, the amount of decane required for coupling purposes is not increased. In addition to the amount of the agent added, the present invention also saves the processing cost of the other compound ingredients and the elastomer compound which is desired to have better fluidity. In addition, the compression set property of the highly filled elastomer compound can also be improved. Surprisingly, it has been found that the addition of micro vermiculite to these elastomeric compounds results in an increase in the ultimate oxygen consumption index (LO 1 ) in flame retardant elastomer compounds filled with dihydrate and/or chlorine oxide. And when the elastomer compound is filled with aluminum trihydrate and/or magnesium hydroxide, the elastomeric compound forms a stable charcoal when burned. The elastomeric compound according to the present invention comprises an elastomer based substrate such as natural rubber (NR), ethylene-propylene-diene rubber (EPM and EPDM), styrene-butadiene rubber (SBR), acrylonitrile-butyl Diene rubber (NBR), polychloroprene resin (PCP), special polymers such as acrylate rubber and ethylene vinyl acetate copolymer, etc., and blends thereof, and also include elastomers and thermoplastics. Compounds are matrix-based compounds, also known as thermoplastic elastomers, and a process for making such polymer compositions. The term "elastomer" is intended to include not only conventional elastomeric materials such as natural rubber or synthetic rubbery polymers, but also blends thereof with thermoplastic elastomers. The elastomeric compound can be made by using conventional processes and equipment such as open mills, all types of internal mixers and continuous single screw or 1306103 twin screw extruders. The elastomer composite containing the modifier can be prepared by using conventional methods including, but not limited to, extrusion, compression molding, injection molding, and the like. (IV) Embodiments Example 1 Adding 30 parts (phr) of micrometeorite (based on 1 part resin) to an EPDM-based formulation containing 140 phr of calcined clay together with antioxidants, plasticizers and Peroxide hardening system. The mixing of the composites was carried out in an internal mixer, and the samples used for the test were pressure-cured at 180 °C for 20 minutes. The results obtained are shown in Table 1. For the purpose of comparison, the EPDM rubber containing no vermiculite was tested in the same manner as the composite according to the present invention. The test was carried out according to the following specifications: Tensile test: S2 DIN 5 3504, tear resistance (pants tear) BS 6469. Table 1 Prior Art The measuring properties of the present invention EPDM rubber contains 140 phr of calcined clay enamel EPDM rubber containing 140 phr of calcined clay enamel and 30 phr of micro gangue Mengna viscosity (@130 °C) 45 47 stretching Strength (MPa) 7.8 8.4 Elongation at break (%) 283 276 Tear resistance (N/min) 2.0 2.8 Compression set (%) (10 minutes, @200 0C) 16.6 16.8 The results in Table 1 confirm: Compared to EPDM without micro vermiculite, the EPDM rubber according to the present invention has improved physical properties, especially low compressive permanent setability at this high bismuth filler content, together with excellent processability (expressed in viscosity) ). 1306103 ^ 丨
I f施例2 匕…… ........... 製備一種以氯丁二嫌橡膠爲基貝之複σ物具有50 phr之 具有表面積爲125 m2/g之沉澱矽石。添加到相同複合物之 20 phr之沉澱矽石是以30 phr之微矽石加以取代。複合物 之混合是如實施例1所述方法來進行。用於物理試驗之試 樣片是在180 °C加壓固化爲期15分鐘。從表2結果可看 見,其係令人驚奇地發現以微矽石取代沉澱矽石可減少複 合物之黏度’結果導致較佳的可加工性’同時可維持高水 平的物理性質。 表2 先前技術_本發明 量測性質 氯丁二烯橡膠 含有 50 phr沉澱矽石 氯丁二烯橡膠 含有 30 phr沉源矽石 和 30 phr微矽石 孟納黏度(@120 〇〇 41.0 25.7 拉伸強度(MPa) 17.6 18.1 斷裂伸度(%) Π 742 754 抗撕裂性(N/min) 12.2 9.3 實施例3 一種以苯乙烯-丁二烯橡膠(SBR)溶液爲基質之複合物且 充塡80 phr之具有表面積爲175 m2/g之高度分散性沉澱 矽石是藉由添加入20 phr之微矽石加以改良。茲就比較用 目的而言,也製備一種含有1〇〇 Phr之沉澱矽石的混合物。 一種三段式混合步驟是用以混合配料。用於物理性質試驗 之試樣片的固化是在16〇°C來進行爲期20分鐘。 所獲得結果是展示於表3。耐磨性是根據d IN 5 3 5 1 6所 測得。 10 1306103 表3 先前技術 先前技術 本發明 量測性質 SBR含有 80 phr 沉澱矽石 SBR含有 100 phr 沉澱矽石 SBR含有 80 phr 沉澱矽石 和 20 phr 微矽石 孟納黏度(@100 °c) 82 117 87 拉伸強度(MPa) 21.5 20.0 19.5 斷裂伸度(%) 447 402 383 抗撕裂性(N/min) 17.1 17.9 22.1 蕭耳A硬度 69 79 72 耐磨性(mm3) 145 175 157 比較此等結果顯而易見:微矽石對在高塡充劑添加量下 之複合物性質之令人驚奇的效果。不僅較高塡充劑添加量 是可能的且並無加工的難題,而且也可改良使用傳統的沉 澱矽石所無法達到的物理性質。 實施例4 在NBR/PVC複合物中係充塡一種含有碳黑N550、碳酸 鈣和沉澱矽石之混合物,且總塡充劑含量爲1 1 0 phr。此 複合物是藉由添加入20 phr微矽石加以改良。此混合是如 實施例1所述來進行。試驗之試樣片是在1 8 0 ° C加壓固化 爲期1 5分鐘。所獲得結果展示於表4。 11 1306103 表4 量測性質 先前技術 本發明 NBR7PVC 含有 28phr沉澱矽石 NBR/PVC 含有 20phr沉澱矽石 和 20phr微矽石 孟納黏度(@120 °〇 58 42 拉伸強度(MPa) 12.1 13.4 斷裂伸度(%) 350 377 抗撕裂性(N/min) 5.8 4.7 耐油性24小時@100 〇C之 ASIM-油 No. 2 中 拉伸強度(MPa) 13.1 13.9 斷裂伸度(%) 307 321 在表4之結果展示:根據本發明之NBR/P VC複合物是 具有比先前技術複合物較低的黏度,雖然其含有12phr 以上的塡充劑。關於耐油性之結果進一步展示:當含 有微矽石之NBR/PVC 複合物是經歷在高溫之油時, 該複合物可維持其拉伸強度和伸度。 實施例5 將50 phr之微矽石添加到一種以天然橡膠(SIR 20)爲 基質之複合物,且充塡50 phr碳黑(N234)、50 phr微 矽石。茲就比較用目的而言,也製備分別含有100 phr N234(比較例1)和50phrN234 + 50phr沉澱较石(沉 澱矽石)的複合物。混合是在內部混合器中使用類似 於實施例1的二段式循環來進行。含有矽石和矽烷之 複合物是使用標準三段式步驟如實施例3來加以混 合。試驗之試樣片是在15〇 °C下加以加壓固化爲期15 分鐘。所獲得結果摘述於表5。 12 1306103 表5 先前技術 比較例1 比較例2 本發_ 量測性質 SIR 20 含有 50 phr 碳黑N234 SIR 20 含有 100 phr 碳黑N234 SIR 20 含有 50 phi' 碳黑N234 和 50 phi-沉澱矽石 SIR 20 含有 50 phr 碳黑N234 和 50 phr 微矽石 孟納黏度 (@100 °〇 58.7 無法量測 >220 106.5 55.4 拉伸強度(MPa) 29.0 18.2 13.8 21.8 斷裂伸度(%) 576 221 344 441 蕭耳A硬度 63 88 71 73 抗撕裂性(N/min) 18.6 15.7 4.1 23.9 從表5之結果,其顯而易見添加入微矽石可使得使用傳 統材料所不可能製得的化合物。 吾必須記得在上述所列舉實施例中所進行的並不是最適 化的化合物配方。此意謂當完成額外的再調製配方時,進 一步改良性質是可能的。 上述實施例1至5淸楚地顯示添加微矽石到高度充塡之 化合物中可改良材料的物理性質,同時可維持甚至降低化 合物的黏度。 實施例6 此實施例例証添加入微矽石對彈性體樹脂組成物之耐火 性的效果。 將30 phr微矽石到以乙烯-醋酸乙烯酯爲基質(100 phr) 且充塡〗60 phr三水合鋁之不含鹵素、阻燃性化合物中。 化合物之機械性質並未受到影響。根據ASTM D2863所測 得之極限耗氧指數是從38至43%。在聚合物基質燃燒時 所形成之保護性焦炭的穩定性是顯著地改良,且比不含微 砂石添加可抵抗三至四倍較長的時間。 -13-I f Example 2 匕........................ Preparation of a complex σ with a chloroprene rubber as a base having 50 phr of precipitated vermiculite having a surface area of 125 m 2 /g. 20 phr of precipitated vermiculite added to the same complex was replaced with 30 phr of micrometeorite. The mixing of the composites was carried out as described in Example 1. The test piece used for the physical test was pressure-cured at 180 °C for 15 minutes. As can be seen from the results in Table 2, it has been surprisingly found that the replacement of precipitated vermiculite with micro vermiculite reduces the viscosity of the composite' resulting in better processability' while maintaining high levels of physical properties. Table 2 Prior Art _ The measured properties of the chloroprene rubber containing 50 phr precipitated vermiculite chloroprene rubber containing 30 phr sinker vermiculite and 30 phr micrometeorite Mona viscosity (@120 〇〇 41.0 25.7 stretching Strength (MPa) 17.6 18.1 Elongation at break (%) Π 742 754 Tear resistance (N/min) 12.2 9.3 Example 3 A compound based on a styrene-butadiene rubber (SBR) solution and filled with 80 phr of highly dispersible precipitated vermiculite with a surface area of 175 m2/g was modified by the addition of 20 phr of micrometeorite. For comparison purposes, a precipitate containing 1 〇〇Phr was also prepared. A mixture of stones. A three-stage mixing step is used to mix the ingredients. The solidification of the test piece for the physical property test is carried out at 16 ° C for 20 minutes. The results obtained are shown in Table 3. Abrasiveness is measured according to d IN 5 3 5 1 6 10 1306103 Table 3 Prior Art Prior Art The measuring properties of the present invention SBR contains 80 phr precipitated vermiculite SBR containing 100 phr precipitated vermiculite SBR containing 80 phr precipitated vermiculite and 20 Phr micrometeorite mona viscosity (@100 °c) 82 117 87 Tensile strength (MPa) 21.5 20.0 19.5 Elongation at break (%) 447 402 383 Tear resistance (N/min) 17.1 17.9 22.1 Dew A hardness 69 79 72 Abrasion resistance (mm3) 145 175 157 Compare this The results are obvious: the surprising effect of micro vermiculite on the properties of the complex at the level of sorghum charge. Not only is the higher amount of strontium added possible, but there is no processing problem, and it can be improved. Physical properties not achievable with conventional precipitated vermiculite. Example 4 The NBR/PVC composite is filled with a mixture containing carbon black N550, calcium carbonate and precipitated vermiculite, and the total chelating agent content is 1 1 0 Ph. This composite was modified by the addition of 20 phr of micro vermiculite. This mixing was carried out as described in Example 1. The test piece was pressure cured at 180 ° C for a period of 15 minutes. The results obtained are shown in Table 4. 11 1306103 Table 4 Measurement Properties Prior Art The present invention NBR7PVC contains 28 phr precipitated vermiculite NBR/PVC containing 20 phr precipitated vermiculite and 20 phr micrometeorite Mona viscosity (@120 °〇58 42 tensile Strength (MPa) 12.1 13.4 Elongation at break (%) 350 377 Tear property (N/min) 5.8 4.7 Oil resistance 24 hours @100 〇C of ASIM-oil No. 2 Medium tensile strength (MPa) 13.1 13.9 Elongation at break (%) 307 321 The results shown in Table 4: According to The NBR/P VC composite of the present invention has a lower viscosity than prior art composites, although it contains more than 12 phr of a chelating agent. The results regarding oil resistance further demonstrate that when the NBR/PVC composite containing micro vermiculite is subjected to oil at elevated temperatures, the composite maintains its tensile strength and elongation. Example 5 50 phr of micrometium was added to a composite of natural rubber (SIR 20) and was charged with 50 phr of carbon black (N234) and 50 phr of micrometeorite. For the purpose of comparison, a composite containing 100 phr of N234 (Comparative Example 1) and 50 phr of N234 + 50 phr precipitated stone (precipitated vermiculite) was also prepared. Mixing was carried out in an internal mixer using a two-stage cycle similar to that of Example 1. The composite containing vermiculite and decane was mixed as in Example 3 using a standard three-stage procedure. The test piece was subjected to pressure curing at 15 ° C for 15 minutes. The results obtained are summarized in Table 5. 12 1306103 Table 5 Prior Art Comparative Example 1 Comparative Example 2 The present invention _ Measured property SIR 20 contains 50 phr carbon black N234 SIR 20 contains 100 phr carbon black N234 SIR 20 contains 50 phi' carbon black N234 and 50 phi-precipitated vermiculite SIR 20 contains 50 phr carbon black N234 and 50 phr micro vermiculite Mona viscosity (@100 °〇58.7 unmeasurable >220 106.5 55.4 tensile strength (MPa) 29.0 18.2 13.8 21.8 elongation at break (%) 576 221 344 441 Shaw A Hardness 63 88 71 73 Tear Resistance (N/min) 18.6 15.7 4.1 23.9 From the results of Table 5, it is obvious that the addition of micrometeorites makes it impossible to make compounds using conventional materials. What is done in the above-exemplified examples is not an optimized compound formulation. This means that further improvements in properties are possible when additional reconditioning formulations are completed. The above Examples 1 to 5 show the addition of microfeathers. The stone to a highly filled compound can improve the physical properties of the material while maintaining or even reducing the viscosity of the compound. Example 6 This example illustrates the fire resistance of an elastomer resin composition added to micro vermiculite. Effect: 30 phr of micro vermiculite to ethylene-vinyl acetate-based (100 phr) and filled with 60 phr of aluminum trihalide in a halogen-free, flame retardant compound. The mechanical properties of the compound are not affected. The ultimate oxygen consumption index measured according to ASTM D2863 is from 38 to 43%. The stability of the protective coke formed during the combustion of the polymer matrix is significantly improved, and it is resistant to three without the addition of micro-sand. Up to four times longer. -13-