JP2019132291A - Lngタンクの蒸発ガス抑制装置及び蒸発ガス抑制方法 - Google Patents

Lngタンクの蒸発ガス抑制装置及び蒸発ガス抑制方法 Download PDF

Info

Publication number
JP2019132291A
JP2019132291A JP2018012545A JP2018012545A JP2019132291A JP 2019132291 A JP2019132291 A JP 2019132291A JP 2018012545 A JP2018012545 A JP 2018012545A JP 2018012545 A JP2018012545 A JP 2018012545A JP 2019132291 A JP2019132291 A JP 2019132291A
Authority
JP
Japan
Prior art keywords
lng
tank
flow rate
lng tank
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018012545A
Other languages
English (en)
Other versions
JP6834999B2 (ja
Inventor
高志 榊原
Takashi Sakakibara
高志 榊原
竜太 淺香
Ryuta Asaka
竜太 淺香
佳樹 渋谷
Yoshiki Shibuya
佳樹 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2018012545A priority Critical patent/JP6834999B2/ja
Publication of JP2019132291A publication Critical patent/JP2019132291A/ja
Application granted granted Critical
Publication of JP6834999B2 publication Critical patent/JP6834999B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

【課題】DSS運用に追従してBOG発生を安定的に抑制できるLNGタンクの蒸発ガス抑制装置及び方法を提供する。【解決手段】本発明に係るLNGタンクの蒸発ガス抑制装置1は、LNGタンク3と、払出配管5と、LNGをLNGタンク3に還流させるLNG戻り配管7と、LNG戻り配管7を流れるLNGを過冷却するヒートポンプ9とを備えたLNG基地における蒸発ガスを抑制するものであって、ヒートポンプ9の稼働中に過冷却のLNGを収容する戻りLNG貯留タンク11と、LNGタンク3の圧力を検出する圧力検出器13と、LNGタンク3に流入するLNG流量を調節するLNG流量調節装置と、圧力検出器13の検出結果に基づいて前記LNG流量調節装置を制御する制御装置15とを備え、制御装置15はヒートポンプ9が稼動していないときに戻りLNG貯留タンク11の過冷却LNGをLNGタンク3に流入させるようにLNG流量調節装置を制御する。【選択図】 図1

Description

本発明は、液化天然ガス貯蔵タンク(以下、「LNGタンク」という)からの蒸発ガスの発生を抑制する装置及びその方法に関し、特にLNGの冷熱を利用してLNGタンク内のLNGを冷却し、蒸発ガスの発生を抑制する装置及びその方法に関する。
LNG基地においは、LNGをLNGタンクに受け入れて貯蔵し、天然ガスの需要に応じてガス化させて送出するが、LNGタンク内に貯蔵されるLNGは約−160℃の極低温状態であるため、周囲との温度差等によりLNGタンク内のLNGの温度が上昇するとLNGが蒸発して蒸発ガス(BOG:ボイルオフガス)が発生する。
このBOGの発生によるLNGタンクの内圧上昇を抑制するため、従来は、BOGをLNGタンクから取り出して圧縮機により圧縮し、気化ガスの送出ラインに混合させるか、LNGの冷熱を利用して再液化し、LNGタンクに戻していた(特許文献4参照)。
しかし、BOGを圧縮処理する場合には、LNGタンクの内圧と同等の10kPaG程度から送出ラインの圧力と同等の6MPaG程度まで昇圧する必要があるため動力費が過大になるという問題がある。
また、LNGの冷熱を使用して再液化する場合には、再液化の能力はLNGの払出流量に左右されるため、LNGを払い出していない場合には再液化できないという問題がある。
そこで、LNGの払出ラインにヒートポンプを設置し、LNGタンクに戻るLNGを過冷却状態まで冷却する技術が開示されている(特許文献1参照)。これにより、LNGタンク内に過冷却状態のLNGが戻ることによりLNGタンク内部が冷却されるため、LNGを払い出していない時間帯においても、蓄積された冷熱によってBOGの発生が抑制される。
また、同様にヒートポンプを使用して過冷却状態のLNGをLNGタンクに戻すことによりLNGタンク内の温度が下がりすぎてLNGタンク内が負圧になりLNGタンクが損傷することを防ぐため、LNGタンクの内圧が下がり過ぎた場合にはLNG気化器後流の常温ガスをLNGタンクに供給する技術も開示されている(特許文献2参照)。
さらに、コールドボックスを有する空気分離装置をLNGタンクに併設させて、空気分離装置の膨張タービンによって得られた極低温の冷熱を利用して、LNGタンクのガス層温度を監視しながら、LNGタンクに戻るLNGを過冷却状態まで冷却する技術が開示されている(特許文献3参照)。
特公平7−11320号公報 特開平7−218033号公報 特開2005−140163号公報 特許第6090616号公報
しかしながら、特許文献1においては、過冷却のLNGをLNGタンクに戻すことにより内圧が過度に低下し、LNGタンク内が負圧になりLNGタンクが損傷することが懸念される。
この点への対策として、特許文献2に開示されているとおり、LNG気化器後流の常温の気化ガスをLNGタンクに入れることが考えられるが、この対策では、送ガスの安定性を損ねるとともに、常温ガスを極低温雰囲気に入れて圧力を安定的にコントロールすることが技術的に困難であるという問題があった。
また、近年では、LNG基地からの天然ガスの供給先である火力発電設備がDSS(Daily Start & Stop)運用を行うケースが増えてきており、今後も、再稼動する原子力発電所が増えれば、さらにDSS運用が拡大していくと考えられている。
DSS運用の火力発電設備が増加するに伴い、火力発電設備の停止中にはLNGの供給先がなくなるLNG基地が増えていくと予想される。
このため、上述した特許文献1、2のように払い出されるLNGの冷熱を利用する技術では、LNGの払い出しがなく、ヒートポンプに使える冷熱がなくなった場合には、LNGタンクを冷却することができなくなる。
この点、LNGの払い出しがない時間帯のBOG抑制分相当の冷熱を蓄えるため、LNGの払い出しがある間にLNGタンクを極力冷却しようとすると、LNGタンク内の気層の温度が低下して、タンク内圧が過度に低下し、タンクの損傷に繋がるという恐れがある。
他方、特許文献3に開示の技術では、空気分離装置が運転してさえいれば、火力発電設備が停止している場合にもBOG発生を抑制できると考えられるが、冷熱を外部に求めることになるため、設備費や動力費が過大になる等の問題があった。
本発明は、上述した問題を解決するためになされたものであり、過大なコストをかけずにDSS運用に追従してBOG発生を安定的に抑制できる液化天然ガス貯蔵タンクの蒸発ガス抑制装置及び蒸発ガス制御方法を提供することを目的とする。
(1)本発明に係るLNGタンクの蒸発ガス抑制装置は、LNGを貯蔵するLNGタンクと、該LNGタンク内のLNGを外部に払い出す払出ラインと、前記払出ラインから分岐してLNGを前記LNGタンクに還流させる還流ラインと、前記払出ラインに設けられて該払出ラインを流れるLNGの冷熱を利用して前記環流ラインを流れるLNGを過冷却するヒートポンプとを備えたLNG基地における前記LNGタンクで発生する蒸発ガスを抑制するLNGタンクの蒸発ガス抑制装置であって、
前記環流ラインに接続されて前記ヒートポンプの稼働中に所定量の過冷却のLNGを収容する容積バッファと、
前記LNGタンクの気層部の圧力を検出する圧力検出手段と、
前記LNGタンクに供給する冷熱量を調節するために前記LNGタンクに流入するLNGの流量を調節するLNG流量調節装置と、
前記圧力検出手段の検出結果が予め定められた範囲に収まるように前記LNG流量調節装置を制御するLNG流量調節装置制御手段とを備え、
該LNG流量調節装置制御手段は前記ヒートポンプが稼動していないときに前記容積バッファに収容された過冷却LNGを前記LNGタンクに流入させるように前記LNG流量調節装置を制御する機能を有していることを特徴とするものである。
(2)また、上記(1)に記載のものにおいて、前記LNG流量調節装置制御手段は、
前記ヒートポンプの稼動中においては、前記LNG流量調節装置を制御して、前記圧力検出手段の検出結果が予め定められた範囲に収まるように、前記ヒートポンプによって過冷却された過冷却LNGのLNGタンクへの流入量を調節し、
前記ヒートポンプの停止中においては、前記LNG流量調節装置を制御して、前記圧力検出手段の検出結果が予め定められた範囲に収まるように、前記容積バッファに収容された過冷却LNGのLNGタンクへの流入量を調節することを特徴とするものである。
(3)また、上記(1)又は(2)に記載のものにおいて、前記容積バッファは、荷揚げされたLNGを前記LNGタンクに移送する受入配管であることを特徴とするものである。
(4)また、上記(3)に記載のものにおいて、前記払出ラインを流れるLNGの一部を前記受入配管に供給して前記受入配管内を保冷すると共に環流の流れを形成する受入配管保冷循環用LNG供給ラインと、前記環流ラインと前記受入配管保冷循環用LNG供給ラインを接続する連絡ラインとをさらに有し、
前記LNG流量調節装置は、前記環流ラインから前記連絡ラインに供給する過冷却LNG又はLNGの流量を調整する流量制御弁を含むことを特徴とするものである。
(5)本発明に係るLNGタンクの蒸発ガス抑制方法は、LNGを貯蔵するLNGタンクと、該LNGタンク内のLNGを外部に払い出す払出ラインと、前記払出ラインから分岐してLNGを前記LNGタンクに還流させる還流ラインと、前記払出ラインに設けられて該払出ラインを流れるLNGの冷熱を利用して前記環流ラインを流れるLNGを過冷却するヒートポンプとを備え、前記ヒートポンプによって過冷却されたLNGを前記LNGタンクに供給することで前記LNGタンクで発生する蒸発ガスを抑制するようにしているLNG基地における前記LNGタンクで発生する蒸発ガスを抑制するLNGタンクの蒸発ガス抑制方法であって、
前記ヒートポンプの稼動中に前記環流ラインを流れる過冷却LNGを容積バッファに一時的に貯留しておき、前記ヒートポンプの停止中において前記容積バッファに貯留された過冷却LNGを前記LNGタンクに供給するようにしたことを特徴とするものである。
(6)また、上記(5)に記載のものにおいて、前記容積バッファは、荷揚げされたLNGを前記LNGタンクに移送する受入配管であり、前記ヒートポンプの稼動中には環流する過冷却LNGの一部を前記受入配管の上流側から前記受入配管に供給して前記受入配管に冷熱を蓄積し、前記ヒートポンプの停止中において環流するLNGを前記受入配管の上流側から供給することで、前記受入配管に貯留されている過冷却LNGを押し出すようにして前記LNGタンクに供給するようにしたことを特徴とするものである。
本発明においては、LNGを払い出している間にヒートポンプで回収した冷熱を、LNGタンクの圧力が一定範囲に収まるようにLNGタンクを冷却すると共に余剰の冷熱を容積バッファに蓄積することができるので、LNGを払い出しておらず冷熱を回収できない場合においても、蓄積された冷熱を消費してLNGタンクにおけるBOGの発生を抑制することができる。
実施の形態1に係る蒸発ガス抑制装置の概略フローを示す図である。 実施の形態1に係るヒートポンプの概略フロー図およびその周辺配管を示す図である。 実施の形態2に係る蒸発ガス抑制装置の概略フローを示す図である。 実施の形態3に係る蒸発ガス抑制装置の概略フローを示す図である。 実施の形態4に係る蒸発ガス抑制装置の概略フローを示す図である。 実施の形態5に係る蒸発ガス抑制装置の概略フローを示す図である。 実施の形態5に係るヒートポンプの概略フロー図およびその周辺配管を示す図である。 実施の形態5に係るヒートポンプの他の態様の概略フロー図およびその周辺配管を示す図である。 実施の形態6に係る蒸発ガス抑制装置の概略フローを示す図である。 実施例における蒸発ガス抑制装置が、火力発電設備のDSS運用に追従して蒸発ガスを抑制する場合の冷熱の蓄積と消費の時間変化を示す図である。
[実施の形態1]
図1は、本発明の実施の形態1に係るLNGタンクの蒸発ガス抑制装置1(以下、単に「蒸発ガス抑制装置1」という)の概略フロー図である。
蒸発ガス抑制装置1は、LNGを貯蔵するLNGタンク3と、LNGタンク3内のLNGを外部に払い出す払出ラインとしての払出配管5と、払出配管5から分岐してLNGをLNGタンク3に還流させる還流ラインとしてのLNG戻り配管7と、払出配管5を流れるLNGの冷熱を利用してLNG戻り配管7を流れるLNGを過冷却するヒートポンプ9と、LNG戻り配管7に接続されてヒートポンプ9の稼働中に所定量の過冷却のLNGを収容する容積バッファとしての戻りLNG貯留タンク11と、LNGタンク3の気層部の圧力を検出する圧力検出手段としての圧力検出器13と、LNGタンク3に流入するLNGの流量を調節するLNG流量調節装置としての流量制御弁(第1流量制御弁47、第2流量制御弁49)と、流量制御弁を制御するLNG流量調節装置制御手段としての制御装置15とを備えている。
払出配管5の下流にはLNG気化器17が設けられており、払い出されたLNGはLNG気化器17によって気化されて需要先に供給される。
以下、蒸発ガス抑制装置1を構成する各機器を詳細に説明する。
<LNGタンク>
LNGタンク3は、LNGを貯蔵するものであり、例えばPC(Pre−Stressed Concrete)壁構造を有する地上式タンクであり、LNGを極低温状態で貯蔵する機能を有している。LNGタンク3の形式として、地下式及び半地下式の形式でもよく、シェル構造も金属二重殻やメンブレンなどが考えられる。
<払出配管>
払出配管5は、LNGタンク3とLNG気化器17との間に配設されており、後述するプライマリポンプ19によってLNGタンク3から送り出されたLNGをLNG気化器17に移送する経路を形成している。
また、払出配管5の途中にはセカンダリポンプ21が設置されており、払出配管5は、図1に示すように、セカンダリポンプ21までの中圧払出配管23と、セカンダリポンプ21より後流側の高圧払出配管25とによって構成されている。
プライマリポンプ19は、例えばLNGタンク3内部のLNGに浸漬して設置されるサブマージド型の遠心式ポンプであり、LNGタンク3の屋根部に設置されたバレル27を介して払出配管5にLNGを送り出す機能を有している。プライマリポンプ19の型式はLNGタンク3の型式によっても変わるため、サブマージド型の遠心式ポンプに限られず、地上式の遠心式ポンプなどであってもよい。
払出配管5に設置されているセカンダリポンプ21は、例えば地上のポット内のLNGに浸漬して設置されるサブマージド型の遠心式ポンプであり、プライマリポンプ19によって送り出されたLNGをさらに昇圧して送り出す機能を有している。セカンダリポンプ21の型式は地上設置型の遠心式ポンプなどであってもよい。また、プライマリポンプ19のみによって昇圧する基地もあるため、必ずしもセカンダリポンプ21が設けられるとは限らない。
<LNG戻り配管>
LNG戻り配管7は、払出配管5から分岐してLNGタンク3に接続されており、冷却維持の目的で、払出配管5内のLNGの一部をLNGタンク3に還流させる機能を有している。
図1においては、LNG戻り配管7は独立してLNGタンク3に接続され、LNGタンク3にLNGを還流させるようになっているが、受入配管59(実施の形態2の図3参照)に接続され、LNGタンク3の上部若しくは下部又は双方に選択的にLNGを還流するようになっていてもよい。このように構成することで、LNGタンク3内部の状態に応じて最適なLNGの還流位置を選択することができる。
<ヒートポンプ>
ヒートポンプ9は、払出配管5を流れるLNGの冷熱を利用してLNG戻り配管7を流れるLNGを過冷却するものである。
図2は、本実施の形態に係るヒートポンプ9の概略フロー図およびその周辺の配管構成を示す図である。
ヒートポンプ9は、図2に示すように、第1熱交換器29と、冷媒圧縮機31と、第2熱交換器33と、減圧装置35と、これらを接続する冷媒配管37とを有している。
以下、ヒートポンプ9の構成及びヒートポンプ9の上流側の配管構成について詳細に説明する。
ヒートポンプ9の上流側に配設されるセカンダリポンプ21は、図2に示すように、例えばセカンダリポンプ21a、21bの2台が設置される。この場合、セカンダリポンプ21a、21bの上流側の中圧払出配管23は、中圧払出母管23a、吸込ヘッダ23b及びセカンダリポンプ21a、21bそれぞれに接続される吸込配管23c、23dによって構成される。また、セカンダリポンプ21a、21bの下流側の高圧払出配管25は、セカンダリポンプ21a、21bそれぞれに接続される吐出配管25a、25b、吐出ヘッダ25c及び高圧払出母管25dから構成される。
そして、セカンダリポンプ21a、21bは、吸込ヘッダ23b及びそれぞれの吸込配管23c、23dを介して中圧払出母管23aに接続され、またそれぞれの吐出配管25a、25b及び吐出ヘッダ25cを介して、高圧払出母管25dに接続されている。
また、セカンダリポンプ21を2台設置した場合、LNG戻り配管7は、図2に示すように、セカンダリポンプ21の前流側の冷却維持に必要な最低流量を確保するための保冷循環LNG戻り配管7a、7b、保冷循環LNG戻りヘッダ7c及びLNG戻り母管7dを備えて構成されている。また、LNG戻り配管7は、一端が吐出ヘッダ25cに他端が第1熱交換器29の入口側にそれぞれ接続された第1熱交換器入口配管7eと、一端が第1熱交換器29の出口に、他端が保冷循環LNG戻りヘッダ7cに接続された第1熱交換器出口配管7fを備えて構成されている。
そして、各セカンダリポンプ21a、21bの吐出配管25a、25bは、吐出ヘッダ25cに接続されている。
また、吐出ヘッダ25cには、冷却を維持するための保冷循環戻りの機能を兼ねる第1熱交換器入口配管7eの一端が接続され、第1熱交換器入口配管7eの他端は第1熱交換器29に接続されている。さらに、第1熱交換器出口配管7fの一端は第1熱交換器29に接続され、他端は保冷循環LNG戻りヘッダ7cに接続されている。なお、本書での説明においては、第1熱交換器出口配管7fが保冷循環LNG戻りヘッダ7cに接続された構成としたが、これに限らず、第1熱交換器出口配管7fが独立してLNGタンク3に戻る構成としてもよい。
さらに、セカンダリポンプの吸込ヘッダ23bと吐出ヘッダ25cとは、バイパス配管24で接続されており、バイパス配管24にはバイパス弁24aが設置されている。バイパス弁24aは、セカンダリポンプ21a、21bが停止した場合に開くことにより、吸込ヘッダ23bのLNGを吐出ヘッダ25cに流すようになっている。これにより、セカンダリポンプ21a、21bをバイパスする流れが形成されるため、セカンダリポンプ21a、21bの停止時にもその後流側にLNGを流すことができ、冷却を維持することができる。
第2熱交換器入口配管39の一端は第1熱交換器入口配管7eに接続されており、他端は第2熱交換器33に接続されている。第2熱交換器出口配管41の一端は第2熱交換器33に接続されており、他端は高圧払出母管25dに接続されている。
第1熱交換器29は、例えばケトル型の熱交換器によって構成されており、冷媒配管37を流れる冷媒(例えば窒素)の冷熱を利用して、第1熱交換器入口配管7eを流れる戻りLNGを冷却するとともに窒素を完全に蒸発させる機能を有している。
冷媒圧縮機31は、例えば遠心式の圧縮機によって構成されており、第1熱交換器29によって冷熱を奪われて蒸発した窒素を圧縮して第2熱交換器33に送出する機能を有している。冷媒圧縮機31の形式として、レシプロ式やスクリュー式も適用可能である。
第2熱交換器33は、例えば横置きのシェル&チューブ式の熱交換器によって構成されており、第2熱交換器入口配管39を経て供給されるセカンダリポンプ21後流のLNGの冷熱を利用して、冷媒圧縮機31によって昇圧、昇温された窒素を冷却し凝縮する機能を有している。
減圧装置35は、例えばグローブ弁によって構成された圧力調節弁であり、第2熱交換器33によって凝縮された高圧の窒素を減圧し冷却する機能を有している。減圧装置35によって減圧、冷却された窒素は第1熱交換器29に供給される。窒素は、上記のサイクルで冷媒配管37を循環する。
ヒートポンプ9は、その冷却能力以上の流量で戻りLNGが流れると戻りLNGの過冷却を十分に行えなくなるため、戻りLNGの総流量が過大にならないよう、別途制御される。
<戻りLNG貯留タンク>
戻りLNG貯留タンク11は、LNG戻り配管7に接続されてヒートポンプ9の稼働中に所定量の過冷却のLNGを一時的に収容する容積バッファとして機能するものであり、保冷及び耐圧機能を有する金属製のタンクによって構成されている。なお、戻りLNG貯留タンク11は、例え気層が存在しても負圧に耐えられる構成であることが望ましい。または、気層のガスを外部に排出できる機構を有する構成であることが望ましい。
戻りLNG貯留タンク11の入口はタンク下部に設けられ、この入口側には、一端がLNG戻り配管7に他端が戻りLNG貯留タンク11に接続された戻りLNG貯留タンク入口配管43が接続されている。
また、戻りLNG貯留タンク11の出口はタンク上部に設けられ、この出口側には、一端がLNG戻り配管7に他端が戻りLNG貯留タンク11に接続された戻りLNG貯留タンク出口配管45が接続されている。
<圧力検出器>
圧力検出器13は、LNGタンク3の気層部の圧力を検出するものであり、この機能を有するものであれば、特にその形態は問わず、例えば一般的な圧力計及び発信器によって構成されている。
<LNG流量調節装置>
LNG流量調節装置は、LNGタンク3に流入するLNGの流量を調節することでLNGタンク3に供給される冷熱量を調節する機能を有するものであり、本実施の形態ではLNGタンク3に環流するLNGの流量を調整する複数の流量制御弁によって構成されている。流量制御弁は、戻りLNG貯留タンク入口配管43に設けられた第1流量制御弁47、LNG戻り配管7における戻りLNG貯留タンク入口配管43の接続部と戻りLNG貯留タンク出口配管45の接続部の間に設けられた第2流量制御弁49を備えて構成されている。
第1流量制御弁47及び第2流量制御弁49は、例えば空気駆動のグローブ弁によって構成されており、制御装置15の出力信号に応じて開度を変更することによって、LNGタンク3に還流するLNGの流量を調節する機能を有している。
<制御装置>
制御装置15は、DCS(Distributed Control System)によって構成されており、圧力検出器13の出力信号に基づいてLNG流量調節装置を制御する機能を有している。具体的には、制御装置15は、圧力検出器13の出力結果が予め定められた範囲に収まるように、LNG流量調節装置を制御する。
<LNG気化器>
LNG気化器17は、例えばオープンラック式の気化器であり、高圧払出配管25の後流に配設されている。LNG気化器17は、海水を熱媒体としてLNGを気化する機能を有している。LNG気化器17の型式はオープンラック式以外のものも適用可能であり、例えば、SMV(Sub−Merged Vaporizer)などの型式も考えられる。
LNG気化器17の前流には、気化流量制御弁51及び気化器遮断弁53が設けられている。気化流量制御弁51は、図示しない制御装置によって、送ガス配管55の圧力が一定になるようにLNG気化器17の気化送出流量を調節する機能を有している。気化器遮断弁53は、送ガス需要がなくなった場合や緊急時等に、LNG気化器17へのLNGの流入経路を遮断する機能を有している。
次に上記のように構成された本実施の形態の蒸発ガス抑制装置1の作用について、送ガス配管55にガスを送り出している定常運転状態と、例えばLNG基地の送ガス先である火力発電所がDSS運用で停止した非定常運転状態とに分けて説明する。
<定常運転状態>
定常運転状態では、プライマリポンプ19及びセカンダリポンプ21によって昇圧されたLNGはLNG気化器17によって気化されて送ガス配管55に送出される。
前提として、ヒートポンプ9は連続的に稼動しており、セカンダリポンプ21によって昇圧されたLNGの一部は、ヒートポンプ9によって過冷却されてLNG戻り配管7を介してLNGタンク3に環流する。このとき、LNGタンク3内部の上部に還流させるか下部に還流させるかは、LNGの液種やLNGタンク3内部の状態に基づいていずれか一方又は最適な配分に選択される。また、第1流量制御弁47及び第2流量制御弁49は制御装置15に制御されてその開度が調整される。具体的には、第1流量制御弁47及び第2流量制御弁49の両方を開とし、圧力検出器13の出力信号に基づいて圧力検出器13の出力結果が予め定められた範囲に収まるようにその開度が調整され、過冷却LNGはLNGタンク3へ環流するものと戻りLNG貯留タンク11に一時的に貯留されるものに配分される。この結果、過冷却されていないLNGが戻りLNG貯留タンク11に流入した分、戻りLNG貯留タンク11に貯留されていたLNGが押し出されてLNGタンク3へ供給される。
例えば、第1流量制御弁47及び第2流量制御弁49の開度をある開度で運転していても、LNGタンク3に供給される冷熱量の方が入熱量よりも多くなると、LNGタンク3の気層温度が低下するとともに内圧が低下する。この結果、圧力検出器13の検出結果がある一定値を下回ると、制御装置15は第2流量制御弁49の開度を絞りつつ第1流量制御弁47の開度を大きくすることによって、LNGタンク3に還流するLNGの流量を低下させ、戻りLNG貯留タンク11への供給量を増加させる。
この結果、LNGタンク3に還流するLNGの減少分が、戻りLNG貯留タンク11に流入して戻りLNG貯留タンク11に過冷却LNGが貯留され、戻りLNG貯留タンク11に冷熱が蓄積されていく。
一方、LNGタンク3に供給される過冷却LNGの流量が減少するため、LNGタンク3の気層の温度が徐々に回復する。
この状態が続くと、今度は入熱量の方が冷熱量よりも多くなることがあり、この場合にはLNGタンク3内の気層の圧力が上昇する。そして、圧力検出器13の検出結果がある一定値を上回ると、制御装置15は第1流量制御弁47の開度を絞ると共に第2流量制御弁49の開度を増加させる。
この結果、過冷却LNGのLNGタンク3への還流量が増加し、これによって、LNGタンク3の内槽温度が低下する。
このようにして、LNGタンク3内の圧力が所定の範囲に維持されると共にBOGの発生が抑制される。
<非定常運転状態>
この後、例えばLNG基地の送ガス先である火力発電所がDSS運用で停止すると、気化器遮断弁53は閉止し、セカンダリポンプ21が停止するが、LNGの流れが停止すると外部からの入熱によってLNGの温度が上昇しガス化するおそれがある。この結果、ガスが配管内に溜まることで閉塞され、LNGの流れが滞るおそれがある。このため、プライマリポンプ19が低負荷で運転し続けることによって、LNGが系内を循環するようになっており、具体的には、プライマリポンプ19によって送出されたLNGは、払出配管5を除熱しながら流れ、LNG戻り配管7を介してLNGタンク3に還流する。
しかし、ヒートポンプ9への冷熱源が供給されなくなるためヒートポンプ9は停止されるので、環流するLNGを過冷却することができず、LNG戻り配管7には過冷却LNGを供給できない。
この状態において、LNG戻り配管7を介してLNGをLNGタンク3に還流させ続けると、LNGタンク3への入熱とLNGタンク3に供給される冷熱のバランスが崩れるため、LNGタンク3の内槽温度が上昇する。
圧力検出器13の検出結果が上記のある一定値を上回ると、制御装置15は第2流量制御弁49の開度を絞り、第1流量制御弁47の開度を増加せる。
この結果、過冷却されていないLNGのLNGタンク3へのLNGの還流量が減少し、その分、戻りLNG貯留タンク11に貯留されていた過冷却LNGが新たに流入するLNGに押し出されるようにしてLNGタンク3へ供給され、これによって、LNGタンク3の内槽温度が低下する。
上記の状態が続いて、LNGタンク3に供給される冷熱量の方が入熱量よりも多くなると、LNGタンク3の気層温度が低下するとともに内圧が低下する。この場合には、制御装置15は、圧力検出器13の検出結果に基づいて第1流量制御弁47の開度を絞ると共に第2流量制御弁49の開度を増加させる。
これにより、LNGタンク3に供給される過冷却LNGの流量が減少するため、LNGタンク3の気層の温度が徐々に回復する。
以上のように、蒸発ガス抑制装置1は、LNGタンク3の内圧が一定の範囲に収まるように冷熱をLNGタンク3に供給することができるため、LNGタンク3の強度限界を超過することなく安定的にLNGタンク3からのBOGの発生を抑制することができる。
また、蒸発ガス抑制装置1は、冷熱が余剰となった場合には、戻りLNG貯留タンク11を容積バッファとして冷熱を蓄積し、冷熱が不足する場合に、蓄積された冷熱をLNGタンク3に供給することができるため、火力発電設備のDSS運用によって、LNGの払出が止まりヒートポンプ9によって冷熱を回収できない場合にも安定的にBOGの発生を抑制することができる。さらに、蒸発ガス抑制装置1は、払い出されるLNGの冷熱を利用したヒートポンプ9を使うため、空気分離装置など外部に冷熱を求める必要がないことから、過大なコストを必要とせずに安定的にBOGの発生を抑制することができる。
[実施の形態2]
実施の形態1の蒸発ガス抑制装置1は、本発明の容積バッファの例として、戻りLNG貯留タンク11を用いたものであったが、本実施の形態の蒸発ガス抑制装置57は容積バッファとして、荷揚げされたLNGをLNGタンク3に移送する受入配管59を利用するものである。
図3は本実施の形態に係る蒸発ガス抑制装置57の概略フローを示す図であり、実施の形態1を示した図1と同一部分には同一の符号を付して説明を省略する。
以下、本実施の形態2の特徴である受入配管59を容積バッファとして利用することに関連する構成について説明する。
受入配管59は、LNGを荷揚げするための受入アーム61とLNGタンク3との間に配設されており、荷揚げされたLNGをLNGタンク3に移送する経路を形成している。
また、受入配管59は、一般的に数百メートルと長く、かつ、大径の配管であるため、大きな内容積を有する。
さらに、受入配管59は、LNGタンク3の近傍で分岐部を有しており、LNGタンク3内の上部にLNGを供給する上部受入配管59aと、LNGタンク3内の下部にロート管60を介してLNGを供給する下部受入配管59bとに分かれている。LNGタンク3に対して上部及び下部のいずれかからLNGを供給するかは、受け入れられるLNGの組成、LNGタンク3に貯残しているLNGの組成、その他の運用条件を考慮して決定される。
また、受入配管59に対する入熱によって発生したガスをLNGタンク3に導入することを目的として、受入配管59にはガス抜き装置(図示なし)が設置されており、気層が拡大しないように適宜ガスをLNGタンク3に逃がしている。
受入アーム61は、LNG船着桟用のプラットフォームに設置され、例えば複数のスイベルジョイントを有する多関節型のアームから構成されており、荷揚げ時にはLNG船のマニフォールドに接続できるようになっている。受入アーム61の構成はこれに限るものではなく、低温用のフレキシブルホースなどの可撓性を有するものであってもよい。
受入アーム61の下流側には受入アーム61を受入配管59から遮断する機能を有する受入アーム遮断弁61aが設けられ、受入アーム遮断弁61aはLNGの受入を行う場合には開き、LNGの受入を行わない場合には閉じるようになっている。
受入配管59内にはLNGが常時入った状態になっているが、LNGは極低温の液体であるため、外部からの入熱により昇温しガス化する場合がある。ガス化すると、LNGの流れが不安定になる等の影響があるため、LNGを常時循環させて極低温状態を維持する必要がある。
このため、中圧払出配管23から分岐して受入配管59における受入アーム遮断弁61aの近傍に接続される受入配管保冷循環用LNG供給配管63が設けられている。
受入配管保冷循環用LNG供給配管63は、LNGが受入配管59を流れることで受入配管59内のLNGが極低温状態に維持されるよう、中圧払出配管23内のLNGを一部抜き出して受入配管59に供給する機能を有している。以降、受入配管59に対しては中圧払出配管23内のLNGを一部抜き出して供給することを前提に説明するが、受入配管59の冷却維持の方法はこれに限らず、専用のLNGポンプをLNGタンク3内部に設置し、当該ポンプによって汲み上げられたLNGを使用してもよい。
また、一端がLNG戻り配管7に接続され他端が受入配管保冷循環用LNG供給配管63に連結された連絡配管65が設けられ、受入配管保冷循環用LNG供給配管63にヒートポンプ9で過冷却された過冷却LNGを供給できるようになっている。
また、図3においては、図1に示していなかったBOGを処理する装置が示されているので、この点について説明する。
LNGタンク3で発生するBOGを抜き出すBOG抜出し管67が設けられ、BOG抜出し管67の一端はLNGタンク3の屋根部に接続されており、他端はBOG母管69に接続されていて、BOG母管69はBOG圧縮機71及びフレアスタック73に接続されている。
BOG圧縮機71は、例えばレシプロ式のガス圧縮機であり、LNGタンク3から発生したBOGを昇圧し、中圧BOG配管75を介して基地外の設備、例えば火力発電所の中圧ボイラーに送出することにより、予め定められた範囲でLNGタンク3の内槽圧力を調節する機能を有している。BOG圧縮機71の型式としてレシプロ型以外のものも適用可能であり、例えば、スクリュー式や遠心式のガス圧縮機も適用可能である。
フレアスタック73は、エレベーテッド式のフレアスタックであり、LNGタンク3の内圧が異常に上昇した場合に、緊急的にBOGを燃焼処理する機能を有している。フレアスタック73の型式としてエレベーテッド式以外のものも適用可能であり、例えば、グランド式も適用可能である。
フレアスタック73の前流にはBOG開放弁77が設けられている。BOG開放弁77は、LNGタンク3の内圧が異常に上昇した場合に開くようになっている。
次に上記のように構成された本実施の形態の蒸発ガス抑制装置57の作用について、実施の形態1と同様に定常運転状態と非定常運転状態に分けて説明する。
なお、本実施の形態では、受入配管59を容積バッファとして機能させるため、LNG流量調節装置としては、LNG戻り配管7に設けた戻りLNG流量制御弁79によって構成し、戻りLNG流量制御弁79を制御装置15によって制御するようにしている。
<定常運転状態>
LNG基地の定常運転状態として、プライマリポンプ19及びセカンダリポンプ21によって昇圧されたLNGはLNG気化器17によって気化されて送ガス配管55に送出される。
また、受入アーム遮断弁61aは閉止しており、受入配管59には受入配管保冷循環用LNG供給配管63を介してLNGが供給され、LNGが系内を循環することにより、受入配管59の冷却が維持される。
また、ヒートポンプ9は連続的に稼動しており、セカンダリポンプ21によって昇圧されたLNGの一部は、ヒートポンプ9によって過冷却されてLNG戻り配管7を介してLNGタンク3に環流すると共にその一部は連絡配管65を介して受入配管保冷循環用LNG供給配管63を通じて容積バッファとしての機能を有する受入配管59に供給される。
一般的にはLNG戻り配管7よりも連絡配管65の方が小径であるため、還流する過冷却LNGは圧力損失の差に基づいて、連絡配管65ではなくLNGタンク3側に優先的に流れていく。これにより、LNGタンク3への入熱がキャンセルされ、BOGの発生が停止している状態が想定される。この想定においては、BOG圧縮機71は停止している。
上記のようにBOGの発生が抑制された熱バランスが維持された状態から、LNGタンク3に供給される冷熱量の方が入熱量よりも多くなると、LNGタンク3の気層温度が低下するとともに内圧が低下する。この結果、圧力検出器13の検出結果がある一定値を下回ると、制御装置15は戻りLNG流量制御弁79の開度を低下させることによって、LNGタンク3に還流するLNGの流量を低下させる。
この結果、LNGタンク3に還流するLNGの減少分が、連絡配管65及び受入配管保冷循環用LNG供給配管63を介して受入配管59に供給される。これにより、受入配管59内のLNGは過冷却状態のLNGに置き換わっていくため、冷熱が受入配管59内に蓄積されていく。一方、LNGタンク3に供給される過冷却LNGの流量が減少するため、LNGタンク3の気層温度が徐々に回復する。
そして、再びLNGタンク3の気層温度が上昇しすぎた場合には、制御装置15は、圧力検出器13の検出結果に基づいて戻りLNG流量制御弁79の開度を増加させて過冷却LNGのLNGタンク3への環流量を増加させる。
このようにして、LNGタンク3内の圧力が所定の範囲に維持されると共にBOGの発生が抑制される。
<非定常運転状態>
この後、例えばLNG基地の送ガス先である火力発電所がDSS運用で停止すると、気化器遮断弁53は閉止し、セカンダリポンプ21が停止するが、プライマリポンプ19が低負荷で運転し続けることによって、LNGが系内を循環する。このため、LNG戻り配管7及び受入配管59のそれぞれにLNGが循環するので、LNG戻り配管7内及び受入配管59内でのガス化は抑制される。
しかし、この状態では実施の形態1で説明したように、ヒートポンプ9によって環流するLNGを過冷却することができず、LNG戻り配管7には過冷却LNGを供給できず、LNG戻り配管7を介してLNGタンク3に冷熱を供給することはできない。
この状態において、戻りLNG流量制御弁79を介してLNGをLNGタンク3に還流させ続けると、LNGタンク3への入熱が増え続けるため、LNGタンク3の内槽温度が上昇する。制御装置15は、圧力検出器13の検出結果が実施の形態1で説明したある一定値を上回ると、戻りLNG流量制御弁79の開度を低下させる。
この結果、戻りLNG流量制御弁79を介したLNGタンク3へのLNGの還流量が減少し、その分、連絡配管65及び受入配管保冷循環用LNG供給配管63を介した受入配管59へのLNGの供給量が増加する。これにより、過冷却状態で受入配管59に収容されていたLNGは、受入配管保冷循環用LNG供給配管63から供給されるLNGに押されてLNGタンク3に流入する。このように、過冷却状態のLNGが受入配管59からLNGタンク3に供給されることから、LNGタンク3の内槽温度が低下する。このとき、LNGタンク3内部の上部に還流させるか下部に還流させるかは、LNGの液種やLNGタンク3内部の状態に基づいていずれか一方又は最適な配分に選択される。
上記の状態が続いて、LNGタンク3に供給される冷熱量の方が入熱量よりも多くなると、LNGタンク3の気層温度が低下するとともに内圧が低下する。この場合には、制御装置15は、圧力検出器13の検出結果に基づいて戻りLNG流量制御弁79の開度を増加させる。
これにより、LNGタンク3に供給される過冷却LNGの流量が減少し、かつ過冷却されていないLNGの環流量が増加するため、LNGタンク3の気層の温度が徐々に回復する。
以上のように、蒸発ガス抑制装置57は、実施の形態1と同様に、LNGタンク3の内圧が一定の範囲に収まるように冷熱をLNGタンク3に供給することができるため、LNGタンク3の強度限界を超過することなく安定的にLNGタンク3からのBOGの発生を抑制することができる。
また、蒸発ガス抑制装置57は、冷熱が余剰となった場合には、受入配管59を容積バッファとして冷熱を蓄積し、冷熱が不足する場合に、受入配管59に蓄積された冷熱をLNGタンク3に供給することができるため、別途容積バッファを設置することなく、火力発電設備のDSS運用によって、LNGの払い出しが止まり冷熱を回収できない場合にも安定的にBOGの発生を抑制することができる。
なお、LNGの受入を行う場合には、受入配管保冷循環用LNG供給配管63を経たLNGの循環を一旦停止し、受入アーム遮断弁61aを開き、受入アーム61に接続されたLNG船の船内ポンプによってLNGが揚液される。
[実施の形態3]
本実施の形態に係る蒸発ガス抑制装置81を図4に基づいて説明する。なお、本実施の形態3を含め後述する実施の形態4〜6については、実施の形態2を基本としてその一部を変更したものであるため、以下においては実施の形態2と同一部分には同一の符号を付して説明を省略し、各実施の形態の特有の事項のみを説明する。
本実施の形態の蒸発ガス抑制装置81は、連絡配管65に受入配管59に供給されるLNGの流量を調節する受入配管冷却LNG流量制御弁83を設け、制御装置15によって受入配管冷却LNG流量制御弁83を制御するようにしたものである。受入配管冷却LNG流量制御弁83は、例えば空気駆動のグローブ弁によって構成されており、制御装置15の出力信号に応じて開度を変更することによって、受入配管59に供給されるLNGの流量を調節する。
上記のように構成された本実施の形態の蒸発ガス抑制装置81の作用を説明する。
<定常運転状態>
実施の形態2と同様に、BOGの発生が抑制された熱バランスが維持された状態から、LNGタンク3に還流する冷熱量の方が多くなると、LNGタンク3の気層温度が低下するとともに内圧が低下する。このとき、圧力検出器13の検出結果が実施の形態1、2で説明したある一定値を下回ると、制御装置15は戻りLNG流量制御弁79の開度を低下させるとともに受入配管冷却LNG流量制御弁83の開度を増大させることによって、ヒートポンプ9からLNG戻り配管7に流れるLNGの流量を一定に保ちつつ、LNGタンク3に還流するLNGの流量を低下させ、かつ受入配管59に冷熱を蓄積する。
この結果、実施の形態2と同様に、LNGタンク3の気層温度が徐々に回復するとともに、受入配管59に冷熱が蓄積されていく。
そして、再びLNGタンク3の気層温度が上昇しすぎた場合には、制御装置15は、圧力検出器13の検出結果に基づいて戻りLNG流量制御弁79の開度を増加させるとともに受入配管冷却LNG流量制御弁83の開度を低下させることによって過冷却LNGのLNGタンク3への環流量を増加させる。
このようにして、LNGタンク3内の圧力が所定の範囲に維持されると共にBOGの発生が抑制される。
<非定常運転状態>
非定常運転状態において、戻りLNG流量制御弁79を介してLNGをLNGタンク3に還流させ続けると、LNGタンク3への入熱が増え続けるため、LNGタンク3の内槽温度が上昇する。制御装置15は、圧力検出器13の検出結果が実施の形態1、2で説明したある一定値を上回ると、戻りLNG流量制御弁79の開度を低下させると共に受入配管冷却LNG流量制御弁83の開度を増加させる。
この結果、戻りLNG流量制御弁79を介したLNGタンク3へのLNGの還流量が減少し、その分、連絡配管65及び受入配管保冷循環用LNG供給配管63を介した受入配管59へのLNGの供給量が増加する。
上記の状態が続いて、LNGタンク3に供給される冷熱量の方が入熱量よりも多くなると、LNGタンク3の気層温度が低下するとともに内圧が低下する。この場合には、制御装置15は、圧力検出器13の検出結果に基づいて戻りLNG流量制御弁79の開度を増加させると共に受入配管冷却LNG流量制御弁83の開度を低下させる。
これにより、LNGタンク3に供給される過冷却LNGの流量が減少し、かつ過冷却されていないLNGの環流量が増加するため、LNGタンク3の気層の温度が徐々に回復する。
このように、蒸発ガス抑制装置81は、戻りLNG流量制御弁79と受入配管冷却LNG流量制御弁83を併用するため、より精度よく流量バランスを変更することができる。このため、蒸発ガス抑制装置81は、より精度よくLNGタンク3の内圧を調節することができる。
[実施の形態4]
本実施の形態に係る蒸発ガス抑制装置85を図5に基づいて説明する。
本実施の形態に係る蒸発ガス抑制装置85は、実施の形態2における戻りLNG流量制御弁79に代えてLNG戻り配管7における連絡配管65の接続部に三方弁87を設け、制御装置15によって三方弁87を制御するようにしたものである。
三方弁87は、例えば空気駆動の一般的な三方弁によって構成されており、LNGがLNGタンク3のみに還流する流路を形成する開閉位置、連絡配管65を経由して受入配管保冷循環用LNG供給配管63のみに流れる流路を形成する開閉位置、又はLNGが両流路に流れる開閉位置をとるようになっている。すなわち、三方弁87は、LNGタンク3に還流するLNGの流量と、受入配管59に供給されるLNGの流量とのバランスを調節するようになっている。
次に上記のように構成された本実施の形態の蒸発ガス抑制装置85の作用を説明する。
<定常運転状態>
実施の形態2と同様に、BOGの発生が停止する熱バランスが維持された状態から、LNGタンク3に還流する冷熱量の方が多くなると、LNGタンク3の気層温度が低下するとともに内圧が低下する。このとき、圧力検出器13の検出結果が実施の形態1、2で説明したある一定値を下回ると、制御装置15は三方弁87を駆動させることによって、LNGタンク3に還流するLNGの流量を減少させるとともに受入配管保冷循環用LNG供給配管63に供給されるLNGの流量を増加させる。
この結果、実施の形態2と同様に、LNGタンク3の気層温度が徐々に回復するとともに、受入配管59に冷熱が蓄積されていく。
そして、再びLNGタンク3の気層温度が上昇しすぎた場合には、制御装置15は、圧力検出器13の検出結果に基づいて三方弁87を駆動させることによって、LNG戻り配管7を介してLNGタンク3に還流するLNGの流量を増加させるとともに受入配管保冷循環用LNG供給配管63に供給されるLNGの流量を減少させる。
<非定常運転状態>
非定常運転状態において、LNG戻り配管7を介してLNGをLNGタンク3に還流させ続けると、LNGタンク3の内槽温度が上昇する。この場合、制御装置15は、圧力検出器13の検出結果が実施の形態1、2で説明したある一定値を上回ると、三方弁87を駆動させて、LNG戻り配管7を介してLNGタンク3に還流するLNGの流量を減少させるとともに受入配管保冷循環用LNG供給配管63に供給されるLNGの流量を増加させる。
上記の状態が続いて、LNGタンク3に供給される冷熱量の方が入熱量よりも多くなると、LNGタンク3の気層温度が低下するとともに内圧が低下する。この場合には、制御装置15は、圧力検出器13の検出結果に基づいて三方弁87を駆動させて、LNG戻り配管7を介してLNGタンク3に還流するLNGの流量を増加させるとともに受入配管保冷循環用LNG供給配管63に供給されるLNGの流量を減少させる。
このように、本実施の形態の蒸発ガス抑制装置85は、三方弁87によって流量バランスを変更することができるため、戻りLNG流量制御弁79のみによって制御する場合よりも精度よく、かつ戻りLNG流量制御弁79及び受入配管冷却LNG流量制御弁83によって制御する場合よりも低いコストと少ない設置スペースでLNGタンク3の内圧を調節することができる。
[実施の形態5]
本実施の形態に係る蒸発ガス抑制装置89を図6に基づいて説明する。
本実施の形態に係る蒸発ガス抑制装置89は、実施の形態4のものに加えて、ヒートポンプ91として冷熱量調整手段を有するものを用いると共に、制御装置15によってヒートポンプ91の冷熱量調整手段を制御するようにしたものである。
本実施の形態のヒートポンプ91は、図7に示すように、冷熱量調節手段の一例として、冷媒圧縮機31の回転速度を調節するスピードコントローラ93を有している。
次に上記のように構成された本実施の形態の作用を説明する。
ヒートポンプ91に冷熱量調整手段を設けた一つの目的は、例えば夏期と冬期ではヒートポンプ91による冷凍能力に差を持たすことで電力の節約ができるようにすることである。
よって、この目的の観点からは、制御装置15による三方弁87の制御については、実施の形態4と同様である。
また、ヒートポンプ91に冷熱量調整手段としてのスピードコントローラ93を設けたことで、例えばヒートポンプ91の稼動中に受入配管59に蓄積する冷熱が少ないような場合には、制御装置15はスピードコントローラ93によって冷媒圧縮機31の回転速度を増加させて、蓄積できる冷熱量を増加させることができる。
逆に、受入配管59に蓄積する冷熱量やLNG戻り配管7を介してLNGタンク3に流入させる冷熱量を少なくする場合には、制御装置15はスピードコントローラ93によって冷媒圧縮機31の回転速度を低下させるようにすればよい。
このように、ヒートポンプ91に冷熱量調整手段を設けることで、受入配管59に蓄積する冷熱量やLNG戻り配管7を介してLNGタンク3に流入させる冷熱量を緻密に制御することが可能になる。
また、ヒートポンプ91に冷熱量調整手段を設けることで、ヒートポンプ91の内部の制御によって回収される冷熱量を調節することができるため、制御範囲を限定的にすることができ、他のプラント要素への改造を抑えながらBOGの発生を安定的に抑制することができる。
なお、冷熱量調節手段の他の例として、図8に示すヒートポンプ95のように、第1熱交換器29のLNGの後流側にヒートポンプ戻りLNG流量制御弁97を設けるようにしてもよい。ヒートポンプ戻りLNG流量制御弁97は、例えば空気駆動のグローブ弁によって構成されており、第1熱交換器29を通って還流するLNGの流量を調節するようになっている。具体的には、例えばLNGタンク3に供給される冷熱量を減少させる場合には、制御装置15によってヒートポンプ戻りLNG流量制御弁97の開度を低下させることによって、第1熱交換器29を通って還流するLNGの流量を減少させるようにすればよい。
冷熱量調節手段として、ヒートポンプ戻りLNG流量制御弁97を設けた場合も、図7に示したものと同様の作用効果を奏することができる。
なお、上記の説明は実施の形態4を前提として説明したが、冷熱量調整手段を有するヒートポンプ91、95を用いるのは、実施の形態1〜3のいずれのものにも適用可能である。
[実施の形態6]
本実施の形態に係る蒸発ガス抑制装置99を図9に基づいて説明する。
本実施の形態に係る蒸発ガス抑制装置99は、実施の形態1〜3のものに加えて、LNG気化器17の上流側に流体量検出手段101を設けると共に、流体量検出手段101の検出値に基づいて冷熱量を算出する冷熱量算出手段103を設け、制御装置15は冷熱量算出手段103の算出結果に基づいて戻りLNG流量制御弁79、受入配管冷却LNG流量制御弁83及びヒートポンプ9を制御する機能を有するようにしたものである。流体量検出手段101は、例えば温度計、圧力計若しくは流量計又はこれらの組み合わせによって構成されている。
流体量検出手段101及び冷熱量算出手段103を設けたのは、需要先への送ガスが行われているか否かを自動的に判断して、受入配管冷却LNG流量制御弁83を制御するためである。
次に上記のように構成された本実施の形態の作用を説明する。
冷熱量算出手段103によって算出された冷熱量がある一定量よりも多い場合には、需要先への送ガスが行われている状態であり、実施の形態3で説明した定常運転状態と同様の作用が行われる。
他方、冷熱量算出手段103によって算出された冷熱量がある一定量よりも少ない場合は、例えば送ガス先である火力発電所がDSS運用で停止した非定常運転状態であり、この場合、実施の形態3における非定常状態と同様の制御を行うようにすればよい。
本発明を適用した蒸発ガス抑制装置が火力発電設備のDSS運用に追従して蒸発ガスを抑制する場合の冷熱の蓄積と消費の時間変化を図10に基づいて説明する。
図10においては、24時間のうちに、火力発電設備の運転中に蓄積した冷熱を火力発電設備の停止中に消費することを前提として、熱のバランスが計算されている。
以下は、図3に示した実施の形態2の構成を用いて説明する。
火力発電設備の運転中、ヒートポンプ9は50ton/hのLNGの冷熱を利用して、LNG戻り配管7を40ton/hで流れるLNGを−175℃まで過冷却する。このうち、過冷却LNGは、24ton/hでLNGタンク3に還流し、16ton/hで連絡配管65及び受入配管保冷循環用LNG供給配管63を介して受入配管59に供給される。
24ton/hでLNGタンク3に還流した−175℃の過冷却LNGは、LNGタンク3への約600kWの入熱をキャンセルすることができる。LNGの蒸発潜熱を約520kJ/kgとすると、約4ton/hのBOGの発生を抑制することができる。一方、16ton/hで受入配管59に供給されたLNGは、受入配管59の内部に貯留されていく。この結果、約400kWの冷熱が受入配管59に蓄積されていくことになる。
図10で想定している火力発電設備の運用においては、1箇所のLNG基地から燃料の供給を受け、昼間に運転し、夜間に停止する。このため、夜間はLNG基地からの送ガスが停止する結果、ヒートポンプ9による冷熱の回収ができなくなる。昼間に受入配管59に蓄積した冷熱によって、夜間のBOG発生を抑制する条件で運転時間を計算すると、昼間の火力発電設備の運転時間は14.4hとなり、夜間の停止時間は9.6hとなる。
したがって、昼間の14.4hで、400kWで受入配管59に蓄積した5760kWhの冷熱を、夜間に600kW、9.6hでLNGタンク3に供給することで、夜間の約4ton/hのBOG発生を抑制することができる。
1 蒸発ガス抑制装置(実施の形態1)
3 LNGタンク
5 払出配管
7 LNG戻り配管
7a 保冷循環LNG戻り配管
7b 保冷循環LNG戻り配管
7c 保冷循環LNG戻りヘッダ
7d LNG戻り母管
7e 第1熱交換器入口配管
7f 第1熱交換器出口配管
9 ヒートポンプ
11 戻りLNG貯留タンク
13 圧力検出器
15 制御装置
17 LNG気化器
19 プライマリポンプ
21 セカンダリポンプ
21a セカンダリポンプ
21b セカンダリポンプ
23 中圧払出配管
23a 中圧払出母管
23b 吸込ヘッダ
23c 吸込配管
23d 吸込配管
24 バイパス配管
24a バイパス弁
25 高圧払出配管
25a 吐出配管
25b 吐出配管
25c 吐出ヘッダ
25d 高圧払出母管
27 バレル
29 第1熱交換器
31 冷媒圧縮機
33 第2熱交換器
35 減圧装置
37 冷媒配管
39 第2熱交換器入口配管
41 第2熱交換器出口配管
43 戻りLNG貯留タンク入口配管
45 戻りLNG貯留タンク出口配管
47 第1流量制御弁
49 第2流量制御弁
51 気化流量制御弁
53 気化器遮断弁
55 送ガス配管
57 蒸発ガス抑制装置(実施の形態2)
59 受入配管
59a 上部受入配管
59b 下部受入配管
60 ロート管
61 受入アーム
61a 受入アーム遮断弁
63 受入配管保冷循環用LNG供給配管
65 連絡配管
67 BOG抜出し管
69 BOG母管
71 BOG圧縮機
73 フレアスタック
75 中圧BOG配管
77 BOG開放弁
79 戻りLNG流量制御弁
81 蒸発ガス抑制装置(実施の形態3)
83 受入配管冷却LNG流量制御弁
85 蒸発ガス抑制装置(実施の形態4)
87 三方弁
89 蒸発ガス抑制装置(実施の形態5)
91 ヒートポンプ
93 スピードコントローラ
95 ヒートポンプ
97 ヒートポンプ戻りLNG流量制御弁
99 蒸発ガス抑制装置(実施の形態6)
101 流体量検出手段
103 冷熱量算出手段

Claims (6)

  1. LNGを貯蔵するLNGタンクと、該LNGタンク内のLNGを外部に払い出す払出ラインと、前記払出ラインから分岐してLNGを前記LNGタンクに還流させる還流ラインと、前記払出ラインに設けられて該払出ラインを流れるLNGの冷熱を利用して前記環流ラインを流れるLNGを過冷却するヒートポンプとを備えたLNG基地における前記LNGタンクで発生する蒸発ガスを抑制するLNGタンクの蒸発ガス抑制装置であって、
    前記環流ラインに接続されて前記ヒートポンプの稼働中に所定量の過冷却のLNGを収容する容積バッファと、
    前記LNGタンクの気層部の圧力を検出する圧力検出手段と、
    前記LNGタンクに供給する冷熱量を調節するために前記LNGタンクに流入するLNGの流量を調節するLNG流量調節装置と、
    前記圧力検出手段の検出結果が予め定められた範囲に収まるように前記LNG流量調節装置を制御するLNG流量調節装置制御手段とを備え、
    該LNG流量調節装置制御手段は前記ヒートポンプが稼動していないときに前記容積バッファに収容された過冷却LNGを前記LNGタンクに流入させるように前記LNG流量調節装置を制御する機能を有していることを特徴とするLNGタンクの蒸発ガス抑制装置。
  2. 前記LNG流量調節装置制御手段は、
    前記ヒートポンプの稼動中においては、前記LNG流量調節装置を制御して、前記圧力検出手段の検出結果が予め定められた範囲に収まるように、前記ヒートポンプによって過冷却された過冷却LNGのLNGタンクへの流入量を調節し、
    前記ヒートポンプの停止中においては、前記LNG流量調節装置を制御して、前記圧力検出手段の検出結果が予め定められた範囲に収まるように、前記容積バッファに収容された過冷却LNGのLNGタンクへの流入量を調節することを特徴とする請求項1に記載のLNGタンクの蒸発ガス抑制装置。
  3. 前記容積バッファは、荷揚げされたLNGを前記LNGタンクに移送する受入配管であることを特徴とする請求項1又は2に記載のLNGタンクの蒸発ガス抑制装置。
  4. 前記払出ラインを流れるLNGの一部を前記受入配管に供給して前記受入配管内を保冷すると共に環流の流れを形成する受入配管保冷循環用LNG供給ラインと、前記環流ラインと前記受入配管保冷循環用LNG供給ラインを接続する連絡ラインとをさらに有し、
    前記LNG流量調節装置は、前記環流ラインから前記連絡ラインに供給する過冷却LNG又はLNGの流量を調整する流量制御弁を含むことを特徴とする請求項3記載のLNGタンクの蒸発ガス抑制装置。
  5. LNGを貯蔵するLNGタンクと、該LNGタンク内のLNGを外部に払い出す払出ラインと、前記払出ラインから分岐してLNGを前記LNGタンクに還流させる還流ラインと、前記払出ラインに設けられて該払出ラインを流れるLNGの冷熱を利用して前記環流ラインを流れるLNGを過冷却するヒートポンプとを備え、前記ヒートポンプによって過冷却されたLNGを前記LNGタンクに供給することで前記LNGタンクで発生する蒸発ガスを抑制するようにしているLNG基地における前記LNGタンクで発生する蒸発ガスを抑制するLNGタンクの蒸発ガス抑制方法であって、
    前記ヒートポンプの稼動中に前記環流ラインを流れる過冷却LNGを容積バッファに一時的に貯留しておき、前記ヒートポンプの停止中において前記容積バッファに貯留された過冷却LNGを前記LNGタンクに供給するようにしたことを特徴とするLNGタンクの蒸発ガス抑制方法。
  6. 前記容積バッファは、荷揚げされたLNGを前記LNGタンクに移送する受入配管であり、前記ヒートポンプの稼動中には環流する過冷却LNGの一部を前記受入配管の上流側から前記受入配管に供給して前記受入配管に冷熱を蓄積し、前記ヒートポンプの停止中において環流するLNGを前記受入配管の上流側から供給することで、前記受入配管に貯留されている過冷却LNGを押し出すようにして前記LNGタンクに供給するようにしたことを特徴とする請求項5記載のLNGタンクの蒸発ガス抑制方法。
JP2018012545A 2018-01-29 2018-01-29 Lngタンクの蒸発ガス抑制装置及び蒸発ガス抑制方法 Active JP6834999B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018012545A JP6834999B2 (ja) 2018-01-29 2018-01-29 Lngタンクの蒸発ガス抑制装置及び蒸発ガス抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018012545A JP6834999B2 (ja) 2018-01-29 2018-01-29 Lngタンクの蒸発ガス抑制装置及び蒸発ガス抑制方法

Publications (2)

Publication Number Publication Date
JP2019132291A true JP2019132291A (ja) 2019-08-08
JP6834999B2 JP6834999B2 (ja) 2021-02-24

Family

ID=67545886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018012545A Active JP6834999B2 (ja) 2018-01-29 2018-01-29 Lngタンクの蒸発ガス抑制装置及び蒸発ガス抑制方法

Country Status (1)

Country Link
JP (1) JP6834999B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112197503A (zh) * 2020-10-10 2021-01-08 常一江 一种bog冷量回收利用冷冻装置及冷冻方法
CN112483883A (zh) * 2019-09-12 2021-03-12 安瑞科(廊坊)能源装备集成有限公司 Lng加气站
WO2021181669A1 (ja) * 2020-03-13 2021-09-16 千代田化工建設株式会社 流体を移送するシステム及び流体の移送方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218033A (ja) * 1994-02-03 1995-08-18 Nkk Corp Lngタンクの冷却装置
JPH08159394A (ja) * 1994-12-09 1996-06-21 Tokyo Gas Co Ltd 液化ガス貯蔵タンク内に発生するbogの抑制方法及びこの装置
JP2000337597A (ja) * 1999-04-20 2000-12-05 Gaz De France 液化気体の貯蔵輸送槽の低温維持方法及び装置
US20070068177A1 (en) * 2005-09-29 2007-03-29 Paul Higginbotham Storage vessel for cryogenic liquid
JP2007292181A (ja) * 2006-04-25 2007-11-08 Chiyoda Corp 液化ガス設備のbog抑制方法
JP2007292178A (ja) * 2006-04-25 2007-11-08 Chiyoda Corp 液化ガス設備の保冷循環システム
DE102013018341A1 (de) * 2013-10-31 2015-04-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Regelung des Drucks in einem Flüssigerdgasbehälter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07218033A (ja) * 1994-02-03 1995-08-18 Nkk Corp Lngタンクの冷却装置
JPH08159394A (ja) * 1994-12-09 1996-06-21 Tokyo Gas Co Ltd 液化ガス貯蔵タンク内に発生するbogの抑制方法及びこの装置
JP2000337597A (ja) * 1999-04-20 2000-12-05 Gaz De France 液化気体の貯蔵輸送槽の低温維持方法及び装置
US20070068177A1 (en) * 2005-09-29 2007-03-29 Paul Higginbotham Storage vessel for cryogenic liquid
JP2007292181A (ja) * 2006-04-25 2007-11-08 Chiyoda Corp 液化ガス設備のbog抑制方法
JP2007292178A (ja) * 2006-04-25 2007-11-08 Chiyoda Corp 液化ガス設備の保冷循環システム
DE102013018341A1 (de) * 2013-10-31 2015-04-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Regelung des Drucks in einem Flüssigerdgasbehälter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112483883A (zh) * 2019-09-12 2021-03-12 安瑞科(廊坊)能源装备集成有限公司 Lng加气站
WO2021181669A1 (ja) * 2020-03-13 2021-09-16 千代田化工建設株式会社 流体を移送するシステム及び流体の移送方法
CN112197503A (zh) * 2020-10-10 2021-01-08 常一江 一种bog冷量回收利用冷冻装置及冷冻方法

Also Published As

Publication number Publication date
JP6834999B2 (ja) 2021-02-24

Similar Documents

Publication Publication Date Title
RU2648312C2 (ru) Устройство для охлаждения потребителя холода переохлажденной жидкостью в контуре охлаждения
JP5227000B2 (ja) Lng貯蔵タンク
JP6834999B2 (ja) Lngタンクの蒸発ガス抑制装置及び蒸発ガス抑制方法
KR102082362B1 (ko) 극저온 저장 선박에 있는 보일 오프 가스 속의 잠열의 수집, 이용, 배출을 위한 장치, 시스템, 방법
US20090126704A1 (en) Fuel gas supply system and method of an lng carrier
US20200041072A1 (en) Device and process for refueling containers with pressurized gas
JP2006349084A (ja) 液化天然ガス運搬船の蒸発ガス供給システム
JP5190315B2 (ja) 低温液の気化ガス供給設備
JP6845918B2 (ja) 水素ガス供給装置及びその方法
US20200039811A1 (en) Device and process for refueling containers with pressurized gas
KR102271761B1 (ko) 선박의 액화가스 재기화 시스템 및 방법
JPH07218033A (ja) Lngタンクの冷却装置
JP2024503496A (ja) 高圧ガス消費機器および低圧ガス消費機器用のガス供給システム
JP2024511643A (ja) 船舶のガス消費装置用ガス供給システムの熱交換器を冷却するための方法
KR20190041859A (ko) Lng연료를 이용한 액화가스 재액화장치 및 이를 가지는 액화가스운반선
JPH11117766A (ja) ガスタービン用空気冷却システムおよび冷却方法
Madsen et al. Intermediate Fluid Vaporizers for LNG Regasification Vessels (SRVs) and FSRUs
US10590861B2 (en) Power plant with emergency fuel system
JP2008051287A (ja) 液化天然ガス設備の保冷システム
JP2020148210A (ja) Lng冷熱回収システム
KR102286692B1 (ko) 가스 처리 시스템 및 이를 포함하는 해양 부유물
US20230358445A1 (en) Cooling system with a distribution system and a cooling unit
KR101584570B1 (ko) 해양구조물의 코퍼댐 히팅시스템 및 코퍼댐 히팅 방법
KR20220062752A (ko) 선박의 액화가스 재기화 방법
US11898520B2 (en) Gas supply system for high- and low-pressure gas-consuming apparatuses and method of controlling such a system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6834999

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350