JP2019125603A - 吸着方法 - Google Patents

吸着方法 Download PDF

Info

Publication number
JP2019125603A
JP2019125603A JP2018002946A JP2018002946A JP2019125603A JP 2019125603 A JP2019125603 A JP 2019125603A JP 2018002946 A JP2018002946 A JP 2018002946A JP 2018002946 A JP2018002946 A JP 2018002946A JP 2019125603 A JP2019125603 A JP 2019125603A
Authority
JP
Japan
Prior art keywords
adsorption
voltage
electrodes
electrode
target substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018002946A
Other languages
English (en)
Inventor
大輔 川久保
Daisuke Kawakubo
大輔 川久保
前平 謙
Ken Maehira
謙 前平
不破 耕
Ko Fuwa
耕 不破
直樹 森本
Naoki Morimoto
森本  直樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2018002946A priority Critical patent/JP2019125603A/ja
Publication of JP2019125603A publication Critical patent/JP2019125603A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】吸着対象基板を均一に吸着する。【解決手段】吸着板12に複数配置された各吸着電極11それぞれに、仮吸着電圧を印加し、吸着対象基板17を吸着しながら、一枚の吸着電極11に交流電圧を印加し、他の吸着電極11に流れる交流電流を測定する。吸着電極11を替え、少なくとも二回交流電圧を印加して交流電流を測定し、測定結果から各吸着電極11と吸着対象基板17との間の静電容量を求め、吸着対象基板17が均一に吸着される電圧を本吸着電圧として設定する。【選択図】図2

Description

本発明はシリコンウエハやガラス基板などの薄膜処理および搬送するための基板の吸着技術に関し、特に、吸着対象基板の面内の吸着状態・撓み・反りなどの変形状態を検出する技術に関する。
現在では、基板の大型化・薄型化が進んでいるが、大型基板には、高温に加熱する工程や、多層膜を形成する工程によって、変形しやすいという欠点がある。
真空処理を行う大型基板が、直前の真空処理工程の影響によって反っていると、基板を吸着して吸着装置に密着させようとしても、密着性は基板面内の位置で異なる不均一性が発生して、真空処理中に基板面内に大きな温度勾配が形成されてしまう場合がある。
また、吸着装置による吸着が反りによって不均一であると、基板面内の冷却が不均一になり、エッチングや成膜等の真空処理が均一に行えない場合がある。
特開2010−123810号公報 特開平8−90474号公報 特開平6−204325号公報 特表2011−515856号公報
本発明は上記従来技術の不都合を解決するために創作されたものであり、その目的は、基板面内の吸着状況を検出する技術を提供することにあり、また、検出した吸着状況に基づいて、反りを解消して吸着する技術に関する。
上記課題を解決するために、本発明は、二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、各前記吸着電極に、直流で同極性の本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、前記吸着電極の中から所望の複数の前記吸着電極を選択し、各前記吸着電極それぞれに同極性で互いに同じ大きさの直流の仮吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着しながら、選択した複数の前記吸着電極のうち一枚を交流信号発生器に接続して交流電圧である測定電圧を印加し、前記交流信号発生器に接続した前記吸着電極以外の前記吸着電極のうちの所望の前記吸着電極に流れる交流電流の値を測定値として測定することを選択した前記吸着電極毎に繰り返す吸着方法であり、各前記吸着電極と前記吸着対象基板との間の前記吸着電極毎の静電容量の逆数を未知数とし、前記測定電圧と前記測定値とを定数項として、選択した前記吸着電極毎に成立する一次方程式によって連立一次方程式が形成されたときに、前記未知数に解が存在するように前記吸着電極を選択する測定工程と、前記連立一次方程式を解いて前記逆数を求め、各前記吸着電極と前記吸着電極で吸着された前記吸着対象基板との間に形成された静電容量に対応する計算値を前記吸着電極毎に算出する算出工程と、前記計算値が小さい前記吸着電極に印加する前記本吸着電圧の絶対値は、前記計算値が大きい前記吸着電極に印加する前記本吸着電圧の絶対値よりも大きくして吸着対象基板を吸着する吸着工程と、を有する吸着方法である。
本発明は、二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、前記吸着電極のうち、所定の吸着電極には直流の正電圧である本吸着電圧を印加し、他の吸着電極には直流の負電圧である本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、前記吸着電極の中から所望の複数の前記吸着電極を選択し、正電圧である前記本吸着電圧が印加される前記吸着電極には、正電圧と負電圧のいずれか一方の極性で絶対値が同じ大きさの仮吸着電圧を印加し、負電圧である本吸着電圧が印加される前記吸着電極には、他方の極性で絶対値が同じ大きさの仮吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着しながら、選択した複数の前記吸着電極のうち一枚を交流信号発生器に接続して交流電圧である測定電圧を印加し、前記交流信号発生器に接続した前記吸着電極以外の前記吸着電極のうちの所望の前記吸着電極に流れる交流電流の値を測定値として測定することを選択した前記吸着電極毎に繰り返す吸着方法であり、各前記吸着電極と前記吸着対象基板との間の前記吸着電極毎の静電容量の逆数を未知数とし、前記測定電圧と前記測定値とを定数項として、選択した前記吸着電極毎に成立する一次方程式によって連立一次方程式が形成されたときに、前記未知数に解が存在するように前記吸着電極を選択する測定工程と、前記連立一次方程式を解いて前記逆数を求め、各前記吸着電極と、前記吸着電極で吸着された前記吸着対象基板との間に形成された静電容量に対応する計算値を前記吸着電極毎に算出する算出工程と、前記計算値が小さい前記吸着電極に印加する前記本吸着電圧の絶対値は、前記計算値が大きい前記吸着電極に印加する前記本吸着電圧の絶対値よりも大きくして吸着対象基板を吸着する吸着工程と、を有する吸着方法である。
本発明は、正電圧である前記仮吸着電圧と、負電圧である前記仮吸着電圧とは、絶対値を等しくさせる吸着方法である。
本発明は、前記吸着電極に前記本吸着電圧を印加したときの前記吸着対象基板と各前記吸着電極との間に発生する静電吸着力の差が、前記仮吸着電圧を各前記吸着電極に印加したときよりも小さくなるように、前記吸着電極毎に前記本吸着電圧を設定する吸着方法である。
本発明は、前記吸着電極に前記本吸着電圧を印加したときの前記吸着対象基板と各前記吸着電極との間の距離の差が、前記仮吸着電圧を各前記吸着電極に印加したときよりも小さくなるように、前記吸着電極毎に前記本吸着電圧を設定する吸着方法である。
本発明は、二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、各前記吸着電極に、直流で同極性の本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、前記吸着電極の中から所望の複数の前記吸着電極を選択し、各前記吸着電極それぞれに同極性で互いに同じ大きさの直流の仮吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着しながら、選択した複数の前記吸着電極のうち一枚を交流信号発生器に接続して交流電圧である測定電圧を印加し、前記交流信号発生器に接続した前記吸着電極以外の前記吸着電極のうちの所望の前記吸着電極に流れる交流電流の値を測定値として測定することを選択した前記吸着電極毎に繰り返す吸着方法であり、各前記吸着電極と前記吸着対象基板との間の前記吸着電極毎の静電容量の逆数を未知数とし、前記測定電圧と前記測定値とを定数項として、選択した前記吸着電極毎に成立する一次方程式によって連立一次方程式が形成されたときに、前記未知数に解が存在するように前記吸着電極を選択する測定工程と、前記連立一次方程式を解いて前記逆数を求め、各前記吸着電極と、前記吸着電極で吸着された前記吸着対象基板との間に形成された静電容量に対応する計算値を前記吸着電極毎に算出し、算出された前記計算値の前記吸着板上の分布である測定分布を求める面内分布作成工程と、を有する吸着方法である。
本発明は、前記測定分布から前記測定値が小さい順番で前記吸着電極に前記本吸着電圧を印加する吸着方法である。
本発明は、二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、前記吸着電極のうち、所定の吸着電極には直流の正電圧である本吸着電圧を印加し、他の吸着電極には直流の負電圧である本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、前記吸着電極の中から所望の複数の前記吸着電極を選択し、正電圧である前記本吸着電圧が印加される前記吸着電極には、正電圧と負電圧のいずれか一方の極性で絶対値が同じ大きさの仮吸着電圧を印加し、負電圧である本吸着電圧が印加される前記吸着電極には、他方の極性で絶対値が同じ大きさの仮吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着し、各前記吸着電極に前記仮吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着しながら、選択した複数の前記吸着電極のうち一枚を交流信号発生器に接続して交流電圧である測定電圧を印加し、前記交流信号発生器に接続した前記吸着電極以外の前記吸着電極のうちの所望の前記吸着電極に流れる交流電流の値を測定値として測定することを選択した前記吸着電極毎に繰り返す吸着方法であり、各前記吸着電極と前記吸着対象基板との間の前記吸着電極毎の静電容量の逆数を未知数とし、前記測定電圧と前記測定値とを定数項として、選択した前記吸着電極毎に成立する一次方程式によって連立一次方程式が形成されたときに、前記未知数に解が存在するように前記吸着電極が選択され、前記連立一次方程式を解いて前記逆数を求め、各前記吸着電極と、前記吸着電極で吸着された前記吸着対象基板との間に形成された静電容量に対応する計算値を前記吸着電極毎に算出し、算出された前記計算値の前記吸着板上の分布である測定分布を求める面内分布作成工程を有する吸着方法である。
本発明は、前記測定分布から前記測定値が小さい順番で前記吸着電極に前記本吸着電圧を印加する吸着方法である。
本発明は、二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、各前記吸着電極に、直流で同極性の本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、前記各吸着電極に交流の測定電圧を印加し、前記吸着面上に配置された前記吸着対象基板と前記吸着電極との間に形成される静電容量の大きさに対応した交流電流の値を測定値として測定し、前記測定値が小さい順番で前記本吸着電圧を前記吸着電極に印加する吸着方法である。
本発明は、二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、前記吸着電極のうち、所定の吸着電極には直流の正電圧である本吸着電圧を印加し、他の吸着電極には直流の負電圧である本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、互いに逆極性の本吸着電圧が印加され隣接する二個の吸着電極を一組の電極組とし、各前記電極組に交流の測定電圧を印加し、各前記電極組毎に流れる交流電流の値を測定値として測定し、前記測定値が小さい順番で前記電極組を選択し、選択した電極組の二個の吸着電極に前記本吸着電圧を印加する吸着方法である。
電極間の誘電率に応じた係数をkとすると、面積Sの二枚の電極が距離d離間して対向する静電容量Cは、
C=k・S/d ……(1)
で表すことができ、この静電容量Cのインピーダンス絶対値|Z|は、角周波数ωの交流電圧Vを印加して交流電流Iを流した場合、下記(2)式で表すことができる。
|Z| = V/I = 1/(ωC) ……(2)
図1(a)の符号110は、複数の吸着電極111が吸着板112の内部に配置された吸着装置であり、複数の吸着電極111のうち、一個の吸着電極111には、交流信号発生器115が接続され、他の吸着電極111には電流計116が接続されている。
吸着板112上に電気導電性を有する吸着対象基板117が配置された場合、各吸着電極111と吸着対象基板117との間には静電容量が発生する。
吸着電極111の個数をnとすると、交流信号発生器115と、交流信号発生器115が接続された吸着電極111と吸着対象基板117との間の静電容量C0と、他のn−1個の吸着電極111と吸着対象基板117との間の静電容量C1〜Cn-1の並列接続回路とがそれぞれ直列接続されている。
同図(b)は、静電容量C0、C1〜Cn-1をコンデンサの記号で表したときの等価回路図であり、各吸着電極111に交流電圧が印加されたときには、各吸着電極111に接続された電流計116によって、静電容量C1〜Cn-1に流れる電流を測定することができる。交流電圧Vの値は既知である。
電流計116が接続された吸着電極111と吸着対象基板117との間の静電容量C1〜Cn-1の大きさの大小関係は、静電容量C1〜Cn-1に流れた交流電流の大きさの大小関係に等しいが、静電容量を構成する吸着電極111の形状と面積とが等しい場合、静電容量が大きい吸着電極111と吸着対象基板117との間の距離は、静電容量が小さい吸着電極111と吸着対象基板117との間の距離よりも短い。
従って、静電容量C1〜Cn-1に流れた交流電流の大きさの大小関係と、吸着電極111と吸着対象基板117との間の距離の大きさの大小関係とは逆になる。
各吸着電極111に、異なる大きさの本吸着電圧を印加して吸着対象基板117を吸着できるようにされている場合は、静電容量C1〜Cn-1の測定値が大きな吸着電極111には、静電容量C1〜Cn-1の測定値が小さな吸着電極111よりも印加する本吸着電圧の絶対値を小さく設定すると、設定された本吸着電圧で吸着する際には吸着対象基板117を均一に吸着することができる。
しかしながら、交流電圧Vを印加する静電容量C0は、他の静電容量C1〜Cn-1とは大きさを比較することができず、その静電容量C0を形成する吸着電極111の本吸着電圧の値を設定することは困難である。
測定用の電極を吸着電極とは別に設ける必要は無く、吸着対象基板を均一に吸着することができる。
吸着電極と吸着対象基板の間の静電容量に応じた計算値を算出し、計算値が小さな吸着電極には、計算値が大きな吸着電極よりも絶対値が大きな本吸着電圧を設定すると、吸着対象基板を均一に吸着することができる。
吸着電極に印加する本吸着電圧の値を吸着電極毎に変えることが出来るから、計算値と計算値の吸着板内の場所とから、吸着対象基板の反り状態に応じた吸着を行うことができる。
また、計算値を表示装置に表示すると、測定した処理対象基板の反りの状態が分かる。
(a)、(b):測定原理を説明するための図 本発明を用いる真空処理装置の第一例を説明するための図 本発明を用いる真空処理装置の第二例を説明するための図 吸着電極の吸着板上の位置を説明するための図 (a):各吸着電極に正負電圧を印加する場合の電圧の分布図 (b):各吸着電極に正電圧を印加する場合の電圧の分布図 計算値の吸着板上の分布図 (a):吸着電極に正負電圧を印加する場合の吸着電極の最小枚数を示す図 (b):吸着電極に正電圧を印加する場合の吸着電極の最小枚数を示す図 本発明を用いる真空処理装置の第一例を説明するための図 本発明を用いる真空処理装置の第二例を説明するための図 本発明を用いる真空処理装置の第三例を説明するための図(1) 本発明を用いる真空処理装置の第三例を説明するための図(2) 本発明を用いる真空処理装置の第四例を説明するための図(1) 本発明を用いる真空処理装置の第四例を説明するための図(2)
図2、図8の符号5aと図3、図9の符号5bとは、本発明の吸着方法を用いる第一例、第二例の真空処理装置である。また、図10、図11の符号5cは、本発明の吸着方法を用いる第三例の真空処理装置であり、図12、図13は、本発明の吸着方法を用いる第四例の真空処理装置5dである。これら第一例〜第四例の真空処理装置5a〜5dは、真空槽21と、測定装置18、18c、18dと、吸着装置10a、10bと、電源装置14a〜14dと、制御装置28とをそれぞれ有している。
第一例〜第四例の真空処理装置5a〜5dはそれぞれスパッタリング装置であり、各真空処理装置5a〜5dの真空槽21の内部には、バッキングプレート22と、バッキングプレート22に設けられたスパッタリングターゲット19とが配置されている。
吸着装置10a、10bは、スパッタリングターゲット19と対面する真空槽21の内部の場所に配置されている。吸着装置10a、10bは、絶縁性材料が板状にされた絶縁性材料板を有する吸着板12を有しており、吸着板12は絶縁性材料板に配置された複数の吸着電極11を有している。ここでは吸着電極11は吸着板12の内部に配置されており、吸着電極11は、吸着板12を構成する絶縁性材料板で覆われている。
吸着板12は、吸着板12の表面のうち、吸着電極11上の表面である吸着面29を有しており、吸着対象基板17は、吸着面29と接触して吸着板12の上に配置される。従って吸着対象基板17と吸着電極11とは、吸着電極11上の吸着板12の表面部分を挟んで一定の距離離間するようになっている。
先ず、第一例と第二例の真空処理装置5a、5bを説明する。
第一例と第二例の真空処理装置5a、5bに設けられた測定装置18は、少なくとも一台の交流信号発生器15と、それぞれ複数個の第一スイッチ25と、電流計16と、第二スイッチ26とを有している。
ここでは、第一スイッチ25と、電流計16と、第二スイッチ26とは、吸着電極11の枚数と同数の個数が設けられている。
第一スイッチ25は、第一切替接点81と、第一信号側接点82と、第一接続側接点83とを有しており、第一信号側接点82と第一接続側接点83とを接続先とすると、第一切替接点81はいずれかの一接点の接続先に電気的に接続でき、且つ、接続先を変更できるようにされている。(図2,3,8,9ではこの第一切替接点81と下記の第二切替接点85は接点に接続されていない状態が示されている。)
各第一スイッチ25の第一切替接点81は、それぞれ異なる吸着電極11に電気的に接続され、第一信号側接点82は、同じ交流信号発生器15の同じ一端子に電気的に接続され、第一接続側接点83は、異なる電流計16の一端子に接続されている。
第二スイッチ26は、第二切替接点85と、第二接続側接点86と、電流計側接点87と、第二信号側接点88とを有しており、第二接続側接点86と、電流計側接点87と、第二信号側接点88とを接続先とすると、第二切替接点85は、いずれかの一接点の接続先に電気的に接続でき、且つ、接続先を変更できるようにされている。
第二切替接点85は電源装置14a、14bに電気的に接続され、第二接続側接点86は、異なる第一スイッチ25の第一接続側接点83に電気的に接続されている。従って、第二接続側接点86は、その第二接続側接点86が電気的に接続された第一接続側接点83が電気的に接続された電流計16の一端子に接続されている。電流計側接点87は、第二接続側接点86が一端子に接続された電流計16の他端子に接続され、第二信号側接点88は、各第一信号側接点82が一端子に接続された交流信号発生器15の他端子に接続されている。
測定装置18は制御装置28に接続されており、第一、第二スイッチ25,26は制御装置28によって制御され、第一切替接点81は、第一信号側接点82と第一接続側接点83のいずれか一方に接続先が切り替えられ、第二切替接点85は、第二接続側接点86と、電流計側接点87と、第二信号側接点88との、いずれか一個に接続先が切り替えられるようになっている。
切替により、第一切替接点81を第一接続側接点83に電気的に接続させ、第二切替接点85を第二接続側接点86に電気的に接続させると、各吸着電極11は、第二切替接点85を介して、電源装置14a、14bに電気的に接続される。
ここで、図2の電源装置14aと図3の電源装置14bには、正電圧又は負電圧を出力電圧とし、出力電圧の大きさが可変の単位電源27を、少なくとも吸着電極11の枚数と同数個設けられている。
図3の真空処理装置5bは、吸着装置10bが単極型であり、各第二切替接点85は、異なる単位電源27の同極性の電圧が出力される端子にそれぞれ接続されている。具体的には、各第二切替接点85は、異なる単位電源27の正電圧が出力される端子にそれぞれ接続されており、又は、異なる単位電源27の負電圧が出力される端子にそれぞれ接続されている。図3では、第二切替接点85が単位電源27の正電圧が出力される端子に接続されている。
各単位電源27が第二切替接点85に出力する正電圧又は負電圧の大きさは変更することができるようにされている。
従って、各吸着電極11は、第二切替接点85を介して、異なる単位電源27から同極性で大きさが可変の電圧が印加される。
図2の真空処理装置5aでは、吸着装置10aは双極型であり、近接して配置された二枚の吸着電極11には、逆極性の電圧が印加されるようにされている。
第一、第二切替接点81,85が、第一、第二接続側接点83、86にそれぞれ接続された場合には、近接して配置された二枚の吸着電極11のうち、一方の吸着電極11が接続される第二切替接点85は、単位電源27の正電圧の出力端子に接続され、他方の吸着電極11が接続される第二切替接点85は、別の単位電源27の負電圧の出力端子に接続されている。電圧の大きさだけではなく、出力電圧の極性も設定することができれば、同じ出力端子から、正電圧と負電圧のいずれの電圧も出力可能な単位電源27を用いても良い。
その結果、制御装置28によって第一、第二スイッチ25、26が制御され、吸着電極11が第二切替接点85に接続されると、近接して配置された二枚の吸着電極11のうち、一方の吸着電極11には正電圧が印加され、他方の吸着電極11には負電圧が印加される。
図2と図3に示された各単位電源27は、第二切替接点85に電気的に接続された端子に出力電圧が出力され、出力電圧とは逆極性の電圧が出力される端子は接地電位に接続されている。出力電圧は、正電圧でも負電圧でも大きさは変更が可能にされている。
吸着電極11の配置を説明する。
図2と図3に示された吸着装置10a、10bの吸着面29は四角形であり、その四角形の四辺のうち、平行な二辺を一組選択して、その二辺が伸びる方向をX軸にとり、その二辺と直角な二辺が伸びる方向をY軸にとると、図2、図3の吸着装置5a、5bの吸着電極11は、図4に示すように、X軸方向とY軸方向の両方の方向に複数個が並び、二次元に配置されている。
図4では、吸着電極11は行列状に配置されており、吸着電極11が配置された領域の縁に位置する吸着電極11を除き、一個の吸着電極11を中心とすると中心の吸着電極11の周囲には、中心の吸着電極11と一辺同士が対向する四個の吸着電極11と、頂点同士が対向する四個の吸着電極11とが、中心となる吸着電極11に近接する位置にある。
この格子状の配置では、中心の吸着電極11に最も近接するのは、辺同士が対向した四個の吸着電極11にされており、吸着対象基板17を吸着し、その状態で真空処理を行う際に、各吸着電極11に印加する電圧を本吸着電圧と呼ぶものとすると、図2の真空処理装置5aでは、各単位電源27は、中心の吸着電極11に印加される本吸着電圧と、辺同士が対向する四個の吸着電極11に印加される本吸着電圧とは、電圧極性が反対になるように設定されており、各吸着電極11に設定された本吸着電圧が印加されると、図5(a)に示すような電圧極性分布となる。
図3の真空処理装置5bでは、各吸着電極11には同極性の本吸着電圧が印加されるように設定されており、例えば正電圧の場合は、図5(b)に示すような電圧極性分布となる。
真空槽21には、ガス導入装置51と、真空排気装置52とが接続されており、真空処理装置5a、5bによって、吸着対象基板17を真空処理する際には、真空排気装置52を動作させ、真空槽21の内部を真空排気し、真空槽21の内部に真空雰囲気を形成しておき、その真空雰囲気を維持しながら、吸着対象基板17を真空槽21の内部に搬入し、図2,図3に示すように、吸着装置10a、10bの吸着面29上に配置する。
一台の吸着装置10a、10bに設けられた複数の吸着電極11のうち、一個の吸着電極11を選択し、選択した吸着電極11を単位電源27に接続させることができる第一、第二スイッチ25,26内の第一、第二切替接点81,85を、第一、第二信号側接点82,88にそれぞれ電気的に接続させ、選択された吸着電極11以外の吸着電極11では、それらを単位電源27に接続させるために用いる第一、第二スイッチ25、26の内部で、第一切替接点81は第一接続側接点83に電気的に接続し、第二切替接点85は電流計側接点87に接続する。
選択された吸着電極11は、交流信号発生器15と単位電源27とが直列接続された回路に接続され、他方、選択された吸着電極11以外の吸着電極11は、電流計16と単位電源27との直列接続回路が接続され、選択された吸着電極11は交流信号発生器15を介して単位電源27に電気的に接続され、他の吸着電極11は、電流計16を介して単位電源27に電気的に接続されている。交流信号発生器15は、静電容量を介さずに、直流電圧的に選択された吸着電極11に接続され、電流計16は、静電容量を介さずに、直流電圧的に他の吸着電極11に接続される。
各単位電源27は、予め設定された極性と大きさの仮吸着電圧を出力するように、制御装置28によって設定されており、図2の真空処理装置5aでは、真空槽21の内部が真空排気装置52によって真空排気されながら、上述したように、近接して配置された二枚の吸着電極11に、正電圧である仮吸着電圧と、負電圧である仮吸着電圧とをそれぞれ印加する。
一部の吸着電極11に、正電圧の仮吸着電圧を出力し、他の吸着電極11に負電圧の仮吸着電圧を出力すると、吸着電極11と吸着対象基板17とにそれぞれ生じた正負の電荷によって、吸着対象基板17が吸着装置10aの吸着面29上に吸着されるが、同極性の仮吸着電圧が吸着電極11に出力して吸着対象基板17を静電吸着するためには、吸着対象基板17を接地電位に接続する必要がある。
図2、図3の真空処理装置5a、5bでは、真空排気装置52によって真空槽21の内部を真空排気して真空雰囲気を形成しており、図2、図3の真空処理装置5a、5bでは、制御装置28がガス導入装置51を動作させ、真空槽21の内部を真空排気しながらスパッタリングガスを導入する。
図3の真空処理装置5bでは、真空槽21の内部にスパッタガスを含有する真空雰囲気が形成された後、制御装置28がスパッタ用電源53を動作させ、バッキングプレート22及びスパッタリングターゲット19に放電電圧を印加し、真空槽21の内部にプラズマを形成させる。
形成されたプラズマは、吸着装置10b上の吸着対象基板17と真空槽21の壁面とに接触し、吸着対象基板17が真空槽21の壁面に電気的に接続される。真空槽21は、接地電位に接続されており、吸着対象基板17は、真空槽21の壁面の電位と同電位(接地電位)にされる。
その状態で、単位電源27によって、各吸着電極11に同極性の仮吸着電圧を印加すると、吸着電極11と吸着対象基板17との一方に正の電荷が発生し、他方に負の電荷が発生し、吸着対象基板17が吸着面29上に静電吸着される。
吸着対象基板17が吸着面29上に静電吸着された状態では、吸着電極11と吸着対象基板17との間に静電容量が形成される。
各吸着電極11の形状と面積は等しくされており、また、各吸着電極11上に位置する吸着板12を構成する絶縁性材料の厚みは等しくされている。
各吸着電極11に仮吸着電圧が印加され、吸着対象基板17が吸着面29に吸着された状態での、選択された吸着電極11と吸着対象基板17との間に形成された静電容量を選択容量とし、選択された吸着電極11以外の吸着電極11と吸着対象基板17との間に形成された静電容量を測定容量とすると、吸着電極11と吸着対象基板17との間の距離が等しければ、各測定容量は同じ値になり、選択容量の値と測定容量の値も等しくなる。
それとは別に、正電圧の仮吸着電圧と負電圧の仮吸着電圧とを印加する図2の真空処理装置5aでは、正電圧の仮吸着電圧と負電圧の仮吸着電圧とは、絶対値は互いに等しく、印加される吸着電極11の個数も同じにされている。
同一の極性の仮吸着電圧を印加する図3の真空処理装置5bでは、仮吸着電圧の値は等しくされている。
制御装置28が交流信号発生器15を動作させ、仮吸着電圧によって吸着対象基板17を吸着面29上に静電吸着しながら交流の測定電圧を選択容量に出力させると、交流電圧は、選択容量を介して各測定容量に印加され、測定容量に交流電流が流れる。
この交流電流は、測定容量を構成する吸着電極11と、その吸着電極11に接続された電流計16に流れるから、電流計16によって、交流電流の値を測定する。
各吸着電極11の測定容量と選択された吸着電極11の選択容量とは、直列接続されて交流信号発生器15に接続されており、ここで、選択された吸着電極11以外の吸着電極11にこのとき流れた交流電流を第一測定電流とすると、第一測定電流の値は、選択容量と測定容量とが直列接続された静電容量の大きさを表しており、また、選択された吸着電極11以外の吸着電極11と吸着対象基板17との間の距離の大きさが反映された値となる。
吸着対象基板17が接着面29に密着し、各吸着電極11と吸着対象基板17との間の距離が等しい場合には、各吸着電極11に形成される測定容量の大きさは等しくなり、第一測定電流の値も等しくなるが、吸着対象基板17が均一に吸着されず、吸着電極11と吸着対象基板17との間の距離が吸着電極11毎に異なる場合には、測定容量の大きさは吸着電極11毎に異なることになる。
各吸着電極11に仮吸着電圧を印加して吸着対象基板17を静電吸着する際に、制御装置28により、各吸着電極11に流れた第一測定電流の大きさを電流計16によって測定する。
電流計16によって測定された第一測定電流の大きさは電流計16から制御装置28に送信され、第一測定電流は、第一測定電流が流れた吸着電極11の吸着板12中の位置と対応して制御装置28に記憶される。
第一測定電流を測定し、記憶した後、各単位電源27の仮吸着電圧の出力と交流信号発生器15の出力とを停止させる。ここでは、各単位電源27の内部回路の動作により、各吸着電極11を接地電位に接続させる。
次に、選択された吸着電極11に接続された第一切替接点81の接続先を、第一信号側接点82から第一接続側接点83に切り替え、第二切替接点85の接続先を、第二信号側接点88から電流計側接点87に切り替え、選択されていた吸着電極11を、単位電源27と電流計16との直列接続回路に接続させる。
また、仮吸着電圧によって吸着対象基板17を吸着する際には選択されておらず、第一測定電流が測定された吸着電極11の中から、一個の吸着電極11を新たに選択し、新たに選択された吸着電極11に接続された第一切替接点81の接続先を第一接続側接点83から第一信号側接点82に切り替え、第二切替接点85の接続先を、電流計側接点87から第二信号側接点88に切り替え、新たに選択された吸着電極11を、単位電源27と交流信号発生器15との直列接続回路に接続させる。
そして各単位電源27を動作させ、第一測定電流を測定したときと同じ極性で同じ大きさの仮吸着電圧を各単位電源27から出力させて各吸着電極11に印加させ、各吸着電極11が前回仮吸着電圧で吸着したときと同じ静電気力で吸着対象基板17を吸着面29に吸着する。
その状態で交流信号発生器15を動作させ、交流の測定電圧を出力させ、新たに選択された吸着電極11の選択容量を介して、他の吸着電極11の測定容量に測定電圧を印加し、交流電流を流す。
このとき、前回は選択されず、今回も選択されなかった少なくとも一個の吸着電極11に流れた交流電流を第二測定電流として電流計16によって測定する。
各吸着電極11に印加される仮吸着電圧の大きさは、第一測定電流を測定したときと同じであり、各吸着電極11と吸着対象基板17との間の距離は、第一測定電流を測定したときと同じになるが、各吸着電極11の測定容量は、第一測定電流を測定したときの吸着電極11の選択容量とは異なる吸着電極11の選択容量と直列接続されて第二測定電流が測定されることになる。
その結果、第一測定電流の値と第二測定電流の値とによって、各測定容量(測定電流を測定した全部の吸着電極11と吸着対象基板17との間の静電容量)を算出することができる。
交流信号発生器15に接続する吸着電極11を複数回変更して直列接続された選択容量と測定容量との間に流れる交流電流を測定する際にも、吸着に用いられる全ての吸着電極11は単位電源27に接続されるので、測定しない直列接続容量にも交流電流が流れた状態で、測定対象の選択容量と直列接続された各測定容量との間に流れた交流電流が測定される。
また、交流電流を測定するときには、交流電流を測定する毎に同じ仮吸着電圧を各吸着電極11に印加し、選択容量や測定容量が、測定毎に同じ値になっている必要がある。
なお、上記例では、吸着電極11に流れる交流電流は、最初に選択した吸着電極11以外の吸着電極11の全てについて流れた交流電流を第一測定電流として測定したが、選択した吸着電極11以外の全部の吸着電極11の交流電流を第一測定電流として測定する必要は無い。
その理由を説明すると、まず、交流電流を測定する際には、交流信号発生器15に接続された吸着電極11と吸着対象基板17との間の接続容量と、電流計16に接続された吸着電極11と吸着対象基板17との間の測定容量とが直列接続されて形成された直列接続容量に、交流の既知の測定電圧を印加して、測定容量に流れる交流電流を電流計16によって測定電流として測定しており、接続容量と測定容量の逆数Sa、Sbを未知数とし、測定電圧Vaと測定電流Imとを既知としたときに、測定容量の逆数Sa、Sbと測定電圧Vaと測定電流Imとの間には、
Sa+Sb = Va/Im
の線形関係がある。
どの吸着電極11でも交流信号発生器15に接続できるため、直列接続容量は、複数の吸着電極11のうち、いずれの二個でも組みあわせて構成させることができる。従って、直列接続容量の種類の数は、吸着電極11の個数から異なる二個の吸着電極11を選択したときの組みあわせの個数に等しくなる。
それら組みあわせ個数の直列接続容量のうち、所望の個数の直列接続容量の測定容量に流れる交流電流を電流計16によって測定し、複数の線形関係を連立させる。
交流電圧Vaは交流電圧を測定する際に一定であり、定数であるから、
Sa+Sb = Va/Im
の線形関係を連立させて連立方程式を作成してもよい。
そして連立方程式を解き、各吸着電極11と吸着対象基板17との間の静電容量に対応する計算値(各吸着電極11と仮吸着された吸着対象基板17との間の静電容量の定数倍の値)を算出する。算出に交流信号発生器15が出力する交流電圧の値も用い、各吸着電極11と吸着対象基板17との間の静電容量に一対一に対応する計算値を算出してもよい。
その算出のためには、線形関係の式は、少なくとも吸着電極11の個数以上の数が必要であるが、一枚の吸着電極11を選択して交流信号発生器15に接続しただけでは、最大で、吸着電極11の個数よりも“1”少ない個数の直列接続容量に流れた交流電流しか測定することができない。そのため、選択した吸着電極11とは別の吸着電極11を新たに選択し、未測定の直列接続容量の測定容量に流れる交流電流を電流計16で測定する必要がある。
連立方程式の解を求めることができるように、直列接続容量を選択して測定容量に流れる交流電流を測定する必要がある。
一例として、同じ吸着電極11を交流信号発生器15に接続し、他の吸着電極11を電流計16に接続し、選択した吸着電極11に交流電圧を印加して全部の他の吸着電極11に流れる交流電流を第一測定電流として測定した場合、選択された吸着電極11とは異なる吸着電極11を新たに選択して交流信号発生器15に接続し、前回は選択されず、今回も新たに選択されず、交流信号発生器15に接続されたことのない吸着電極11を含む少なくとも一個の直列接続容量に流れた交流電流を第二測定電流として電流計16によって測定すれば、第一、第二測定電流の値を用いた連立方程式によって解を求めることができる。
一般には、連立方程式の解が一組存在するためには、連立方程式の係数行列と定数項の列ベクトルとが、ルーシェ=カペリの定理を満たす必要があるため、測定電流Imと交流電圧Vaを既知とし、静電容量の逆数Sa、Sbを未知数とした連立方程式も同定理を満たす必要がある(ここでは各吸着電極11と吸着対象基板17との間の静電容量の逆数Sの係数行列のランクと、各線形関係の式の定数項であり、交流電圧を測定電流で除した値の列ベクトルで係数行列を拡大させた拡大行列とのランクとが等しいこと)。
他方、線形関係の式が吸着電極11の個数より多く、未知数に対して複数組の解が得られた場合には、一個の吸着電極11と吸着対象基板17との間の接続容量に複数の値が算出されるから、それら複数の値を平均して接続容量にすることができる。
次に、本吸着電圧の設定について説明すると、連立方程式の解として未知数の値を求め、各吸着電極11と吸着対象基板17との間の静電容量に応じた計算値を吸着電極11毎に算出する。
計算値が大きい吸着電極11については、この計算値も大きくなる。計算値は、各吸着電極11と吸着対象基板17との間の距離が反映された値であり、距離が短いほど、計算値は大きくなる。
各吸着電極11の静電容量に寄与する面積と、測定電圧の周波数や大きさ、各吸着電極11上の吸着板12の厚さと誘電率とが分かっており、制御装置28に入力されている場合は、第一、第二測定電流の測定値から、各吸着電極11と吸着対象基板17との間の静電容量や、各吸着電極11と吸着対象基板17との間の距離を求めることができる。
吸着電極11のうち、大きな計算値が算出された吸着電極11と吸着対象基板17との間の距離は、小さな計算値が算出された吸着電極11と吸着対象基板17との間の距離よりも短いから、各吸着電極11に絶対値が同じ大きさの電圧を印加した場合には、小さな計算値が算出された吸着電極11よりも、大きな測定容量が算出された吸着電極11に大きな静電気力が発生する。
そのため、計算値が小さな吸着電極11に印加する本吸着電圧を、計算値が大きい吸着電極11に印加する本吸着電圧よりも大きな値に設定し、各吸着電極11に設定した本吸着電圧を印加すれば、吸着対象基板17を静電吸着しながら真空処理を行う際に、同じ大きさの本吸着電圧を印加する場合に比べて、各吸着電極11間の吸着力の差が小さくなり、吸着対象基板17が均一に吸着されるようになる。
また、計算値が小さな吸着電極11には、計算値が大きい吸着電極11よりも大きな静電気力を発生させる本吸着電圧を算出して設定すれば、吸着電極11と吸着対象基板17との間の距離の差を、同じ大きさの本吸着電圧を印加する場合に比べて、距離の差を小さくし、均一に吸着することができる。
このような本吸着電圧が算出されると、制御装置28によって各単位電源27からの仮吸着電圧の出力が停止され、算出された本吸着電圧が各単位電源27に設定される。
特に、第二測定電流の測定が終了していた場合についての真空処理について説明すると、新たに選択されていた吸着電極11では、第一切替接点81の接続先を第一信号側接点82から第一接続側接点83に切り替え、第二切替接点85の接続先は、第二信号側接点88から第二接続側接点86に切り替える。
他の吸着電極11では、第一切替接点81の接続先を第一接続側接点83のままにしながら、第二切替接点85の接続先は、電流計側接点87から第二接続側接点86に切り替える。
この状態では、各単位電極11は、単位電源27に直接電気的に接続されており、各単位電源27から設定された本吸着電圧を出力させると、吸着対象基板17は、吸着面29に均一に接触する。
なお、求めた本吸着電圧は単位電源27に記憶する場合に限定されるものではなく、例えば、制御装置28に記憶し、制御装置28に記憶された本吸着電圧を出力するように、制御装置28が単位電源27を動作させるようにしてもよい。
真空処理装置5a、5bでは、真空処理を開始する前に、ガス導入装置51から真空槽21内にスパッタリングガスが導入され、真空槽21の内部がスパッタリング雰囲気にされており、算出された本吸着電圧が各単位電源27から出力され、吸着対象基板17が均一に吸着面29に押圧された状態で、スパッタ用電源53によって、バッキングプレート22及びスパッタリングターゲット19にスパッタ電圧が印加され、真空槽21の内部にスパッタリング用のプラズマが形成され、スパッタリングターゲット19がスパッタされ、吸着対象基板17の表面に薄膜が形成される。所定膜厚に形成されると、各単位電源27とスパッタ用電源53の電圧出力は停止され、薄膜が形成された吸着対象基板17は真空槽21の外部に搬出され、未処理の吸着対象基板が吸着装置10a、10b上に配置され、上記と同じ手順で本吸着電圧が算出され、本吸着電圧によって吸着されながら真空処理が行われる。
以上説明した吸着電極11の形状・面積は、同じ吸着装置10a、10b内では同じにされていたが、静電容量に寄与する電極面積が既知であれば、各吸着電極11の形状や面積が異なる場合であっても、吸着力を均一にする本吸着電圧や、距離を一定にする本吸着電圧を算出することができる。
制御装置28には、表示装置30が接続されており、表示装置30に測定した第一又は第二測定電流の値や、算出した計算値や距離等を、吸着電極11の吸着板12中の位置に対応させた測定分布を表示することができる。
また、複数の数値範囲を設定し、測定電流や計算値又は距離等が属する数値範囲を吸着電極11の吸着板12中の位置に対応させた測定分布を表示装置30に表示することができる。
図6は、計算値が含まれる数値範囲を、数値が重複しないように複数個(ここでは四個)設定し、計算値を、その計算値が算出された吸着電極11が位置する吸着板12中の場所対応させた測定分布を表示した。
ここでは、最小の数値範囲を1番にし、1番の数値範囲よりも含まれる数値が大きい数値範囲を、小さい順に2番、3番、4番にして、計算値が含まれる数値範囲の番号を表示装置30に表示させた。この表示は、測定した吸着対象基板17の反り状態を反映しており、反りの異常な吸着対象基板17を発見して製造工程から除外させることもできる。
なお、正電圧と負電圧を印加する双極型静電吸着装置では吸着電極11の個数は偶数が望ましい。その吸着電極11を二次元的に配置する場合は、図7(a)に示すように、縦方向と横方向とにそれぞれ二個ずつ配置された4個が吸着装置10aの吸着電極11の最小個数になる。この場合、正電圧が印加される吸着電極11と負電圧が印加される吸着電極は、二個ずつである。
単極型静電吸着装置では、吸着電極11に同極性の本吸着電圧を印加するが、二次元的に配置するためには、図7(b)に示すように縦方向と横方向とにそれぞれ二個ずつ配置された4個が吸着装置10bの吸着電極11の最小個数になる。
以上は、スパッタリング装置に設けられた吸着装置10a、10bを用いて吸着対象基板17を吸着する場合について説明したが、吸着対象基板17を吸着して処理する工程であれば、本発明を用いることができ、例えば、エッチング装置や表面処理装置によって吸着対象基板17を処理する場合も本発明を用いることができる。
以上は、二個の異なる吸着電極11を交流信号発生器15に接続して第一、第二測定値として交流信号を測定したが、各吸着電極11の静電容量に応じた値の計算値を算出することができれば、異なる三個以上の吸着電極11を交流信号発生器15に接続し、各吸着電極11に流れる交流電流を測定してもよい。
吸着電極11と吸着対象基板17との間の距離が大きくなると静電容量は小さくなり、距離が小さくなると静電容量は大きくなる。測定値は静電容量の値に対応しており、上述した各吸着電極11の測定分布から反った吸着対象基板17の形状を推測することができる。
中央位置に近いほど吸着電極11の静電容量が小さくなっている場合は吸着対象基板17は凸型に反っていることになり、逆に、周辺位置に近いほど吸着電極11の静電容量が小さくなっている場合は吸着対象基板17は凹型に反っていることになる。
図2、図3では、吸着対象基板17は周辺が上方に反っており、中央が吸着面29に接触しながら周辺が吸着面29とは離間する凹型の反りであったが、図8、図9はそれとは反対に吸着対象基板17は周辺が下向きに反っており、周辺が吸着面29に接触しながら中央が吸着面29とは離間する凸型の反りである。
静電容量が小さい順序は測定値が小さい順序であり、単極型の吸着装置10bの場合は、各吸着電極11の中から静電容量が小さい順序で吸着電極11を選択し、選択した吸着電極11に順番に本吸着電圧を印加する。吸着電極11毎に所定の時間間隔で印加する。
双極型の吸着装置10aの場合は、正電圧の本吸着電圧が印加される吸着電極11の中と、負電圧の本吸着電圧が印加される吸着電極11の中とから、それぞれ測定値が最小の吸着電極11を選択し、本吸着電圧を印加する。
次に、正電圧の本吸着電圧が印加される残りの吸着電極11の中と、負電圧の本吸着電圧が印加される残りの吸着電極11の中とから、二番目に測定値が小さい吸着電極11を選択し、本吸着電圧を印加する。
このように、測定値がそれぞれ小さい順に、正電圧の本吸着電圧が印加される吸着電極11の中と、負電圧の本吸着電圧が印加される吸着電極11の中とから吸着電極11を選択し、順番に本吸着電圧を印加する。
このような印加方法によると、吸着対象基板17が凸型に反っている場合は、本吸着電圧は、中央位置に近い一個の吸着電極11又は中央位置に近い一組の吸着電極11から印加が開始され、測定値が小さい順に周辺位置に向けて一個の吸着電極11又は一組の吸着電極11毎に印加される。
凹型に反っている吸着対象基板17の場合は、本吸着電圧は、周辺位置に近い一個の吸着電極11又は周辺位置に近い一組の吸着電極11から印加が開始され、測定値が小さい順に中央位置に向けて一個の吸着電極11又は一組の吸着電極11毎に印加される。
その結果、凸型でも凹型でも、吸着対象基板17と吸着面29との間に隙間が残存することなく吸着対象基板17を吸着面29に接触させることができる。
次に、第三例、第四例の真空処理装置5c、5dを説明する。
第三例の真空処理装置5cは双極型の吸着装置10aを有している。図10には、第三例の真空処理装置5cの吸着面29上に凹型に反った吸着対象基板17が配置された状態が示されており、図11には、第三例の真空処理装置5cの吸着面29上に凸型に反った吸着対象基板17が配置された状態が示されている。
第三例の真空処理装置5cの測定装置18cは、少なくとも一台の交流信号発生器15と、それぞれ複数個の第一スイッチ25と、電流計32と、第二スイッチ26とを有している。
正の本吸着電圧が印加される吸着電極11と負の本吸着電圧が印加される吸着電極11のうち、いずれか一方の極性の本吸着電圧が印加される吸着電極11は、第一例と同様に接続されており、第一、第二のスイッチ25、26の内部の切り替えによって、電源装置14cに直接接続され、又は、交流信号発生器15が電気的に挿入された状態で、電源装置14cに接続されるようになっている。
いずれか一個の吸着電極11と電源装置14cとの間に交流信号発生器15を電気的に挿入して交流信号発生器15を動作させると、一個の吸着電極11に交流の測定電圧を印加することができる。
他方の極性の本吸着電圧が印加される吸着電極11は、電流計32とオンオフスイッチ33とが直列接続された回路を介して電源装置14cにそれぞれ接続されている。
第三例の真空処理装置5cの吸着電極11は、図5(a)に示したように、正の本吸着電圧が印加される吸着電極11と負の吸着電圧が印加される吸着電極11とが交互に配置されている。ここでは、異なる極性の本吸着電圧が印加される二個の吸着電極11であって、互いに隣接した吸着電極11が一組の電極組とされており、各電極組は、他の電極組には含まれていない吸着電極11によって構成されているものとする。
各電極組の中から一組の電極組を選択し、第一、第二のスイッチ25,26とオンオフスイッチ33との内部接続の切り替えにより、各吸着電極11を電源装置14cから遮断させておく。
次に、その状態から一組の電極組を選択し、第一、第二のスイッチ25、26とオンオフスイッチ33との内部接続を切り替え、選択した電極組の中の二個の吸着電極11のうち、一方の吸着電極11を交流信号発生器15を介して電源装置14cに接続し、他方の吸着電極11を電流計32を介して電源装置14cに接続する。
この状態では、選択した電極組の中の二個の吸着電極11のうち、一方の吸着電極11と吸着対象基板17との間に形成される静電容量と、他方の吸着電極11と吸着対象基板17との間に形成される静電容量とは直列接続されている。
電源装置14cから接地電位と同電位の直流電圧を出力し、選択した電極組の二個の吸着電極11に印加しながら、交流信号発生器15を動作させ、交流の測定電圧を出力し、交流信号発生器15に接続された吸着電極11に印加すると、選択された電極組の直列接続された静電容量に交流電流が流れ、電流計32によって流れた交流電流の値を測定値として測定する。
各電極組毎に測定値を測定し、吸着面29上の静電容量の分布である測定分布を求める。
そして測定分布の中から測定値が最小の電極組を選択し、選択した電極組の中の二個の吸着電極11の間に本吸着電圧を印加した後、次に測定値が小さい電極組の中の二個の吸着電極11に本吸着電圧を印加する。
このように、測定値が小さい順序で電極組を選択し、本吸着電圧を印加すると、凸型に反った吸着対象基板17の場合は、中央位置に近い電極組中の吸着電極11間から周辺位置の電極組中の吸着電極11間に向けて測定値が小さい順に本吸着電圧が印加され、凹型に反った吸着対象基板17の場合には、周辺位置の電極組の中の吸着電極11間から中央位置の電極組の吸着電極11間に向けて測定値が小さい順に本吸着電圧が印加される。
その結果、凸型でも凹型でも、吸着対象基板17と吸着面29との間に隙間が残存することなく本吸着を行うことができる。
一枚の吸着対象基板17の中に凹部や凸部が複数形成されている場合も、静電容量が小さい順に一組の吸着電極11間に本吸着電圧を印加すると吸着対象基板17と吸着面29との間に隙間が形成されずに吸着対象基板17を吸着面29に接触させることができる。
次に、図12,図13に示された第四例の真空処理装置5dは、単極型の吸着装置10bと測定装置18dと、電源装置14dとを有している。測定装置18dは、オンオフスイッチ35と、電流計36とを有している。
測定装置18dとオンオフスイッチ35とは、少なくとも吸着電極11と同数設けられており、測定装置18dとオンオフスイッチ35とは一個ずつ直列接続され、直列接続された回路の一端がそれぞれ異なる吸着電極11に接続され、他端は同一の交流信号発生器15の一端に接続されている。交流信号発生器15の他端は、電源装置14dに接続されている。
電源装置14dには単位電源37が配置されており、単位電源37が動作して電源装置14dから直流電圧が出力されるとその直流電圧は、接続されたオンオフスイッチ35が導通状態にされた吸着電極11に印加されるようになっている。
また、交流信号発生器15から交流の測定電圧が出力されると、その交流信号発生器15に接続され、接続されたオンオフスイッチ35が導通状態にされた吸着電極11に印加されるようになっている。
電源装置14dから接地電位の電圧を出力させ、制御装置28が特定したオンオフスイッチ35と交流信号発生器15とを動作させることで、所望の吸着電極11に交流の測定電圧を印加し、電流計36によって各吸着電極11に流れる交流電流を測定値として測定し、測定値の測定分布を求める。
各吸着電極11の測定値の分布が求められると、吸着対象基板17を吸着する際には、測定値の小さい順番で各吸着電極11に本吸着電圧を印加すると、隙間が形成されずに吸着対象基板17を吸着面29に接触させることができる。
なお、第一〜第四例の真空処理装置5a〜5dや本発明の他の真空処理装置において、吸着電極11は吸着板12の内部に配置してもよいし、吸着板12の上に配置してもよい。
5a〜5d……真空処理装置
11……吸着電極
12……吸着板
17……吸着対象基板
21……真空槽
29……吸着面

Claims (11)

  1. 二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、
    各前記吸着電極に、直流で同極性の本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、
    前記吸着電極の中から所望の複数の前記吸着電極を選択し、
    各前記吸着電極それぞれに同極性で互いに同じ大きさの直流の仮吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着しながら、選択した複数の前記吸着電極のうち一枚を交流信号発生器に接続して交流電圧である測定電圧を印加し、前記交流信号発生器に接続した前記吸着電極以外の前記吸着電極のうちの所望の前記吸着電極に流れる交流電流の値を測定値として測定することを選択した前記吸着電極毎に繰り返す吸着方法であり、
    各前記吸着電極と前記吸着対象基板との間の前記吸着電極毎の静電容量の逆数を未知数とし、前記測定電圧と前記測定値とを定数項として、選択した前記吸着電極毎に成立する一次方程式によって連立一次方程式が形成されたときに、前記未知数に解が存在するように前記吸着電極を選択する測定工程と、
    前記連立一次方程式を解いて前記逆数を求め、各前記吸着電極と前記吸着電極で吸着された前記吸着対象基板との間に形成された静電容量に対応する計算値を前記吸着電極毎に算出する算出工程と、
    前記計算値が小さい前記吸着電極に印加する前記本吸着電圧の絶対値は、前記計算値が大きい前記吸着電極に印加する前記本吸着電圧の絶対値よりも大きくして吸着対象基板を吸着する吸着工程と、を有する吸着方法。
  2. 二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、
    前記吸着電極のうち、所定の吸着電極には直流の正電圧である本吸着電圧を印加し、他の吸着電極には直流の負電圧である本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、
    前記吸着電極の中から所望の複数の前記吸着電極を選択し、
    正電圧である前記本吸着電圧が印加される前記吸着電極には、正電圧と負電圧のいずれか一方の極性で絶対値が同じ大きさの仮吸着電圧を印加し、負電圧である本吸着電圧が印加される前記吸着電極には、他方の極性で絶対値が同じ大きさの仮吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着しながら、選択した複数の前記吸着電極のうち一枚を交流信号発生器に接続して交流電圧である測定電圧を印加し、前記交流信号発生器に接続した前記吸着電極以外の前記吸着電極のうちの所望の前記吸着電極に流れる交流電流の値を測定値として測定することを選択した前記吸着電極毎に繰り返す吸着方法であり、
    各前記吸着電極と前記吸着対象基板との間の前記吸着電極毎の静電容量の逆数を未知数とし、前記測定電圧と前記測定値とを定数項として、選択した前記吸着電極毎に成立する一次方程式によって連立一次方程式が形成されたときに、前記未知数に解が存在するように前記吸着電極を選択する測定工程と、
    前記連立一次方程式を解いて前記逆数を求め、各前記吸着電極と、前記吸着電極で吸着された前記吸着対象基板との間に形成された静電容量に対応する計算値を前記吸着電極毎に算出する算出工程と、
    前記計算値が小さい前記吸着電極に印加する前記本吸着電圧の絶対値は、前記計算値が大きい前記吸着電極に印加する前記本吸着電圧の絶対値よりも大きくして吸着対象基板を吸着する吸着工程と、を有する吸着方法。
  3. 正電圧である前記仮吸着電圧と、負電圧である前記仮吸着電圧とは、絶対値を等しくさせる請求項2記載の吸着方法。
  4. 前記吸着電極に前記本吸着電圧を印加したときの前記吸着対象基板と各前記吸着電極との間に発生する静電吸着力の差が、前記仮吸着電圧を各前記吸着電極に印加したときよりも小さくなるように、前記吸着電極毎に前記本吸着電圧を設定する請求項1乃至請求項3のいずれか1項記載の吸着方法。
  5. 前記吸着電極に前記本吸着電圧を印加したときの前記吸着対象基板と各前記吸着電極との間の距離の差が、前記仮吸着電圧を各前記吸着電極に印加したときよりも小さくなるように、前記吸着電極毎に前記本吸着電圧を設定する請求項1又は請求項2のいずれか1項記載の吸着方法。
  6. 二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、
    各前記吸着電極に、直流で同極性の本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、
    前記吸着電極の中から所望の複数の前記吸着電極を選択し、
    各前記吸着電極それぞれに同極性で互いに同じ大きさの直流の仮吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着しながら、選択した複数の前記吸着電極のうち一枚を交流信号発生器に接続して交流電圧である測定電圧を印加し、前記交流信号発生器に接続した前記吸着電極以外の前記吸着電極のうちの所望の前記吸着電極に流れる交流電流の値を測定値として測定することを選択した前記吸着電極毎に繰り返す吸着方法であり、
    各前記吸着電極と前記吸着対象基板との間の前記吸着電極毎の静電容量の逆数を未知数とし、前記測定電圧と前記測定値とを定数項として、選択した前記吸着電極毎に成立する一次方程式によって連立一次方程式が形成されたときに、前記未知数に解が存在するように前記吸着電極を選択する測定工程と、
    前記連立一次方程式を解いて前記逆数を求め、各前記吸着電極と、前記吸着電極で吸着された前記吸着対象基板との間に形成された静電容量に対応する計算値を前記吸着電極毎に算出し、
    算出された前記計算値の前記吸着板上の分布である測定分布を求める面内分布作成工程と、を有する吸着方法。
  7. 前記測定分布から前記測定値が小さい順番で前記吸着電極に前記本吸着電圧を印加する請求項6記載の吸着方法。
  8. 二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、
    前記吸着電極のうち、所定の吸着電極には直流の正電圧である本吸着電圧を印加し、他の吸着電極には直流の負電圧である本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、
    前記吸着電極の中から所望の複数の前記吸着電極を選択し、
    正電圧である前記本吸着電圧が印加される前記吸着電極には、正電圧と負電圧のいずれか一方の極性で絶対値が同じ大きさの仮吸着電圧を印加し、負電圧である本吸着電圧が印加される前記吸着電極には、他方の極性で絶対値が同じ大きさの仮吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着し、
    各前記吸着電極に前記仮吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着しながら、選択した複数の前記吸着電極のうち一枚を交流信号発生器に接続して交流電圧である測定電圧を印加し、前記交流信号発生器に接続した前記吸着電極以外の前記吸着電極のうちの所望の前記吸着電極に流れる交流電流の値を測定値として測定することを選択した前記吸着電極毎に繰り返す吸着方法であり、
    各前記吸着電極と前記吸着対象基板との間の前記吸着電極毎の静電容量の逆数を未知数とし、前記測定電圧と前記測定値とを定数項として、選択した前記吸着電極毎に成立する一次方程式によって連立一次方程式が形成されたときに、前記未知数に解が存在するように前記吸着電極が選択され、
    前記連立一次方程式を解いて前記逆数を求め、各前記吸着電極と、前記吸着電極で吸着された前記吸着対象基板との間に形成された静電容量に対応する計算値を前記吸着電極毎に算出し、
    算出された前記計算値の前記吸着板上の分布である測定分布を求める面内分布作成工程を有する吸着方法。
  9. 前記測定分布から前記測定値が小さい順番で前記吸着電極に前記本吸着電圧を印加する請求項8記載の吸着方法。
  10. 二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、
    各前記吸着電極に、直流で同極性の本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、
    前記各吸着電極に交流の測定電圧を印加し、前記吸着面上に配置された前記吸着対象基板と前記吸着電極との間に形成される静電容量の大きさに対応した交流電流の値を測定値として測定し、
    前記測定値が小さい順番で前記本吸着電圧を前記吸着電極に印加する吸着方法。
  11. 二次元に分布するように配置された複数の吸着電極を有する吸着板の、前記吸着電極上の表面である吸着面に吸着対象基板を配置し、
    前記吸着電極のうち、所定の吸着電極には直流の正電圧である本吸着電圧を印加し、他の吸着電極には直流の負電圧である本吸着電圧を印加して前記吸着対象基板を前記吸着面に吸着する吸着方法であって、
    互いに逆極性の本吸着電圧が印加され隣接する二個の吸着電極を一組の電極組とし、各前記電極組に交流の測定電圧を印加し、各前記電極組毎に流れる交流電流の値を測定値として測定し、
    前記測定値が小さい順番で前記電極組を選択し、選択した電極組の二個の吸着電極に前記本吸着電圧を印加する吸着方法。
JP2018002946A 2018-01-11 2018-01-11 吸着方法 Pending JP2019125603A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018002946A JP2019125603A (ja) 2018-01-11 2018-01-11 吸着方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002946A JP2019125603A (ja) 2018-01-11 2018-01-11 吸着方法

Publications (1)

Publication Number Publication Date
JP2019125603A true JP2019125603A (ja) 2019-07-25

Family

ID=67399471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002946A Pending JP2019125603A (ja) 2018-01-11 2018-01-11 吸着方法

Country Status (1)

Country Link
JP (1) JP2019125603A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115142036A (zh) * 2021-03-30 2022-10-04 佳能特机株式会社 控制装置、成膜装置、基板吸附方法、计划设定方法及电子器件的制造方法
JP2022155113A (ja) * 2021-03-30 2022-10-13 キヤノントッキ株式会社 制御装置、成膜装置、制御方法、及び電子デバイスの製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979545A (ja) * 1982-10-29 1984-05-08 Toshiba Corp 静電チャック装置
JPH06163674A (ja) * 1992-11-18 1994-06-10 Hitachi Ltd 試料保持装置のモニタ方法
JPH06204325A (ja) * 1992-12-28 1994-07-22 Hitachi Ltd 静電吸着装置およびその吸着方法
JPH09134950A (ja) * 1995-11-09 1997-05-20 Hitachi Ltd ウェハの静電吸着装置
JPH10189697A (ja) * 1996-12-26 1998-07-21 Kyocera Corp 静電チャック装置
JPH1167885A (ja) * 1997-08-25 1999-03-09 Nissin Electric Co Ltd 基板保持装置
JP2017008374A (ja) * 2015-06-23 2017-01-12 株式会社アルバック ずれ量の測定方法
US20170040198A1 (en) * 2015-08-07 2017-02-09 Applied Materials, Inc. Ceramic heater and esc with enhanced wafer edge performance
JP2017527115A (ja) * 2014-08-15 2017-09-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated プラズマ化学気相堆積システムにおいて高温で圧縮又は引張応力を有するウェハを処理する方法及び装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5979545A (ja) * 1982-10-29 1984-05-08 Toshiba Corp 静電チャック装置
JPH06163674A (ja) * 1992-11-18 1994-06-10 Hitachi Ltd 試料保持装置のモニタ方法
JPH06204325A (ja) * 1992-12-28 1994-07-22 Hitachi Ltd 静電吸着装置およびその吸着方法
JPH09134950A (ja) * 1995-11-09 1997-05-20 Hitachi Ltd ウェハの静電吸着装置
JPH10189697A (ja) * 1996-12-26 1998-07-21 Kyocera Corp 静電チャック装置
JPH1167885A (ja) * 1997-08-25 1999-03-09 Nissin Electric Co Ltd 基板保持装置
JP2017527115A (ja) * 2014-08-15 2017-09-14 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated プラズマ化学気相堆積システムにおいて高温で圧縮又は引張応力を有するウェハを処理する方法及び装置
JP2017008374A (ja) * 2015-06-23 2017-01-12 株式会社アルバック ずれ量の測定方法
US20170040198A1 (en) * 2015-08-07 2017-02-09 Applied Materials, Inc. Ceramic heater and esc with enhanced wafer edge performance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115142036A (zh) * 2021-03-30 2022-10-04 佳能特机株式会社 控制装置、成膜装置、基板吸附方法、计划设定方法及电子器件的制造方法
JP2022155114A (ja) * 2021-03-30 2022-10-13 キヤノントッキ株式会社 制御装置、成膜装置、基板吸着方法、スケジュール設定方法、及び電子デバイスの製造方法
JP2022155113A (ja) * 2021-03-30 2022-10-13 キヤノントッキ株式会社 制御装置、成膜装置、制御方法、及び電子デバイスの製造方法
JP7390328B2 (ja) 2021-03-30 2023-12-01 キヤノントッキ株式会社 制御装置、基板吸着方法及び電子デバイスの製造方法
JP7419288B2 (ja) 2021-03-30 2024-01-22 キヤノントッキ株式会社 制御装置、成膜装置、制御方法、及び電子デバイスの製造方法

Similar Documents

Publication Publication Date Title
JP4421874B2 (ja) プラズマ処理装置及びプラズマ処理方法
CN101213147B (zh) 用于测量等离子体中电特性组的装置
US9991100B2 (en) Plasma processing apparatus and control method
TW200849444A (en) Semiconductor processing system with integrated showerhead distance measuring device
WO2000072376A1 (fr) Mandrin electrostatique et dispositif de traitement
JP2010103465A (ja) 基板処理装置および基板処理方法
JP2019125603A (ja) 吸着方法
US20210057193A1 (en) Hollow cathode, an apparatus including a hollow cathode for manufacturing a semiconductor device, and a method of manufacturing a semiconductor device using a hollow cathode
JP6502232B2 (ja) フォーカスリング及びセンサチップ
WO2013078047A1 (en) System, method and apparatus for detecting dc bias in a plasma processing chamber
JP2017008374A (ja) ずれ量の測定方法
JP2006179895A (ja) 吸着方法
CN108630511A (zh) 下电极装置及半导体加工设备
TW201006317A (en) Power source device
CN102822380B (zh) 溅镀装置
CN105374727A (zh) 静电卡盘装置及晶片或托盘的固定方法
JP7348454B2 (ja) 基板表面から異物を静電的に除去するための装置及び方法
JP2017512378A (ja) ワークピースをクランプするためのシステムおよび方法 関連出願の相互参照 本願は、2014年2月7日に出願された米国仮特許出願番号第61/937050号の優先権を主張するものである。仮特許出願の内容は、この参照によってここに援用される。
JP2012059858A (ja) 静電吸着装置
TWI786206B (zh) 感測器未對準測量之方法和裝置
US11195700B2 (en) Etching apparatus
CN111323460B (zh) 感测元件及应用其对静电吸附卡盘进行检测的方法
JP2019121509A (ja) イオン検出装置、イオン検出装置の製造方法及び電界非対称波形イオン移動度分光分析システム
KR20210120291A (ko) 포커스 링 및 이를 구비하는 기판 고정용 척 어셈블리와 플라즈마 처리장치
JP2016115818A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20200727

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220517