JP2019122201A - 電動車両 - Google Patents

電動車両 Download PDF

Info

Publication number
JP2019122201A
JP2019122201A JP2018002240A JP2018002240A JP2019122201A JP 2019122201 A JP2019122201 A JP 2019122201A JP 2018002240 A JP2018002240 A JP 2018002240A JP 2018002240 A JP2018002240 A JP 2018002240A JP 2019122201 A JP2019122201 A JP 2019122201A
Authority
JP
Japan
Prior art keywords
power
battery
vehicle
esp
motor generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018002240A
Other languages
English (en)
Inventor
勇人 大朏
Yuto Daihi
勇人 大朏
宏和 小熊
Hirokazu Oguma
宏和 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2018002240A priority Critical patent/JP2019122201A/ja
Priority to CN201910006534.8A priority patent/CN110014862B/zh
Priority to US16/240,799 priority patent/US10981455B2/en
Publication of JP2019122201A publication Critical patent/JP2019122201A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

【課題】第1バッテリと第2バッテリとの間における電力の授受をできるだけ避けながら、第2バッテリの充電率を所定の範囲内に維持できる電動車両を提供すること。【解決手段】電動車両Vは、第1バッテリESEと、第1バッテリESEよりも出力重量密度が高くかつエネルギ重量密度が低い第2バッテリESPと、電動発電機Mと、電力変換回路3と、電力変換回路3を制御する制御装置5と、を備える。制御装置5は、電動発電機Mの力行運転時には、要求電力のうち車速を変化させるために必要な電力の少なくとも一部が第2バッテリESPから放電され、かつ要求電力から第2バッテリESPから放電される電力を除いた残電力が第1バッテリESEから放電されるように電力変換回路3を制御し、電動発電機Mの回生運転時には、電動発電機Mで発電される電力が第2バッテリESPに充電されるように電力変換回路3を制御する。【選択図】図1

Description

本発明は、電動車両に関する。より詳しくは、容量型の第1蓄電器と、第1蓄電器よりも出力重量密度が高くかつエネルギ重量密度が低い出力型の第2蓄電器と、の2種類の蓄電器を備える電動車両に関する。
近年、動力発生源として電動機を備える電動輸送機器や、動力発生源として電動機と内燃機関とを備えるハイブリッド車両等の電動車両の開発が盛んである。このような電動車両には、電動機に電気エネルギを供給するためにバッテリやキャパシタ等の蓄電器も搭載されている。また近年では、電動車両に搭載する蓄電器として、充放電特性が異なるものを複数搭載するものも開発されている。
例えば特許文献1には、バッテリとキャパシタとを備える電動車両が示されている。一般的に、バッテリはキャパシタよりもエネルギ重量密度において優れており、キャパシタはバッテリよりも出力重量密度において優れている。特許文献1の技術では、これらバッテリとキャパシタの充放電特性を生かすべく、平坦な路を車両が走行している場合には電動機の電源として優先的にバッテリを選択し、また充放電が繰り返される連続登降坂路を車両が走行している場合には、電動機の電源として優先的にキャパシタを選択する。また連続登降坂路の走行中に電動機で発電した電力は、キャパシタ及びバッテリのうち充電率に応じて選択した方に供給する。
特開2015−57939号公報
ところで、エネルギ重量密度が優れる容量型の第1蓄電器と出力重量密度が優れる出力型の第2蓄電器とが車両に搭載されている場合、特許文献1の技術のように、加速が要求されているときには出力型の第2蓄電器から電動機へ電力を供給することが好ましい。このため、運転者から加速の要求が生じた場合にこの要求に応じた電力を第2蓄電器から供給でき、また減速に転じた場合に電動機で発電した電力を第2蓄電器で受け入れられるよう、第2蓄電器の充電率は所定の上限と下限の間の目標範囲内に維持されていることが好ましい。
しかしながら特許文献1では、どのようにすれば出力型の第2蓄電器の充電率を目標範囲内に維持できるかについては、十分に検討されていない。なお第1蓄電器と第2蓄電器とを備える車両では、第2蓄電器の充電率が低下した場合には、第1蓄電器の電力を用いて第2蓄電器を充電することも考えられる。しかしながら蓄電器の間で電力の授受を行うと、少なからず損失が生じることから、このような蓄電器間の電力の授受はできるだけ避けた方が好ましい。
本発明は、容量型の第1蓄電器と出力型の第2蓄電器との間における電力の授受をできるだけ避けながら、第2蓄電器の充電率を所定の範囲内に維持できる電動車両を提供することを目的とする。
(1)本発明の電動車両(例えば、後述の車両V)は、第1蓄電器(例えば、後述の第1バッテリESE)と、前記第1蓄電器よりも出力重量密度が高くかつエネルギ重量密度が低い第2蓄電器(例えば、後述の第2バッテリESP)と、駆動輪(例えば、後述の駆動輪W)と連結された電動発電機(例えば、後述の電動発電機M)と、前記第1及び第2蓄電器と前記電動発電機とを接続する電力線に設けられた電力変換回路(例えば、後述の電力変換回路3)と、前記電力変換回路を駆動し前記第1及び第2蓄電器の充放電を制御する制御装置(例えば、後述の制御装置5)と、前記電動発電機の力行運転時に前記第1及び第2蓄電器を含む全蓄電器に対し放電が要求される電力である要求電力を算出する要求電力算出部(例えば、後述の要求電力算出部74)と、を備え、前記制御装置は、前記力行運転時には、前記要求電力のうち車速を変化させるために必要な電力(例えば、後述の慣性電力Pin)の少なくとも一部が前記第2蓄電器から放電され、かつ前記要求電力から前記第2蓄電器から放電される電力を除いた残電力が前記第1蓄電器から放電されるように前記電力変換回路を駆動し、前記電動発電機の回生運転時には、前記電動発電機で発電される電力が前記第2蓄電器に充電されるように前記電力変換回路を駆動することを特徴とする。
(2)この場合、電動車両は、前記第2蓄電器の充電状態と相関のある第2充電状態パラメータ値(例えば、後述の第2バッテリESPの充電率の推定値SOC2)を取得する第2充電状態パラメータ取得部(例えば、後述の第2充電状態推定部71b)と、前記第2充電状態パラメータ値に基づいて前記車速を変化させるために必要な電力に対する前記第2蓄電器の負担分の割合である負担率(例えば、後述の負担率k)を設定する負担率設定部(例えば、後述の負担率設定部76)と、を備え、前記制御装置は、前記力行運転時には、前記車速を変化させるために必要な電力のうち前記負担率に応じた分が前記第2蓄電器から放電されるように前記電力変換回路を駆動することが好ましい。
(3)この場合、前記負担率設定部は、前記第2充電状態パラメータ値が大きくなるほど前記負担率を大きな値に設定することが好ましい。
(4)この場合、前記要求電力算出部は、前記車速を変化させるために前記電動発電機に供給する必要がある電力である慣性電力(例えば、後述の慣性電力Pin)と、前記車速を維持するために前記電動発電機に供給する必要がある電力である巡航電力(例えば、後述の巡航電力Pcr)と、車両補機に供給する必要がある電力である補機電力(例えば、後述の補機電力Pho)と、を合算することによって前記要求電力を算出することが好ましい。
(5)この場合、前記電動車両は、内燃機関(例えば、後述のエンジンE)と、前記第1蓄電器に前記電力変換回路を介して接続され前記内燃機関で発生した動力を利用して発電する発電機(例えば、後述の発電機G)と、を備え、前記制御装置は、前記発電機による発電時には、当該発電機で発電される電力が前記第1蓄電器に充電され、当該第1蓄電器が所定の充電状態で維持されるように前記電力変換回路を駆動することが好ましい。
(6)この場合、前記電動車両は、内燃機関(例えば、後述のエンジンE)と、前記第1蓄電器に前記電力変換回路を介して接続され前記内燃機関で発生した動力を利用して発電する発電機(例えば、後述の発電機G)と、前記第2蓄電器の充電状態と相関のある第2充電状態パラメータ値(例えば、後述の第2バッテリESPの充電率の推定値SOC2)を取得する第2充電状態パラメータ取得部(例えば、後述の第2充電状態推定部71b)と、を備え、前記制御装置は、前記第2充電状態パラメータ値が所定の閾値以下である場合には、前記発電機で発電された電力及び前記第1蓄電器の電力の少なくとも何れかが前記第2蓄電器に充電されるように前記電力変換回路を駆動することが好ましい。
(7)この場合、前記要求電力算出部は、前記車速を変化させるために前記電動発電機に供給する必要がある電力である慣性電力(例えば、後述の慣性電力Pin)と、前記車速を維持するために前記電動発電機に供給する必要がある電力である巡航電力(例えば、後述の巡航電力Pcr)と、車両補機に供給する必要がある電力である補機電力(例えば、後述の補機電力Pho)と、を合算したものから、前記発電機で発電される電力である発電電力を減算することによって前記要求電力を算出することが好ましい。
(8)この場合、前記電動車両は、前記第1蓄電器と前記電力変換回路とを接続する第1電力線(例えば、後述の第1電力線21p,21n)をさらに備え、前記車両補機は、前記第1電力線に接続され、前記車両補機を駆動するために必要な電力は、前記第1蓄電器から供給されることが好ましい。
(1)先ず、電動車両が停止した状態から発進し、その後再び停止するまでの間における電力の収支について検討する。例えば、車両を停止した状態から所定の巡航速度まで加速させるためには、少なくとも、車速を変化させるために必要な電力や、走行抵抗の作用下で電動車両の等速運動を実現するために必要な電力等を、蓄電器から電動発電機に供給する必要がある。ここで「車速を変化させるために必要な電力」とは、例えば、走行中の電動車両に作用し得る走行抵抗の存在を無視した状態で電動車両の加速運動を実現するために必要な電力、すなわち電動車両と同じ車重を有する質点の加速運動を実現するために必要な電力をいう。また上記のように巡航速度まで加速した後、巡航速度から停止するまで電動車両を減速させると、電動発電機で減速運動を実現することによって発電した電力を蓄電器で回収することができる。ここで、加速時と減速時とで車重はほとんど変化しないため、電動発電機の力行運転時に車速を変化させるために必要な電力と、回生運転時に電動発電機で発電される電力とは、理想的には概ね等しくなる。ただし回生運転時にはブレーキによる損失や電力変換に伴う損失等の様々な損失が発生するため、実際には、回生運転時に発電される電力は、力行運転時に車速を変化させるために必要な電力よりも損失分だけ小さい。
そこで本発明の電動車両では、電力変換回路の制御装置は、力行運転時に、車速を変化させるために必要な電力の少なくとも一部が出力型の第2蓄電器から放電され、かつ全蓄電器に対する要求電力から上記第2蓄電器の負担分を除いた残電力が容量型の第1蓄電器から放電されるように電力変換回路を制御し、回生運転時に、電動発電機で発電される電力が第2蓄電器に充電されるように電力変換回路を制御する。すなわち力行運転時には第2蓄電器から車速を変化させるために必要な電力の少なくとも一部が放電され、回生運転時には第2蓄電器に電動発電機で発電される電力が充電される。上述のように回生運転時に発電される電力は力行運転時に車速を変化させるために必要な電力よりも損失分だけ小さい。そこで本発明の電動車両では、この損失分を考慮して、力行運転時には第2蓄電器からは車速を変化させるために必要な電力の全てではなく少なくとも一部を放電させる。従って本発明の電動車両では、電動車両が停止した状態から発進し、その後停止するまでの間における第2蓄電器の電力の収支を、様々な損失を考慮して概ね0にすることができる。従って本発明の電動車両によれば、第1蓄電器と第2蓄電器との間における電力の授受をできるだけ避けながら、出力型の第2蓄電器の充電率を概ね一定に維持することができる。
(2)上述のように回生運転時に電動発電機で発電される電力は力行運転時に車速を変化させるために必要な電力よりも小さい。このため、力行運転時に、車速を変化させるために必要な電力の全てを第2蓄電器で負担すると、第2蓄電器の電力収支が上記損失の分だけマイナスとなり、第2蓄電器の充電率は減少する。そこで本発明の電動車両では、力行運転時に車速を変化させるために必要な電力に対し負担率を算出し、力行運転時には、車速を変化させるために必要な電力のうち負担率に応じた分を第2蓄電器から放電させ、要求電力から第2蓄電器の負担分を除いた残電力を第1蓄電器から放電させる。これにより、第2蓄電器の電力の収支を0に近づけることができる。また本発明の電動車両では、上記負担率を第2蓄電器の第2充電状態パラメータ値に基づいて算出する。これにより、第2蓄電器の電力の収支が0から外れている場合であっても、第2蓄電器の充電率が所定の目標から大きく外れてしまうのを防止できる。
(3)負担率を大きくすると、第2蓄電器の負担分が増加するので、第2蓄電器の電力の収支はマイナス側へ変化し、第2蓄電器の充電率は減少側へ変化する。また負担率を小さくすると、第2蓄電器の負担分が減少するので、第2蓄電器の電力の収支はプラス側へ変化し、第2蓄電器の充電率は増加側へ変化する。そこで本発明の電動車両では、第2蓄電器の第2充電状態パラメータ値が大きくなるほど負担率を大きな値に設定する。これにより、第2蓄電器の充電率が所定の目標で維持されるように、第2蓄電器の電力の収支を制御することができる。
(4)本発明の電動車両では、車速を変化させるために電動発電機に供給する必要がある電力である慣性電力と、走行抵抗の作用下で車速を維持するために電動発電機に供給する必要がある電力である巡航電力と、車両補機に供給する必要がある電力である補機電力と、を合算することによって要求電力を算出する。これにより、第2蓄電器の電力の収支を0に近づけながら、力行運転時に車両で必要とされる電力を第1及び第2蓄電器でまかなうことができる。
(5)上述のように本発明の電動車両では、回生運転時に電動発電機で発電される電力を第2蓄電器に充電するため、第1蓄電器の充電率は低下しがちになる。そこで本発明の電動車両では、電動発電機とは別の発電機の発電時には、この発電機において内燃機関の動力を利用して発電した電力を第1蓄電器に充電させ、この第1蓄電器を所定の充電状態に維持させる。これにより、第1蓄電器と第2蓄電器との間の電力の授受をできるだけ避けながら、第1蓄電器と第2蓄電器の充電率を概ね一定に維持することができる。
(6)本発明の電動車両では、第2蓄電器の電力の収支を概ね0にすることができるものの、制御誤差や損失の影響により、第2蓄電器の充電率が徐々に低下する場合がある。そこで本発明の電動車両では、第2蓄電器の第2充電状態パラメータ値が所定の閾値以下である場合には、発電機で発電された電力及び第1蓄電器の電力の少なくとも何れかを第2蓄電器に充電させる。これにより、第2蓄電器の充電率が大きく低下してしまい、運転者の要求に応じた加速を実現できなくなってしまう事態を回避することができる。
(7)本発明の電動車両では、車速を変化させるために電動発電機に供給する必要がある電力である慣性電力と、走行抵抗の作用下で車速を維持するために電動発電機に供給する必要がある電力である巡航電力と、車両補機に供給する必要がある電力である補機電力と、を合算したものから、発電機で発電される電力である発電電力を減算することによって要求電力を算出する。これにより、第2蓄電器の電力の収支を0に近づけながら、力行運転時に車両で必要とされる電力を第1及び第2蓄電器並びに発電機でまかなうことができる。
(8)本発明の電動車両では、車両補機を、第1蓄電器と電力変換回路とを接続する第1電力線に接続し、車両補機を駆動するために必要な電力は、第1蓄電器から供給させる。これにより、第2蓄電器から車両補機へ電力が供給されてしまい、第2蓄電器の電力の収支がマイナス側に転じてしまい、ひいては第2蓄電器の充電率が所定の目標から大きく低下してしまうのを防止できる。
本発明の一実施形態に係る電動車両の構成を示す図である。 ECUによる充放電制御の概念を説明するための図である。 ECUにおいて充放電制御を実現するための機能ブロック図である。 電力算出部における演算手順を示す機能ブロック図である。 負担率の値を設定するためのマップの一例である。 電力の分配態様を決定する具体的な手順を示すフローチャート(その1)である。 電力の分配態様を決定する具体的な手順を示すフローチャート(その2)である。 電力パスの要求が無く、加速中であり、かつ発電の要求が無い場合における電力の分配態様を模式的に示す図である。 電力パスの要求が無く、加速中であり、かつ発電の要求がある場合における電力の分配態様を模式的に示す図である。 電力パスの要求が無く、減速中であり、電動発電機で発電した電力で第2バッテリを充電可能な状態であり、かつ発電の要求が無い場合における電力の分配態様を模式的に示す図である。 電力パスの要求が無く、減速中であり、電動発電機で発電した電力で第2バッテリを充電可能な状態であり、かつ発電の要求がある場合における電力の分配態様を模式的に示す図である。 電力パスの要求が無く、加速中及び減速中でなく、停止中であり、かつ発電の要求が無い場合における電力の分配態様を模式的に示す図である。 電力パスの要求が無く、加速中及び減速中でなく、巡航中であり、かつ発電の要求が無い場合における電力の分配態様を模式的に示す図である。 電力パスの要求が無く、加速中及び減速中でなく、停止中であり、かつ発電の要求がある場合における電力の分配態様を模式的に示す図である。 電力パスの要求が無く、加速中及び減速中でなく、巡航中であり、かつ発電の要求がある場合における電力の分配態様を模式的に示す図である。 電力パスの要求があり、加速中であり、かつ発電の要求が無い場合における電力の分配態様を模式的に示す図である。 電力パスの要求があり、加速中であり、かつ発電の要求がある場合における電力の分配態様を模式的に示す図である。 電力パスの要求があり、減速中であり、電動発電機で発電した電力で第2バッテリを充電可能な状態であり、かつ発電の要求が無い場合における電力の分配態様を模式的に示す図である。 電力パスの要求があり、減速中であり、電動発電機で発電した電力で第2バッテリを充電可能な状態であり、かつ発電の要求がある場合における電力の分配態様を模式的に示す図である。 電力パスの要求があり、加速中及び減速中でなく、停止中であり、かつ発電の要求が無い場合における電力の分配態様を模式的に示す図である。 電力パスの要求があり、加速中及び減速中でなく、巡航中であり、かつ発電の要求がある場合における電力の分配態様を模式的に示す図である。 電力パスの要求があり、加速中及び減速中でなく、停止中であり、かつ発電の要求がある場合における電力の分配態様を模式的に示す図である。 電力パスの要求があり、加速中及び減速中でなく、巡航中であり、かつ発電の要求がある場合における電力の分配態様を模式的に示す図である。
以下、本発明の一実施形態について、図面を参照しながら説明する。
図1は、本実施形態に係る電動車両V(以下、単に「車両V」という)の構成を示す図である。なお本実施形態では、車両Vとして、電動発電機Mと、エンジンEと、発電機Gと、を備える所謂ハイブリッド車両を例に説明するが、本発明はこれに限るものではない。本発明に係る電動車両は、ハイブリッド車両に限らず、電動発電機Mを備えるがエンジンE及び発電機Gを備えない電気自動車にも適用できる。
車両Vは、駆動輪Wと、電動発電機Mと、エンジンEと、発電機Gと、車速計Sと、電源システム1と、を備える。
電動発電機Mは、主として車両Vが走行するための動力を発生する。電動発電機Mの出力軸は、駆動輪Wと連結されている。電源システム1から電動発電機Mに電力を供給し、電動発電機Mを力行運転させることによって発生させたトルクは、図示しない動力伝達機構を介して駆動輪Wに伝達され、駆動輪Wを回転させ、車両Vを走行させる。また電動発電機Mは、車両Vの減速時に回生運転させることにより、発電機として作用する。回生運転時に電動発電機Mによって発電される電力は、電源システム1に供給される。
エンジンEの出力軸は、発電機Gに連結されている。発電機Gは、エンジンEで発生した動力によって駆動され、電力を発生する。発電機Gによって発電された電力は、電源システム1に供給される。
車速計Sは、駆動輪Wの車軸の回転速度に応じたパルス信号を生成し、電源システム1の後述のECU7へ送信する。ECU7では、この車速計Sから送信されるパルス信号に基づいて車両Vの車速を算出する。
電源システム1は、第1バッテリESEと、この第1バッテリESEとは別の第2バッテリESPと、これら第1バッテリESE及び第2バッテリESPと電動発電機M及び発電機Gとを接続する電力線に設けられた電力変換回路3と、車両補機4と、電力変換回路3を制御する制御装置5と、を備える。
第1バッテリESEは、化学エネルギを電気エネルギに変換する放電と、及び電気エネルギを化学エネルギに変換する充電との両方が可能な二次電池である。以下では、この第1バッテリESEとして、電極間をリチウムイオンが移動することで充放電を行う所謂リチウムイオン蓄電池を用いた場合について説明するが、本発明はこれに限らない。
第1バッテリESEの正負両極は、それぞれ第1電力線21p,21nを介して電力変換回路3における後述の第1電圧変換器31に接続されている。第1電力線21p,21nには、それぞれ第1バッテリESEと第1電圧変換器31とを接続又は遮断する第1コンタクタ22p,22nが設けられている。
これら第1コンタクタ22p,22nは、外部からの指令信号が入力されていない状態では開成し、第1バッテリESEと第1電圧変換器31との接続を遮断するノーマルオープン型である。これら第1コンタクタ22p,22nは、制御装置5からの指令信号に応じて閉成又は開成する。これら第1コンタクタ22p,22nは、例えば、車両Vの走行中に第1バッテリESEの充放電を行う場合には、制御装置5からの指令信号に応じて閉成し、第1バッテリESEと第1電圧変換器31とを接続する。なお正極側の第1コンタクタ22pには、電力変換回路3に含まれる平滑コンデンサへの突入電流を緩和するため、第1コンタクタ22pと並列になるようにプリチャージ抵抗23r及び第1プリチャージコンタクタ23pが接続されている。すなわち、第1バッテリESEと第1電圧変換器31とを接続する際には、第1プリチャージコンタクタ23pと負極側の第1コンタクタ22nとを閉成し、平滑コンデンサのプリチャージが完了した後に、第1プリチャージコンタクタ23pを開成するとともに正極側の第1コンタクタ22pを閉成する。
また第1バッテリESEには、第1バッテリESEの内部状態を推定するため第1センサユニット24が設けられている。第1センサユニット24は、制御装置5において第1バッテリESEの充電状態を取得するために必要な物理量を検出し、検出値に応じた信号を制御装置5へ送信する複数のセンサで構成される。より具体的には、第1センサユニット24は、第1バッテリESEの電圧を検出する電圧センサ、第1バッテリESEの電流を検出する電流センサ、及び第1バッテリESEの温度を検出する温度センサ等によって構成される。
車両補機4は、バッテリヒータ、エアコンインバータ、及びDC−DCコンバータ等の複数の補機類と、これら補機類を駆動するための電源となる補機バッテリ(例えば、鉛蓄電池)と、を備える。この車両補機4は、第1電力線21p,21nのうち第1コンタクタ22p,22nと第1電圧変換器31との間に接続されている。したがって車両補機4を駆動するために必要な電力は、主として第1バッテリESEから供給される。なおこの車両補機4には、電力変換回路3を介して発電機Gで発電した電力を供給することも可能となっている。また車両補機4には、各補機類で消費される電力を検出し、検出値に応じた信号を制御装置5へ送信する電力計41が設けられている。
第2バッテリESPは、化学エネルギを電気エネルギに変換する放電と、及び電気エネルギを化学エネルギに変換する充電との両方が可能な二次電池である。以下では、この第2バッテリESPとして、電極間をリチウムイオンが移動することで充放電を行う所謂リチウムイオン蓄電池を用いた場合について説明するが、本発明はこれに限らない。
またこの第2バッテリESPは、第1バッテリESEと異なる充放電特性を有するものが用いられる。より具体的には、第2バッテリESPは、第1バッテリESEよりも出力重量密度が高くかつ第1バッテリESEよりもエネルギ重量密度が低い。すなわち、第1バッテリESEは、エネルギ重量密度の点で第2バッテリESPよりも優れ、第2バッテリESPは、出力重量密度の点で第1バッテリESEよりも優れる。なお、エネルギ重量密度とは、単位重量あたりの電力量[Wh/kg]であり、出力重量密度とは、単位重量あたりの電力[W/kg]である。したがって、エネルギ重量密度が優れている第1バッテリESEは、高容量を主目的とした容量型の蓄電器であり、出力重量密度が優れている第2バッテリESPは、高出力を主目的とした出力型の蓄電器である。
第2バッテリESPの正負両極は、それぞれ第2電力線25p,25nを介して電力変換回路3における後述の第2電圧変換器32に接続されている。第2電力線25p,25nには、それぞれ第2バッテリESPと第2電圧変換器32とを接続又は遮断する第2コンタクタ26p,26nが設けられている。
これら第2コンタクタ26p,26nは、外部からの指令信号が入力されていない状態では開成し、第2バッテリESPと第2電圧変換器32との接続を遮断するノーマルオープン型である。これら第2コンタクタ26p,26nは、制御装置5からの指令信号に応じて閉成又は開成する。これら第2コンタクタ26p,26nは、例えば、車両Vの走行中に第2バッテリESPの充放電を行う場合には、制御装置5からの指令信号に応じて閉成し、第2バッテリESPと第2電圧変換器32とを接続する。なお正極側の第2コンタクタ26pには、電力変換回路3に含まれる平滑コンデンサへの突入電流を緩和するため、第2コンタクタ26pと並列になるようにプリチャージ抵抗27r及び第2プリチャージコンタクタ27pが接続されている。すなわち、第2バッテリESPと第2電圧変換器32とを接続する際には、第2プリチャージコンタクタ27pと負極側の第2コンタクタ26nとを閉成し、平滑コンデンサのプリチャージが完了した後に、第2プリチャージコンタクタ27pを開成するとともに正極側の第2コンタクタ26pを閉成する。
また第2バッテリESPには、第2バッテリESPの内部状態を推定するため第2センサユニット28が設けられている。第2センサユニット28は、制御装置5において第2バッテリESPの充電状態を取得するために必要な物理量を検出し、検出値に応じた信号を制御装置5へ送信する複数のセンサで構成される。より具体的には、第2センサユニット28は、第2バッテリESPの電圧を検出する電圧センサ、第2バッテリESPの電流を検出する電流センサ、及び第2バッテリESPの温度を検出する温度センサ等によって構成される。
電力変換回路3は、第1バッテリESEと接続された第1電圧変換器31(以下では、「第1VCU31」との略称を用いる)と、第2バッテリESPと接続された第2電圧変換器32(以下では、「第2VCU32」との略称を用いる)と、電動発電機Mと接続された第1インバータ33と、発電機Gと接続された第2インバータ34と、第1VCU31と第1インバータ33とを接続する電力線である第1母線35p,35nと、第2VCU32と第2インバータ34とを接続する電力線である第2母線36p,36nと、これら第1母線35p,35nと第2母線36p,36nとを接続する電力線である接続線37p,37nと、を備える。
第1VCU31は、例えば、制御装置5のゲートドライブ回路6によって生成されるゲート駆動信号によって駆動される複数のスイッチング素子(例えば、IGBT)を備える双方向DC−DCコンバータである。第1VCU31は、ゲートドライブ回路6からのゲート駆動信号の下で作動し、第1電力線21p,21nを介して第1バッテリESEから供給される直流の電圧を昇圧して第1母線35p,35nへ供給し、第1バッテリESEの放電を促したり、第1バッテリESEの充電時には、第1母線35p,35nを介して第1インバータ33、第2インバータ34、又は第2VCU32から供給される直流の電圧を降圧して第1電力線21p,21nへ供給し、第1バッテリESEの充電を促したりする。
第2VCU32は、例えば、制御装置5のゲートドライブ回路6によって生成されるゲート駆動信号によって駆動される複数のスイッチング素子(例えば、IGBT)を備える双方向DC−DCコンバータである。第2VCU32は、ゲートドライブ回路6からのゲート駆動信号の下で作動し、第2電力線25p,25nを介して第2バッテリESPから供給される直流の電圧を昇圧して第2母線36p,36nへ供給し、第2バッテリESPの放電を促したり、第2母線36p,36nを介して第1インバータ33、第2インバータ34、又は第1VCU31から供給される直流の電圧を降圧して第2電力線25p,25nへ供給し、第2バッテリESPの充電を促したりする。
第1インバータ33は、例えば、制御装置5のゲートドライブ回路6によって生成されるゲート駆動信号によって駆動される複数のスイッチング素子(例えば、IGBT)をブリッジ接続して構成されるブリッジ回路を備えた、パルス幅変調によるPWMインバータである。第1インバータ33の直流入出力側は、電力線35p,35n,37p,37n,36p,36nを介して第1VCU31、第2VCU32、及び第2インバータ34の直流出力側に接続されている。第1インバータ33の交流入出力側は、電動発電機MのU相、V相、W相の各コイルに接続されている。第1インバータ33は、電動発電機Mの力行運転時には、ゲートドライブ回路6からのゲート駆動信号の下で作動し、第1母線35p,35nから直流入出力側に印加される直流を交流に変換し、電動発電機Mに供給し、駆動力を発生させる。第1インバータ33は、電動発電機Mの回生運転時には、ゲートドライブ回路6からのゲート駆動信号の下で作動し、電動発電機Mから交流入出力側に印加される交流を直流に変換し、第1母線35p,35nに供給する。
第2インバータ34は、例えば、制御装置5のゲートドライブ回路6によって生成されるゲート駆動信号によって駆動される複数のスイッチング素子(例えば、IGBT)をブリッジ接続して構成されるブリッジ回路を備えた、パルス幅変調によるPWMインバータである。第2インバータ34の直流出力側は、電力線35p,35n,37p,37n,36p,36nを介して第1VCU31、第2VCU32、及び第1インバータ33の直流入出力側に接続されている。第2インバータ34の交流入力側は、発電機GのU相、V相、W相の各コイルに接続されている。第2インバータ34は、エンジンEで発生した動力を用いた発電機Gの発電時には、ゲートドライブ回路6からのゲート駆動信号の下で作動し、ゲートドライブ回路6からの制御信号の下で作動し、発電機Gから交流入力側に印加される交流を直流に変換し、第2母線36p,36nに供給する。
制御装置5は、電力変換回路3に設けられる複数のスイッチング素子を駆動するゲートドライブ回路6と、ゲートドライブ回路6及びエンジンEを用いて第1バッテリESE及び第2バッテリESPの充放電制御を実行する電子制御モジュールであるECU7と、を備える。
図2は、ECU7において実行される充放電制御の概念を説明するための図である。図2には、ある走行サイクルにおける車速の時間変化と、この車速の時間変化の下での車両Vの消費電力の時間変化とを示す。なお図2では、正を電力の消費側とし、負を電力の生成側とした。また本実施形態では、車両Vが停止した状態(すなわち、車速が0である状態)から発進し、その後車両Vが再び停止するまでを1つの走行サイクル(すなわち、図2の例では時刻t0〜t4まで)と定義する。なお図2では、理解を容易にするため、車両Vの消費電力のうち、車両補機4において消費される分及び発電機Gにおいて生成される分の図示を省略した。また図2において、最上段は車速の時間変化を示し、上から2段目及び3段目は消費電力の内訳を示し、最下段はこれら内訳を合算して得られる要求電力を示す。またここで要求電力とは、車両Vに搭載される2つのバッテリESE,ESPに対し放電又は充電が要求される電力である。
例えば、時刻t0から時刻t1までの間の加速時において、電動発電機Mを力行運転し、車両Vを停止した状態から所定の巡航速度まで加速させるためには、車両Vでは、図2のうち上から2段目に示すように車両Vの車速を所定の加速度の下で巡航速度まで変化させるために必要な電力(以下、「加速運動を実現するために必要な電力」ともいう)と、図2のうち上から3段目に示すように走行抵抗の作用下で車両Vの等速運動を実現させるために必要な電力(以下、「走行抵抗の作用下で等速運動を実現するために必要な電力」ともいう)と、を電動発電機Mに供給する必要がある。ここで力行運転時に加速運動を実現するために必要な電力とは、より具体的には、走行中の車両Vに作用し得る走行抵抗の存在を無視した状態で車両Vの加速運動を実現するために必要な電力、すなわち走行抵抗の非作用下で車両Vの車重と同じ質量の質点の加速運動を実現するために必要な電力をいう。
また時刻t1から時刻t2までの間の巡航時において、電動発電機Mを力行運転し、車両Vを巡航速度で維持して走行させるためには、車両Vでは、走行抵抗の作用下で車両Vに等速運動を実現させるために必要な電力を電動発電機Mに供給する必要がある(図2のうち上から3段目参照)。なお時刻t1から時刻t2までの間では、車速は変化しないため、図2のうち上から2段目に示すように、加速運動を実現するために必要な電力は0である。
また時刻t2から時刻t4までの間の減速時において、電動発電機Mを回生運転し、車両Vを巡航速度から停止するまで減速させると、電動発電機Mでは減速運動を実現することによって電力が発電される。時刻t2から時刻t4までの間において、加速運動を実現するために必要な電力は、図2のうち上から2段目に示すように負となる。換言すれば、時刻t2〜t4の間では、電動発電機Mで減速運動を実現することによって正の電力を回収し得る。ここで電動発電機Mで減速運動を実現することによって回収され得る電力とは、走行抵抗の非作用下で車両Vの車重と同じ質量の質点の運動エネルギを電力に換算したものであり、電力変換回路3における電力変換に伴う損失分を0とすれば、時刻t0から時刻t1までの間で加速運動を実現するために必要な電力の符号を逆にしたものと等しい。また減速時にも車両Vには走行抵抗が作用し、この走行抵抗は車速が小さくなる程小さくなることから、時刻t2から時刻t4までの間において、走行抵抗の作用下で等速運動を実現するために必要な電力は、徐々に減少する。したがって減速運動を実現することによって発電される電力と走行抵抗の作用下で等速運動を実現するために必要な電力とを合わせた要求電力は、減速を開始した時刻t2から減少し始め、その後時刻t3において正から負に転じる。すなわち、減速を開始した時点において正であった要求電力が、その後負に転じるまでの間には、僅かなタイムラグ(t2〜t3)が存在する。従って減速時では、図2において最下段に示すように、時刻t3から時刻t4までの間においてのみ電動発電機Mで発電した電力でバッテリを充電することが可能となっている。
以上のような時刻t0〜t4までの1つの走行サイクルにおいて、車両Vで消費される電力(すなわち、加速運動を実現するために必要な電力と走行抵抗の作用下で等速運動を実現するために必要な電力とを合わせた分)は、図2の最下段において太線3aで示すように変化し、車両Vで生成される電力(すなわち、電動発電機Mで減速運動を実現することによって発電される電力)は、図2の最下段において太線3bで示すように変化する。また1つの走行サイクルにおいて、時刻t0〜t1の間で車両Vの加速運動を実現させるために必要な電力は、図2の最下段において太破線3cで示すように変化し、時刻t2〜t4の間に電動発電機Mで減速運動を実現することによって回収され得る電力は、図2の最下段において太破線3dで示すように変化する。
ここで、加速時と減速時とで車重はほとんど変化しない。このため、図2の太破線3c,3dに示すように、様々な損失を除けば加速運動を実現させるために必要な電力量(すなわち、太破線3cで切り出される面積)と減速運動を実現することによって回収され得る電力量(すなわち、太破線3dで切り出される面積)とは等しい。また車両Vは、加速すればその後必ず減速に転じるので、任意の走行サイクルにおいて、加速運動を実現させるために必要な電力が生じる区間と、減速運動を実現することによって回収され得る電力が生じる区間とは、対になって表れる。ただし、走行抵抗による損失や電力変換回路3における損失等が存在するため、減速時に実際にバッテリで回収できる電力量(すなわち、領域3eの面積)は、減速運動を実現することによって回収され得る電力量(すなわち、太破線3dで切り出される面積)よりも常に小さい。本実施形態に係る充放電制御では、以上のような1つの走行サイクルにおける電力の収支に着目して第1バッテリESE及び第2バッテリESPの充放電を制御する。
上述のように第1バッテリESEは、第2バッテリESPよりもエネルギ重量密度が優れており、高容量を主目的とした容量型の蓄電器であり、第2バッテリESPは、第1バッテリESEよりも出力重量密度が優れており、高出力を主目的とした出力型の蓄電器である。そこで、バッテリから電動発電機Mに電力を供給することで走行する力行運転時(図2の例では、時刻t0〜t3)に、第1バッテリESE及び第2バッテリESPを含む全蓄電器に対し放電が要求される電力である要求電力(図2の例では、太線3aによって切り出される部分であり、領域3f及び領域3gで示す部分)のうち、加速運動を実現するために必要な電力の少なくとも一部(図2の例では、領域3gで示す部分)については出力型である第2バッテリESPで負担し、要求電力から第2バッテリESPの負担分を除いた残電力(図2の例では、領域3fから領域3gを除いた部分)を容量型である第1バッテリESEで負担する。また、電動発電機Mで発電した電力でバッテリを充電しながら走行する回生運転時に、電動発電機Mで発電される電力(図2の例では、領域3eで示す部分)は全て第2バッテリESPに充電し、第1バッテリESEには充電しないようにする。上述のように、種々の損失を考慮すれば領域3eの面積は、太破線3cで切り出される領域の面積よりも小さくなる。このため、加速運動を実現するために必要な電力の全部ではなく少なくとも一部を第2バッテリESPで負担することにより、1つの走行サイクルの間における第2バッテリESPの電力の収支を0に近づけることができる。これにより第2バッテリESPの充電状態を自発的に所定の目標範囲内に維持できる。またこのように第2バッテリESPの充電状態を目標範囲内に維持することにより、力行運転時には、運転者から加速の要求に応じて必要な電力を第2バッテリESPから速やかに供給でき、また回生運転時には、電動発電機Mで発電した電力を第2バッテリESPで受け入れることができる。
図3は、ECU7において以上のような充放電制御を実現するための機能ブロック図である。
ECU7は、第1充電状態推定部71aと、第2充電状態推定部71bと、発電要求判定部72と、電力パス要求判定部73と、電力算出部74と、負担率設定部76と、電力分配設定部77と、充放電制御部78と、足軸要求出力算出部79と、を備える。
第1充電状態推定部71aは、第1センサユニット24から送信される検出信号を用いて、第1バッテリESEの充電状態を推定する。より具体的には、第1充電状態推定部71aは、第1バッテリESEの充電状態と相関のあるパラメータである充電率[%]を推定する。充電率とは、バッテリの残量の電池容量に対する割合を百分率で表したものである。第1充電状態推定部71aは、第1センサユニット24の検出信号を用いて、第1バッテリESEの電流、電圧、及び温度の値を取得し、これら値を用いた既知のアルゴリズムに基づいて第1バッテリESEの充電率の推定値(以下、「SOC1」と表記する)を算出する。
第2充電状態推定部71bは、第2センサユニット28から送信される検出信号を用いて、第2バッテリESPの充電状態を推定する。より具体的には、第2充電状態推定部71bは、第1充電状態推定部71aと同様に、第2センサユニット28の検出信号を用いて、第2バッテリESPの電流、電圧、及び温度の値を取得し、これら値を用いた既知のアルゴリズムに基づいて第2バッテリESPの充電状態と相関のあるパラメータである第2バッテリESPの充電率の推定値(以下、「SOC2」と表記する)を算出する。
足軸要求出力算出部79は、運転者が操作するアクセルペダルの開度を検出するアクセル開度センサの検出値に基づいて、電動発電機Mにおいて要求されている電力でありかつ正値の足軸要求出力Pmotを算出する。
発電要求判定部72は、第1充電状態推定部71aにおいて算出される推定値SOC1と、足軸要求出力算出部79によって算出される足軸要求出力Pmotとを用いることによって、発電機Gによる発電が要求されている状態であるか否かを判定する。図2を参照して説明したように、車両Vでは、回生運転時に電動発電機Mによって発電される電力は、第2バッテリESPには充電されるが、第1バッテリESEには充電されないようになっている。そこで発電要求判定部72では、第1バッテリESEの充電状態と相関のある推定値SOC1に基づいて発電機Gによる発電の要否を判定する。より具体的には、発電要求判定部72は、推定値SOC1が所定の閾値より小さく第1バッテリESEの充電が要求されている場合、又は足軸要求出力Pmotが所定の閾値より大きく発電機Gによる電力のアシストが要求されている場合には、発電機Gによる発電が要求されていると判定し、これ以外の場合には、発電機Gによる発電が要求されていないと判定する。
より具体的には、発電要求判定部72は、推定値SOC1が所定の発電開始閾値より大きい場合には、発電機Gによる発電は必要無いと判断し、エンジンEを停止させる。また発電要求判定部72は、推定値SOC1が発電開始閾値以下である場合には、発電機Gによる発電は必要であると判断し、エンジンEを始動し、このエンジンEで発生する動力を用いて発電機Gで発電させる。またこの要求に応じて発電機Gで発電された電力は、後に図6及び図7等を参照して説明するように、第1バッテリESEの充電に用いられるか、又は第1バッテリESEの負担を軽減するために用いられ、これにより第1バッテリESEの充電率は所定の目標に概ね維持される。
電力パス要求判定部73は、第2充電状態推定部71bにおいて算出される推定値SOC2を用いることによって、第1バッテリESEの電力の一部を第2バッテリESPへ供給し第2バッテリESPを充電する電力パスの実行が要求されている状態であるか否かを判定する。図2を参照して説明したように、車両Vでは、回生運転時に電動発電機Mによって発電される電力を第2バッテリESPに充電することにより、第2バッテリESPの電力の収支は概ね0に維持されるようになっている。このため、第2バッテリESPの充電率は所定の目標範囲に自発的に維持されるため、基本的には電力パスの実行は不要である。しかしながら何らかの理由により、第2バッテリESPの充電率が所定の目標範囲から外れて低下する場合もある。
そこで電力パス要求判定部73は、推定値SOC2が所定の下限閾値より大きい場合には、電力パスの実行は必要無いと判断する。また電力パス要求判定部73は、推定値SOC2が上記下限閾値以下である場合には、電力パスの実行を要求する。後に図6や図7等を参照して説明するように、電力パスの実行が要求された場合には、電力算出部74において算出されるパス電力Ppasに相当する電力が第1バッテリESEから放電され、第2バッテリESPに充電される。
電力算出部74は、車速計S及び電力計41から送信される信号等に基づいて車両Vにおいて消費又は発生する各種電力を算出する。電力算出部74は、加速運動を実現するために必要な電力である慣性電力Pin[W]と、電動発電機Mで減速運動を実現することにより電動発電機Mで回収され得る電力である回生電力Pre[W]と、車両補機4を駆動するために必要な電力である補機電力Pho[W]と、走行抵抗の作用下で等速運動を実現するために必要な電力である巡航電力Pcr[W]と、エンジンEの動力を利用して発電機Gで発電される電力である発電電力Pge[W]と、電力パス要求判定部73において電力パスの実行が要求されている場合に、第1バッテリESEから放電する必要がありかつ第2バッテリESPに充電する必要がある電力であるパス電力Ppas[W]と、を算出する。
図4は、電力算出部74における演算手順を示す機能ブロック図である。電力算出部74は、慣性電力Pinを算出する慣性電力算出部741と、回生電力Preを算出する回生電力算出部742と、補機電力Phoを算出する補機電力算出部743と、巡航電力Pcrを算出する巡航電力算出部744と、発電電力Pgeを算出する発電電力算出部745と、パス電力Ppasを算出するパス電力算出部746と、を備える。
慣性電力算出部741では、走行抵抗の非作用下で車両Vの車重m[kg]と同じ質点の速度を変化させるために必要な電力である慣性電力Pinを算出する。より具体的には、慣性電力算出部741では、車速計Sの検出信号を用いて、今回の制御周期における車速[km/h]と前回の制御周期における車速[km/h]との差である速度差[km/h]を算出し、この速度差に速度の単位を[km/h]から[m/s]に変換するための係数(例えば、3.6)の逆数と、予め定められた車重m[kg]とを乗算することにより、加減速駆動力[N]を算出する。また慣性電力算出部741は、車速計Sの検出信号を用いて、今回の制御周期における車速と前回の制御周期における車速との平均である平均速度[km/h]を算出し、この平均速度と、加減速駆動力と、速度の単位を[km/h]から[m/s]に変換するための係数(例えば、3.6)の逆数と、を乗算することにより、加減速エネルギ[W]を算出する。以上のように算出された加減速エネルギは、加速時には正となり、減速時には負となり、巡航時には0となる。慣性電力算出部741は、以上のようにして算出した加減速エネルギと値0のうち大きい方に、所定の伝達効率を乗算することによって慣性電力Pinを算出する。ここで伝達効率の値は、力行運転時に電動発電機Mに投入される電気エネルギを車両Vの運動エネルギに変換する過程で生じる損失(例えば、電動発電機Mにおける損失や、駆動系で生じる損失等)を考慮して0〜1の間で設定される。以上のようにして算出される慣性電力Pinは、図2に示すように加速時には0より大きな値となり、減速時又は巡航時には0となる。
回生電力算出部742は、慣性電力算出部741における演算を流用することによって回生電力Preを算出する。より具体的には、回生電力算出部742は、慣性電力算出部741において算出された加減速エネルギと値0のうち小さい方に、所定の伝達効率と、符号を反転させるための係数(−1)を乗算することによって回生電力Preを算出する。ここで伝達効率の値は、電動発電機Mで車体の運動エネルギを電気エネルギに変換する過程で生じる損失(電動発電機Mにおける損失、駆動系で生じる損失、運転者がブレーキを操作することによる損失等)を考慮して0〜1の間で設定される。以上のようにして算出される回生電力Preは、図2に示すように減速時には0より大きな値となり、加速時又は巡航時には0となる。
補機電力算出部743は、車両補機4に設けられた電力計41の検出信号を用いることによって、補機電力Phoを算出する。以上のようにして算出される補機電力Phoは、0以上の正の値となる。
巡航電力算出部744は、走行抵抗の作用下で車両Vの等速運動を実現するために必要な電力である巡航電力Pcrを算出する。より具体的には、巡航電力算出部744は、先ず、巡航駆動力算出部744aにおいて、車速計Sの検出信号に基づいて、走行中の車両Vに作用する走行抵抗力に相当する巡航駆動力[N]を算出する。巡航駆動力算出部744aは、車速計Sの検出信号を用いて、今回の制御周期における車速を算出し、算出した車速を予め定められた演算式に入力することによって巡航駆動力を算出する。なおこの演算式には、例えば、車速の2次式が用いられる。またこの演算式の定数項の係数a、車速の1次に比例する項の係数b、及び車速の2次に比例する項の係数cの値は、温度や大気条件等によって適宜設定される。また巡航電力算出部744は、車速計Sの検出信号を用いて、今回の制御周期における車速と前回の制御周期における車速との平均である平均速度を算出し、この平均速度と、巡航駆動力と、速度の単位を[km/h]から[m/s]に変換するための係数(例えば、3.6)の逆数と、所定の伝達効率と、を乗算することにより、巡航電力Pcrを算出する。ここで伝達効率の値は、力行運転時に電動発電機Mに投入される電気エネルギを車両Vの運動エネルギに変換する過程で生じる損失(例えば、電動発電機Mにおける損失や、駆動系で生じる損失等)を考慮して0〜1の間で設定される。以上のようにして算出される巡航電力Pcrは、図2に示すように車速が0で無い場合に0以上の正の値となる。
発電電力算出部745は、発電要求判定部72において発電機Gによる発電が要求されている場合に、足軸要求出力Pmotと第1バッテリESEの充電率の推定値SOC1とを用いることによって、第1バッテリESEの負担が少なくなるように、負値である発電電力Pgeを算出する。より具体的には、発電電力算出部745は、推定値SOC1が所定の閾値より小さく第1バッテリESEの充電が要求されている場合には、推定値SOC1に基づいて算出される第1バッテリESEの回生要求電力(正値)と足軸要求出力Pmot(正値)とを合算したものに値“−1”を乗算することにより、発電電力Pgeを算出する。また発電電力算出部745は、足軸要求出力Pmotが所定の閾値より大きく発電機Gによるアシストが要求されている場合には、足軸要求出力Pmotから、推定値SOC1に基づいて算出される第1バッテリESEのアシスト分(正値)を減算して得られる正値に値“−1”を乗算することにより、発電電力Pgeを算出する。また発電電力算出部745は、発電要求判定部72において発電機Gによる発電が要求されていない場合には、発電電力Pgeを0とする。上のようにして算出される発電電力Pgeは、0以下の負の値となる。
パス電力算出部746は、電力パス要求判定部73において電力パスの実行が要求されていない場合にはパス電力Ppasを0とし、電力パスの実行が要求されている場合には第2充電状態推定部71bによって算出される推定値SOC2に基づいてパス電力Ppasを算出する。以上のようにして算出されるパス電力Ppasは、0以上の正の値となる。
図3に戻り、要求電力算出部75は、電力算出部74によって得られた結果を用いて要求電力を算出する。ここで要求電力とは、電動発電機Mの力行運転時には正となり第1バッテリESE及び第2バッテリESPを含む全バッテリに対し放電が要求される電力に相当し、電動発電機Mの回生運転時には負となり全バッテリに対し充電が要求される電力に相当する。要求電力算出部75は、下記式(1)に示すように、電力算出部74によって算出される慣性電力Pinと回生電力Preと補機電力Phoと巡航電力Pcrと発電電力Pgeとを合算することにより、要求電力Ptotを算出する。
Ptot=Pin+Pre+Pho+Pcr+Pge (1)
負担率設定部76は、電力算出部74において算出される慣性電力Pinのうち、第2バッテリESPで負担する分の割合に相当する負担率を設定する。図2を参照して説明したように、回生運転時には少なからず損失が生じることから、慣性電力Pinの全てを第2バッテリESPで負担すると第2バッテリESPの電力の収支はマイナスになり、その充電率が所定の目標範囲から外れて低下するおそれがある。そこで負担率設定部76は、第2バッテリESPの充電率が低下しないようにするため、第2状態推定部72bにおいて算出される推定値SOC2に基づいて負担率kの値を0〜1の間で設定する。
負担率設定部76は、例えば推定値SOC2に基づいて図5に示すようなマップを検索することによって、負担率kの値を設定する。図5に例示するようなマップによれば、負担率kの値は、推定値SOC2が大きくなるほど大きな値に設定される。すなわち、負担率設定部76は、推定値SOC2が大きくなるほど、換言すれば第2バッテリESPの充電率が高く、新たに電力を受け入れる余裕が少なくなるほど、負担率kを大きな値に設定し、第2バッテリESPの積極的な放電を促す。また負担率設定部76は、推定値SOC2が小さくなるほど、換言すれば第2バッテリESPの充電率が低く、新たに放電できる余裕が少なくなるほど、負担率kを小さな値に設定し、第2バッテリESPの積極的な充電を促す。
電力分配設定部77は、電力算出部74において算出される各種電力の推定値と、負担率設定部76において設定される負担率と、発電要求判定部72の判定結果と、電力パス要求判定部73の判定結果と、を用いることによって第1バッテリESE及び第2バッテリESPの電力の分配態様を決定する。
図6及び図7は、電力分配設定部77において、電力の分配態様を決定する具体的な手順を示すフローチャートである。図6及び図7の処理は、車両Vが起動している間、電力分配設定部77において所定の制御周期の下で繰り返し実行される。
S1では、電力分配設定部77は、要求電力算出部75によって算出される要求電力Ptotを取得し、S2に移る。
S2では、電力分配設定部77は、電力パス要求判定部73により電力パスの要求が生じていないか否かを判定する。電力分配設定部77は、S2の判定結果がYESである場合(すなわち、電力パスの要求が無い場合、つまりPpas=0の場合)にはS3に移り、NOである場合(すなわち、電力パスの要求がある場合、つまりPpas≠0の場合)にはS31に移る。
S3では、電力分配設定部77は、車速計Sの検出信号に基づいて、車両Vが加速中であるか否かを判別する。電力分配設定部77は、S3の判定結果がYESである場合、すなわち回生電力Pre=0である場合にはS4に移り、NOである場合、すなわち慣性電力Pin=0である場合にはS9に移る。
S4では、電力分配設定部77は、発電要求判定部72により発電の要求が生じていないか否かを判定する。電力分配設定部77は、S4の判定結果がYESである場合(すなわち、発電の要求が無い場合、つまり発電電力Pge=0の場合)にはS5に移り、NOである場合(すなわち、発電の要求がある場合つまり発電電力Pge≠0の場合)にはS7に移る。
S5では、電力分配設定部77は、電力算出部74において算出される慣性電力Pinに負担率設定部76において設定された負担率kを乗じて得られる電力を、第2バッテリESPの負担電力P2、すなわち第2バッテリESPから電動発電機Mへ放電させる電力として決定し、S6に移る。
S6では、電力分配設定部77は、電力算出部74において算出される巡航電力Pcrと、補機電力Phoと、慣性電力Pinに(1−負担率k)を乗じて得られる電力と、を合算して得られる電力を、第1バッテリESEの負担電力P1、すなわち第1バッテリESEから電動発電機M及び車両補機4へ放電させる電力として決定し、この処理を終了する。
図8Aは、電力パスの要求が無く、加速中であり、かつ発電の要求が無い場合(すなわち、S5及びS6の実行時)における分配態様を模式的に示す図である。この場合、第2バッテリESPからは、慣性電力Pinに負担率kを乗じて得られる電力(Pin×k)が放電され、電動発電機Mに供給される。また第1バッテリESEからは、巡航電力Pcrと、補機電力Phoと、慣性電力Pinのうち第2バッテリESPの負担分を除いた残りとを合わせた電力(Pcr+Pho+Pin×(1−k))、すなわち力行運転時における全蓄電器に対する要求電力(Ptot=Pcr+Pin+Pho)から第2バッテリESPから放電される電力(Pin×k)を除いた残電力が放電され、車両補機4と電動発電機Mに供給される。
S7では、電力分配設定部77は、電力算出部74において算出される慣性電力Pinに負担率設定部76において設定された負担率kを乗じて得られる電力を、第2バッテリESPの負担電力P2として決定し、S7に移る。なお以下では、負担電力が正である場合は、バッテリから電力を放電させることを意味し、負担電力が負である場合は、バッテリへ電力を充電させることを意味するものとする。
S8では、電力分配設定部77は、電力算出部74において算出される巡航電力Pcrと、補機電力Phoと、発電電力Pgeと、慣性電力Pinに(1−負担率k)を乗じて得られる電力とを合算して得られる電力を、第1バッテリESEの負担電力P1として決定し、この処理を終了する。
図8Bは、電力パスの要求が無く、加速中であり、かつ発電の要求がある場合(すなわち、S7及びS8の実行時)における分配態様を模式的に示す図である。この場合、第2バッテリESPからは、発電要求が無い場合(すなわち、図8Aの場合)と同様に、慣性電力Pinに負担率kを乗じて得られる電力(Pin×k)が放電され、電動発電機Mに供給される。また発電機Gで発電される電力である発電電力Pgeは、電動発電機Mに供給される。また第1バッテリESEからは、巡航電力Pcrと、補機電力Phoと、発電電力Pgeと、慣性電力Pinのうち第2バッテリESPの負担分を除いた残りとを合わせた電力(Pcr+Pho+Pge+Pin×(1−k))が放電され、車両補機4と電動発電機Mに供給される。すなわち、第1バッテリESEからは、力行運転時における全蓄電器に対する要求電力(Ptot=Pcr+Pin+Pho+Pge)から第2バッテリESPから放電される電力(Pin×k)を除いた残電力が放電され、車両補機4と電動発電機Mに供給される。すなわち、図8Aと図8Bとを比較して明らかな通り、発電機Gによって電力が発電されている場合、その分だけ第1バッテリESEの負担電力が軽減されるようになっている。
S9では、電力分配設定部77は、車速計Sの検出信号に基づいて、車両Vが減速中であるか否かを判別する。電力分配設定部77は、S9の判定結果がYESである場合にはS10に移り、NOである場合、すなわち回生電力Pre=0である場合にはS16に移る。
S10では、電力分配設定部77は、負値である回生電力Preと正値である巡航電力Pcrとの和が0より大きいか否かを判別する。図2を参照して説明したように、減速を開始してからバッテリの充電を開始できるまでの間には僅かなタイムラグ(図2中、t2〜t3)が存在する。S10の判別がYESである場合、すなわちバッテリの充電が可能である場合には、S11に移り、S10の判別がNOである場合、すなわちバッテリの充電が可能でない場合には、S16に移る。
S11では、電力分配設定部77は、発電要求判定部72により発電の要求が生じていないか否かを判定する。電力分配設定部77は、S11の判定結果がYESである場合にはS12に移り、NOである場合にはS14に移る。
S12では、電力分配設定部77は、回生電力Preと巡航電力Pcrとを合算して得られる負値の電力を、第2バッテリESPの負担電力P2として決定し、S13に移る。
S13では、電力分配設定部77は、電力算出部74において算出される補機電力Phoを、第1バッテリESEの負担電力P1として決定し、この処理を終了する。
図9Aは、電力パスの要求が無く、減速中であり、電動発電機Mで発電した電力で第2バッテリESPを充電可能な状態であり、かつ発電の要求が無い場合(すなわち、S12及びS13の実行時)における分配態様を模式的に示す図である。この場合、正値の巡航電力Pcrと負値の回生電力Preとの和が負値になるため、第2バッテリESPの負担電力(P2=Pre+Pcr)は負となり、従って第2バッテリESPには、電動発電機Mからの電力(Pre+Pcr)が充電される。またこの場合、第1バッテリESEからは、補機電力Phoが放電され、全て車両補機4に供給される。
S14では、電力分配設定部77は、回生電力Preと巡航電力Pcrとを合算して得られる負値の電力を、第2バッテリESPの負担電力P2として決定し、S15に移る。
S15では、電力分配設定部77は、電力算出部74において算出される正値の補機電力Phoと、負値の発電電力Pgeとを合算して得られる電力を、第1バッテリESEの負担電力P1として決定し、この処理を終了する。
図9Bは、電力パスの要求が無く、減速中であり、電動発電機Mで発電した電力で第2バッテリESPを充電可能な状態であり、かつ発電の要求がある場合(すなわち、S14及びS15の実行時)における分配態様を模式的に示す図である。この場合、正値の巡航電力Pcrと負値の回生電力Preとの和が負値になるため、第2バッテリESPには、その負担電力(P2=Pre+Pcr)が充電される。また、正値の補機電力Phoと負値の発電電力Pgeとの和が正である場合には、第1バッテリESEからは正値である負担電力(P1=Pho+Pge)が放電され、上記和が負である場合には負値である負担電力(P1=Pho+Pge)が充電される。
S16では、電力分配設定部77は、発電要求判定部72により発電の要求が生じていないか否かを判定する。電力分配設定部77は、S16の判定結果がYESである場合にはS17に移り、NOである場合にはS19に移る。
S17では、電力分配設定部77は、慣性電力Pin及び回生電力Preが何れも0であると判断されていることに応じて、値0を第2バッテリESPの負担電力P2として決定し、S18に移る。
S18では、電力分配設定部77は、巡航電力Pcrと補機電力Phoとを合わせた要求電力Ptotを第1バッテリESEの負担電力P1として決定し、この処理を終了する。
図10Aは、電力パスの要求が無く、加速中及び減速中でなく、停止中であり、かつ発電の要求が無い場合(すなわち、S17及びS18の実行時であって停止中の時)における分配態様を模式的に示す図である。このように車両Vが停止中である場合には、慣性電力Pin、回生電力Pre、及び巡航電力Pcrは何れも0となるため、第2バッテリESPでは、充電も放電も行われない。またこの場合、第1バッテリESEからは、補機電力Phoが放電され、全て車両補機4に供給される。
図10Bは、電力パスの要求が無く、加速中及び減速中でなく、巡航中であり、かつ発電の要求が無い場合(すなわち、S17及びS18の実行時であって巡航中の時)における分配態様を模式的に示す図である。このように車両Vが巡航中である場合には、慣性電力Pin、及び回生電力Preは何れも0となるため、第2バッテリESPでは、充電も放電も行われない。またこの場合、第1バッテリESEからは、補機電力Phoと巡航電力Pcrとを合わせた要求電力Ptotが放電され、車両補機4及び電動発電機Mに供給される。
S19では、電力分配設定部77は、慣性電力Pin及び回生電力Preが何れも0であると判断されていることに応じて、値0を第2バッテリESPの負担電力P2として決定し、S20に移る。
S20では、電力分配設定部77は、巡航電力Pcrと補機電力Phoと負値の発電電力Pgeとを合わせた要求電力Ptotを第1バッテリESEの負担電力P1として決定し、この処理を終了する。
図11Aは、電力パスの要求が無く、加速中及び減速中でなく、停止中であり、かつ発電の要求がある場合(すなわち、S19及びS20の実行時であって停止中の時)における分配態様を模式的に示す図である。このように車両Vが停止中である場合には、慣性電力Pin、回生電力Pre、及び巡航電力Pcrは何れも0となるため、第2バッテリESPでは、充電も放電も行われない。また正値の補機電力Phoと負値の発電電力Pgeとの和が正である場合には、第1バッテリESEからは正値である負担電力(P1=Pho+Pge)が放電され、上記和が負である場合には負値である負担電力(P1=Pho+Pge)が充電される。
図11Bは、電力パスの要求が無く、加速中及び減速中でなく、巡航中であり、かつ発電の要求がある場合(すなわち、S19及びS20の実行時であって巡航中の時)における分配態様を模式的に示す図である。このように車両Vが巡航中である場合には、慣性電力Pin、及び回生電力Preは何れも0となるため、第2バッテリESPでは、充電も放電も行われない。また正値の補機電力Phoと正値の巡航電力Pcrと負値の発電電力Pgeとの和が正である場合には、第1バッテリESEからは正値である負担電力(P1=Pho+Pcr+Pge)が放電され、上記和が負である場合には負値である負担電力(P1=Pho+Pcr+Pge)が充電される。
S31では、電力分配設定部77は、車速計Sの検出信号に基づいて、車両Vが加速中であるか否かを判別する。電力分配設定部77は、S31の判定結果がYESである場合、すなわち回生電力Pre=0である場合にはS32に移り、NOである場合、すなわち慣性電力Pin=0である場合にはS37に移る。
S32では、電力分配設定部77は、発電要求判定部72により発電の要求が生じていないか否かを判定する。電力分配設定部77は、S14の判定結果がYESである場合(すなわち、発電の要求が無い場合、つまり発電電力Pge=0の場合)にはS33に移り、NOである場合(すなわち、発電の要求がある場合、つまり発電電力Pge≠0の場合)にはS35に移る。
S33では、電力分配設定部77は、電力算出部74において算出される慣性電力Pinに負担率設定部76において設定された負担率kを乗じて得られる電力から、パス電力Ppasを減算して得られる電力を、第2バッテリESPの負担電力P2として決定し、S34に移る。
S34では、電力分配設定部77は、電力算出部74において算出される巡航電力Pcrと、補機電力Phoと、慣性電力Pinに(1−負担率k)を乗じて得られる電力と、パス電力Ppasと、を合算して得られる電力を、第1バッテリESEの負担電力P1として決定し、この処理を終了する。
図12Aは、電力パスの要求があり、加速中であり、かつ発電の要求が無い場合(すなわち、S33及びS34の実行時)における分配態様を模式的に示す図である。ここで、パス電力Ppasは、基本的には、慣性電力Pinに負担率kを乗じて得られる電力よりも大きくなるように設定される。このため第2バッテリESPの負担電力(P2=Pin×k−Ppas)は負となる。従って第2バッテリESPには、負値の負担電力(P2=Pin×k−Ppas)が充電される。また第1バッテリESEからは、要求電力Ptotから第2バッテリESPの負担電力(P2=Pin×k−Ppas)を除いた残電力(Pcr+Pho+Pin×(1−k)+Ppas)が放電され、車両補機4、電動発電機M、及び第2バッテリESPに供給される。
S35では、電力分配設定部77は、電力算出部74において算出される慣性電力Pinに負担率設定部76において設定された負担率kを乗じて得られる電力から、パス電力Ppasを減算して得られる電力を、第2バッテリESPの負担電力P2として決定し、S36に移る。
S36では、電力分配設定部77は、電力算出部74において算出される巡航電力Pcrと、補機電力Phoと、発電電力Pgeと、慣性電力Pinに(1−負担率k)を乗じて得られる電力と、パス電力Ppasと、を合算して得られる電力を、第1バッテリESEの負担電力P1として決定し、この処理を終了する。
図12Bは、電力パスの要求があり、加速中であり、かつ発電の要求がある場合(すなわち、S35及びS36の実行時)における分配態様を模式的に示す図である。この場合、第2バッテリESPには、発電の要求が無い場合(すなわち、図12Aの場合)と同様に、負値の負担電力(P2=Pin×k−Ppas)が充電される。また第1バッテリESEからは、要求電力Ptotから第2バッテリESPの負担電力(P2=Pin×k−Ppas)を除いた残電力(Pcr+Pho+Pin×(1−k)+Ppas+Pge)が放電され、車両補機4、電動発電機M、及び第2バッテリESPに供給される。なお図12Aと図12Bとを比較して明らかな通り、発電機Gによって電力が発電されている場合、その分だけ第1バッテリESEの負担電力が軽減されるようになっている。
S37では、電力分配設定部77は、車速計Sの検出信号に基づいて、車両Vが減速中であるか否かを判別する。電力分配設定部77は、S37の判定結果がYESである場合にはS38に移り、NOである場合、すなわち回生電力Pre=0である場合にはS44に移る。
S38では、電力分配設定部77は、負値である回生電力Preと正値である巡航電力Pcrとの和が0より大きいか否かを判別する。図2を参照して説明したように、減速を開始してからバッテリの充電を開始できるまでの間には僅かなタイムラグ(図2中、t2〜t3)が存在する。S38の判別がYESである場合、すなわちバッテリの充電が可能である場合には、S39に移り、S38の判別がNOである場合、すなわちバッテリの充電が可能でない場合には、S44に移る。
S39では、電力分配設定部77は、発電要求判定部72により発電の要求が生じていないか否かを判定する。電力分配設定部77は、S39の判定結果がYESである場合にはS40に移り、NOである場合にはS42に移る。
S40では、電力分配設定部77は、回生電力Preと巡航電力Pcrとを合算して得られる負値の電力から、正値のパス電力Ppasを減算して得られる電力を、第2バッテリESPの負担電力P2として決定し、S41に移る。
S41では、電力分配設定部77は、要求電力Ptotとパス電力Ppasとを合算して得られる電力から第2バッテリESPの負担電力P2を減算して得られる電力(Ptot+Ppas−P2)を、第1バッテリESEの負担電力P1として決定し、この処理を終了する。
図13Aは、電力パスの要求があり、減速中であり、電動発電機Mで発電した電力で第2バッテリESPを充電可能な状態であり、かつ発電の要求が無い場合(すなわち、S40及びS41の実行時)における分配態様を模式的に示す図である。この場合、第2バッテリESPの負担電力(P2=Pcr+Pre−Ppas)は負となり、従って第2バッテリESPには、第1バッテリESE又は電動発電機Mからの電力が充電される。またこの場合、第1バッテリESEからは、補機電力Phoとパス電力Ppasとを合わせた電力が放電され、車両補機4や第2バッテリESPに供給される。
S42では、電力分配設定部77は、回生電力Preと巡航電力Pcrとを合算して得られる負値の電力から、正値のパス電力Ppasを減算して得られる電力を、第2バッテリESPの負担電力P2として決定し、S43に移る。
S43では、電力分配設定部77は、要求電力Ptotとパス電力Ppasとを合算して得られる電力から第2バッテリESPの負担電力P2を減算して得られる電力(Ptot+Ppas−P2)を、第1バッテリESEの負担電力P1として決定し、この処理を終了する。
図13Bは、電力パスの要求があり、減速中であり、電動発電機Mで発電した電力で第2バッテリESPを充電可能な状態であり、かつ発電の要求がある場合(すなわち、S42及びS43の実行時)における分配態様を模式的に示す図である。この場合、第2バッテリESPの負担電力(P2=Pcr+Pre−Ppas)は負となり、従って第2バッテリESPには、第1バッテリESE又は電動発電機Mからの電力が充電される。また、正値の補機電力Phoと負値の発電電力Pgeと正値のパス電力Ppasとの和が正である場合には、第1バッテリESEからは正値である負担電力(P1=Pho+Pge+Ppas)が放電され、上記和が負である場合には負値である負担電力(P1=Pho+Pge+Ppas)が充電される。
S44では、電力分配設定部77は、発電要求判定部72により発電の要求が生じていないか否かを判定する。電力分配設定部77は、S44の判定結果がYESである場合にはS45に移り、NOである場合にはS47に移る。
S45では、電力分配設定部77は、パス電力Ppasに値“−1”を乗じて得られる負値を第2バッテリESPの負担電力P2として決定し、S46に移る。
S46では、電力分配設定部77は、要求電力Ptotとパス電力Ppasとを合わせた電力を第1バッテリESEの負担電力(P1=Pcr+Pho+Ppas)として決定し、この処理を終了する。
図14Aは、電力パスの要求があり、加速中及び減速中でなく、停止中であり、かつ発電の要求が無い場合(すなわち、S45及びS46の実行時であって停止中の時)における分配態様を模式的に示す図である。このように車両Vが停止中である場合には、慣性電力Pin、回生電力Pre、及び巡航電力Pcrは何れも0となるため、第2バッテリESPには、第1バッテリESEから供給されるパス電力Ppasが充電される。また第1バッテリESEからは、補機電力Phoとパス電力Ppasとを合わせた電力が放電され、車両補機4や第2バッテリESPに供給される。
図14Bは、電力パスの要求があり、加速中及び減速中でなく、巡航中であり、かつ発電の要求が無い場合(すなわち、S45及びS46の実行時であって巡航中の時)における分配態様を模式的に示す図である。このように車両Vが巡航中である場合には、慣性電力Pin、及び回生電力Preは何れも0となるため、第2バッテリESPには、第1バッテリESEから供給されるパス電力Ppasが充電される。また第1バッテリESEからは、巡航電力Pcrと補機電力Phoとパス電力Ppasとを合わせた電力が放電され、車両補機4、第2バッテリESP、及び電動発電機Mに供給される。
S47では、電力分配設定部77は、パス電力Ppasに値“−1”を乗じて得られる負値を第2バッテリESPの負担電力P2として決定し、S48に移る。
S48では、電力分配設定部77は、要求電力Ptotとパス電力Ppasとを合わせた電力を第1バッテリESEの負担電力(P1=Pcr+Pho+Pge+Ppas)として決定し、この処理を終了する。
図15Aは、電力パスの要求があり、加速中及び減速中でなく、停止中であり、かつ発電の要求がある場合(すなわち、S47及びS48の実行時であって停止中の時)における分配態様を模式的に示す図である。このように車両Vが停止中である場合には、慣性電力Pin、回生電力Pre、及び巡航電力Pcrは何れも0となるため、第2バッテリESPには、第1バッテリESE又は発電機Gから供給されるパス電力Ppasが充電される。また正値の補機電力Phoと負値の発電電力Pgeと正値のパス電力Ppasとの和が正である場合には、第1バッテリESEからは正値である負担電力(P1=Pho+Pge+Ppas)が放電され、上記和が負である場合には負値である負担電力(P1=Pho+Pge+Ppas)が充電される。
図15Bは、電力パスの要求があり、加速中及び減速中でなく、巡航中であり、かつ発電の要求がある場合(すなわち、S47及びS48の実行時であって巡航中の時)における分配態様を模式的に示す図である。このように車両Vが巡航中である場合には、慣性電力Pin、及び回生電力Preは何れも0となるため、第2バッテリESPには、第1バッテリESE又は発電機Gから供給されるパス電力Ppasが充電される。また正値の補機電力Phoと正値の巡航電力Pcrと負値の発電電力Pgeと正値のパス電力Ppasとの和が正である場合には、第1バッテリESEからは正値である負担電力(P1=Pho+Pcr+Pge+Ppas)が放電され、上記和が負である場合には負値である負担電力(P1=Pho+Pcr+Pge+Ppas)が充電される。
図3に戻り、充放電制御部78は、以上のようにして電力分配設定部77において定められた分配態様が実現されるように、ゲートドライブ回路6へ制御信号を送信し、電力変換回路3を制御する。
本実施形態に係る車両Vによれば、以下の効果を奏する。
(1)車両Vでは、電力変換回路3の制御装置5は、力行運転時に、車速を変化させるために必要な電力である慣性電力Pinの少なくとも一部が出力型の第2バッテリESPから放電され、かつバッテリESE,ESPに対する要求電力Ptotから上記第2バッテリESPの負担分を除いた残電力が容量型の第1バッテリESEから放電されるように電力変換回路5を制御し、回生運転時に、電動発電機Mで発電される電力である回生電力Pgeが第2バッテリESPに充電されるように電力変換回路5を制御する。すなわち力行運転時には第2バッテリESPから慣性電力Pinの少なくとも一部が放電され、回生運転時には第2バッテリESPに電動発電機Mで発電される電力が充電される。上述のように回生運転時に発電される電力は力行運転時に車速を変化させるために必要な電力よりも損失分だけ小さい。そこで車両Vでは、この損失分を考慮して、力行運転時には第2バッテリESPからは車速を変化させるために必要な電力の全てではなく少なくとも一部を放電させる。従って車両Vでは、車両Vが停止した状態から発進し、その後停止するまでの間における第2バッテリESPの電力の収支を、様々な損失を考慮して概ね0にすることができる。従って車両Vによれば、第1バッテリESEと第2バッテリESPとの間における電力の授受をできるだけ避けながら、出力型の第2バッテリESPの充電率を概ね一定に維持することができる。
(2)車両Vでは、力行運転時に慣性電力Pinに対し負担率kを算出し、力行運転時には、慣性電力Pinのうち負担率kに応じた分を第2バッテリESPから放電させ、要求電力から第2バッテリESPの負担分を除いた残電力を第1バッテリESEから放電させる。これにより、第2バッテリESPの電力の収支を0に近づけることができる。また車両Vでは、上記負担率kを第2バッテリESPの充電率の推定値SOC2に基づいて算出する。これにより、第2バッテリESPの電力の収支が0から外れている場合であっても、第2バッテリESPの充電率が所定の目標から大きく外れてしまうのを防止できる。
(3)車両Vでは、第2バッテリESPの充電率の推定値SOC2が大きくなるほど負担率kを大きな値に設定する。これにより、第2バッテリESPの充電率が所定の目標で維持されるように、第2バッテリESPの電力の収支を制御することができる。
(4)車両Vでは、走行抵抗の非作用下で加速運動を実現するために電動発電機Mに供給する必要がある電力である慣性電力Pinと、走行抵抗の作用下で車速を維持するために電動発電機Mに供給する必要がある電力である巡航電力Pcrと、車両補機に供給する必要がある電力である補機電力Phoと、を合算することによって要求電力を算出する。これにより、第2バッテリESPの電力の収支を0に近づけながら、力行運転時に車両Vで必要とされる電力をバッテリESE,ESPでまかなうことができる。
(5)車両Vでは、電動発電機Mとは別の発電機Gの発電時には、この発電機GにおいてエンジンEの動力を利用して発電した電力を第1バッテリESEに充電させ、この第1バッテリESEを所定の充電状態に維持させる。これにより、第1バッテリESEと第2バッテリESPとの間の電力の授受をできるだけ避けながら、第1バッテリESEと第2バッテリESPの充電率を概ね一定に維持することができる。
(6)車両Vでは、第2バッテリESPの充電率の推定値SOC2が所定の閾値以下である場合には、発電機Gで発電された電力及び第1バッテリESEの電力の少なくとも何れかを第2バッテリESPに充電させる。これにより、第2バッテリESPの充電率が大きく低下してしまい、運転者の要求に応じた加速を実現できなくなってしまう事態を回避することができる。
(7)車両Vでは、走行抵抗の非作用下で加速運動を実現するために電動発電機Mに供給する必要がある電力である慣性電力Pinと、走行抵抗の作用下で車速を維持するために電動発電機Mに供給する必要がある電力である巡航電力Pcrと、車両補機に供給する必要がある電力である補機電力Phoと、を合算したものから、発電機Gで発電される電力である発電電力Pgeを減算することによって要求電力を算出する。これにより、第2バッテリESPの電力の収支を0に近づけながら、力行運転時に車両Vで必要とされる電力をバッテリESE,ESP並びに発電機Gでまかなうことができる。
(8)車両Vでは、車両補機4を、第1バッテリESEと電力変換回路3とを接続する第1電力線21p,21nに接続し、車両補機4を駆動するために必要な電力は、第1バッテリESEから供給させる。これにより、第2バッテリESPから車両補機4へ電力が供給されてしまい、第2バッテリESPの電力の収支がマイナス側に転じてしまい、ひいては第2バッテリESPの充電率が所定の目標から大きく低下してしまうのを防止できる。
以上、本発明の実施形態について説明したが、本発明はこれに限らない。本発明の趣旨の範囲内で、細部の構成を適宜変更してもよい。
例えば、上記実施形態では、電力パス要求判定部73は、第2バッテリESPの充電率の推定値SOC2が下限閾値以下である場合には、電力パスの実行を要求し、これに応じて第1バッテリESEから第2バッテリESPへ電力を供給するようにしたが、本発明はこれに限らない。推定値SOC2が下限閾値以下である場合には、発電機Gによる発電を要求し、発電機Gで発電した電力を第2バッテリESPに供給するようにしてもよい。
V…車両(電動車両)
E…エンジン(内燃機関)
M…電動発電機
W…駆動輪(駆動輪)
G…発電機
1…電源システム
ESE…第1バッテリ(第1蓄電器)
21p,21n…第1電力線
ESP…第2バッテリ(第2蓄電器)
3…電力変換回路
4…車両補機
5…制御装置
6…ゲートドライブ回路(制御装置)
7…ECU(制御装置)
71a…第1充電状態推定部
71b…第2充電状態推定部(第2充電状態パラメータ取得部)
72…発電要求判定部
73…電力パス要求判定部
74…電力算出部
75…要求電力算出部
76…負担率設定部
77…電力分配設定部
78…充放電制御部

Claims (8)

  1. 第1蓄電器と、
    前記第1蓄電器よりも出力重量密度が高くかつエネルギ重量密度が低い第2蓄電器と、
    駆動輪と連結された電動発電機と、
    前記第1及び第2蓄電器と前記電動発電機とを接続する電力線に設けられた電力変換回路と、
    前記電力変換回路を駆動し前記第1及び第2蓄電器の充放電を制御する制御装置と、
    前記電動発電機の力行運転時に前記第1及び第2蓄電器を含む全蓄電器に対し放電が要求される電力である要求電力を算出する要求電力算出部と、を備える電動車両であって、
    前記制御装置は、
    前記力行運転時には、前記要求電力のうち車速を変化させるために必要な電力の少なくとも一部が前記第2蓄電器から放電され、かつ前記要求電力から前記第2蓄電器から放電される電力を除いた残電力が前記第1蓄電器から放電されるように前記電力変換回路を駆動し、
    前記電動発電機の回生運転時には、前記電動発電機で発電される電力が前記第2蓄電器に充電されるように前記電力変換回路を駆動することを特徴とする電動車両。
  2. 前記第2蓄電器の充電状態と相関のある第2充電状態パラメータ値を取得する第2充電状態パラメータ取得部と、
    前記第2充電状態パラメータ値に基づいて前記車速を変化させるために必要な電力に対する前記第2蓄電器の負担分の割合である負担率を設定する負担率設定部と、を備え、
    前記制御装置は、前記力行運転時には、前記車速を変化させるために必要な電力のうち前記負担率に応じた分が前記第2蓄電器から放電されるように前記電力変換回路を駆動することを特徴とする請求項1に記載の電動車両。
  3. 前記負担率設定部は、前記第2充電状態パラメータ値が大きくなるほど前記負担率を大きな値に設定することを特徴とする請求項2に記載の電動車両。
  4. 前記要求電力算出部は、前記車速を変化させるために前記電動発電機に供給する必要がある電力である慣性電力と、前記車速を維持するために前記電動発電機に供給する必要がある電力である巡航電力と、車両補機に供給する必要がある電力である補機電力と、を合算することによって前記要求電力を算出することを特徴とする請求項1から3の何れかに記載の電動車両。
  5. 内燃機関と、
    前記第1蓄電器に前記電力変換回路を介して接続され前記内燃機関で発生した動力を利用して発電する発電機と、を備え、
    前記制御装置は、前記発電機による発電時には、当該発電機で発電される電力が前記第1蓄電器に充電され、当該第1蓄電器が所定の充電状態で維持されるように前記電力変換回路を駆動することを特徴とする請求項1から3の何れかに記載の電動車両。
  6. 内燃機関と、
    前記第1蓄電器に前記電力変換回路を介して接続され前記内燃機関で発生した動力を利用して発電する発電機と、
    前記第2蓄電器の充電状態と相関のある第2充電状態パラメータ値を取得する第2充電状態パラメータ取得部と、を備え、
    前記制御装置は、前記第2充電状態パラメータ値が所定の閾値以下である場合には、前記発電機で発電された電力及び前記第1蓄電器の電力の少なくとも何れかが前記第2蓄電器に充電されるように前記電力変換回路を駆動することを特徴とする請求項1から3の何れかに記載の電動車両。
  7. 前記要求電力算出部は、前記車速を変化させるために前記電動発電機に供給する必要がある電力である慣性電力と、前記車速を維持するために前記電動発電機に供給する必要がある電力である巡航電力と、車両補機に供給する必要がある電力である補機電力と、を合算したものから、前記発電機で発電される電力である発電電力を減算することによって前記要求電力を算出することを特徴とする請求項5又は6に記載の電動車両。
  8. 前記第1蓄電器と前記電力変換回路とを接続する第1電力線をさらに備え、
    前記車両補機は、前記第1電力線に接続され、
    前記車両補機を駆動するために必要な電力は、前記第1蓄電器から供給されることを特徴とする請求項4又は7に記載の電動車両。
JP2018002240A 2018-01-10 2018-01-10 電動車両 Pending JP2019122201A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018002240A JP2019122201A (ja) 2018-01-10 2018-01-10 電動車両
CN201910006534.8A CN110014862B (zh) 2018-01-10 2019-01-04 电动车辆
US16/240,799 US10981455B2 (en) 2018-01-10 2019-01-07 Electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018002240A JP2019122201A (ja) 2018-01-10 2018-01-10 電動車両

Publications (1)

Publication Number Publication Date
JP2019122201A true JP2019122201A (ja) 2019-07-22

Family

ID=67140479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018002240A Pending JP2019122201A (ja) 2018-01-10 2018-01-10 電動車両

Country Status (3)

Country Link
US (1) US10981455B2 (ja)
JP (1) JP2019122201A (ja)
CN (1) CN110014862B (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081959B2 (ja) * 2018-03-30 2022-06-07 本田技研工業株式会社 車両電源システム
JP7450523B2 (ja) * 2020-12-08 2024-03-15 プライムプラネットエナジー&ソリューションズ株式会社 車両走行システムおよび車両
JP2022149575A (ja) * 2021-03-25 2022-10-07 本田技研工業株式会社 電力供給回路
US20230035856A1 (en) * 2021-07-20 2023-02-02 Cambridge Mobile Telematics Inc. Identifying unreliable global navigation satellite system (gnss) data
US20230378770A1 (en) * 2022-03-25 2023-11-23 Our Next Energy, Inc. Configurable power supply system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111508A1 (ja) * 2011-02-14 2012-08-23 三菱電機株式会社 電力回生電源システム
JP2016131483A (ja) * 2014-12-08 2016-07-21 ゼネラル・エレクトリック・カンパニイ 推進システムおよびエネルギー管理システムとその方法
JP2017112809A (ja) * 2015-12-18 2017-06-22 本田技研工業株式会社 駆動装置、輸送機器及び制御方法
JP2017125699A (ja) * 2016-01-12 2017-07-20 本田技研工業株式会社 蓄電装置、輸送機器及び制御方法
JP2017210040A (ja) * 2016-05-23 2017-11-30 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040201365A1 (en) * 2001-04-05 2004-10-14 Electrovaya Inc. Energy storage device for loads having variable power rates
JP4905300B2 (ja) * 2006-09-28 2012-03-28 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、電源システムの制御方法ならびにその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP4687704B2 (ja) * 2007-11-20 2011-05-25 株式会社デンソー 車両用電源装置
KR20120030337A (ko) * 2009-04-06 2012-03-28 더 유니버시티 오브 아크론 배터리 팩 관리 유닛 및 그 유닛을 배터리 팩의 수명을 연장하는데 사용하는 방법
US8026638B2 (en) * 2009-08-11 2011-09-27 General Electric Company System for multiple energy storage and management and method of making same
EP2579048A1 (en) * 2010-05-31 2013-04-10 Sanyo Electric Co., Ltd. Battery system, electric vehicle, mobile body, electric power storage device, electric power supply device, and battery voltage detection device
US20130187466A1 (en) * 2010-10-15 2013-07-25 Sanyo Electric Co., Ltd. Power management system
WO2012053084A1 (ja) * 2010-10-21 2012-04-26 トヨタ自動車株式会社 電動車両の電源システムおよびその制御方法ならびに電動車両
US9073438B2 (en) * 2011-10-28 2015-07-07 General Electric Company System for selectively coupling an energy source to a load and method of making same
JP5247899B1 (ja) * 2012-02-15 2013-07-24 株式会社小松製作所 蓄電器の充放電制御装置、蓄電器の充放電制御方法、および蓄電器の充放電制御装置を備えたハイブリッド作業機械
EP2875982B1 (en) * 2012-07-19 2019-08-21 Mitsubishi Electric Corporation Device and method for controlling propulsion of electric vehicle
US9849850B2 (en) * 2012-08-29 2017-12-26 Honda Access Corp. System for monitoring battery provided in vehicle
US9718375B2 (en) * 2014-01-23 2017-08-01 Johnson Controls Technology Company Passive architectures for batteries having two different chemistries
JP2015217920A (ja) * 2014-05-21 2015-12-07 オムロンオートモーティブエレクトロニクス株式会社 車両用電源装置、車両用回生システム
JP5826907B2 (ja) 2014-10-09 2015-12-02 ダイムラー・アクチェンゲゼルシャフトDaimler AG 電気自動車の電源制御装置
JP6172121B2 (ja) * 2014-11-14 2017-08-02 トヨタ自動車株式会社 燃料電池システム、燃料電池車両、および、燃料電池システムの制御方法
JP6082420B2 (ja) * 2015-03-31 2017-02-15 富士重工業株式会社 車両用電源装置
JP6488856B2 (ja) * 2015-04-27 2019-03-27 中西金属工業株式会社 蓄電装置を備えた駆動制御装置
JP6610410B2 (ja) * 2016-04-25 2019-11-27 トヨタ自動車株式会社 自動車
CN107042762B (zh) * 2016-11-29 2019-12-31 北京交通大学 一种轨道车辆的车载混合储能系统及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111508A1 (ja) * 2011-02-14 2012-08-23 三菱電機株式会社 電力回生電源システム
JP2016131483A (ja) * 2014-12-08 2016-07-21 ゼネラル・エレクトリック・カンパニイ 推進システムおよびエネルギー管理システムとその方法
JP2017112809A (ja) * 2015-12-18 2017-06-22 本田技研工業株式会社 駆動装置、輸送機器及び制御方法
JP2017125699A (ja) * 2016-01-12 2017-07-20 本田技研工業株式会社 蓄電装置、輸送機器及び制御方法
JP2017210040A (ja) * 2016-05-23 2017-11-30 本田技研工業株式会社 動力システム及び輸送機器、並びに、電力伝送方法

Also Published As

Publication number Publication date
US20190210474A1 (en) 2019-07-11
CN110014862B (zh) 2022-10-21
CN110014862A (zh) 2019-07-16
US10981455B2 (en) 2021-04-20

Similar Documents

Publication Publication Date Title
US11021077B2 (en) Vehicle power supply system
JP2019122201A (ja) 電動車両
JP4527138B2 (ja) ハイブリッド車両の制御装置
JP7068893B2 (ja) 車両電源システム
JP6240649B2 (ja) 電力供給システム
US11203274B2 (en) Electrically driven vehicle
US11167660B2 (en) Vehicle power supply system
JP7081959B2 (ja) 車両電源システム
US10960768B2 (en) Vehicle power supply system
US11203272B2 (en) Vehicle power supply system
JP5696790B2 (ja) 車両および車両の制御方法
JP7069075B2 (ja) 電源システム
US11260771B2 (en) Vehicle power supply system
US20190299796A1 (en) Vehicle power supply system
WO2008133154A1 (ja) 電気機器および電気機器の制御方法
JP5411237B2 (ja) ハイブリッド車両の制御装置
JP7449750B2 (ja) 電源システム及び電動車両
JP2022093977A (ja) 電源システム
JP2022095364A (ja) 電源システム
JP2017073934A (ja) 電源制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200414