JP2019117201A - 測定装置および測定方法 - Google Patents

測定装置および測定方法 Download PDF

Info

Publication number
JP2019117201A
JP2019117201A JP2019042105A JP2019042105A JP2019117201A JP 2019117201 A JP2019117201 A JP 2019117201A JP 2019042105 A JP2019042105 A JP 2019042105A JP 2019042105 A JP2019042105 A JP 2019042105A JP 2019117201 A JP2019117201 A JP 2019117201A
Authority
JP
Japan
Prior art keywords
displacement
measurement
distribution
bridge
stiffness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019042105A
Other languages
English (en)
Other versions
JP6767642B2 (ja
Inventor
今川 太郎
Taro Imagawa
太郎 今川
晃浩 野田
Akihiro Noda
晃浩 野田
日下 博也
Hiroya Kusaka
博也 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JP2019117201A publication Critical patent/JP2019117201A/ja
Application granted granted Critical
Publication of JP6767642B2 publication Critical patent/JP6767642B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0008Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of bridges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • G01M5/005Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
    • G01M5/0058Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems of elongated objects, e.g. pipes, masts, towers or railways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/081Testing mechanical properties by using a contact-less detection method, i.e. with a camera
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/28Investigating ductility, e.g. suitability of sheet metal for deep-drawing or spinning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors
    • G01N2203/0647Image analysis

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

【課題】計測対象が撮像された撮像画像を用いて、簡便かつ低コストで計測対象の変位分布を測定することができる測定装置を提供する。【解決手段】測定装置200は、計測対象の変位分布を測定する測定装置であって、設定部280と変位算出部230とを備える。設定部280は、複数の時刻において計測対象が撮像された複数の撮像画像を用いて、計測対象に複数の計測点を設定する。変位算出部230は、複数の計測点のそれぞれについて時間経過に伴う空間的な変位を示す変位分布を算出する。【選択図】図16

Description

本開示は、計測対象の変位分布を測定する測定装置および測定方法に関する。
特許文献1は、構造物の曲げ剛性測定方法を開示している。この方法によると、計測対象物に振動センサを複数配置し、計測対象物に衝撃を与え、振動センサで得られる振動の伝搬速度を算出することにより、対象物の曲げ剛性を得ることができる。
特開2000−55776号公報
本開示は、計測対象が撮像された撮像画像を用いて、簡便かつ低コストで計測対象の変位分布を測定することができる測定装置を提供する。
本開示における測定装置は、計測対象の変位分布を測定する測定装置であって、設定部と変位算出部とを備える。設定部は、複数の時刻において計測対象が撮像された複数の撮像画像を用いて、計測対象に複数の計測点を設定する。変位算出部は、複数の計測点のそれぞれについて時間経過に伴う空間的な変位を示す変位分布を算出する。
本開示における測定方法は、測対象の変位分布を測定する測定方法であって、設定ステップと変位算出ステップとを含む。設定ステップは、複数の時刻において計測対象が撮像された複数の撮像画像を用いて、計測対象に複数の計測点を設定する。変位算出ステップは、複数の計測点のそれぞれについて時間経過に伴う空間的な変位を示す変位分布を算出する。
本開示における測定装置および測定方法は、計測対象が撮像された撮像画像を用いて、簡便かつ低コストで計測対象の変位分布を測定することができる。
図1は、実施の形態1における剛性測定システムの一構成例を示す外観図である。 図2は、実施の形態1における剛性測定装置の一構成例を示すブロック図である。 図3は、実施の形態1における剛性測定装置の他の構成例を示すブロック図である。 図4は、実施の形態1における剛性測定装置の動作を示すフローチャートである。 図5は、実施の形態1における剛性測定装置の他の動作を示すフローチャートである。 図6Aは、橋梁の撮像画像の一例を示す図である。 図6Bは、橋梁の撮像画像の他の一例を示す図である。 図7は、橋梁に設定された計測点の配置例を示す図である。 図8は、変位算出部が算出した変位の一例を示す図である。 図9は、橋梁に設定された座標を示す図である。 図10は、橋梁の変位分布と荷重分布の一例を示す図である。 図11は、橋梁の変位分布と荷重分布の他の一例を示す図である。 図12は、橋梁の剛性分布の一例を示す図である。 図13は、橋梁と撮像装置の位置関係の一例を示す図である。 図14は、橋梁の断面を示す図である。 図15Aは、橋梁の撮像画像の他の一例を示す図である。 図15Bは、橋梁に設定された計測点の配置の他の一例を示す図である。 図15Cは、橋梁のケーブル長を示す図である。 図15Dは、橋梁のケーブル長の他の状態を示す図である。 図16は、実施の形態2における剛性測定装置の一構成例を示すブロック図である。 図17は、実施の形態2における橋梁の撮像画像の一例を示す図である。 図18は、実施の形態2における剛性測定装置の他の構成例を示すブロック図である。 図19Aは、剛性分布を可視化した一例を示す図である。 図19Bは、異常であると判断した結果の一例を示す図である。 図20は、変位分布および荷重分布を可視化した結果の一例を示す図である。
以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるものであって、これらにより請求の範囲に記載の主題を限定することは意図されていない。
(実施の形態1)
以下、図1〜15Dを用いて、実施の形態1を説明する。
[1−1.構成]
[1−1−1.計測対象の撮像]
図1は、実施の形態1における剛性測定システム1の一構成例を示す外観図である。剛性測定システム1は、カメラ101と剛性測定装置200で構成される。カメラ101は、橋梁102を所定期間に複数回撮像し、橋梁102が撮像された複数の撮像画像を生成する。カメラ101は、例えば、所定の時間間隔で橋梁102を複数回撮像する。
カメラ101が生成した複数の撮像画像は剛性測定装置200に入力される。剛性測定装置200は、入力された複数の撮像画像から橋梁102全体の剛性の空間分布を示す剛性分布を算出する。本実施の形態では、撮像装置をカメラ101、計測対象を橋梁102の場合を例として説明を行う。
[1−1−2.剛性測定装置の構成]
図2は、実施の形態1における剛性測定装置200の一構成例を示すブロック図である。図2に示すように、剛性測定装置200は、入出力I/F210、制御部220、変位算出部230、荷重推定部240、剛性算出部250及びメモリ260を備える。剛性測定装置200は、例えば、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを有する。
入出力I/F210は、橋梁102が所定期間に撮像された複数の撮像画像の入力を受け付ける。そして、入出力I/F210は、剛性算出部250が算出した橋梁102の剛性分布(複数の測定点の剛性値とそれらの分布状況)を出力する。入出力I/F210は、カメラ101が生成した複数の撮像画像の入力を、無線、有線、または記録媒体などを介して受け付ける。そして、入出力I/F210は、複数の撮像画像をメモリ260に格納する。また、入出力I/F210は、表示部(図示せず)等に無線、有線または記録媒体などを介して、剛性算出部250が算出した橋梁102の剛性分布を出力する。表示部は、剛性測定装置200から出力された剛性分布を表示する。
制御部220は、剛性測定装置200の各部の動作を制御する。
変位算出部230は、計測対象が撮像された撮像画像を用いて、その計測対象に設定された計測点の変位を算出する。より具体的には、変位算出部230は、メモリ260に格納されている、カメラ101によって生成された複数の撮像画像の各々に対して、撮像画像内に存在する橋梁102を検出する。そして、変位算出部230は、橋梁102に設定された複数の計測点における空間的な変位を算出する。これにより、変位算出部230は、橋梁102の変位分布(複数の測定点の変位量とそれらの分布状況)を算出する。そして、変位算出部230は、その変位分布をメモリ260に格納する。
荷重推定部240は、計測対象が撮像された撮像画像を用いて、その計測対象に設定された計測点に加わる荷重を推定する。より具体的には、荷重推定部240は、メモリ260に格納されている複数の撮像画像の各々に対して、撮像画像内に存在する橋梁102上の荷重源を検出する。橋梁102に荷重を加えている車両などの荷重源を検出した後、荷重推定部240は、荷重源の種類と荷重源の橋梁102上における位置を検出する。そして、荷重推定部240は、メモリ260に予め格納された荷重源の種類に対応した荷重値を取得する。もしくは、橋梁102に荷重を加える荷重源を予め決めておき、荷重推定部240は、メモリ260に予め格納された所定の荷重値を取得してもよい。具体的には、荷重源をクレーン車に固定した場合、荷重推定部240は、メモリ260に格納されたクレーン車の荷重値を取得してもよい。この場合、剛性測定装置200の各部は、クレーン車が撮像されている撮像映像のみを用いて、処理を行う。荷重推定部240は、荷重源の位置と取得した荷重値を用いて、橋梁102に加えられる荷重の空間的な分布を示す荷重分布を算出する。
なお、荷重推定部240は、計測点と荷重源の位置とが一致する場合には、計測点に加わる荷重をメモリ260に格納された荷重値として推定してもよい。また、荷重推定部240は、計測点と荷重源の位置とが一致しない場合には、計測点と荷重源の位置との距離およびメモリ260に格納された荷重値に応じて、計測点に加わる荷重を推定してもよい。
剛性算出部250は、変位分布と荷重分布とを用いて、計測対象の剛性の空間的な分布を示す剛性分布を算出する。具体的には、剛性算出部250は、変位算出部230が算出した変位分布と、荷重推定部240が算出した荷重分布とを用いて、橋梁102の剛性分布を算出する。そして、剛性算出部250は、その剛性分布をメモリ260に格納する。
メモリ260は、入出力I/F210から入力された撮像画像を記憶する。また、メモリ260は、各部のワークメモリとして用いられる。例えば、メモリ260は、変位算出部230が算出した変位や算出した変位分布を記憶する。メモリ260は、荷重推定部240が算出した荷重分布もしくは車両などの荷重源の種類ごとの荷重値を記憶する。メモリ260は、剛性算出部250が算出した橋梁102の剛性分布を記憶する。メモリ260は、例えば、DRAM(Dynamic Random Access Memory)等の高速動作が可能な半導体記憶素子で構成される。
剛性測定装置200の全部または一部の機能は、例えば、プロセッサが不揮発メモリに格納されたプログラムを実行することによって実現される。
[1−1−3.剛性測定装置の他の構成]
カメラ101が生成した複数の撮像画像において、橋梁102が同じ位置に撮像されるとは限らない。このような場合、変位算出部230が算出した変位に誤差が生じる。それを解消するために、剛性測定装置は、変位算出部230が算出した変位を補正する機能を備えてもよい。
図3は、実施の形態1における剛性測定装置の他の構成を示すブロック図である。図3の剛性測定装置201において、図2の剛性測定装置200と同じ動作を行う構成要素に関しては、同符号を付与し、説明を省略する。
制御部221は、剛性測定装置201の各部の動作を制御する。
剛性測定装置201は、補正部270を備える。補正部270は、変位算出部230によって算出された、所定の基準計測点の変位(基準変位)を用いて、変位算出部230によって算出された、上記複数の計測点の変位を補正する。より具体的には、補正部270は、撮像画像内の橋梁102に設定された所定の基準計測点の基準変位を基準として、他の計測点の変位を補正する。これにより、補正部270は変位分布を補正する。そして、補正部270は、補正された変位分布をメモリ260に格納する。基準計測点とは、例えば、複数の計測点の中で、最も変位が少ないと想定される点である。
剛性算出部251は、補正部270によって補正された変位分布と荷重推定部240によって算出された荷重分布から剛性分布を算出する。そして、剛性算出部251は、その剛性分布をメモリ260に格納する。
[1−2.動作]
[1−2−1.補正をしない場合の動作]
図4は、実施の形態1における剛性測定装置200の動作を示すフローチャートである。
(撮影画像取得ステップS310)
制御部220は、入出力I/F210を介して、撮像画像を取得する。撮像画像には、カメラ101によって橋梁102が所定期間に撮像されている。制御部220は、取得した撮像画像をメモリ260に格納する。
(変位算出ステップS320)
制御部220は、橋梁102上に設定された複数の計測点における時間的な変位を、変位算出部230に算出させる。特に、後述する曲げ剛性を算出する場合には、変位算出部230は、3点以上の計測点の変位を算出する。変位算出部230は、メモリ260が記憶している複数の撮像画像を撮像時刻順に取出し、撮像画像毎に橋梁102の変位を算出する。変位算出部230は、算出した変位から変位分布を算出する。そして、変位算出部230は、その変位分布をメモリ260に格納する。
(荷重推定ステップS340)
制御部220は、橋梁102の荷重分布を、荷重推定部240に算出させる。荷重推定部240は、メモリ260に格納された撮像画像から荷重源(車両など)の種類と位置を画像認識する。例えば、荷重源が車両である場合、荷重推定部240は、車両の種類と橋梁102上の車両の走行位置を認識する。荷重推定部240は、認識した荷重源の種類から予めメモリ260に格納された種類ごとの荷重値を取得する。荷重推定部240は、荷重値と荷重源の位置を用いて空間的な荷重分布を算出する。そして、荷重推定部240は、その荷重分布をメモリ260に格納する。荷重推定部240は、メモリ260以外に、I/F210を経由して外部データベースから、荷重値を取得してもよい。また、予め荷重源の種類が確定している場合には、荷重推定部240は、荷重源の位置のみを検出し、対応する荷重値として予めメモリ260に格納された所定の荷重値を用いてもよい。
(剛性算出ステップS350)
制御部220は、変位算出部230が算出した変位分布と、荷重推定部240が算出した荷重分布とを用いて、橋梁102の全体の剛性分布を、剛性算出部250に算出させる。剛性算出部250は、メモリ260が記憶している変位分布と荷重分布を読み出し、橋梁102全体の剛性分布を算出する。そして、剛性算出部250は、その剛性分布をメモリ260に格納する。制御部220は、メモリ260が記憶している橋梁102全体の剛性分布を入出力I/F210を介して、出力する。
なお、図4において、変位算出ステップS320、荷重推定ステップS340の順に記載したが、荷重推定ステップS340、変位算出ステップS320の順に行っても良い。その場合、荷重源がない期間、変位算出ステップS320を停止させておくことができる。
[1−2−2.補正をする場合の動作]
図5は、実施の形態1における剛性測定装置の他の動作を示すフローチャートである。図5は、剛性測定装置201の動作を示す。
図5において、図4のフローチャートと同じ動作を行うステップには同符号を付与し、説明を省略する。
(変位補正ステップS330)
制御部221は、変位算出部230が算出した複数の計測点における変位を、補正部270に補正させる。補正部270は、メモリ260が記憶している複数の計測点における時間的な変位を読み出し、基準変位を用いて、各変位を補正する。補正部270は、補正した各変位をメモリ260に格納する。
(剛性算出ステップS351)
制御部221は、補正部270が補正した複数の計測点における変位分布と荷重推定部240が算出した荷重分布とを用いて、剛性分布を、剛性算出部251に算出させる。剛性算出部251は、メモリ260が記憶している複数の計測点における変位分布と荷重分布を読み出して、剛性分布を算出する。剛性算出部251は、算出した剛性分布をメモリ260に格納する。
なお、変位補正ステップS330および剛性算出ステップS351の処理には、数学的に同等な異なる手順を用いてもよいし、結果として統合された手続きとして一括処理を用いてもよい。
[1−2−3.動作例1]
ここでは、剛性測定装置201の動作例を説明する。
制御部221は、図1で示すように橋梁102が撮像された複数の撮像画像を、入出力I/F210を介して、取得する。制御部221は、複数の撮像画像をメモリ260に格納する。
図6Aは、橋梁102の撮像画像の一例を示す。また、図6Bは、橋梁102の撮像画像の他の一例を示す。図6Aに示す撮像画像400と図6Bに示す撮像画像401には、異なる時刻に橋梁102が撮像されている。撮像画像400、401は、橋梁102上に荷重源となる車両402が存在することを示している。撮像画像400では、車両402が橋梁102の橋脚103上にあり、橋梁102に変位は生じていない。これに対して、撮像画像401では、車両402が橋梁102の中央付近にあり、橋梁102に変位が生じている。このように、撮像画像には橋梁102と異なる物体(例えば車両402など)が撮像されていてもよい。
変位算出部230は、既存の画像認識技術を用いて、撮像画像内に存在する橋梁102を検出する。変位算出部230は、検出した橋梁102上に設定された複数の計測点の座標を検出する。
図7は、橋梁102に設定された複数の計測点の配置例を示す図である。
図7において計測点501〜計測点511は、橋梁102に設定された複数の計測点を示す。各計測点は、予めユーザーによって設定されてもよいし、橋梁102を画像認識で自動検出した後に設定されてもよい。図7では、各計測点は、ほぼ等間隔に設定されているが、非等間隔に設定されていても本実施形態の効果は得られる。ここで、本実施の形態においては、複数の計測点の中から少なくとも1つの計測点を基準計測点に設定する。基準計測点は、他の計測点に比べて、荷重などの影響を最も受けにくく、変位が小さい計測点とする。実施の形態1においては、基準計測点として、計測点501および計測点511を用いる。ここで、計測点501および計測点511は、橋梁102の橋脚103と、橋脚103を支持する地盤内に設置されている橋台(図示せず)との接点近くに設定されている。
変位算出部230は、メモリ260が記憶している複数の撮像画像を撮像時刻順に取出し、撮像画像毎に橋梁102の変位を算出する。変位算出部230は、例えば、撮像画像400と撮像画像401との間の各計測点における変位を算出する。なお、撮像画像中の変位算出方法として、変位算出部230は、ブロックマッチングまたは相関法を用いることができる。ここで、相関法として、正規化相関法(normalized cross correlation)、位相相関法(phase correlation)、レーザスペックル相関法などが挙げられる。また、変位算出部230は、サンプリングモアレ法、特徴点追跡法など一般的な変位算出方法を用いてもよい。変位算出の精度は、ピクセル単位でもサブピクセル単位でも良い。
図8は、変位算出部230が算出した変位の一例を示す図である。図8は、橋梁102が所定期間に撮像された複数の撮像画像(Frame1、Frame2、Frame3、…、Frame n)における計測点501〜計測点511の位置座標(x,y)を示す。
ここで、時刻tに橋梁102が撮像された撮像画像Frame tにおけるi番目の計測点Piの位置座標(x,y)をPi(x,y,t)と表す。また、Frame tにおけるi番目の計測点Piの変位をDi(x,y,t)と表す。変位Di(x,y,t)は、各撮像画像間の計測点の位置座標Piの差となる。本実施の形態では、iを1から11までの整数としている。計測点P1〜P11は、計測点501〜計測点511に相当する。
例えば、変位Di(x,y,t)は、時間的に隣接する複数の撮像画像の位置座標Piを用いて、数式1で算出できる。
Figure 2019117201

また、変位Di(x,y,t)は、基準撮像画像および各撮像画像の位置座標Piを用いて、数式2で算出してもよい。ここで、基準撮像画像とは、例えば、時間的に先頭の撮像画像や、定常状態と見なせる計測対象が撮像された撮像画像などである。
Figure 2019117201

ここで、Pi(x,y,0)は、基準撮像画像における位置座標である。
なお、制御部221は、必要に応じてカメラ101の撮像光学系の画像歪を補正する。また、制御部221(スケーリング部の一例)は、計測点と、橋梁102を撮像するカメラ101との距離に基づいて、変位算出部230が算出した変位をスケール補正してもよい。スケール補正とは、撮像画像上の変位と実空間上の変位との比率を、各計測点において、等しくするような補正である。このような補正は、撮像画像に対して行っても良いし、算出した変位に対して行っても良い。制御部221は、例えば、メモリ260に格納された各計測点についての実空間上の座標を用いて、スケール補正してもよい。
補正部270は、メモリ260が記憶している各計測点の変位Di(x,y,t)を読み出す。補正部270は、複数の計測点のうち、所定の基準計測点P1(計測点501)の変位D1(x,y,t)を用いて、各変位Diを補正する。すなわち、補正部270は、各計測点の変位Di(x,y,t)から、基準計測点の変位D1(x、y、t)を撮像画像ごとに差し引く。これにより、撮像中にカメラ101のx,y方向の向きが変化した場合に生じる画像変位の影響を除去することができる。
更に、補正部270は、基準計測点P1とは異なる基準計測点P11(計測点511)を設定し、基準計測点P11の変位D11(x,y,t)の値が0に近づくように、基準計測点P1の位置を中心として各計測点の変位Di(x,y,t)のx,y座標値を回転変換してもよい。これにより、撮像中にカメラ101の回転(roll)方向の変化により生じる各撮像画像の変位の影響を除去することができる。補正部270は、補正した各計測点の変位をメモリ260に格納する。
なお、基準計測点を、橋梁102上に設定してもよいし、橋梁102以外に設定してもよい。例えば、基準計測点を、撮像画像の背景中の静止物(建造物等)に設定してもよい。また、基準計測点の数を増やし、各基準計測点の変位の合計が最小になるように各算出位置のx,y方向の平行移動補正と回転補正量を最適化してもよい。これにより、撮像中のカメラ101の回転や向きの変化による変位算出への影響を低減させることができる。また、複数の時刻のフレーム画像の動きを分析して、画像全体の支配的な動き(グローバル動き)を検出し、この動きに従う画像内の点を基準計測点としてもよい。
なお、撮像画像においてカメラ101の向きや回転等に起因する変位が許容範囲と見込める場合には、補正部270による変位の補正を省いても良い。
図9は、橋梁102に設定された座標を示す図である。図9は、以降の説明で用いる変位分布y(x)と位置xの関係を示す。図8のように、橋梁102の各計測点から得られる変位のうち、特に橋桁部分のy方向の変位分布に着目して以降説明する。
荷重推定部240は、メモリ260に格納された撮像画像を用いて、荷重源(車両など)の種類(車両の場合、車種)と位置を画像認識する。荷重推定部240は、この車種認識結果と予めメモリ260に格納された車種ごとの荷重値を参照し、空間的な荷重分布を算出する。そして、荷重推定部240は、その荷重分布をメモリ260に格納する。荷重推定部240は、機械学習を用いて、車両の種類、もしくは特定の車両を認識してもよい。また、荷重推定部240は、撮像画像内での車両の位置を認識する。機械学習には、テンプレート学習、ベクトル量子化、決定木、ニューラルネットワーク、ベイズ学習などを用いることができる。なお、予め車種が確定している場合は、車両の位置のみを認識すればよい。また、荷重推定部240は、画像認識において、車両の画像と車重の関係を直接学習した識別器を用いてもよい。
また、荷重推定部240は、計測対象に設置された他のセンサなどから得られた荷重分布を、入出力I/F210を介して取得してもよい。
図10は、橋梁の変位分布と荷重分布の一例を示す図である。図10において、画像10cは撮像画像を示し、変位分布10aと荷重分布10bは各々撮像画像10cに対して得られた変位分布と荷重分布を示す。撮像画像10cにおいて橋梁102上の中央付近に車両402があり、橋梁102に変位が生じている。この時、変位分布10aは、車両402が位置する付近が最も変位していることを示している。また、荷重分布10bは、車両402が位置する付近に荷重が加えられていることを示している。
同様に、図11は、橋梁の変位分布と荷重分布の他の一例を示す図である。図11は、撮像画像11cから得られた変位分布11aと荷重分布11bを示す。撮像画像10cおよび撮像画像11cには、互いに異なる時刻に橋梁102が撮像されている。撮像画像11cにおいて橋梁102上の中央左側付近に車両402があり、橋梁102に変位が生じている。この時も、変位分布11aは、車両402が位置する付近が最も変位していることを示している。また、荷重分布11bは、車両402が位置する付近に荷重が加えられていることを示している。
剛性算出部251は、変位分布と荷重推定部240が算出した荷重分布とを用いて、剛性分布を算出する。剛性算出部251は、例えば、数式3に示すような力学方程式を用いて、曲げ剛性分布Sb(x)を算出する。
Figure 2019117201

ここで、xは橋梁102の横方向の位置であり、y(x)は変位分布であり、w(x)は荷重分布である。このような微分方程式は、例えば, Hiroyuki KISU, et al, ”A study for identification of bending rigidity of a beam”, Transactions of the Japan Society of Mechanical Engineers, Series A, Vol.70, No.698, 2004.記載のように数値的に解くことができる。
なお、計測点数が不足するなど条件不足で不良設定問題になる場合や、計測値にノイズが含まれる場合、剛性算出部251は、数式3に加え、数式4や数式5などの拘束条件を組み合わせて、剛性を算出してもよい。数式4は剛性が位置xに依存しないことを示し、数式5は剛性が空間的に滑らかに変化することを示している。
Figure 2019117201
Figure 2019117201

図12は、橋梁の剛性分布の一例を示す図である。ここでは、橋梁102の橋桁全体にわたりほぼ一定の値の剛性分布12aが示されている。
剛性算出部251は、他の算出方法として、最適化問題として数式6のようなSb(x)に関する評価関数E(Sb)を設定し、これを最小化するSb(x)を算出してもよい。ここで、|C|pは、関数Cのp乗ノルムを表す。また、λ1、λ2を、重みパラメータとして予め定めておく。
Figure 2019117201

なお、計測点数が不足するなど条件不足で不良設定問題になる場合や、計測値にノイズが含まれる場合に安定した解を求めるためには、剛性算出部251は、同じ橋梁102に対して荷重分布が異なる複数の撮像画像から得られた、変位分布と荷重分布を組み合わせて剛性分布を算出してもよい。剛性算出部251は、例えば、図10、図11のように異なる時刻の変位分布と荷重分布の組を複数組み合わせて、図12のような剛性分布を算出してもよい。このとき、剛性算出部251は、異なる撮像画像内の橋梁102が同一であることを利用して、共通の剛性分布を算出する。荷重分布が異なる複数の撮像画像は、車両402が橋梁102を通過する時に橋梁102を動画撮像すれば容易に得ることができる。これにより、橋梁102の剛性分布をより高精度に求めることが可能となる。
[1−2−4.動作例2]
次に、せん断剛性Ss(x)を算出する例について説明する。この場合、剛性算出部251は、数式7のような力学方程式を用いて、曲げ剛性の場合と同様にせん断剛性分布を算出することができる。ここで、Sbは曲げ剛性である。
Figure 2019117201

[1−2−5.動作例3]
次に、図13および図14を用いて、ねじり剛性Stを算出する例について説明する。図13は、橋梁と撮像装置の位置関係の一例を示す図である。図14は、橋梁の断面を示す図である。図14は、図13に示すA−A線で切断された橋梁102の断面を示す。
図13において、上側が橋梁102の奥行き方向、下側が橋梁102の手前方向とする。車両402は、手前側から奥行き方向に走行しているとする。この時、カメラ130は、車両の進行方向に対して、橋梁102を右側から撮像する。また、カメラ131は、車両の進行方向に対して、橋梁102を左側から撮像する。すなわち、カメラ130(複数の撮像装置のうちの一つの撮像装置の一例)は、橋梁102に対して、カメラ131(複数の撮像装置のうちの別の撮像装置の一例)と反対側に配置されている。
図14は、橋梁102がねじれている状態を示す図である。より詳細には、車両402の荷重により、橋梁102が、ねじりモーメントMTを受け、ねじれ角φだけねじれている。図14において、変位YL、変位YRは、車両402の荷重により、橋梁102の左側及び右側の各端部に生じた変位である。変位算出部230は、カメラ130およびカメラ131の撮像画像から、それぞれ、変位YRおよび変位YLを算出する。
剛性算出部251は、数式8を用いて、ねじり剛性Stを算出することができる。
Figure 2019117201

ここで、入力I/F210は、カメラ130およびカメラ131によって橋梁102が同期撮像された2つの撮像画像の入力を受け付ける。ここで、カメラ130およびカメラ131は、図13のように、橋軸直角方向(A−A線に平行な方向)に沿って橋梁102の両側に配置されている。変位算出部230は、カメラ130が生成した撮像映像から変位分布yR(x)を算出し、カメラ131が生成した撮像映像から変位分布yL(x)を算出する。変位算出部230は、yR(x),yL(x)と数式9を用いて、橋梁102のねじれ角φを算出する。ここで、Wbは既知の橋梁102の幅である。
Figure 2019117201

また、荷重推定部240は、車両402の通行映像から通行車線を判断することで、橋軸と垂直な方向における車両402の位置zを求める。ここで、車線の高さ方向の位置は予め既知とする。この時、荷重推定部240は、ねじりモーメントMTを、荷重位置z×荷重w×重力加速度gを用いて算出する。
[1−2−6.動作例4]
次に、図15A〜15Dを用いて、吊り構造を持つ橋梁112の鉛直ケーブルの軸剛性Saを求める場合を説明する。
図15Aは、橋梁の撮像画像の他の一例を示す図である。図15Aに示すように、橋梁112は吊り構造を持ち、3本の鉛直ケーブル151〜153を備える。
図15Bは、橋梁に設定された計測点の配置の他の一例を示す図である。図15Bに示すように、各鉛直ケーブルの両端点を、計測点151a、151b、152a、152b、153a、153bに設定する。
図15Cは、橋梁のケーブル長を示す図である。図15Cは、橋梁112に荷重がかかっていない状態を示す。図15Cでは、鉛直ケーブル152のケーブル長がLであることを示す。
図15Dは、橋梁のケーブル長の他の状態を示す図である。図15Dは、車両402が橋梁112上を走行することにより橋梁112に荷重がかかった状態を示す。図15Dは、橋梁112が車両402の荷重によりたわみ、鉛直ケーブル152の長さがL+δLになったことを示す。
この場合、剛性算出部251は、鉛直ケーブル152の軸剛性Saを数式10で算出することができる。ここでNは、荷重により生じた鉛直ケーブル152にかかる力であり、車両402の荷重w×重力加速度gにより算出される。δLは、荷重wがかかったことで生じた鉛直ケーブル152のケーブル長の伸び量である。δLは、計測点152aと152bの変位の差分である。鉛直ケーブル151や153についても、δLを同様に算出することができる。
Figure 2019117201

上記吊り構造を有する橋脚以外にも、斜張橋やハープ橋、ケーブル構造持つ電線、鉄塔など、複合構造物全体の剛性分布を求める場合にも同様の方法を適用することができる。
以上、実施の形態1では、曲げ剛性、せん断剛性、ねじり剛性、および軸剛性の算出例を示したが、これらを常に全てを算出する必要はない。予め無視できる剛性パラメータや必要のない剛性パラメータを算出しなくてもよい。また、剛性算出において用いる力学方程式は、上記の式よりも簡略化した式やより厳密な式であってもよい。また、同時に複数種類の剛性パラメータを含めた力学方程式を用いてもよい。
[1−3.効果等]
以上のように、本実施の形態の剛性測定装置200は、計測対象の剛性を測定する剛性測定装置であって、荷重推定部240と、変位算出部230と、剛性算出部250とを備える。荷重推定部240は、橋梁102が撮像された撮像画像を用いて、橋梁102に設定された計測点に加わる荷重を推定する。変位算出部230は、撮像画像を用いて、計測点の変位を算出する。剛性算出部250は、荷重と変位を用いて、橋梁102の剛性を算出する。
これにより、計測対象の剛性を、遠隔から測定することができる。
また、荷重推定部240は、橋梁102に設定された複数の計測点に加わる荷重を推定することにより、橋梁102の荷重分布を算出する。変位算出部230は、複数の計測点の変位を算出することにより、橋梁102の変位分布を算出する。剛性算出部250は、荷重分布と変位分布とを用いて、橋梁102の剛性分布を算出する。
これにより、計測対象の全体の剛性分布を、遠隔から測定することができる。
従って、簡便かつ低コストに、計測対象の構造物全体の変位分布と荷重分布を取得し、剛性分布を算出できる。そのため、構造物の強度評価などを容易に得ることが可能となる。また、映像を記録するため、計測対象の外見状態も同時に把握しやすいという利点もある。
また、カメラ101が計測対象上の計測点および基準計測点を含む広範囲を撮像することで、カメラブレの影響を抑えて高精度に計測対象の剛性を測定することができる。
(実施の形態2)
以下、図1〜3、図7、図16〜19Bを用いて、実施の形態2を説明する。
撮像装置101が生成した複数の撮像画像において、橋梁102は常に同じ位置に撮像されるとは限らない。このような場合、ある撮像画像において設定された計測点の座標位置を他の撮像画像に適用すると、適用した計測点の位置が本来設定した位置とずれる可能性がある。そのため、変位算出部230が算出した変位は、位置がずれた計測点間の変位を算出することになる。それを解消するために、実施の形態2に係る剛性測定装置202は、設定部280を備える。設定部280は、他の撮像画像において設定された計測対象上の計測点の位置を参照して、変位算出対象の撮像画像における計測対象の計測点の位置を設定する。
[2−1.構成]
図16は、実施の形態2における剛性測定装置202の一構成例を示すブロック図である。図16において、図2と同じ動作を行う構成要素に関しては、同符号を付与し、説明を省略する。
実施の形態2の剛性測定装置202は、実施の形態1の剛性測定装置200の構成に加えて、計測点を設定する設定部280を備える。
設定部280は、計測対象に基づいて計測点を設定する。言い換えると、設定部280は、第1の撮像画像における橋梁102の計測点を、第2の撮像画像における橋梁102に設定された計測点に基づいて設定する。本実施の形態では、第1の撮像画像の撮像時と、第2の撮像画像の撮像時においては、撮像装置101の撮像位置が異なるものとする。なお、第1の撮像画像と第2の撮像画像の撮像順が逆の場合でも本実施の形態は適用可能である。
[2−2.動作]
実施の形態1の剛性測定装置200と実施の形態2の剛性測定装置202においては、設定部280が計測点を設定する動作のみ異なるので、ここでは、設定部280の動作についてのみ説明する。
実施の形態2において、変位算出の対象とする第1の撮像画像を図7の撮像画像500とする。
図17は、実施の形態2における橋梁102の第2の撮像画像の一例を示す図である。図17は、撮像画像800と、撮像画像800における橋梁102上に設定された計測点の配置例を示す図である。撮像画像500および撮像画像800には、それぞれ異なる撮像位置から、橋梁102が撮像されている。
図17において計測点801〜計測点811は、橋梁102に設定された計測点を示す。なお、計測点801〜811は、実施の形態1同様に予めユーザーによって設定されてもよいし、橋梁102を画像認識した後に橋梁102上に自動設定されてもよい。
図7および図17に示すように、撮像画像500における橋梁102の位置に対して、撮像画像800における橋梁102の位置は右下側にずれているものとする。このように、同じ計測対象が撮像された複数の撮像画像間において、撮像された計測対象の位置がずれている場合、各々の撮像画像において橋梁102に設定される計測点の位置がずれる(異なる)恐れがある。
そのため、実施の形態2では、設定部280が、撮像画像800と計測点801〜811(基準計測点含む)の位置に基づいて、図7の撮像画像500における橋梁102に計測点501〜511(基準計測点含む)を設定する。
具体的には、設定部280は、撮像画像500と撮像画像800に対して、画像の局所特徴量やブロックマッチング、相関法などを用いて、撮像画像800の計測点に対応する撮像画像500における計測点の位置を決定する。局所特徴量として、SIFT(Scale-Invariant Feature Transform)、SURF(Speeded Up Robust Features)などを用いることができる。
なお、実施の形態2の剛性測定装置202は、実施の形態1同様、図18の剛性測定装置203に示すように、補正部270を備えてもよい。図18は、実施の形態2における剛性測定装置の他の構成例を示すブロック図である。
[2−3.効果等]
以上のように、実施の形態2の剛性測定装置202は、設定部280をさらに備える。設定部280は、橋梁102に基づいて計測点を設定する。
これにより、過去に計測された計測対象を再計測する場合、計測対象上の同じ位置で変位を算出することができる。
従って、同じ計測対象を再撮像する際に、撮像位置や撮像装置が変わる場合、撮像画像内における計測点が計測対象に基づいて設定される。そのため、多数の計測点を再設定する手間を軽減することが可能となる。すなわち、異なる時期に撮像された計測対象の計測結果の比較を容易に行うことができる。
また、所定期間に計測対象を複数回撮像する際に、例えば、撮像装置の姿勢が変化してしまった場合でも、本開示は適用可能である。
(他の実施の形態)
以上のように、本出願において開示する技術の例示として、実施の形態1〜2を説明した。しかしながら、本開示における技術は、これに限定されず、変更、置き換え、付加、省略などを行った実施の形態にも適用できる。また、上記実施の形態で説明した各構成要素を組み合わせて、新たな実施の形態とすることも可能である。
そこで、以下、他の実施の形態を例示する。
カメラ101は、図1に示すように、剛性測定装置200と別体でもよいし、剛性測定装置200内に備えられていてもよい。また、撮像画像は、モノクロ画像でもカラー画像(マルチスペクトル含む)でもよい。また、カメラ101は、通常のカメラではなくてもよい。カメラ101は、測距センサや加速度センサを用いて計測対象を検出し、検出により得られた配列データを画像として出力するカメラでもよい。
上記実施の形態では、主に1つのカメラを用いていたが、図13のように同一計測対象の異なる場所を撮像する複数のカメラを用いてもよい。この場合、複数のカメラで同期撮像された撮像画像を用い、各カメラが生成した撮像画像ごとにステップS330まで処理を行う。そして、ステップS340以降について、複数の撮像画像から得られた変位分布を全て組として同様の処理を行うことができる。これにより、1つのカメラでは撮像できない計測対象についても変位計測を高精度に行うことができる。すなわち、変位算出部230は、複数の撮像装置によって計測対象102が同期撮像された複数の撮像画像を用いて、変位を算出してもよい。
また、上記実施の形態では、2次元の変位Di(x,y)を算出しているが、距離画像(depth image)を取得して3次元の変位Di(x,y,z)を算出してもよい。変位算出後は上記実施の形態と同様の手続きを実行することにより、高精度な3次元変位を得ることもできる。距離画像を生成するカメラまたは方法として、複数カメラの同期撮像によるステレオカメラ、多視点カメラステレオ法、パターン投影法、Time of flight(TOF)カメラ、レーザ変位計などを用いることができる。すなわち、変位算出部230は、計測点と、計測対象を撮像する撮像装置との距離を示す情報を含む距離画像を用いて、変位を算出してもよい。
また、上記実施の形態では計測対象として橋梁102を例示したが、橋梁102以外にビル等の建物や鉄塔、煙突、壁面、床材、板材、鉄骨足場、路面、線路、車体等でも同様の効果を得られる。
また、カメラ101が撮像する光は、可視光以外に、紫外光、近赤外光、遠赤外光でもよい。
また、剛性算出部250が算出した剛性分布を可視化してもよい。例えば、制御部220(重畳画像生成部の一例)は、剛性算出部250によって算出された剛性に基づく画像が複数の撮像画像のうちの少なくとも1つに対して重畳された重畳画像を生成してもよい。同様に、制御部220は、図20のように、変位算出部230が算出した変位分布20aや荷重推定部240が算出した荷重分布20bを撮影画像20cに対して重畳させて可視化してもよい。これにより、ユーザーは剛性測定装置200の動作を確認することができる。変位分布、荷重分布、および剛性分布を全て表示する必要はなく、いずれか必要な分布のみを表示するようにしてもよい。
制御部220は、図19Aで示されるように、剛性分布に基づく画像が橋梁102が撮像された撮像画像に対して重畳された重畳画像を生成する。図19Aにおいて、破線Q1は、橋梁102の位置に合わせて表示された剛性分布を示している。図19Aにおいて、破線Q1が下方にへこんでいる付近は、橋梁102の一部の剛性が低下していることを示している。剛性分布は、グラフ表示以外にも濃淡やカラー表示で表してもよい。このように表示することで、橋梁102の剛性の空間分布を把握しやすくできる。距離画像を使用する場合は、3D表示を用いて同様の表示を実現できる。
また、剛性算出部250は、計測対象の剛性の基準値を記憶し、算出した剛性が異常であるか否かを、その基準値を用いて判断してもよい。剛性算出部250は、例えば、算出した剛性が基準値以下である場合に、剛性が異常であると判断する。制御部220は、図19Bのように、剛性分布の可視化に加えて、剛性算出部250が異常と判断した剛性を示す位置を可視化させてもよい。図19Bでは剛性が異常な位置を太線Q2で示している。すなわち、剛性算出部250は、剛性が異常であるか否かを判断した結果を出力してもよい。
また、変位算出部230は、算出した計測対象全体の変位を空間的に補間することにより、計測点以外の点の変位を推定してもよい。また、補正部270は、撮像画像に含まれる計測対象の実スケールが等しくなるように、撮像画像または変位算出部230が算出した変位を補正してもよい。撮像画像を補正する場合は、変位算出部230が変位を算出する前に補正部270が補正処理を行う。
また、剛性算出部250は、互いに異なる複数の荷重分布と、各荷重分布に対応する変位分布とを組み合わせて、剛性分布を算出してもよい。
なお、上記実施の形態は、本開示における技術を例示するためのものであるから、請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
本開示に係る剛性測定装置は、構造体の構造強度の計測、測定、分析、診断、検査等に利用可能である。
1 剛性測定システム
101,130,131 カメラ(撮像装置)
102,112 橋梁(計測対象)
200,201,202,203 剛性測定装置
210 入出力I/F
220,221 制御部
230 変位算出部
240 荷重推定部
250,251 剛性算出部
260 メモリ
270 補正部
280 設定部

Claims (9)

  1. 計測対象の変位分布を測定する測定装置であって、
    複数の時刻において前記計測対象が撮像された複数の撮像画像を用いて、前記計測対象に複数の計測点を設定する設定部と、
    前記複数の計測点のそれぞれについて時間経過に伴う空間的な変位を示す変位分布を算出する変位算出部と、
    を備えた測定装置。
  2. 前記設定部は、前記複数の計測点の中から、他の計測点に比べて、前記計測対象の荷重の影響を最も受けにくく、変位が小さい基準計測点を設定する、
    請求項1記載の測定装置。
  3. 補正部を備え、
    前記変位算出部は、前記基準計測点の基準変位を算出し、
    前記補正部は、前記基準変位を用いて、前記変位分布を補正する、
    請求項1または2に記載の測定装置。
  4. 前記設定部は、画像認識で前記計測対象を検出した後に前記複数の計測点を設定する、
    請求項1〜3のいずれか1項に記載の測定装置。
  5. 前記複数の撮像画像における第1の撮像画像と第2の撮像画像の撮像位置が異なる場合、前記設定部は、前記第1の撮像画像における計測点を、前記第2の撮像画像における計測点に基づいて設定する、
    請求項1〜4のいずれか1項に記載の測定装置。
  6. 前記設定部は、前記第1の撮像画像と前記第2の撮像画像に対して、画像の局所特徴量やブロックマッチング、相関法を用いて、前記第2の撮像画像の計測点に対応する前記第1の撮像画像における計測点の位置を決定する、
    請求項5に記載の測定装置。
  7. 前記複数の撮像画像を用いて、時間経過に伴う前記計測対象に加わる荷重の空間的な分布を示す荷重分布を推定する荷重推定部を備える、
    請求項1〜6のいずれか1項に記載の測定装置。
  8. 前記変位分布と前記荷重分布とを用いて、前記計測対象の剛性分布を算出する剛性算出部を備える、
    請求項7に記載の測定装置。
  9. 計測対象の変位分布を測定する測定方法であって、
    複数の時刻において前記計測対象が撮像された複数の撮像画像を用いて、前記計測対象に複数の計測点を設定する設定ステップと、
    前記複数の計測点のそれぞれについて時間経過に伴う空間的な変位を示す変位分布を算出する変位算ステップと、
    を含む測定方法。
JP2019042105A 2017-01-25 2019-03-08 測定装置および測定方法 Active JP6767642B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017010915 2017-01-25
JP2017010915 2017-01-25

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018043716A Division JP6507380B2 (ja) 2017-01-25 2018-03-12 剛性測定装置および剛性測定方法

Publications (2)

Publication Number Publication Date
JP2019117201A true JP2019117201A (ja) 2019-07-18
JP6767642B2 JP6767642B2 (ja) 2020-10-14

Family

ID=62978789

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018043716A Active JP6507380B2 (ja) 2017-01-25 2018-03-12 剛性測定装置および剛性測定方法
JP2019042105A Active JP6767642B2 (ja) 2017-01-25 2019-03-08 測定装置および測定方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018043716A Active JP6507380B2 (ja) 2017-01-25 2018-03-12 剛性測定装置および剛性測定方法

Country Status (4)

Country Link
EP (1) EP3575766A4 (ja)
JP (2) JP6507380B2 (ja)
CN (2) CN108633303B (ja)
WO (1) WO2018138943A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567661A (zh) * 2019-09-11 2019-12-13 重庆大学 基于广义模式搜索算法和车桥耦合的桥梁损伤识别方法
WO2022208805A1 (ja) * 2021-03-31 2022-10-06 太陽誘電株式会社 劣化検出装置、劣化検出システム、劣化検出方法、重量測定装置、重量測定方法およびプログラム

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109359666B (zh) * 2018-09-07 2021-05-28 佳都科技集团股份有限公司 一种基于多特征融合神经网络的车型识别方法及处理终端
WO2020065959A1 (ja) * 2018-09-28 2020-04-02 日本電気株式会社 情報処理装置、制御方法、及びプログラム
CN109163868B (zh) * 2018-10-17 2019-08-30 北京理工大学 一种悬臂梁类弹性元件的刚度测试系统及方法
JP6996642B2 (ja) * 2018-11-14 2022-01-17 日本電気株式会社 情報処理装置、制御方法、及びプログラム
CN109855825B (zh) * 2018-12-28 2021-02-09 广东天劲新能源科技股份有限公司 一种振动测试电芯硬度的装置及方法
CN110095241B (zh) * 2019-02-20 2022-03-25 上海卫星工程研究所 分离式航天器舱间线缆刚度试验测定方法
WO2020174834A1 (ja) * 2019-02-26 2020-09-03 日本電気株式会社 変位・重量対応付け装置
WO2020183549A1 (ja) * 2019-03-08 2020-09-17 日本電気株式会社 構造物のたわみ計測装置
JPWO2020194540A1 (ja) * 2019-03-26 2020-10-01
US12117333B2 (en) 2019-03-26 2024-10-15 Nec Corporation Displacement measurement apparatus for structure
CN111060136B (zh) * 2019-12-11 2021-12-21 深圳大学 一种挠度测量校正方法、装置及系统
CN111504582B (zh) * 2020-04-07 2022-07-26 上海卫星工程研究所 新型柔性电缆刚度测定方法及系统
CN113063367A (zh) * 2021-05-07 2021-07-02 中国地质大学(北京) 一种基于斜光轴数字图像相关方法的全场挠度实时测量系统及测量方法
NL2028808B1 (en) * 2021-07-22 2023-01-27 Heijmans N V Method for measuring local rotation of a structural element configured for supporting a load, such as traffic, as well as a method for modelling such a structural element
CN115808324B (zh) * 2023-01-30 2023-05-30 湖南东数交通科技有限公司 一种中小跨径桥梁轻量化安全管理监测方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329628A (ja) * 2005-05-23 2006-12-07 Hitachi Zosen Corp 構造物における変形量計測方法
JP2007240218A (ja) * 2006-03-07 2007-09-20 Hitachi Zosen Corp 撮影画像による変位計測時の補正方法
JP2011180049A (ja) * 2010-03-03 2011-09-15 Central Japan Railway Co パンタグラフ監視装置
JP2015007591A (ja) * 2013-06-26 2015-01-15 Jfeスチール株式会社 自動車車体剛性試験方法および自動車車体剛性試験装置
JP2015197344A (ja) * 2014-03-31 2015-11-09 国土交通省国土技術政策総合研究所長 構造物変位の常時監視方法及びその装置
WO2016047093A1 (ja) * 2014-09-25 2016-03-31 日本電気株式会社 状態判定装置および状態判定方法
JP2016084579A (ja) * 2014-10-23 2016-05-19 国立研究開発法人産業技術総合研究所 構造物のたわみ量分布監視方法及び監視装置
US20160225155A1 (en) * 2015-01-29 2016-08-04 Industry-Academic Cooperation Foundation, Yonsei University System and method for image-based structural health monitoring suitable for structures having uncertain load conditions and support conditions

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000055776A (ja) 1998-08-06 2000-02-25 Kobe Steel Ltd 構造物の曲げ剛性測定方法
JP3404302B2 (ja) * 1998-11-30 2003-05-06 株式会社栗本鐵工所 土木建築構造物の振動測定方法
JP3804419B2 (ja) * 2000-09-07 2006-08-02 セイコーエプソン株式会社 画像形成装置
CN1119644C (zh) * 2001-03-22 2003-08-27 上海交通大学 弹性元件刚度测试仪
FR2883376B1 (fr) * 2005-03-17 2007-06-15 Fressinet Internat Stup Procede de detection de rupture au sein d'une structure et systeme pour la mise en oeuvre du procede
KR100776642B1 (ko) * 2005-10-14 2007-11-15 정상욱 프리캐스트 콘크리트사장교 시공방법
US20070141352A1 (en) * 2005-12-15 2007-06-21 Calhoun Patricia H Cross-directional elastic films with machine direction stiffness
JP4803652B2 (ja) * 2005-12-16 2011-10-26 Jfeスチール株式会社 構造物の欠陥検出方法および装置
JP2007315840A (ja) * 2006-05-24 2007-12-06 Delta Kogyo Co Ltd 柔軟変形物の機械インピーダンス計測装置及び計測方法
CN101135595A (zh) * 2006-08-30 2008-03-05 同济大学 一种基于高速图象反馈的微小测试力系统及方法
CN101593351B (zh) * 2008-05-28 2011-10-05 中国科学院自动化研究所 基于距离变换和刚性变换参数估计的眼底图像配准方法
CN101685043B (zh) * 2009-06-29 2011-05-04 洛阳Lyc轴承有限公司 异型轴承刚度的测量方法及装置
CN201666845U (zh) * 2009-09-30 2010-12-08 清华大学 构件刚度的测试平台
JP5610514B2 (ja) * 2010-02-25 2014-10-22 国立大学法人 和歌山大学 変位計測装置、方法およびプログラム
CN102303021B (zh) * 2011-06-09 2013-04-10 浙江美力科技股份有限公司 等线径变刚度汽车悬架弹簧探伤方法
JP6222795B2 (ja) * 2012-06-20 2017-11-01 東芝メディカルシステムズ株式会社 画像診断装置及びその制御方法
KR101731893B1 (ko) * 2012-11-05 2017-05-02 제이에프이 스틸 가부시키가이샤 자동차용 부품의 외판 패널의 동적 인장 강성의 측정 방법 및 측정 장치
CN103018054B (zh) * 2012-12-07 2016-01-13 清华大学 一种汽车车桥桥壳静刚度和静强度测试方法
CN203178145U (zh) * 2013-03-28 2013-09-04 北京理工大学 扭转刚度的自动测试装置
CN203178143U (zh) * 2013-03-28 2013-09-04 北京理工大学 弯曲刚度的自动测试装置
JP6160819B2 (ja) * 2013-05-22 2017-07-12 株式会社タニタ 重量測定装置、生体測定装置及び重量測定プログラム
CN103643621B (zh) * 2013-12-19 2016-01-20 南京理工技术转移中心有限公司 路面弯沉全场激光检测方法与检测系统
JP2015195569A (ja) * 2014-03-25 2015-11-05 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America 移動体用撮影装置
CN104501768B (zh) * 2014-08-14 2017-05-31 武汉武大卓越科技有限责任公司 基于机器视觉的轨道刚度测量方法
CN104748693B (zh) * 2015-03-31 2017-06-23 南京航空航天大学 一种基于双目立体视觉的桨叶剖面扭转刚度测量系统
CN105043789B (zh) * 2015-06-01 2018-02-16 奇瑞汽车股份有限公司 汽车控制臂的刚度的测试方法及装置
CN105318994B (zh) * 2015-11-30 2018-05-15 华南理工大学 一种基于图像识别的力测量装置
CN105486243B (zh) * 2015-12-24 2018-05-11 成都上甲光电科技有限公司 基于可见光成像技术的桥梁挠度监测系统
CN105842072A (zh) * 2016-05-13 2016-08-10 中国石油大学(华东) 一种金属双极板抗压和抗弯刚度一体式测试装置及方法
KR101693759B1 (ko) * 2016-11-29 2017-01-09 한국건설기술연구원 로드셀이 구비된 신축이음장치를 이용한 교량 안전진단 장치 및 그 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329628A (ja) * 2005-05-23 2006-12-07 Hitachi Zosen Corp 構造物における変形量計測方法
JP2007240218A (ja) * 2006-03-07 2007-09-20 Hitachi Zosen Corp 撮影画像による変位計測時の補正方法
JP2011180049A (ja) * 2010-03-03 2011-09-15 Central Japan Railway Co パンタグラフ監視装置
JP2015007591A (ja) * 2013-06-26 2015-01-15 Jfeスチール株式会社 自動車車体剛性試験方法および自動車車体剛性試験装置
JP2015197344A (ja) * 2014-03-31 2015-11-09 国土交通省国土技術政策総合研究所長 構造物変位の常時監視方法及びその装置
WO2016047093A1 (ja) * 2014-09-25 2016-03-31 日本電気株式会社 状態判定装置および状態判定方法
JP2016084579A (ja) * 2014-10-23 2016-05-19 国立研究開発法人産業技術総合研究所 構造物のたわみ量分布監視方法及び監視装置
US20160225155A1 (en) * 2015-01-29 2016-08-04 Industry-Academic Cooperation Foundation, Yonsei University System and method for image-based structural health monitoring suitable for structures having uncertain load conditions and support conditions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567661A (zh) * 2019-09-11 2019-12-13 重庆大学 基于广义模式搜索算法和车桥耦合的桥梁损伤识别方法
WO2022208805A1 (ja) * 2021-03-31 2022-10-06 太陽誘電株式会社 劣化検出装置、劣化検出システム、劣化検出方法、重量測定装置、重量測定方法およびプログラム

Also Published As

Publication number Publication date
JP6767642B2 (ja) 2020-10-14
EP3575766A4 (en) 2020-02-12
CN109100100A (zh) 2018-12-28
JP6507380B2 (ja) 2019-05-08
CN109100100B (zh) 2020-02-07
CN108633303A (zh) 2018-10-09
WO2018138943A1 (ja) 2018-08-02
JP2018119979A (ja) 2018-08-02
EP3575766A1 (en) 2019-12-04
CN108633303B (zh) 2024-07-19

Similar Documents

Publication Publication Date Title
JP6507380B2 (ja) 剛性測定装置および剛性測定方法
JP6322817B1 (ja) 剛性測定装置および剛性測定方法
JP6970893B2 (ja) 変位検出装置および変位検出方法
US10733751B2 (en) Displacement detecting apparatus and displacement detecting method
JP4810893B2 (ja) 距離計測装置
CN115790387A (zh) 基于在线式相机的桥梁位移转角同步实时监测方法和系统
JP5652239B2 (ja) 運動推定装置及びプログラム
CN104101305A (zh) 柔性显示器的弯曲运动的光学检测
Su et al. Feature-constrained real-time simultaneous monitoring of monocular vision odometry for bridge bearing displacement and rotation
US11519780B2 (en) Measurement system, correction processing apparatus, correction processing method, and computer-readable recording medium
JP4935769B2 (ja) 平面領域推定装置及びプログラム
JP4622889B2 (ja) 画像処理装置、及び画像処理方法
JP5835287B2 (ja) 画像分析装置および画像分析方法
JP5609667B2 (ja) 運動推定装置及びプログラム
JP5359477B2 (ja) 道路領域推定装置及びプログラム
JP4332629B2 (ja) 量子化誤差を軽減する距離計測方法及び距離計測システム
JP2024005342A (ja) 情報処理装置、情報処理方法、及びコンピュータプログラム
JP2006209334A (ja) 位置検出装置、位置検出方法及び位置検出プログラム
JP2015215191A (ja) 位置姿勢計測装置、方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200817

R151 Written notification of patent or utility model registration

Ref document number: 6767642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151