JP2019096633A - 研磨パッドおよびその製造方法 - Google Patents

研磨パッドおよびその製造方法 Download PDF

Info

Publication number
JP2019096633A
JP2019096633A JP2017221706A JP2017221706A JP2019096633A JP 2019096633 A JP2019096633 A JP 2019096633A JP 2017221706 A JP2017221706 A JP 2017221706A JP 2017221706 A JP2017221706 A JP 2017221706A JP 2019096633 A JP2019096633 A JP 2019096633A
Authority
JP
Japan
Prior art keywords
fiber
polishing pad
fibers
main
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017221706A
Other languages
English (en)
Inventor
建樹 山内
Kenju Yamauchi
建樹 山内
三枝 神山
Mitsue Kamiyama
三枝 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2017221706A priority Critical patent/JP2019096633A/ja
Publication of JP2019096633A publication Critical patent/JP2019096633A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Nonwoven Fabrics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】研磨レートが高く、被加工物の優れた平坦性を実現可能な研磨パッドおよびその製造方法を提供する。【解決手段】主体繊維Aと、バインダー繊維と、前記主体繊維Aよりも繊維長が短い繊維Bを含む高分子弾性体とを含むことを特徴とする研磨パッド。【選択図】図2

Description

本発明は、半導体基板、半導体デバイス、化合物半導体基板、化合物半導体デバイス等の各種デバイスを研磨するための研磨パッドおよびその製造方法に関する。
近年、集積回路の高集積化および多層配線化に伴い、集積回路が形成される半導体ウエハ等には、高度の平坦性が求められている。そして、かかる半導体ウエハ等を研磨するための研磨方法として、ケミカルメカニカル研磨(CMP)が知られている。ケミカルメカニカル研磨は、砥粒のスラリーを滴下しながら、研磨パッドにより被加工物の表面を研磨する方法である。また、半導体ウエハ等を研磨する際、加工が困難であるため研磨時間が長くなり、加工コストが大きくなるという問題があった。
このような理由から、被加工物の優れた平坦性と高研磨レートとを実現可能な研磨パッドが求められている。また同時に、研磨パッドには、長寿命であることが求められている。
しかしながら、被加工物の優れた平坦性と高研磨レートとは相反する要求項目であり、両者を両立させることは極めて困難であった。すなわち、被加工物の優れた平坦性を実現するためには、柔らかく平滑な面を有する研磨パッドが有利である。一方、高研磨レートを実現するためには、硬く凹凸の大きい表面を有する研磨パッドが有利である。
例えば、特許文献1では、極細繊維と高分子弾性体を用いた研磨パッドが提案されている。しかしながら、基材に高分子弾性体を含浸した後に海島型複合繊維を極細繊維にしているため、研磨パッド内に空隙が多く、柔らかすぎるという問題があった。かかる研磨パッドは高硬度になりにくいため、被加工物の優れた平坦性や長寿命化を達成することが困難であった。
また、特許文献2には、極細繊維を用いて緻密な不織布と高分子弾性体からなる研磨パッドが提案されている。かかる研磨パッドでは、長繊維の極細繊維からなる繊維束により高い剛性を維持している。しかしながら、研磨パッドが緻密化されて空隙率が低いため、十分に研磨砥粒を溜めることが困難であり、高研磨レートを実現しにくいという問題があった。
特開2012−071415号公報 特開2015−063782号公報
本発明は、長寿命でありながら、研磨レートが高く、被加工物の優れた平坦性を実現可能な研磨パッドおよびその製造方法を提供することにある。
本発明者らは上記の課題を達成するため鋭意検討した結果、用いる繊維の繊維径などを工夫するだけでなく、付与する高分子弾性体に繊維を練り込むことにより、長寿命でありながら、研磨レートが高く、被加工物の優れた平坦性を実現可能な研磨パッドが得られることを見出し、さらに鋭意検討を重ねることにより本発明を完成するに至った。
かくして、本発明によれば「主体繊維Aと、バインダー繊維と、前記主体繊維Aよりも繊維長が短い繊維Bを含む高分子弾性体とを含むことを特徴とする研磨パッド。」が提供される。
その際、前記主体繊維Aおよび繊維Bにおいて、繊維径が10〜2500nmの範囲内であることが好ましい。また、前記主体繊維Aにおいて、繊維長が30〜100mmの範囲内であることが好ましい。また、前記繊維Bにおいて、繊維長が0.2〜1.0mmの範囲内であることが好ましい。また、前記主体繊維Aおよび繊維Bが、ポリアミドまたはポリエステルからなることが好ましい。また、研磨パッド表面において、前記主体繊維Aまたは繊維Bと、前記主体繊維Aまたは繊維Bとの距離が10〜100μmの範囲内であることが好ましい。また、研磨パッド表面において、繊維束で存在する主体繊維Aと、集束せずに存在する繊維Bとが露出することが好ましい。
また、本発明によれば、海成分と島成分からなる海島型複合繊維と、バインダー繊維とを含む不織布から、前記海成分を除去することにより主体繊維Aとし、前記主体繊維Aよりも繊維長が短い繊維Bを含む高分子弾性体を付与する、前記の研磨パッドの製造方法が提供される。
その際、前記不織布がニードルパンチ不織布であることが好ましい。また、前記不織布の目付けが300〜600g/mの範囲内であることが好ましい。また、前記不織布においてタテまたはヨコ方向の引張強度が100N/cm以上であることが好ましい。また、さらに表面を起毛することが好ましい。
本発明によれば、研磨レートが高く、被加工物の優れた平坦性を実現可能な研磨パッドおよびその製造方法が提供される。
比較例1で得られた研磨パッドの表面を撮影した図面代用写真である。 実施例1で得られた研磨パッドの表面を撮影した図面代用写真である。
本発明の研磨パッドは、主体繊維Aと、バインダー繊維と、前記主体繊維Aよりも繊維長が短い繊維Bを含む高分子弾性体とを含む。
まず、主体繊維Aは、繊維径が10〜2500nmの範囲内の極細繊維(以下、単に「極細繊維」ということもある。)であることが好ましい。
ここで、前記極細繊維は、可溶性樹脂を海成分とした海島型複合繊維から海成分を溶解除去して得られるものであることが好ましい。
前記極細繊維を構成するポリマーとしては、いかなるポリマーであってもよいが、特に繊維形成性に優れた、ポリアミド、ポリエステル、ポリオレフィン、ポリフェニレンサルファイドなどが好適な例として挙げられる。
ここで、ポリアミド系樹脂としては、6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸やε−カプロラクタム、ω−ラウロラクタムなどのラクタムを主たる原料とするポリアミドのほか、コハク酸、グルタル酸、アジピン酸、セバシン酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン二酸、ドデカン二酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸等の脂肪族ジカルボン酸、更にはテレフタル酸、イソフタル酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸を主たる酸成分とし、テトラメチレンジアミン、ヘキサメチレンジアミン、1,5−ペンタンジアミン、2−メチルペンタメチレンジアミン、ノナメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等をジアミン成分とする共重合ポリアミドなどが例示される。
またポリエステル樹脂としては、製糸性、極細繊維の物性の観点から、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレートなどが好ましい。
該ポリマー中には、本発明の目的を損なわない範囲内で、共重合成分が含まれていてもよい。共重合可能な化合物は、酸成分として、例えばイソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマー酸、セバシン酸、2,6−ナフタレンジカルボン酸などのジカルボン酸類、グリコール成分としては、例えばエチレングリコール、ジエチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコール、ポリプロピレングリコールなどを挙げることができるが、これらに限られるものではない。
ポリフェニレンサルファイド樹脂としては、その構成単位として、例えばp−フェニレンスルフィド単位、m−フェニレンスルフィド単位、o−フェニレンスルフィド単位、フェニレンスルフィドスルホン単位、フェニレンスルフィドケトン単位、フェニレンスルフィドエーテル単位、ジフェニレンスルフィド単位、置換基含有フェニレンスルフィド単位、分岐構造含有フェニレンスルフィド単位、等よりなるものを挙げる事ができ、その中でも、p−フェニレンスルフィド単位を70モル%以上、特に90モル%以上含有しているものが好ましく、さらにポリ(p−フェニレンスルフィド)がより好ましい。
前記極細繊維において、繊維径が10〜2500nmの範囲内であることが必要である。繊維径が10nm未満の場合は単糸あたりの強力が小さくなり、摩擦による単糸切れが発生してしまい、使用困難になるおそれがある。一方、2500nmを超えると極細繊維特有の緻密性に劣り、被研磨物の表面粗さを小さく抑えることができないため、近年要求されているレベルに対して性能は不足するおそれがある。極細繊維の繊維径としては200〜1000nmの範囲であることが好ましく、特には400〜700nmの範囲であることが好ましい。このような範囲では繊維間の空隙間隔が丁度良く、砥粒を多く保持することが可能となる。繊維径が大きすぎると繊維空隙間隔が広くなり、作用砥粒数が下がり研磨レートが低くなるおそれがある。繊維径が小さすぎると繊維空隙が小さくなり砥粒の保持性が悪くなるおそれがある。
前記の繊維径は、透過型電子顕微鏡TEMで、倍率30000倍で単繊維断面写真を撮影し測定することができる。その際、測長機能を有するTEMでは、測長機能を活用して測定することができる。また、測長機能の無いTEMでは、撮った写真を拡大コピーして、縮尺を考慮した上で定規にて測定すればよい。
その際、単繊維の横断面形状が丸断面以外の異型断面である場合には、繊維径は、単繊維の横断面の外接円の直径を用いるものとする。
本発明において、前記極細繊維が集合して繊維束の形状を取ることが好ましい。その際、一本の繊維束を構成する極細繊維の数としては200〜20000本であることが好ましく、さらには400〜1000本であることが最適である。適度の柔軟性を確保しやすくなるためである。
前記主体繊維A(極細繊維)の長さとしては30〜100mm、さらには40〜80mmの範囲であることが好ましい。このような範囲であることにより極細繊維束間やバインダー繊維との間に良好な絡み合いが起きやすくなる。
さらに本発明の研磨パッドは、バインダー繊維を含むことが必要である。バインダー繊維の繊維径(単繊維径)としては、前記極細繊維よりも大きいことが好ましく、1〜20μmの範囲内であることがさらに好ましい。該繊維径が小さすぎると、引張強度が低く、製造工程においてシワ発生の原因となるおそれがある。逆に繊維径が大きすぎると、主体繊維A(極細繊維とバインダー繊維とからなる構造体の地合いが悪くなるおそれがある。
なお、バインダー繊維の単繊維の断面形状が丸断面以外の異型断面である場合には、本発明では外接円の直径を繊維径とする。また、このような繊維径は、透過型電子顕微鏡で繊維の横断面を撮影することにより測定できる。
またバインダー繊維の長さとしては、主体繊維A(極細繊維)の長さと同等であることが好ましく、具体的には30〜100mm、さらには40〜80mmの範囲の長さであることが好ましい。このような範囲であることにより極細繊維間(極細繊維束間)やバインダー繊維との間に良好な絡み合いが起きやすくなるからである。
前記バインダー繊維としては、芯に高融点の熱可塑性樹脂が存在し、鞘部に低融点の熱可塑性樹脂が存在する芯鞘型の繊維であることが好ましい。そのような樹脂の組み合わせとしては、芯を構成する樹脂としては、ポリエステル樹脂やポリアミド樹脂であることが好ましく、さらにはポリエステル樹脂、特にはポリエチレンテレフタレート樹脂であることが好ましい。また鞘部の低融点の熱可塑性樹脂としては、ポレオレフィン樹脂であることが好ましく、特にはポリエチレン、中でも高密度ポリエチレンであることが好ましい。
また、前記バインダー繊維は未延伸繊維でもよい。かかる未延伸繊維としては、紡糸速度が600〜1500m/分で紡糸された未延伸ポリエステル繊維が好ましい。ポリエステルとは、ポリエチレンテレフタレート、ポリトリメチレンテレタレート、ポリブチレンテレフタレートが挙げられ、好ましくは生産性、水への分散性などの理由から、ポリエチレンテレフタレートやそれを主成分とする共重合ポリエステルが好ましい。
そして本発明の研磨パッドでは、主体繊維A(極細繊維)がバインダー繊維に拘束されていることが好ましい。特には極細繊維からなる繊維束がその形状のまま、バインダー繊維に拘束されていることが好ましい。バインダー繊維によって点で接着することにより、柔軟性に優れながら形態保持性にも優れる研磨パッドとなる。
このような本発明の研磨布に用いられる主体繊維A(極細繊維)とバインダー繊維との重量比は、50/50〜97/3であることが好ましい。このように主体繊維A(極細繊維)の比率を50%以上にすることによって、主体繊維A(極細繊維)とバインダー繊維とから構成される構造体の厚みや硬さが保持されやすくなり、工程でのシワ発生を抑制でき、研磨パッド内の繊維の密度分布が安定する効果がある。主体繊維A(極細繊維)の重量割合が小さすぎる場合、砥粒を保持性が不十分となる傾向にある。逆に、主体繊維A(極細繊維)の重量割合が大きすぎると、繊維構造体が柔らかくなりすぎ、途中工程でのシワの発生の誘因となるおそれがある。
本発明の研磨パッドにおいて、繊維(主体繊維Aとバインダー繊維)のみの密度(嵩密度)としては0.09g/cm以上であることが好ましく、特には0.10〜0.15g/cmの範囲であることが好ましい。該密度が小さすぎる場合には、研磨パッド表面への極細繊維の露出が少なくなり、砥粒の保持量が少なくなる傾向にあり、研磨レートが低下しやすい。
さらに本発明の研磨パッドは、上記の極細繊維やバインダー繊維とともに、繊維Bを含む高分子弾性体を含むことを必須とする。
ここで、繊維Bとしては、繊維長が短いこと以外は、前記と同様の極細繊維が好ましい。繊維Bの繊維長としては0.2〜1.0mmの範囲内であることが好ましい。
高分子弾性体に繊維Bを練り込み、不織布に含浸することで、パッド表面の起毛の繊維間隔を制御できる。この時の高分子弾性体と繊維Bの混合比率は、(繊維B重量:高分子弾性体重量)0.01:99.99〜5:95の範囲が好ましく、特には、0.1:99.9〜2.5:97.5が好ましい。このような範囲であることにより研磨パッド表面の起毛間隔(極細繊維間隔)が10〜100μm以内となり、パッド表面に微細な凹凸ができ、研磨砥粒の保持量が増加する。また、研磨屑の目詰りを防ぐ効果もあり、高研磨レートと低表面粗さが両立するものである。
前記高分子弾性体としては、ポリウレタンエラストマー、アクリロニトリル、ブタジエンラバー、天然ゴム、ポリ塩化ビニルなどを使用することができる。中でも、ポリウレタンエラストマーが加工性の上から好ましい。かかる高分子弾性体の付与方法としては、該高分子弾性体を塗布あるいは含浸後、湿式または乾式で凝固させる方法、あるいはエマルジョン、ラテックス状で塗布あるいは含浸して乾式で乾燥、固着させる方法など種々の方法を採用することができる。
本発明の研磨パッドでは、その樹脂比率は研磨パッド重量対比40〜80重量%であることが好ましい。樹脂比率が少なすぎると、研磨パッドの硬度が低くなり、加工基板を研磨したときの、平坦性が悪くなる傾向にある。逆に樹脂比率が大きくなりすぎると、研磨パッドの空隙率が小さくなり、加工基板を研磨する際に、砥粒の入れ替わりが悪くなり、研磨レートが低くなる傾向にある。
また高分子弾性体は主体繊維A(極細繊維)が構成する繊維束の内部にも存在すると、形状保持性が向上するため好ましい。
さらに研磨パッドの表面粗さ(KES表面粗さSMD)は1〜10μmであることが好ましい。表面粗さが小さすぎると、研磨の際に、研磨パッドと加工基板との間に砥粒が入りづらく、作用砥粒数が下がり、研磨レートが下がり、表面粗さも悪くなるおそれがある。逆に該表面粗さが大きすぎると、研磨後の加工基板の平坦性が悪くなるおそれがある。
また、前記研磨パッドの硬度が、タイプAデュロメータで測定した際に70度以上であることが好ましい。さらには80〜95度の範囲であることが好ましい。該硬度が小さすぎると、加工基板を研磨したときの平坦性が悪くなるおそれがある。
本発明の研磨パッドは、例えば、以下の製造方法により得ることができる。すなわち、海成分と島成分からなる海島型複合繊維と、バインダー繊維とを含む不織布から、前記海成分を除去することにより主体繊維Aとし、前記主体繊維Aよりも繊維長が短い繊維Bを含む高分子弾性体を付与することを特徴とする研磨パッドの製造方法である。
海島型複合繊維を構成する島成分の樹脂は、先の主体繊維A(極細繊維)を構成する樹脂と同一であり、いかなるポリマーであってもよいが、特に繊維形成性に優れた、ポリアミド、ポリエステル、ポリオレフィン、ポリフェニレンサルファイドなどが好適な例として挙げられる。
一方、海成分を構成する可溶性樹脂としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウムのようなアルカリ金属化合物水溶液や、トルエンやトリクロロエチレンなどの有機溶剤で溶出可能なポリマーを用いることができる。ただし、本発明の製造方法ではこのような海島型複合繊維を一旦バインダー繊維と絡合不織布にした後、高分子弾性体を付与する前に、海成分を除去する。高分子弾性体を付与する前の絡合不織布は単に絡合とバインダー繊維との結合のみでその形態を保っているために、緩やかな条件の抽出処理であることが好ましく、アルカリ減量法や熱水抽出法で海成分を溶解除去する方法が好ましい。
そのため海成分としては、5−ナトリウムスルホイソフタル酸およびイソフタル酸を特定量共重合した共重合ポリエステル、5−ナトリウムイソフタル酸、イソフタル酸およびポリアルキレングリコールもしくはその誘導体を特定量共重合した共重合ポリエステル、5−ナトリウムスルホイソフタル酸、イソフタル酸および脂肪族ジカルボン酸を特定量共重合した共重合ポリエステルなどが好ましい。さらに海成分にはポリエチレングリコールを共重合することも好ましい。
かかる海島型複合繊維は、国際公開第2005/095686号パンフレットや国際公開第2008/130019号パンフレットに開示された方法により製造することができる。すなわち、溶融紡糸に用いられる口金としては、島成分を形成するための中空ピン群や微細孔群(ピンレス)を有するものなど任意のものを用いることができる。例えば、中空ピンや微細孔より押し出された島成分とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面が形成されるといった紡糸口金でもよい。吐出された海島型複合繊維は冷却風により固化され、所定の引き取り速度に設定した回転ローラーあるいはエジェクターにより引き取られ未延伸糸(複屈折率Δnが0.05以下であることが好ましい。)を得る。この引き取り速度は特に限定されないが、200〜5000m/分であることが好ましい。200m/分以下では生産性が低下するおそれがある。また、5000m/分以上では紡糸安定性が低下するおそれがある。
得られた未延伸糸は、必要に応じてそのままカット工程あるいはその後の抽出工程(アルカリ減量加工)に供してもよいし、延伸工程や熱処理工程を経由して延伸糸とした後、カット工程あるいはその後の抽出工程(アルカリ減量加工)に供してもよい。その際、延伸工程は紡糸と延伸を別ステップで行う別延方式でもよいし、一工程内で紡糸後直ちに延伸を行う直延方式を用いてもよい。カット工程と抽出工程の順番は逆にしてもよい。
かかるカットは、未延伸糸または延伸糸をそのまま、または数十本〜数百万本単位に束ねたトウにしてギロチンカッターやロータリーカッターなどでカットすることが好ましい。
次いで、かかる海島型複合繊維と前記のようなバインダー繊維を用いて、不織布を得る。その際、前記海島型複合繊維とバインダー繊維との単繊維繊度比が(海島型複合繊維:バインダー繊維)1:0.49〜1:0.70の範囲内であると、不織布の密度斑を低減することができ好ましい。
また、絡合方法はニードルパンチや水流等公知の方法を使用することができる。特に、物理的な絡み合いが生じやすいニードルパンチによる機械絡合を行う方法であることが好ましい。
かかる不織布において、不織布の目付けが300〜600g/mの範囲内であることが好ましい。
また、前記不織布においてタテまたはヨコ方向の引張強度が100N/cm以上(好ましくはタテおよびヨコ方向の引張強度が130〜200N/cm)であることが好ましい。この引張強度が低い場合には、減量工程等でシワ発生の原因となりやすい。また研磨時に極細繊維が脱離し易く、研磨パッドの寿命が短くなるおそれがある。
次いで、不織布から、海島型複合繊維に含まれる海成分を除去する。海成分を抽出する方法は、特に制限はないが、バインダー繊維を傷つけないマイルドなアルカリ減量処理や熱水抽出処理であることが好ましい。
かかる処理により、不織布に含まれる海島型複合繊維は極細繊維となる。かかる不織布(含浸処理前)において、熱処理を行って繊維の嵩密度を0.09g/cm以上とすることが好ましい。さらには0.10〜0.15g/cmの繊維密度であることが好ましい。
一方、前記のような海島型複合繊維を、前記と同様にカットした後アルカリ減量加工するか、アルカリ減量加工した後カットすることにより繊維Bを得る。
次いで、不織布に、繊維Bを含む高分子弾性体を付与する。かかる高分子弾性体としては、ポリウレタンエラストマー、アクリロニトリル、ブタジエンラバー、天然ゴム、ポリ塩化ビニルなどを使用することができる。中でも、ポリウレタンエラストマーが加工性の上から好ましい。かかる高分子弾性体の付与方法としては、該高分子弾性体を塗布あるいは含浸後、湿式または乾式で凝固させる方法、あるいはエマルジョン、ラテックス状で塗布あるいは含浸して乾式で乾燥、固着させる方法など種々の方法を採用することができる。
高分子弾性体の付与方法としては、2段階の付与であることが好ましい。特に1段目に柔らかい樹脂を付着させ、2段目に硬い樹脂を付着させて、表面に高いモジュラスを有する高分子弾性体を付与することが好ましい。あるいは1段目に多孔質となる湿式含浸ポリウレタン等を付与し、2段目に充実層となる乾式高分子弾性体処理を行うことが好ましい。
次いで、表面を研磨することにより表面を起毛させることが好ましい。起毛は主に極細繊維に由来するものである。この起毛の繊維間隔、すなわち、前記主体繊維Aまたは繊維Bと、前記主体繊維Aまたは繊維Bとの距離としては、10〜100μmが好ましく、特には30〜60μmが好ましい。このような極細繊維を使用することで、加工基板への作用砥粒数を上げ、高研磨レートと低表面粗さ(スクラッチレス)が同時に達成することがより容易になる。
かくして得られた研磨パッドは、研磨レートが高く、被加工物の優れた平坦性を実現可能な研磨パッドとなる。そしてこの研磨パッドは各種デバイス、例えば半導体基板、半導体デバイス、化合物半導体基板、化合物半導体デバイス等を研磨するために最適な研磨パッドとなる。
以下実施例により、本発明を具体的に説明する。しかしながら本発明はこれによって限定されるものではない。なお、以下の実施例における評価および特性値は、以下の測定法により求めた。
(1)不織布の物性
目付け(g/m)および強伸度(N/cm、%)はJIS L1913、厚さ(mm)はJIS L1085、により求め、その値から目付け/厚さである嵩密度(g/cm3)を計算した。さらに通気度(cm/cm・sec)についてはJIS L1096−Aにより求めた。
(2)研磨パッドの物性
不織布の物性と同様に目付(g/m)はJIS L1913、厚さ(mm)はJIS L1085により求め、その値から目付け/厚さである嵩密度(g/cm)を計算した。
空隙率(%)は下記式により算出した。
空隙率(%)=(1−(嵩密度/理論密度))×100
ただし、理論密度とは、構成材料の加重平均密度であり、下記式により算出した。
理論密度(g/cm)=1÷((樹脂比率(%)/100/樹脂密度)+(繊維比率(%)/100/繊維密度))
なお、ナイロン6繊維の密度を1.222g/cm、バインダー(ポリエステル)繊維の密度を1.360g/cm、ポリウレタン樹脂の密度を1.180g/cmとした。
研磨パッドの硬度は、JIS K6253に従い、高分子計器株式会社製DD2‐A型を用いて測定した。圧縮・弾性率(%)はJIS L1096、接触角(°)はJIS R3257により求めた。曲げ強度は、試験片をサンプル1枚の高さとし、試験幅は25mm幅で、JIS K 6911により求めた。
(2−1)パッド表面起毛繊維間隔(μm)
研磨パッドの表面を電子顕微鏡にて10か所撮影し、撮影した写真の2mm角の範囲をランダムに10か所、起毛繊維間の距離を測定して平均繊維間隔を求めた。
(3)KES表面粗さSMD(μm)
0.5mm径5mm幅のピアノ線を10gf(9.8cN)で試料に圧着し、0.1cm/secで試料を動かした際の表面粗さの平均偏差として求めた。
(4)研磨性能
(4−1)研磨レート(μm/h)
直径920mmの研磨パッドを使用し、4inch(10.16cm)サファイアウェハの1時間当たりの研磨量を、片面研磨機を用いて下記条件にて測定した。
スラリー濃度:20wt%
スラリー量 :1300ml/min
圧力 :300g/cm
研磨時間 :60min
定盤回転数 :60rpm
使用スラリー:シリカ(フジミインコーポレ−テッド社製「コンポール80」)
(4−2)ウエハの表面粗さRa(nm)
原子間力顕微鏡にて基板中心部10μm角の表面粗さを測定した。
(4−3)スクラッチ(有無)
ビジョンサイテック社製(表面長周期欠陥可視化検査装置「VMX−2200Z」)にて検査した。
[実施例1]
島成分としてナイロン6、海成分として5−ナトリウムスルホイソフタル酸を共重合したポリエチレンテレフタレートを用い、紡糸、延伸して、海:島=30:70、島数=836、繊度5.6dtexの海島型複合繊維を得て44mmの長さに切断した。
この海島型複合繊維70wt%と直径14.4μm、長さ51mmのPET/非晶性co‐PET(融点130℃)(芯/鞘重量比=50/50)のバインダー短繊維30wt%をニードルパンチにて機械的に絡合し、熱処理(140℃、1分)を行って海島型複合繊維がバインダー繊維にて保持されたシートを得た。
その後、濃度5g/lの水酸化ナトリウム溶液中にて90℃で60分間処理(アルカリ減量処理)し、海島型複合繊維の海成分を抽出除去し、ナイロン6ナノファイバー短繊維束(繊維径0.7μm×836本、主体繊維A)62wt%とその繊維束を固定するバインダー短繊維38wt%からなる総目付329g/mの不織布を作製した。
次いで得られた不織布にポリウレタン樹脂と前記不織布に使用したものと同樹脂の極細繊維を0.5mmにカットしたもの(繊維径0.7μm、繊維B)を練り込み、湿式工程にて含浸した。最後に両面をバフ加工して立毛を形成すると同時に表面を平滑にし、厚みを1.20mmとし、裏面に粘着テープを貼付けて研磨パッドとした。この研磨パッドの構成および研磨性能を表1に示した。
実施例1はナイロン6の極細繊維束とバインダー繊維で構成された不織布に、ポリウレタン樹脂に極細繊維を練り込んだものを含浸し、研磨パッド表面の起毛繊維間隔を小さくしたものである。このように研磨パッド表面の起毛繊維間隔を狭くすることで、微細な凹凸ができ、研磨砥粒の保持量が増加する。また、研磨屑の目詰りを防ぐ効果もあり、高研磨レートと低表面粗さが両立するものである。
[比較例1]
実施例1の不織布にポリウレタン樹脂(繊維の練り込みなし)を、湿式工程にて含浸した以外は、実施例1と同様にして、研磨パッドを得た。この研磨パッドの構成および研磨性能を表1に併せて示した。
[比較例2]
実施例1の不織布にポリウレタン樹脂(繊維の練り込みなし)を、湿式工程にて含浸した、次いでポリウレタン樹脂(繊維の練り込みなし)を乾式工程にて2次含浸した以外は、実施例1と同様にして、研磨パッドを得た。この研磨パッドの構成および研磨性能を表1に併せて示した。
[実施例2]
実施例1と同様に湿式工程でポリウレタン樹脂に繊維を練り込んだものを含浸後、次いでポリウレタン樹脂を乾式工程にて2次含浸した以外は、実施例1と同様にして、研磨パッドを得た。この研磨パッドの構成および研磨性能を表1に併せて示した。
本発明によれば、研磨レートが高く、被加工物の優れた平坦性を実現可能な研磨パッドおよびその製造方法が提供され、その工業的価値は極めて大である。

Claims (12)

  1. 主体繊維Aと、バインダー繊維と、前記主体繊維Aよりも繊維長が短い繊維Bを含む高分子弾性体とを含むことを特徴とする研磨パッド。
  2. 前記主体繊維Aおよび繊維Bにおいて、繊維径が10〜2500nmの範囲内である、請求項1に記載の研磨パッド。
  3. 前記主体繊維Aにおいて、繊維長が30〜100mmの範囲内である、請求項1または請求項2に記載の研磨パッド。
  4. 前記繊維Bにおいて、繊維長が0.2〜1.0mmの範囲内である、請求項1〜3のいずれかに記載の研磨パッド。
  5. 前記主体繊維Aおよび繊維Bが、ポリアミドまたはポリエステルからなる、請求項1〜4のいずれかに記載の研磨パッド。
  6. 研磨パッド表面において、前記主体繊維Aまたは繊維Bと、前記主体繊維Aまたは繊維Bとの距離が10〜100μmの範囲内である、請求項1〜5のいずれかに記載の研磨パッド。
  7. 研磨パッド表面において、繊維束で存在する主体繊維Aと、集束せずに存在する繊維Bとが露出する、請求項1〜6のいずれかに記載の研磨パッド。
  8. 海成分と島成分からなる海島型複合繊維と、バインダー繊維とを含む不織布から、前記海成分を除去することにより主体繊維Aとし、前記主体繊維Aよりも繊維長が短い繊維Bを含む高分子弾性体を付与する、請求項1に記載の研磨パッドの製造方法。
  9. 前記不織布がニードルパンチ不織布である、請求項8に記載の研磨パッドの製造方法。
  10. 前記不織布の目付けが300〜600g/mの範囲内である、請求項8または請求項9に記載の研磨パッドの製造方法。
  11. 前記不織布においてタテまたはヨコ方向の引張強度が100N/cm以上である、請求項8〜10のいずれかに記載の研磨パッドの製造方法。
  12. さらに表面を起毛する、請求項8〜11のいずれかに記載の研磨パッドの製造方法。
JP2017221706A 2017-11-17 2017-11-17 研磨パッドおよびその製造方法 Pending JP2019096633A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017221706A JP2019096633A (ja) 2017-11-17 2017-11-17 研磨パッドおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017221706A JP2019096633A (ja) 2017-11-17 2017-11-17 研磨パッドおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2019096633A true JP2019096633A (ja) 2019-06-20

Family

ID=66971963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017221706A Pending JP2019096633A (ja) 2017-11-17 2017-11-17 研磨パッドおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2019096633A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117415736A (zh) * 2022-07-19 2024-01-19 株式会社东京钻石工具制作所 合成磨石、合成磨石组件、以及合成磨石的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117415736A (zh) * 2022-07-19 2024-01-19 株式会社东京钻石工具制作所 合成磨石、合成磨石组件、以及合成磨石的制造方法

Similar Documents

Publication Publication Date Title
JP5877152B2 (ja) 研磨パッド
JP5780040B2 (ja) 研磨布およびその製造方法
JP5543213B2 (ja) ワイピング製品
TWI433976B (zh) 纖維構造體及其製法
JP7111609B2 (ja) 繊維複合研磨パッドおよびそれを用いたガラス系基材の研磨方法
JP6713805B2 (ja) 研磨パッド
JP2019096633A (ja) 研磨パッドおよびその製造方法
JP6640376B2 (ja) 研磨パッドおよびその製造方法
JP5894006B2 (ja) 研磨パッド用極細繊維及び研磨パッドの製造方法
JP2019099931A (ja) 乾式不織布および研磨パッド
JP3877369B2 (ja) 研磨シート
JP7057215B2 (ja) 研磨パッドおよびその製造方法
JP6398467B2 (ja) シート状物
JP2019199655A (ja) 乾式不織布および研磨パッド
JP6405654B2 (ja) シート状物およびその製造方法
JP5510151B2 (ja) 研磨布およびその製造方法
JP4140457B2 (ja) 長繊維不織布
JP2022142244A (ja) 研磨パッド
JP2022142244A6 (ja) 研磨パッド
JP2009066749A (ja) 研磨布およびその製造方法
JP2005028115A (ja) ワイパー