JP2019096405A - 加速器および粒子線治療システム - Google Patents

加速器および粒子線治療システム Download PDF

Info

Publication number
JP2019096405A
JP2019096405A JP2017222577A JP2017222577A JP2019096405A JP 2019096405 A JP2019096405 A JP 2019096405A JP 2017222577 A JP2017222577 A JP 2017222577A JP 2017222577 A JP2017222577 A JP 2017222577A JP 2019096405 A JP2019096405 A JP 2019096405A
Authority
JP
Japan
Prior art keywords
magnetic field
accelerator
high frequency
ions
ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017222577A
Other languages
English (en)
Other versions
JP6901381B2 (ja
JP2019096405A5 (ja
Inventor
孝道 青木
Takamichi Aoki
孝道 青木
裕人 中島
Hiroto Nakajima
裕人 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2017222577A priority Critical patent/JP6901381B2/ja
Priority to US16/755,630 priority patent/US11097126B2/en
Priority to PCT/JP2018/037622 priority patent/WO2019097904A1/ja
Priority to CN201880065145.6A priority patent/CN111194578B/zh
Publication of JP2019096405A publication Critical patent/JP2019096405A/ja
Publication of JP2019096405A5 publication Critical patent/JP2019096405A5/ja
Application granted granted Critical
Publication of JP6901381B2 publication Critical patent/JP6901381B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/005Cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/04Synchrotrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • H05H2007/081Sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/08Arrangements for injecting particles into orbits
    • H05H2007/081Sources
    • H05H2007/082Ion sources, e.g. ECR, duoplasmatron, PIG, laser sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/10Medical devices
    • H05H2277/11Radiotherapy

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Pathology (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

【課題】小型でありながら、照射時間の短縮が可能な加速器および粒子線治療システムを提供する。【解決手段】異なる複数種類のイオンを発生させる複数のイオン源221,222,223と、磁場を発生させる電磁石11と、高周波電場を発生させる高周波空胴21と、を備え、イオンの軌道の中心は加速に伴い偏心しており、電磁石11が発生させる磁場は軌道の動径方向外側に低下する磁場分布であり、高周波空胴21は、入射するイオンの核種に応じた周回周波数に合わせた高周波電場によって所定エネルギーまでイオンを加速するものであり、高周波電場の周波数はイオンのエネルギーに追従して変化させる。【選択図】 図1

Description

本発明は陽子や炭素イオン等の重粒子を加速する加速器、および加速された粒子を腫瘍に照射することで治療する粒子線治療システムに関する。
治療のために人体に荷電粒子ビームを照射する荷電粒子ビームシステムにおいて、システムを小型化しつつ、目標への高い照射集中性や線量分布制御性を実現する荷電粒子ビームシステムの一例として、特許文献1には、重さの異なる複数種類のイオンビームを発生させ、複数種類のイオンをそれぞれの最長水中飛程が異なる最高エネルギーに加速、出射される加速器を用い、ビーム輸送系で回転ガントリーに設置された照射装置から人体に照射する。照射において、照射目標の深さと各イオン種の最大水中飛程を比較し、照射目標の深さが最長水中飛程以下となるイオン種を選択して照射目標に照射することが記載されている。
特開2015−84886号公報
粒子線治療で使用する高エネルギー原子核ビームは加速器を用いて生成する。たとえば、炭素原子核を治療用のビームとして用いる場合、核子当たりの運動エネルギーが最大で430MeV前後の運動エネルギーが必要である。陽子を治療用のビームとして用いる場合は、運動エネルギーが最大で230MeV前後の運動エネルギーが必要である。
特許文献1に記載の複数核種のビームを一台の加速器で生成し、複数の種類のビームを照射可能なシステムが提案されている。
特許文献1に記載の粒子線治療システムでは、加速器としてシンクロトロンが用いられている。シンクロトロンは加速器を構成する電磁石の励磁量を時間的に変化させながら内部を周回する粒子の運動エネルギーを増大させている。
しかし、シンクロトロンはビームを偏向する偏向電磁石以外にも、四極発散電磁石や共鳴励起用多極電磁石、ベータトロン振動を増加して共鳴の安定限界を越えさせるためのビームの出射用の高周波印加装置、出射用の静電偏向器及び出射用偏向電磁石等の様々な機器が必要であり、小型化には限界があった。また、様々な機器が必要であることから、低コスト化にも限界があった。
また、シンクロトロン以外の加速器として、サイクロトロンが存在する。しかし、サイクロトロンは、主磁場中を周回するビームを高周波電場で加速する類型の加速器である。軌道上の平均磁場をビームの相対論的γファクターに比例させることで、周回の時間をエネルギーに依らず一定としている。この性質を持つ主磁場分布を等時性磁場と呼んでいる。
ここで、等時性磁場下では軌道に沿って磁場を変調させることで軌道面内と軌道面に垂直な方向のビーム安定性を確保している。上述の等時性とビームの安定性を両立するために、主磁場分布には極大部と極小部が必要である。この分布のついた非一様な磁場は、主電磁石の対向する磁極間の距離を極大部では狭く、極小部では広くとることで形成することができる。しかしながら、極大部の磁場と極小部の磁場との差は強磁性体である磁極材料の飽和磁束密度程度が実用上限界である。すなわち、極大部の磁場と極小部の磁場との差は2T程度に制限される。
一方、加速器を小型化する場合、主磁場を高めて、ビーム軌道の偏向半径を小さくすることが必要であるが、主磁場と前述の極大部の磁場と極小部の磁場との差は比例関係にあり、前述の限界が加速器の現実的な大きさを決める要因となっている。よってサイクロトロンは小型化が困難であった。
また、サイクロトロンではディグレータを用いることなく取り出しビームのエネルギーを変更することが困難であった。また、ディグレータを用いる場合、ビーム電流が減少してしまうことから、照射時間の短時間化が困難であった。
本発明は、小型でありながら、照射時間の短縮が可能な加速器および粒子線治療システムを提供する。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、加速器であって、異なる複数種類のイオンを発生させる複数のイオン源と、磁場を発生させる主磁石と、高周波電場を発生させる高周波空胴と、を備え、前記イオンの軌道の中心は加速に伴い偏心しており、前記主磁石が発生させる磁場は前記軌道の動径方向外側に低下する磁場分布であり、前記高周波空胴は、入射するイオンの核種に応じた周回周波数に合わせた高周波電場によって所定エネルギーまで前記イオンを加速するものであり、前記高周波電場の周波数はイオンのエネルギーに追従して変化させることを特徴とする。
本発明によれば、加速器の小型化が可能であり、かつ照射時間の短縮の両立が可能となる。
本発明の実施例1の加速器の全体概形である。 実施例1の加速器の構造を示す図である。 実施例1の加速器におけるビームの運動エネルギーと周回周波数の関係を示す図である。 実施例1の加速器におけるビームの運動エネルギーと磁気剛性率の関係を示す図である。 実施例1の加速器における設計軌道の形状を示す図である。 実施例1の加速器におけるビームの磁気剛性率と設計軌道上の磁場の関係を示す図である。 実施例1の加速器における制御ダイアグラムを示す図である。 実施例1の加速器における運転時のタイミングチャートの一例を示す図である。 実施例1の加速器における運転時のタイミングチャートの一例を示す図である。 実施例2の粒子線治療装置の全体概形を示す図である。
以下に本発明の加速器および粒子線治療システムの実施例を、図面を用いて説明する。
<実施例1>
本発明の好適な一実施例である実施例1の加速器を図1乃至図9を用いて以下に説明する。
本実施例の加速器1は周波数変調型の可変エネルギーおよび可変核種の加速器である。この加速器1は時間的に一定な磁場を主磁場として持ち、主磁場中を周回する陽子、ヘリウム、炭素等の異なる複数種類のイオンを高周波電場によって加速するタイプの加速器である。その外観を図1に示す。
図1に示すように、加速器1は、上下に分割可能な電磁石11によって、加速・周回中のビームが通過する領域(以下、ビーム通過領域20と呼ぶ、図2参照)内に主磁場が励起される。電磁石11には外部とビーム通過領域20とを接続する貫通口が複数穿たれている。
貫通口として、加速されたビームを取り出す取り出しビーム用貫通口111、コイル導体を外部に引き出すための貫通口112,113、高周波電力入力用貫通口114が上下磁極の接続面上に設けられている。本実施例の加速器1では、高周波電力入力用貫通口114を通じて高周波空胴21が設置されている。
高周波空胴21には後述するように、加速用のディー電極211(図2参照)と回転式可変容量キャパシタ212が設置されている。
電磁石11の上部には、異なる複数種類のイオンを発生させる複数のイオン源221,222,223が中心からずれた位置に設置されており、ビーム入射用貫通口115を通して所定の核種のイオンビームが加速器1内部に入射される。
イオン源221,222,223は電磁石11の外部に配置される外部イオン源であり、それぞれ陽子・ヘリウムイオン・炭素イオンを生成するイオン源である。
イオン源221,222,223から加速器1の入射領域130(図2参照)までのビーム輸送経路上となるビーム入射用貫通口115には、イオン核種切り替えのための振り分け電磁石224が設置されている。本実施例の加速器1では、所定の核種がビーム輸送経路上を輸送されるように振り分け電磁石224の励磁量が調整される。すなわち、振り分け電磁石224の励磁量によって加速器1へ入射できるイオン種を定めることができる。
ビーム通過領域20は真空引きされている。
次に、加速器の内部構造について図2を用いて説明する。図2は電磁石11を上下に分割し、それを上方から見た図である。
図2に示すように、電磁石11の上下部それぞれは、リターンヨーク121、天板122、円柱状の磁極123を有し、上下対向した磁極123によって挟まれる円筒状の空間内に、ビーム通過領域20がある。この上下の磁極123が互いに対向している面を磁極面と定義する。また磁極面に挟まれた磁極面に平行かつ上下の磁極面から互いに等距離にある面を軌道面と呼ぶ。
磁極123とリターンヨーク121の間に形成される凹部に円環状の主コイル13が磁極123の壁に沿って設置されている。主コイル13に電流を流すことによって磁極123が磁化し、ビーム通過領域20に後述する所定の分布での磁場が励起される。
磁極123には磁場の微調整用のトリムコイル30が複数系統設けられており、これは貫通口113を通じて外部の電源に接続されている。各系統個別に励磁電流を調整することで、後述の主磁場分布に近づけ、安定なベータトロン振動を実現するように運転前にトリムコイル電流が調整されている。
高周波空胴21はλ/4型の共振モードによって加速ギャップ213に高周波電場を励起させる。高周波空胴21の内、特に加速器に対して固定的に設置された部分をディー電極211と定義する。
ビームはディー電極211と、このディー電極211に対向するように設置された接地電極214とによって挟まれた領域に形成される加速ギャップ213に励起される高周波電場によって加速される。高周波電場の位相を前述のビームの周回に同期させるために、高周波電場の周波数はビームの周回周波数の整数倍であることが必要である。この加速器1では高周波電場の周波数はビームの周回周波数の1倍としている。
ビームは入射領域130から低エネルギーのイオンの状態で加速器1に入射される。イオン源221,222,223で生成されたイオンは引き出し電極(図示省略)に印加された電圧によって入射経路に引き出され、貫通口115を通じて入射領域130に入射される。
入射領域130には静電ディフレクタ(図示省略)が設置されおり、イオンの偏向に必要な電力が電磁石11の外部から供給されている。入射されたビームは高周波空胴21によって励起される高周波電場によって加速ギャップ213を通過する毎に加速される。
所定エネルギーのイオンビームを加速器1外に取り出す為に励磁するキッカ磁場発生コイルとして、左コイル311および右コイル312が磁極面の一部に電気的に絶縁された状態でイオンの軌道上に設置されている。本実施例では、左コイル311および右コイル312に電流を流すことにより、主磁場に対して後述する磁場が重畳励磁される。左コイル311および右コイル312の詳細については後述する。
また、磁極面の端部の一か所には、取り出し用セプタム電磁石32の入射部が設置されている。キッカ磁場の存在下で周回中のビームはその位置を設計軌道からずらされ、取り出し用セプタム電磁石32の入射部までビームが移動し、その後、取り出し用セプタム電磁石32の磁場によって形成される取り出し軌道322に沿ってビームは加速器1の外に取り出される。
本実施例の加速器1では、軌道面において主磁場は面内成分がほぼ0となるように、磁極123、主コイル13、トリムコイル30、キッカ磁場発生コイル、取り出し用セプタム電磁石32の形状と配置は軌道面に対して面対称としている。また、磁極123、ディー電極211、主コイル13、トリムコイル30、キッカ磁場発生コイルの形状は、図2に示すように、加速器1を上部側から見たときに左右対称の形状となっている。
次に、本実施例の加速器1中を周回するビームの軌道について述べる。本実施例の加速器1によって加速可能な粒子は陽子、ヘリウム原子核および炭素原子核である。
各イオンビームはそれぞれ別個に設けられたイオン源221,222,223において生成され、共通の入射経路であるビーム入射用貫通口115を通じて、入射領域130まで輸送される。
入射領域130に入射されたビームは静電ディフレクタによって軌道面に平行な方向に偏向され、主磁場から受けるローレンツ力によって周回運動を始める。ビームは後述する設計軌道に沿って周回運動する。
ビームは加速器1内を1回周回する度に加速ギャップ213を2回通過し、通過の度に高周波電場からの力によってビームは加速される。運動エネルギーが大きくなるにつれ、ビームの周回周波数は小さくなる。主磁場はビームの軌道に沿って一様、かつ、エネルギーが高くなるにつれ磁場が低下していくような分布を作る。つまり、径方向外側の磁場が低下するような磁場を形成する。
このような磁場下においては、ビームの軌道面内の動径方向と軌道面に対して垂直な方向のそれぞれに対して安定にベータトロン振動する。この原理により、ビーム通過領域20中をビームは周回しながら加速される。
入射領域での主磁場の大きさは5Tであり、イオン種が陽子の場合、入射直後の運動エネルギーのイオンでは周回周波数が76.23MHz,最大エネルギー235MeVに達したビームは60.67MHzで周回する。ヘリウムの場合は入射直後に38.38MHz、最大エネルギー235MeV/uで30.44MHzである。炭素の場合、入射直後に38.40MHz、最大エネルギー430MeV/uで26.10MHzである。
これらのエネルギーと周回周波数の関係は図3のようになる。図3には太線で陽子、細線でヘリウム、点線で炭素の周波数依存性を示している。図3では、ヘリウムと炭素の質量電荷比がほぼ等しいことから両者のグラフは実質上重なって見える。また、実用上も同じと見做すことができる。
取り出し可能なビームの運動エネルギーはイオン種が陽子の場合、最小70MeVから最大235MeVである。ヘリウムの場合は最小70MeV/uから最大235MeV/uである。炭素の場合、最小140MeV/uから最大430MeV/uである。
これらの異なるイオン種のビームの軌道とベータトロン振動の特性は、磁気剛性率によって統一的に定めることが可能である。磁気剛性率(Bρ値)とイオンごとの運動エネルギーの関係を図4に示す。
図4によると、陽子の最大磁気剛性率は2.35Tm、ヘリウムでは4.67Tm、炭素では6.64Tmである。すなわち、炭素の最大磁気剛性率に対応する6.64Tmまでの磁気剛性率のビームに対して軌道が定義され、ベータトロン振動が安定である必要がある。
各磁気剛性率ビームの軌道の形状を図5に示す。図5に示すように、最も外側に最大磁気剛性率6.9Tmの軌道に対応した半径1.39mの円軌道が存在し、そこから、0Tmまで磁気剛性率で53分割した都合52本の円軌道を図示している。点線あるいは破線は各軌道の同一の周回位相を結んだ線であり、等周回位相線と呼ぶ。等周回位相線は集約領域から周回位相π/20ごとにプロットしている。等周回位相線のうち破線で示したものは加速ギャップの中心位置である。
この加速器1では、ビームの加速に従ってビームの軌道中心が軌道面内で一方向に移動する。軌道中心が移動する結果、異なる運動エネルギーの軌道が互いに近接している箇所と互いに遠隔している領域が存在する。すなわち、ビームの周回軌道が偏心している。
最も軌道同士が近接している軌道の各点を結ぶと軌道に直交する線分となり、また、最も軌道同士が遠隔している軌道の各点を結ぶと軌道に直交する線分となる。この二つの線分は同一直線上に存在する。この直線を対称軸と定義すると、軌道の形状と主磁場の分布は対称軸を通り、軌道面に垂直な面に対して面対称となる。
前述の近接した軌道の各点において、偏向角θ=0度となるように座標θを導入する。θは近接点から見た偏向角である。いずれの軌道においてもディー電極211と対向する接地電極214の間に形成される加速ギャップ213は集約点から見て±90度周回した等周回位相線に沿って設置される。
上記のような軌道構成と軌道周辺での安定な振動を生じさせるために、本実施例の加速器1においては、設計軌道は、偏向半径方向外側に行くにつれ磁場の値が小さくなる主磁場分布とする。また、設計軌道に沿って磁場は一定である。よって、設計軌道は円形となり、ビームエネルギーが高まるにつれその軌道半径・周回時間は増大する。
このような体系では設計軌道から半径方向に微小にずれた粒子は設計軌道に戻すような復元力を受けると同時に軌道面に対して鉛直な方向にずれた粒子も軌道面に戻す方向に主磁場から復元力を受ける。すなわち、ビームのエネルギーに対して適切に磁場を小さくしていけば、常に設計軌道からずれた粒子は設計軌道に戻そうとする向きに復元力が働き、設計軌道の近傍を振動することになる。これにより、安定にビームを周回・加速させることが可能である。この設計軌道を中心とする振動をベータトロン振動と呼ぶ。
各磁気剛性率のビームにおける磁場の値を図6に示した。図6に示すように、磁場は入射点で最大の5Tとなり、最外周では4.966Tまで低下する。
上述の主磁場分布は主コイル13とトリムコイル30に所定の励磁電流を流すことによって磁極123が磁化されることで励起される。イオンの入射点で磁場を大きくし、外周に向かって磁場を小さくする分布を形成するために、磁極123が対向する距離(ギャップ)は入射点において最も小さく、外周に向かって大きくなる形状となる。
さらに、磁極形状はギャップ中心を通る平面(軌道面)に対して面対称の形状であり、軌道面上においては軌道面に垂直な方向の磁場成分のみを持つ。さらに、磁場分布の微調整を磁極面に設置されたトリムコイル30に印加する電流を調整することで行い、所定の磁場分布を励起している。
高周波空胴21はλ/4型の共振モードによって加速ギャップ213に高周波電場を励起させる。本実施例の加速器1においてはビームの周回に同期して高周波電場を励起するために、高周波電場の周波数は周回中のビームのエネルギーに追従して変調させる。
本実施例に用いられるような共振モードを用いた高周波空胴21では共振の幅よりも広い範囲で高周波の周波数を掃引する必要がある。そのために高周波空胴21の共振周波数も変更する必要が有る。
その制御は高周波空胴21の端部に設置された回転式可変容量キャパシタ212の静電容量を変化せることで行う。回転式可変容量キャパシタ212は回転軸215に直接接続された導体板と外部導体との間に生じる静電容量を回転軸215の回転角によって制御する。すなわち、ビームの加速に伴い回転軸215の回転角を変化させる。
本実施例の加速器1におけるビーム入射から取り出しまでのビームの挙動について以下説明する。
まず、運転者によって所望のイオン核種と運動エネルギーを全体制御装置40に入力する。指定された核種のイオン源からイオンビームが出力され、ビーム通過領域20にビームが導かれるように、全体制御装置40によってイオン源221,222,223を動作させるとともに振り分け電磁石224の励磁量が設定される。
前述の通り、核種によって入射時の周回周波数が異なるため、入射に適した回転軸215の角度が異なる。そのため、回転角センサ216(図7参照)からの信号に基づき、高周波空胴21の共振周波数が入射時の周回周波数に一致したタイミングでイオン源221,222,223からイオンが出力される。
ビーム通過領域20に入射されたビームは高周波電場による加速を受けながら、そのエネルギーが増大するとともに、軌道の回転半径を増加させていく。
その後ビームは高周波電場による進行方向安定性を確保しながら加速される。すなわち、時間的に高周波電場が減少している時に加速ギャップ213を通過させる。すると、高周波電場の周波数とビームの周回周波数はちょうど整数倍(本実施例では1倍)の比で同期させているため、所定の加速電場の位相で加速された粒子は次のターンも同じ位相で加速を受ける。一方、加速位相より早い位相で加速された粒子は加速位相で加速された粒子よりもその加速量が大きいため、次のターンでは遅れた位相で加速を受ける。また逆に有る時に加速位相より遅い位相で加速された粒子は加速位相で加速された粒子よりもその加速量が小さいため、次のターンでは進んだ位相で加速を受ける。
このように、所定の加速位相からずれたタイミングの粒子は加速位相に戻る方向に動き、この作用によって、運動量と位相からなる位相平面(進行方向)内においても安定に振動することができる。この振動をシンクロトロン振動と呼ぶ。すなわち、加速中の粒子はシンクロトロン振動をしながら、徐々に加速され、取り出される所定のエネルギーまで達する。
所定のエネルギーで取り出すために、目標エネルギーを基に定められた所定の励磁電流がキッカ磁場発生コイルに流される。目標エネルギーまで加速されたビームは、キッカ磁場発生コイルに電流が流されていない場合はその設計軌道に沿って周回するが、キッカ磁場発生コイルに電流が流されている場合はキッカ磁場発生コイル由来の磁場によってビームはキックを受け設計軌道から変位する。
キッカ磁場発生コイルは軌道面から垂直な方向にずれた位置に軌道面に対して対称に設置されている。さらに、ビーム軌道の最も密に集約した点と疎に離散した点を結ぶ直線(対称軸)に対して左右対称の形状である。
キッカ磁場発生コイルを構成する右コイル312と左コイル311は、それぞれ別個のキッカ磁場発生用コイル電源44A,44B(図7参照)に接続されており、互いに逆向きの磁場を生じさせるように電流の向きが制御されている。
右コイル312には主磁場に対して同じ向きの磁場を生じるように電流が流され、左コイル311には主磁場に対して逆向きの磁場を生じるように電流が流されている。右コイル312のことを一般にリジェネレータと呼び、左コイル311のことを一般にピーラとも呼ぶ。
このように、周回中のある位置でビーム動径方向内側のキックをリジェネレータが与え、さらに下流で動径方向外側のキックをピーラが与えるようにすると、チューンが1に近い本実施例の加速器1ではピーラとリジェネレータの中間における動径方向変位が増加する。
ビームは複数ターンに渡って、ピーラとリジェネレータからのキックを受けるため、ビームは集約点の位置における動径方向辺が増大し続ける。ある程度、動径方向変位が増大すると、集約点の外側に設置された取り出し用セプタム電磁石32に入射され、加速器1外に取り出される。
上述のような原理によってビームを加速し、加速器1外に取り出すときの各機器の制御ダイアグラムと運転フローについて以下図7,図8,図9を参照して説明する。図7に本実施例の加速器1の制御ダイアグラムを示す。
ビームを加速するための構成とその制御系としては、図7に示すような、高周波空胴21に付随する回転式可変容量キャパシタ212と、回転式可変容量キャパシタ212の回転軸215に接続されるモータ217、モータ217を制御するモータ制御装置41がある。また、高周波空胴21に高周波電力を入力するための入力カプラ218と、供給する高周波電力を生成する低レベル高周波発生装置42およびアンプ43がある。
回転式可変容量キャパシタ212では、治療計画データベース60によって定められ、全体制御装置40より指示されたモータ制御装置41に制御されることよって、予め定められた回転速度でモータ217が回転することで回転軸215が回転し、回転軸215の回転角が時間的に変化することで容量を時間的に変調させる。
低レベル高周波発生装置42によって発生させた高周波信号をアンプ43によって増幅することで高周波空胴21に入力される高周波電力を作る。低レベル高周波発生装置42において作る高周波信号の周波数と振幅は、治療計画データベース60によって定められており、全体制御装置40より指示される。
ビームを加速器1外に取り出すための構成とその制御系として、図7に示すような、右コイル312に電流を供給するキッカ磁場発生用コイル電源44Aおよび左コイル311に電流を供給するキッカ磁場発生用コイル電源44Bと、このキッカ磁場発生用コイル電源44A,44Bを制御するキッカ磁場発生用コイル電源制御装置45がある。
キッカ磁場発生用コイル電源44A,44Bから右コイル312および左コイル311に出力される電流値はキッカ磁場発生用コイル電源制御装置45によって制御されており、その指定値は取り出しビームの磁気剛性率から一意に定まる値として治療計画データベース60によって定められ、全体制御装置40より指示される。
以上のような加速器1の制御系における、ある磁気剛性率のビームを取り出す際の各機器の動作(運転方法)について図8および図9を用いて説明する。図7は各機器の動作のタイミングチャートである。
図8にはある磁気剛性率の陽子ビームを取り出す際の各機器の動作のタイミングチャートを示し、図9には炭素ビームを取り出す際の各機器の動作のタイミングチャートを示す。
図8および図9では、可変容量キャパシタ212の回転軸の回転角、高周波空胴21の共振周波数、イオン源221,222,223が出力するビーム電流波形、キッカ磁場発生コイルに流れる電流のタイムチャートとともに、加速器1から出力されるビーム電流波形を示している。図8,図9の横軸はすべて時間である。
まず、前述の如く可変容量キャパシタ212の回転軸の回転角によって高周波空胴21の共振周波数が周期的に変化する。それに合わせて低レベル高周波発生装置42から出力される高周波信号の周波数を同期して変化させる。共振周波数が最大となる時刻から次に最大となる時刻までの期間を運転周期と定義する。
核種が陽子の場合、図8に示すように、運転周期の開始直後からイオン源からのビーム出力が始まる。
一方、炭素の場合は、図9に示すように、共振周波数が38.38MHzに低下するタイミングでイオン源からのビーム出力が始まる。
加速を受ける際に、安定なシンクロトロン振動が可能な範囲に入射されたビームは継続して加速を受けるが、シンクロトロン振動が安定しないビームは加速されずに加速器1内部の構造物に衝突して失われる。
共振周波数が低下するにつれてビームは加速されていき、所定の取り出しエネルギー近くまで加速される。所定のエネルギー近くまで加速されたビームは右コイル312および左コイル311からの磁場によるキックを受け、集約点での変位が動径方向外側にずれ始める。さらに加速を受け所定のエネルギーまで到達すると、取り出し用セプタム電磁石32にビームは入り、その後取り出される。
次に、本実施例の効果について説明する。
上述した本発明の実施例1の加速器1は、異なる複数種類のイオンを発生させる複数のイオン源221,222,223と、磁場を発生させる電磁石11と、高周波電場を発生させる高周波空胴21と、を備え、イオンの軌道の中心は加速に伴い偏心しており、電磁石11が発生させる磁場は軌道の動径方向外側に低下する磁場分布であり、高周波空胴21は、入射するイオンの核種に応じた周回周波数に合わせた高周波電場によって所定エネルギーまでイオンを加速するものであり、高周波電場の周波数はイオンのエネルギーに追従して変化させる。
この原理の加速器1は、従来のシンクロトロンと比較して、主磁場を静磁場とすることができ、高磁場化が容易であることからコンパクトな加速器となる。
また、特許文献1に記載の従来のシンクロトロンでは、入射器として線形加速器を用い、線形加速器から低エネルギービーム輸送系を通じてシンクロトロンに入射するスキームでビームを加速している。そのため、核種が変わる際に、イオン源の種類と線形加速器の加速電場、ビーム輸送系の電磁石励磁量、シンクロトロンの磁場と周波数およびその関係などを変更する必要があり、核種の切り替えに数秒かかると考えられる。
一方で、本実施例の加速器1に依れば核種の切り替えでは、例えば、前述のイオン入射経路の電磁石と取り出されるビームの磁気剛性率が必然的に変更されることによるキッカ磁場発生コイルの励磁量およびイオンの入射タイミングのみ変更される。すなわち、電磁石励磁量と動作のタイミングの変更のみで核種が変更できるため、エネルギー変更の為に必要な数百ms程度の時間で核種の変更も可能である。
以上の特性により、高磁場の適用によるコンパクト化と、静磁場の適用による運転周期短縮と、核種変更時間の短縮によって、コンパクトかつ平均ビーム量の大きい加速器1が提供できる。
また、イオン源221,222,223は、電磁石11の外部に配置されるため、ビーム通過領域20にイオン源を複数配置する必要がなく、電磁石11、延いては加速器1をより確実に小型化することができる。
更に、イオンの軌道上に、所定エネルギーのイオンを取り出すための磁場を発生させる右コイル312,左コイル311を更に備えたことで、取り出したい特定エネルギーとなったビームに対して周回軌道面内のベータトロン振動を不安定化させることができるため、任意エネルギーのビームを取り出すことができる。従って、散乱体を用いることなくエネルギー可変ビームを取り出せるので、取り出し時に失われるビーム電流値を最小限に留めることができ、高い照射線量率を実現することができる。また、電気的にビームの取り出しエネルギーを変更できるため、散乱体を機械的に移動する方式よりもエネルギー切替えに要する時間が短い、という利点も有する。
また、イオン源221,222,223と電磁石11との間のビーム入射用貫通口115上に配置された振り分け電磁石224を更に備えたことにより、簡易な構成で高精度にイオンの切り替えが可能となる。
なお、本実施例では、複数種類の核種のイオン種の切り替えを振り分け電磁石224によって行う場合について説明したが、切り替えは電磁石を用いる磁場に限らず、電極を用いる電場によっても切り替えを行うことができる。
<実施例2>
本発明の好適な一実施例である実施例2の粒子線治療システムについて図10を用いて説明する。実施例1と同じ構成には同一の符号を示し、説明は省略する。
実施例2は、実施例1に挙げた加速器1が用いられた粒子線治療システムである。システムの全体構成図を図10に示す。
図10に示すように、粒子線治療システム1000は、患部の体表からの深さによって照射する陽子線、ヘリウム線あるいは炭素線(以下ではまとめてビームと呼ぶ)のエネルギーを適切な値にして患者に照射する装置である。
粒子線治療システム1000は、イオンを加速する加速器1と、加速器1で加速されたビームを後述する照射装置に対して輸送するビーム輸送系2と、ビーム輸送系2によって輸送されたビームを治療台4に固定された患者5内の標的に照射する照射装置3と、加速器1、ビーム輸送系2および照射装置3を制御する全体制御装置40および照射制御装置50と、標的に対するビームの照射計画を作成する治療計画装置70と、この治療計画装置70によって作成された治療計画が記憶された治療計画データベース60と、を備えている。
粒子線治療システム1000では、照射する粒子線のエネルギーと線量が治療計画装置70によって作成され、治療計画データベース60に記憶された治療計画によって定められる。治療計画が定めた、粒子線のエネルギーと照射量を全体制御装置40から照射制御装置50に順次入力し、適切な照射量を照射した時点で次のエネルギーあるいは次の核種に移行して再度粒子線を照射する手順によって実現される。
本発明の実施例2の粒子線治療システムによれば、前述した実施例1の加速器1の特性である、コンパクト性と平均ビーム量の大きさを活かしてコンパクトかつスループットの高いシステムを実現できる。
なお、粒子線治療システム1000のビーム輸送系2は、図10に示すような固定されたものに限られず、回転ガントリと呼ばれる照射装置3ごと患者5の周りを回転可能とした輸送系とすることができる。また、照射装置3は一つに限られず、複数設けることができる。更には、ビーム輸送系2を設けずに、加速器1から照射装置3に対してビームを直接輸送する形態とすることができる。
<その他>
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形例が含まれる。上記の実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
例えば、加速器1で加速する複数種類のイオンとして陽子、ヘリウム、炭素の3つの場合について説明したが、加速されるイオンはこの3種類に限られず、様々な種類のイオンを加速することができる。また、3種類である必要もなく、2つ以上とすることができる。
1…加速器
11…電磁石
111…取り出しビーム用貫通口
112,113…コイル接続用貫通口
114…高周波電力入力用貫通口
115…ビーム入射用貫通口
13…主コイル
121…リターンヨーク
122…天板
123…磁極
130…入射領域
20…ビーム通過領域
21…高周波空胴
211…ディー電極
212…回転式可変容量キャパシタ
213…加速ギャップ
214…接地電極
215…回転軸
216…回転角センサ
217…モータ
218…入力カプラ
221,222,223…イオン源
224…振り分け電磁石
30…トリムコイル
311…左コイル(キッカ磁場発生コイル)
312…右コイル(キッカ磁場発生コイル)
32…取り出し用セプタム電磁石
321…取り出し軌道
40…全体制御装置
41…モータ制御装置
42…低レベル高周波発生装置
43…アンプ
44A,44B…キッカ磁場発生用コイル電源
45…キッカ磁場発生用コイル電源制御装置
50…照射制御装置
60…治療計画データベース
70…治療計画装置
1000…粒子線治療システム

Claims (5)

  1. 加速器であって、
    異なる複数種類のイオンを発生させる複数のイオン源と、
    磁場を発生させる主磁石と、
    高周波電場を発生させる高周波空胴と、を備え、
    前記イオンの軌道の中心は加速に伴い偏心しており、
    前記主磁石が発生させる磁場は前記軌道の動径方向外側に低下する磁場分布であり、
    前記高周波空胴は、入射するイオンの核種に応じた周回周波数に合わせた高周波電場によって所定エネルギーまで前記イオンを加速するものであり、前記高周波電場の周波数はイオンのエネルギーに追従して変化させる
    ことを特徴とする加速器。
  2. 請求項1に記載の加速器において、
    前記イオン源は、前記主磁石の外部に配置される
    ことを特徴とする加速器。
  3. 請求項1に記載の加速器において、
    前記イオンの軌道上に、所定エネルギーのイオンを取り出すための磁場を発生させるコイルを更に備えた
    ことを特徴とする加速器。
  4. 請求項1に記載の加速器において、
    前記イオン源と前記主磁石との間のビーム輸送経路に配置された振り分け電磁石を更に備えた
    ことを特徴とする加速器。
  5. 加速器をビーム源として用いる粒子線治療システムであって、
    請求項1に記載の加速器を、前記ビーム源として用いた
    ことを特徴とする粒子線治療システム。
JP2017222577A 2017-11-20 2017-11-20 加速器および粒子線治療システム Active JP6901381B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017222577A JP6901381B2 (ja) 2017-11-20 2017-11-20 加速器および粒子線治療システム
US16/755,630 US11097126B2 (en) 2017-11-20 2018-10-09 Accelerator and particle therapy system
PCT/JP2018/037622 WO2019097904A1 (ja) 2017-11-20 2018-10-09 加速器および粒子線治療システム
CN201880065145.6A CN111194578B (zh) 2017-11-20 2018-10-09 加速器以及粒子束治疗系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017222577A JP6901381B2 (ja) 2017-11-20 2017-11-20 加速器および粒子線治療システム

Publications (3)

Publication Number Publication Date
JP2019096405A true JP2019096405A (ja) 2019-06-20
JP2019096405A5 JP2019096405A5 (ja) 2020-08-20
JP6901381B2 JP6901381B2 (ja) 2021-07-14

Family

ID=66539743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017222577A Active JP6901381B2 (ja) 2017-11-20 2017-11-20 加速器および粒子線治療システム

Country Status (4)

Country Link
US (1) US11097126B2 (ja)
JP (1) JP6901381B2 (ja)
CN (1) CN111194578B (ja)
WO (1) WO2019097904A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047786A1 (ja) * 2021-09-24 2023-03-30 株式会社日立製作所 円形加速器、粒子線治療システム、およびイオン源

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7378326B2 (ja) * 2020-03-18 2023-11-13 住友重機械工業株式会社 粒子線装置
CN112870560B (zh) * 2021-01-05 2022-09-20 中国科学院上海高等研究院 一种基于射频偏转腔技术的质子束流立体角分配装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302734A (ja) * 2005-06-03 2005-10-27 Hitachi Ltd 医療用加速器施設
JP2015084886A (ja) * 2013-10-29 2015-05-07 株式会社日立製作所 荷電粒子ビームシステム
WO2016092623A1 (ja) * 2014-12-08 2016-06-16 株式会社日立製作所 加速器及び粒子線照射装置
WO2016092621A1 (ja) * 2014-12-08 2016-06-16 株式会社日立製作所 加速器及び粒子線照射装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3896420B2 (ja) * 2005-04-27 2007-03-22 大学共同利用機関法人 高エネルギー加速器研究機構 全種イオン加速器及びその制御方法
CN102172106B (zh) * 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 带电粒子癌症疗法束路径控制方法和装置
WO2009142550A2 (en) * 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8368038B2 (en) * 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
MX2010012716A (es) * 2008-05-22 2011-07-01 Vladimir Yegorovich Balakin Metodo y aparato de rayos x usados en conjunto con un sistema de terapia contra el cancer mediante particulas cargadas.
US8710462B2 (en) * 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US9579525B2 (en) * 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
US8373143B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US8188688B2 (en) * 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US7940894B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US8144832B2 (en) * 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US8481979B2 (en) * 2010-09-09 2013-07-09 Mitsubishi Electric Company Particle beam therapy system with respiratory synchronization control
US8808341B2 (en) * 2010-11-16 2014-08-19 Mitsubishi Electric Corporation Respiratory induction apparatus, respiratory induction program, and particle beam therapy system
US8466441B2 (en) * 2011-02-17 2013-06-18 Mitsubishi Electric Corporation Particle beam therapy system
JP5665721B2 (ja) * 2011-02-28 2015-02-04 三菱電機株式会社 円形加速器および円形加速器の運転方法
WO2012120678A1 (ja) * 2011-03-10 2012-09-13 三菱電機株式会社 粒子線治療装置
JP5597162B2 (ja) * 2011-04-28 2014-10-01 三菱電機株式会社 円形加速器、および円形加速器の運転方法
DE102012004170B4 (de) * 2012-03-05 2013-11-07 Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh Verfahren und Bestrahlungsanlage zur Bestrahlung eines Zielvolumens
US9694207B2 (en) * 2012-08-21 2017-07-04 Mitsubishi Electric Corporation Control device for scanning electromagnet and particle beam therapy apapratus
JP6041975B2 (ja) * 2013-02-28 2016-12-14 三菱電機株式会社 高周波加速器の製造方法、高周波加速器、および円形加速器システム
US9550077B2 (en) * 2013-06-27 2017-01-24 Brookhaven Science Associates, Llc Multi turn beam extraction from synchrotron
JP2015065102A (ja) * 2013-09-26 2015-04-09 株式会社日立製作所 円形加速器
US10624201B2 (en) * 2017-02-01 2020-04-14 Hitachi, Ltd. Circular accelerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005302734A (ja) * 2005-06-03 2005-10-27 Hitachi Ltd 医療用加速器施設
JP2015084886A (ja) * 2013-10-29 2015-05-07 株式会社日立製作所 荷電粒子ビームシステム
WO2016092623A1 (ja) * 2014-12-08 2016-06-16 株式会社日立製作所 加速器及び粒子線照射装置
WO2016092621A1 (ja) * 2014-12-08 2016-06-16 株式会社日立製作所 加速器及び粒子線照射装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023047786A1 (ja) * 2021-09-24 2023-03-30 株式会社日立製作所 円形加速器、粒子線治療システム、およびイオン源

Also Published As

Publication number Publication date
US11097126B2 (en) 2021-08-24
CN111194578A (zh) 2020-05-22
WO2019097904A1 (ja) 2019-05-23
CN111194578B (zh) 2021-11-30
JP6901381B2 (ja) 2021-07-14
US20200330793A1 (en) 2020-10-22

Similar Documents

Publication Publication Date Title
US11849533B2 (en) Circular accelerator, particle therapy system with circular accelerator, and method of operating circular accelerator
CN109923946B (zh) 圆形加速器
WO2020049755A1 (ja) 加速器、およびそれを備えた粒子線治療システム
WO2019097904A1 (ja) 加速器および粒子線治療システム
WO2019097721A1 (ja) 粒子線治療システムおよび加速器、ならびに加速器の運転方法
JP7240262B2 (ja) 加速器、粒子線治療システムおよびイオン取り出し方法
JP6899754B2 (ja) 円形加速器および粒子線治療システム
JP2019096404A (ja) 円形加速器および粒子線治療システム
WO2022168484A1 (ja) 加速器および粒子線治療システム
WO2020044604A1 (ja) 粒子線加速器および粒子線治療システム
JP7359702B2 (ja) 粒子線治療システム、イオンビームの生成方法、および、制御プログラム
JP7319144B2 (ja) 円形加速器および粒子線治療システム、円形加速器の作動方法
JP2022026175A (ja) 加速器および粒子線治療装置
WO2023162640A1 (ja) 加速器および加速器を備える粒子線治療システム
JP6663618B2 (ja) 加速器および粒子線照射装置
JP2024055638A (ja) 円形加速器及び粒子線治療装置、並びに円形加速器の運転方法
JP2024092822A (ja) 加速器及び粒子線治療システム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200702

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210617

R150 Certificate of patent or registration of utility model

Ref document number: 6901381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150