WO2022168484A1 - 加速器および粒子線治療システム - Google Patents

加速器および粒子線治療システム Download PDF

Info

Publication number
WO2022168484A1
WO2022168484A1 PCT/JP2021/047985 JP2021047985W WO2022168484A1 WO 2022168484 A1 WO2022168484 A1 WO 2022168484A1 JP 2021047985 W JP2021047985 W JP 2021047985W WO 2022168484 A1 WO2022168484 A1 WO 2022168484A1
Authority
WO
WIPO (PCT)
Prior art keywords
accelerator
cavity
magnetic field
hole
frequency
Prior art date
Application number
PCT/JP2021/047985
Other languages
English (en)
French (fr)
Inventor
孝道 青木
孝義 関
裕人 中島
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to US18/276,094 priority Critical patent/US20240306286A1/en
Priority to EP21924869.7A priority patent/EP4290984A1/en
Priority to CN202180091992.1A priority patent/CN116803215A/zh
Publication of WO2022168484A1 publication Critical patent/WO2022168484A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/10Accelerators comprising one or more linear accelerating sections and bending magnets or the like to return the charged particles in a trajectory parallel to the first accelerating section, e.g. microtrons or rhodotrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H13/00Magnetic resonance accelerators; Cyclotrons
    • H05H13/02Synchrocyclotrons, i.e. frequency modulated cyclotrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0626Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2277/00Applications of particle accelerators
    • H05H2277/10Medical devices
    • H05H2277/11Radiotherapy

Definitions

  • the present invention relates to an accelerator that accelerates heavy ions such as protons or carbon ions, a particle beam therapy system, and a method of operating the accelerator.
  • High-energy ion beams used in particle beam therapy and physical experiments are generated using accelerators.
  • Particle beam therapy can be classified according to the type of particle beam: proton beam therapy, which irradiates the affected area with proton beams, and heavy ion beam therapy, which irradiates atomic nuclei heavier than protons such as carbon and helium.
  • Proton beam therapy requires a kinetic energy per nucleon of around 230 MeV
  • carbon beam therapy requires a kinetic energy per nucleon of around 430 MeV.
  • accelerators There are several types of accelerators that can produce these beams. For example, a cyclotron, a synchrotron, a synchrocyclotron as described in Patent Document 1, and a variable energy accelerator as described in Patent Document 2 are known.
  • a feature of cyclotrons and synchrocyclotrons is that a beam circulating in a static magnetic field is accelerated by a high-frequency electric field. It is taken out after Therefore, the energy of the extracted beam is basically fixed.
  • the synchrotron orbits the beam in a certain orbit by changing the frequency of the magnetic field of the electromagnet that deflects the beam and the frequency of the high-frequency electric field that accelerates it over time. Therefore, the beam can be extracted before reaching the design maximum energy, and the extraction energy can be controlled.
  • a pair of ferromagnetic poles having a substantially circular cross section with a radius R are arranged vertically with the median plane interposed therebetween with their central axes aligned.
  • a pair of poles are separated by a gap that defines a cavity having a substantially symmetrical profile with respect to the median plane.
  • the height of the gap varies in the radial direction of the pole.
  • the height of the gap is H center at the center axis, and in the circular portion from the center axis to radius R2, the height gradually increases from H center as the radius increases, reaching a maximum value H max at radius R2.
  • the annular portion larger than the radius R2 gradually decreases in gap height as the radius increases, and the gap height at the edge of the pole is He edge .
  • a synchrocyclotron with such a gap-shaped cavity can minimize the size of the synchrocyclotron while minimizing the magnetic field in the gap.
  • Patent Document 2 discloses a variable energy accelerator capable of emitting ion beams with different energies.
  • This accelerator has an electromagnet that forms a cavity (space) with a circular circumference around which an ion beam circulates.
  • the ion source irradiates an ion beam at a predetermined position near the outer circumference of the circular cavity, which is largely displaced in the radial direction from the central axis of the circular cavity.
  • the incident ion beam is irradiated with a high frequency wave and circulates in the cavity while being accelerated.
  • the magnetic field distribution of the main magnetic field of the electromagnet is designed so that the slow ion beam orbits in an orbit with a small orbital radius, and the orbital radius gradually increases as it is accelerated.
  • the main magnetic field distribution of the electromagnet is designed so that the center of the orbit gradually moves toward the central axis of the circular cavity as the orbital radius increases. This allows all trajectories to pass densely through a narrow region between the ion incidence position and the outer periphery of the cavity, as disclosed in FIG. Therefore, by arranging the magnetic field generator on the outermost periphery of the cavity, it is possible to apply a force in the direction in which the ions circulating in the orbit deviate from the orbit not only on the outermost periphery but also on one or more orbits inside the outermost periphery. can. As a result, the ion beam is caused to fluctuate in the direction away from the circular trajectory, placed on an extraction trajectory to be emitted out of the cavity, and can be emitted to the outside of the accelerator.
  • the accelerator of Patent Document 2 can emit not only the ion beam with the energy of the outermost orbit but also the ion beam with the energy of a plurality of orbits inside it, so that the energy of the emitted ion beam can be changed.
  • the synchrocyclotron described in Patent Document 1 is a type of accelerator that accelerates a beam circulating in a main magnetic field with a high-frequency electric field.
  • Such a synchrocyclotron has a characteristic that the circulating frequency of the beam decreases as the energy of the beam increases, and it is necessary to modulate the frequency of the high-frequency electric field in tune with the circulating frequency of the beam. Therefore, one operation cycle is from the injection of the low-energy beam, the acceleration and extraction, and the injection of the beam again.
  • the operating period of the synchrocyclotron is determined by the sweep speed of the resonance frequency of the cavity that excites the high-frequency electric field, and is generally about several milliseconds. The entire amount of the circulating beam is taken out once every several milliseconds operation period. Also, the energy of the extracted beam is essentially fixed.
  • the synchrocyclotron extracts the entire amount of the beam in each operation cycle, in a particle beam therapy system using a synchrocyclotron, the beam amount that can be accelerated and extracted within one operation cycle of the synchrocyclotron must be adjusted to the allowable dose range. It should be set small enough. Therefore, the amount of charge accelerated in one operation cycle must be made smaller than the upper limit determined by the performance of the accelerator, and there is a problem that it takes time to complete irradiation.
  • cyclotrons require isochronous magnetic field excitation in order to keep the circulating frequency of the beam constant regardless of energy. is difficult to accelerate.
  • cyclotrons do not allow energy changes in the extracted beam.
  • the synchrotron has the problem that the energy of the extraction beam is variable, but the circumference of the orbit is as large as 50 m or more at present.
  • the accelerator of Patent Document 2 can emit an ion beam with energy of one or more trajectories not only on the outermost periphery but also on the inner side of the outermost periphery, but a region with dense trajectories is formed on the outer periphery of the cavity. Therefore, the position where the ion beam is incident from the ion source is close to the outer periphery of the cavity.
  • the ion source is mounted on the upper surface of the electromagnet, and the magnetic poles of the electromagnet are provided with beam-incidence through holes 115. It passes through hole 115 and enters the cavity.
  • the beam-incidence through-hole 115 is provided so as to penetrate through a position near the outer periphery of the cavity, ie, a position near the outer periphery of the magnetic pole, and is arranged to traverse the magnetic lines of force passing through the magnetic pole. Therefore, the ion beam traveling inside the beam-incidence through-hole 115 is applied with a magnetic field of the magnetic lines of force in the magnetic poles, and the Lorentz force is generated to drift.
  • a pair of electrodes are arranged near the beam incidence through hole 115, an electric field is applied to the ion beam, and the Lorentz force and the force received from the electric field are balanced, so that the ion beam is incident on the beam.
  • the accelerator of the present invention includes a pair of magnetic poles facing each other across an orbital plane for circulating an ion beam, and an electromagnet that forms a main magnetic field that generates a plurality of orbits in the orbital plane. is inserted into an ion injection through hole formed in the magnetic poles for introducing an ion beam from the outside into a predetermined incident position on the orbital plane, and a cavity formed between a pair of magnetic poles, and circulates on the orbital plane.
  • a magnetic field is applied to a high-frequency acceleration cavity that generates a high-frequency wave that accelerates an ion beam, and to the moving ion beam on one or more orbits on the outermost periphery and inside the outermost periphery, which are arranged on the outer periphery of the cavity. It has an additional magnetic field generator that deviates from the circular orbit and an extraction channel that guides the ion beam deviated from the circular orbit to the outside of the cavity. As the ion beam is accelerated, the radius of the circular trajectory gradually increases, and the center of the trajectory moves along the predetermined radial direction of the cavity in a direction approaching the periphery, and then reverses the direction of movement.
  • the intensity distribution in the trajectory plane of the main magnetic field is designed to move further towards the center of the cavity.
  • the present invention it is possible to increase the beam irradiation dose from a compact accelerator that can change the energy of the extracted beam, and improve the dose rate in the particle beam therapy system.
  • FIG. 2 is a vertical cross-sectional view of the accelerator of the first embodiment
  • 1 is a cross-sectional view of the accelerator of the first embodiment
  • FIG. FIG. 4 is a diagram showing a beam orbit and isometric phase lines in the accelerator of the first embodiment of the present invention
  • FIG. 2 is a diagram for explaining a representative orbit and the moving direction of the center in the accelerator of the first embodiment of the present invention
  • FIG. 2 is a control block diagram of the accelerator of the first embodiment of the present invention
  • FIG. 4 is a diagram showing beam orbital energy dependence of main magnetic field intensity in the accelerator of the first embodiment of the present invention.
  • FIG. 3 is a diagram showing beam orbital energy dependence of beam orbital frequency in the accelerator of the first embodiment of the present invention.
  • 4 is a timing chart of operation in the accelerator of the first embodiment of the present invention; 4 is a flow chart of operation control in the accelerator of the first embodiment of the present invention; The block diagram of the particle beam therapy system of the 2nd Embodiment of this invention.
  • FIG. 4 is a vertical cross-sectional view of an accelerator of a comparative example; The figure which shows the loop orbit and the constant loop phase line of the beam in the accelerator of a comparative example. The figure explaining the movement direction of the representative orbit and the center in the accelerator of a comparative example.
  • FIG. 1 shows the appearance of the accelerator 1 in FIG. 1, its longitudinal section is shown in FIG. 2, and its transverse section is shown in FIG. In addition, in FIG. 3, hatching is attached also to the part which is not a cross section in order to facilitate understanding of the internal structure.
  • FIG. 4 shows the orbit and isometric phase lines of the accelerator 1
  • FIG. 5 shows the movement of the center of a representative orbit.
  • FIG. 6 shows the accelerator control system
  • FIG. 7 shows the main magnetic field intensity for each orbital energy.
  • the accelerator of this embodiment is, for example, a frequency modulated variable energy accelerator that accelerates carbon ions up to 435 MeV/u.
  • This accelerator includes an electromagnet 11, as shown in FIGS.
  • the electromagnet 11 has a pair of magnetic poles 123a and 123b arranged opposite to each other with an orbital surface 20a around which the ion beam circulates. As a result, a main magnetic field is formed that causes a plurality of circular orbits (FIGS. 4 and 5) on the orbital surface 20a.
  • beam incident through holes 115 are formed in the magnetic poles 123a and 123b.
  • the beam incident through hole 115 introduces the ion beam 25 from the outside to a predetermined incident position 130 on the track surface 20a.
  • a cavity (air gap) 11a having a predetermined shape is formed between a pair of magnetic poles 123a and 123b so as to sandwich the raceway surface 20a, and a high-frequency acceleration cavity 21 is inserted into the cavity 11a. It is The high-frequency acceleration cavity 21 generates a high-frequency wave that accelerates the ion beam circulating on the orbital surface 20a.
  • An additional magnetic field generating section (additional magnetic field generating coil) is arranged on the outer circumference of the cavity 11a to apply a magnetic field to the ion beam on one or more circular orbits on the outermost circumference and inside the outermost circumference to deviate from the circular orbit. It is Further, an extraction channel 312 is arranged on the outer circumference of the cavity 11a to guide the ion beam deviated from the circular orbit to the outside of the cavity 11a.
  • the intensity distribution in the orbital plane of the main magnetic field formed by the electromagnet 11 is designed so that the circular orbits (representative circular orbits O1 to O12) are arranged as shown in FIGS. That is, the main magnetic field strength distribution is designed so that the magnitude magnetic field (B) shown in FIG. 7 is applied to the position of the orbit according to the energy of the orbit.
  • the radius of the orbit gradually increases, and the center ( C1 to C12) move toward the periphery along the predetermined radial direction Rp of the cavity 11a, then reverse the direction of movement and move further toward the center of the cavity 11a.
  • the orbits (O1 to O4) whose radii reach a predetermined first radius move in a direction in which their centers (C1 to C4) approach the periphery of the cavity 11a in order, After reaching the first radius, the centers (C5 to C12) of the circular orbits (O5 to O12) sequentially move toward the center 20c of the orbital surface 20a.
  • the ion beam incidence position 130 can be arranged close to the center 20c of the cavity 11a, and the beam incidence through hole 115 can also be arranged close to the central axis 20e of the magnetic pole 123a.
  • the magnetic lines of force 90 in the magnetic pole 123a are inclined with respect to the central axis of the beam incidence through hole 115.
  • the magnetic field component perpendicular to the traveling direction (central axis) of the ion beam is reduced more than in the comparative example of FIG. be able to.
  • the Lorentz force applied to the ion beam 25 from the magnetic field 90a in the beam injection through hole 115 can be reduced more than the comparative example shown in FIG.
  • the electric field applied to 25 can be reduced. Therefore, an electric field sufficient to cause the ion beam 25 to travel straight can be easily applied, and the efficiency of incidence of the ion beam 25 on the incident position 130 can be increased, resulting in an improvement in the dose rate of the ion beam emitted from the accelerator. can be made
  • the ion beam moving on one or more orbits inside the outermost circumference and inside the outermost circumference.
  • the direction of movement can be deviated from the orbit and extracted from the extraction channel 312 out of the cavity 11a.
  • the distance between the central axis of the beam incidence through hole 115 and the center of the cavity 11a is preferably within 50% of the length of the radius of the cavity 11a.
  • a shim 250 such as an iron piece is arranged on the magnetic pole surface 124a at a position adjacent to the beam incident through hole 115 between the beam incident through hole 115 and the center of the magnetic pole 123a of the magnetic pole 123a. good too.
  • the magnetic field gradient increases in the region where the shim 250 is arranged. You can move it closer.
  • it is desirable that the magnetic field gradient at each position along the radial direction Rp between the beam entrance through-hole 115 and the center of the magnetic pole 123a is the largest at the position where the shim 250 is arranged. .
  • the beam incidence through-hole 115 and the shim 250 are desirably provided at symmetrical positions with respect to the track surface 20a between the opposing magnetic poles 123a and 123b.
  • the distance between the pair of shims 250 is a pair of positions 251 adjacent to the ion injection through hole along a predetermined radial direction between the beam injection through hole 115 and the outer circumference of the magnetic pole face 124a. is preferably less than the distance between the pole faces 124a, 124b or the distance of the shims placed at the positions 124a, 124b.
  • the magnetic field gradient at each position along the radial direction between the beam incidence through-hole 115 and the outer periphery of the cavity 11a is the largest in the concentrated region 241 at the peripheral edge of the cavity 11a.
  • the orbits can be densely arranged in the concentrated area 241 of the peripheral edge of the cavity 11a.
  • an ion source 12 is installed that causes an ion beam to enter the beam-injection through-hole 115.
  • the extraction channel 312 is preferably arranged on the outer circumference of the cavity 11a in the predetermined radial direction Rp.
  • a plurality of ring-shaped trim coils 33 are preferably provided on the magnetic pole faces 124a and 124b.
  • the trim coils 33 have radii corresponding to a plurality of circling orbits of the raceway surface 20a, and are provided on the magnetic pole surfaces 124a and 124b at positions corresponding to the circulating orbits.
  • the high frequency acceleration cavity 21 includes a dee electrode 221 .
  • the edge of the Dee electrode 221 is arranged across the cavity 11a parallel to the track surface 20a.
  • the shape of the Dee electrode 221 is a W shape centered on the incident position 130 .
  • the accelerator 1 of this embodiment will be described in detail below.
  • the accelerator 1 has an electromagnet 11 that can be split into upper and lower parts with a split connecting surface 12a as a boundary.
  • the electromagnet 11 includes a cylindrical upper magnetic pole 123a and a lower magnetic pole 123b arranged opposite to each other across the split connection surface 12a, cylindrical return yokes 121a and 121b respectively arranged on the outer peripheries thereof, It has a disc-shaped upper top plate 122a and a lower top plate 122b.
  • the disc-shaped upper top plate 122a is arranged so as to cover and connect the upper end surface of the upper magnetic pole 123a and the upper end surface of the return yoke 121a.
  • the lower top plate 122b is arranged to cover and connect the lower end surface of the lower magnetic pole 123b and the lower end surface of the return yoke 121b.
  • the magnetic pole 123a, the return yoke 121a and the top plate 122a, and the magnetic pole 123b, the return yoke 121b and the top plate 122b are formed integrally.
  • An annular coil 13 is arranged in each of the recess formed between the magnetic pole 123a and the return yoke 121a and the recess formed between the magnetic pole 123b and the return yoke 121b. The coil 13 is wound along the outer peripheral wall of the magnetic pole 123 .
  • the mutually facing surfaces of the upper magnetic pole 123a and the lower magnetic pole 123b of the electromagnet 11 are defined as magnetic pole surfaces 124a and 124b.
  • a main magnetic field 110 is formed in the vertical direction by applying current to the coil 13 in the cavity 11a (air gap) sandwiched between the magnetic pole faces 124a and 124b.
  • the magnetic pole faces 124a and 124b have concave curved shapes symmetrical with respect to the split connection face 12a. It's getting smaller.
  • a plane equidistant from the magnetic pole faces 124a and 124b in the cavity 11a is the beam track surface 20a, and the beam passage area 20 is a disc-shaped area with a predetermined thickness centered on the track surface 20a.
  • the beam passage area 20 is an area through which the beam that is accelerating and circulating inside the cavity 11a passes.
  • the intensity distribution of the magnetic field formed in the beam passing region 20 is designed to be gradient according to the energy of the circular orbit at that position.
  • the gradient of the magnetic field will be explained later in detail.
  • the inside of the cavity 11a of the electromagnet 11 is evacuated by a vacuum pump (not shown).
  • the electromagnet 11 is provided with a plurality of through holes that connect the outside and the beam passage area 20 .
  • Through holes are provided on the upper and lower split connection surfaces 11b.
  • a high frequency acceleration cavity (acceleration electrode) 21 is inserted into the electromagnet 11 through the high frequency power input through hole 114 .
  • the high frequency acceleration cavity 21 forms an acceleration electric field E for accelerating the ions in the cavity 11a into an ion beam.
  • the high-frequency acceleration cavity 21 includes an acceleration dee electrode 221 (see FIG. 3) and a rotary variable capacitor (modulator) 212 for modulating the frequency of the acceleration electric field, as will be described later.
  • an ion source 12 for supplying ions for example, carbon ions
  • ions for example, carbon ions
  • the top plate 122a and the magnetic pole 123a are provided with a beam incidence through hole 115 (see FIG. 1).
  • the ion beam 25 emitted from the ion source 12 passes through the beam incidence through hole 115 and enters the cavity 11 a from the incidence position 130 .
  • the coil 13 is generated, and a magnetic line of force 90 that draws a closed loop through the magnetic pole 123a, the return yoke 121a and the top plate 122a passes across the beam incidence through hole 115 as shown in FIG. Since the ions emitted from the ion source 12 have an energy of about 100 KeV, they are subjected to the Lorentz force from the magnetic field 90a on the path in the beam incidence through-hole 115 from the ion source 12 to the incident position 130. The traveling direction is deflected, and drift motion is performed so as to wind around the magnetic lines of force 90 .
  • a pair of electrodes 91 are arranged in the vicinity of the beam incidence through-hole 115 so as to sandwich the beam incidence through-hole 115 in order to give the ions a force to cancel the Lorentz force.
  • a pair of electrodes 91 apply an electric field to the ion beam 25 to generate a force that balances the Lorentz force that the ion beam 25 receives from the magnetic field 90a.
  • the direction of the electric field applied by the electrode 91 is the direction of the arrow 91a in FIG. 2, only one of the pair of electrodes 91 is shown. Electric power applied to the pair of electrodes 91 is supplied from the outside through the beam incidence through hole 115 .
  • the ion beam 25 traveling through the beam-injection through-hole 115 travels straight through the beam-injection through-hole 115 due to the balance between the force received from the electric field generated by the pair of electrodes 91 and the Lorentz force received from the magnetic field 90a. An incident position 130 in cavity 11a can be reached.
  • a deflector is arranged in the vicinity of the incident position 130 of the beam incident through hole 115, and a deflector is disposed in the beam incident through hole 115 in a direction perpendicular to the track surface 20a.
  • the traveling direction of the ion beam 25 that has reached the incident position 130 is deflected in a direction parallel to the orbital surface 20a.
  • the ions circulate on the orbital plane 20a.
  • a portion fixedly arranged particularly within the cavity 11a is defined as a Dee electrode 221.
  • the Dee electrodes 221 are a pair of plate-like electrodes that cover a partial area of the beam passing area 20 from above and below.
  • a side edge 221a of the Dee electrode 221 crossing the beam passing region 20 in the in-plane direction is formed in a W shape with a vertex near the incident position 130, as shown in FIG.
  • the peripheral portion of the Dee electrode 221 has an arc shape along the outer periphery of the cavity 11a while enclosing the outermost track.
  • a portion of the high-frequency acceleration cavity 21 other than the dee electrode 22 extends from the arc-shaped peripheral edge portion of the dee electrode 22 through the high-frequency power input through-hole 114 to the outside of the electromagnet 11 .
  • a rotary variable capacitor (modulation unit) 212 is attached to the high-frequency acceleration cavity 21 drawn out of the electromagnet 11, as shown in FIG.
  • the rotary variable capacitor 212 has a rotating shaft 213 to which a servomotor 214 (see FIG. 6) is connected.
  • the servomotor 214 rotationally drives the rotary shaft 213, and the rotation angle of the rotary shaft 213 changes with time, so that the capacitance of the high-frequency acceleration cavity 21 is modulated with time.
  • the resonant frequency of the fundamental mode changes. Thereby, the frequency of the high-frequency electric field for acceleration generated by the high-frequency acceleration cavity 21 can be changed.
  • the high frequency acceleration cavity 21 is also provided with an input coupler 211 for inputting high frequency power.
  • a W-shaped linear ground electrode 222 is arranged on the end face of the W-shaped edge 221a of the Dee electrode 221 so as to face the end face with a predetermined gap.
  • a region sandwiched between the dee electrode 221 and the ground electrode 222 is an acceleration gap 223 .
  • the high-frequency acceleration cavity 21 excites an acceleration high-frequency electric field for accelerating ions in the acceleration gap 223 in a ⁇ /4 type resonance mode. Ions incident from the incident position 130 are accelerated by the high-frequency electric field generated in the acceleration gap 223 by passing near the acceleration gap 223 while circulating within the orbital plane 20 a of the beam passage region 20 .
  • the frequency of the high-frequency electric field that the high-frequency acceleration cavity 21 excites in the acceleration gap 223 is set to be an integral multiple of the circulating frequency of the beam in order to synchronize it with the circulating frequency of the beam.
  • the servomotor 214 is controlled by the motor control device 41 (see FIG. 6) to adjust the rotational speed of the rotating shaft 213 .
  • the frequency of the high-frequency electric field in the acceleration gap 223 is controlled to be one times the circulating frequency of the beam.
  • Magnetic pole surfaces 124a and 124b of the magnetic poles 123a and 123b are provided with a plurality of systems of annular trim coils 33 for finely adjusting the distribution of the main magnetic field 110 on the track surface 20a.
  • the trim coils 33 have radii corresponding to a plurality of circling orbits of the raceway surface 20a, and are provided on the magnetic pole surfaces 124a and 124b at positions corresponding to the circulating orbits.
  • the center of the trim coil 33 with the largest diameter is arranged so as to coincide with the center 20 c of the electromagnet 11 .
  • the center of the trim coil 33 with the smallest diameter is arranged so as to coincide with the incident position 130 . That is, the center of the trim coil 33 with a small diameter is eccentric with respect to the centers of the magnetic poles 123a and 123b.
  • the diameter size and center position of the trim coil 33 correspond to the diameter and center position of the ion beam trajectory.
  • the trim coils 33 are connected to an external power supply through the through-holes 112 and the like, and the exciting current supplied to the trim coils 33 of each system is individually adjusted before operation.
  • the magnetic field from the trim coil 33 is superimposed on the main magnetic field 110 applied to the track surface 20a from the magnetic poles 123a and 123b, and the distribution of the main magnetic field 110 on the track surface 20a approaches a desired distribution.
  • stable betatron oscillation can be realized, and the center of the ion trajectory can be moved in a desired moving direction as the ion beam is accelerated.
  • the moving direction of the center of the trajectory of ions will be described later in detail.
  • a pair of additional magnetic field generating shims for exciting a quadrupole magnetic field or a multipolar magnetic field of six or more poles in order to extract the beam accelerated in the accelerator 1 to the outside.
  • 311 and a disturbance electrode (disturbance section) 313 for applying a disturbance high-frequency electric field to the beam are provided on parts of the pole faces 124a and 124b in a state electrically insulated from the pole faces 124a and 124b. is set up. Also, at one of the ends of the pole face 124, the entrance portion of the extraction channel 312 is located.
  • the disturbing electrode 313 applies a small amplitude radio-frequency (RF) electric field to the beam as a disturbing radio-frequency electric field to increase the betatron oscillation amplitude of the particles in the orbiting beam so that the additional magnetic field generating shim 311 It passes through the region under the action of the exciting kick field.
  • the kick field of the additional field generating shim 311 kicks the beam out of the designed trajectory and forces the particles out of the designed trajectory.
  • the beam reaches a region shielded from the main magnetic field 110 formed by the extraction channel 312 , travels on the extraction track 322 , and is extracted to the outside from the extraction beam through-hole 111 of the accelerator 1 .
  • the kick magnetic field excited by the additional magnetic field generating shim 311 functions to restrict the stable region of the ion beam circulating in the beam passing region 20 and introduce particles outside the stable region into the extraction channel 312 .
  • a pair of additional magnetic field generating shims 311 are provided, each of which is configured to superimpose magnetic fields of opposite polarities on the main magnetic field 110 formed by the magnetic poles 123 .
  • the upper and lower magnetic poles 123a and 123b, the coil 13, the trim coil 33, the additional magnetic field generating shim 311, the take-out channel 312, the disturbance electrode, and the magnetic field 110 are arranged so that the in-plane component of the main magnetic field 110 is approximately 0 on the orbital plane.
  • the shape and arrangement of 313 are designed so that the arrangement and current distribution are symmetrical with respect to the raceway surface 20a.
  • the shape of the magnetic pole 123, the dee electrode 221, the coil 13, the trim coil 33, and the disturbance electrode 313 is, as shown in FIG. The shape is symmetrical with respect to the line segment 11c connecting the center portions of the holes 112 .
  • a rotary shaft 213 of the rotary variable capacitor 212 of the high-frequency acceleration cavity 21 is connected to a servomotor 214 for rotationally driving the rotary shaft 213 .
  • a motor control device 41 is connected to the servo motor 214 .
  • An input coupler 211 of the high frequency acceleration cavity 21 is connected to a low level high frequency generator 42 for generating high frequency power and an amplifier 43 .
  • a high-frequency power source 46 is connected to the disturbance electrode 313, and a high-frequency disturbance control device 47 is connected to the high-frequency power source 46 for control.
  • a general control unit 40 is connected to the low-level high-frequency generator, the motor control unit 41 and the disturbance high-frequency control unit 47 to control them.
  • a voltage amplitude calculator 45 and a treatment plan database 60 are connected to the general controller 40 .
  • the treatment plan database 60 stores a plurality of irradiation positions and the energy and dose of particle beams to be irradiated for each irradiation position.
  • the general controller 40 controls the output of the low-level high-frequency generator 42 so that a high-frequency electric field with a predetermined amplitude is excited in the acceleration gap 223 .
  • Ions from the ion source 12 are injected into the beam injection through hole 115 in the accelerator 1 .
  • the ions receive Lorentz force from the magnetic field 90a of the magnetic lines of force 90 crossing the beam injection through-hole 115, and drift. , and near the orbital plane 20a, the movement direction of the beam is deflected parallel to the orbital plane 20a by a deflector (not shown).
  • the magnitude of the electric field so as to balance the force that the ion beam receives from the magnetic field and the force from the electric field within the beam injection through-hole 115 . Therefore, the smaller the magnetic field perpendicular to the direction of beam movement, that is, the magnetic field parallel to the orbital plane 20a, the smaller the electric field required, the easier it is to control the beam trajectory and size, and the higher the injection efficiency.
  • the injection position 130 is arranged closer to the center 20c of the magnetic poles 123a and 123b than in the variable energy accelerator of the comparative example (conventional structure) shown in FIG.
  • the horizontal magnetic field applied onto the incident beam path of the beam incident through-hole 115 extending directly above can be sufficiently reduced to a magnitude that can be controlled by the electric field.
  • the amount of incident beam is increased, and the amount of charge that can be accelerated and irradiated in one operation cycle can be increased.
  • the beam is accelerated each time it passes through the acceleration gap 223 while circling around the incident position 130 in the beam passing region 20 .
  • the kinetic energy of the beam that can be extracted in the accelerator 1 of the present embodiment is, for example, a minimum of 140 MeV/u and a maximum of 430 MeV/u. The higher the kinetic energy, the smaller the circulating frequency of the beam. The relationship between these energies and the circulating frequency is as shown in FIG.
  • the main magnetic field 110 formed by the electromagnets 11 and the trim coils 33 in the accelerator 1 has a uniform distribution along the beam trajectory, and the magnetic field decreases as the energy increases (see FIG. 7). make. That is, a magnetic field is formed such that the radially outer magnetic field is reduced.
  • FIG. 7 shows the values of the main magnetic field 110 in beams of each energy.
  • the main magnetic field 110 has a maximum of 4.63 T at the incident position 130 and decreases to 4.45 T at the outermost circumference.
  • the distribution of the main magnetic field 110 described above is such that the magnetic poles 123a and 123b are magnetized by passing a predetermined excitation current through the coil 13 of the electromagnet 11 and the trim coil 33 that assists it. is excited as a superposition of the magnetic fields of
  • the distance between the magnetic pole faces 124a and 124b of the magnetic poles 123a and 123b (gap, ie, the height of the cavity 11a) is , the shape of the magnetic pole faces 124a and 124b and the shim 250 are determined so that they are widest at the center of the cavity 11a and become smaller toward the outer periphery.
  • the shape of the magnetic pole face 124 is symmetrical with respect to a plane (orbital plane) passing through the center of the gap, and has only a magnetic field component in the direction perpendicular to the orbital plane on the orbital plane. Furthermore, the fine adjustment of the magnetic field distribution is performed by adjusting the current applied to the trim coils 33 installed on the magnetic pole faces, thereby exciting the predetermined main magnetic field 110 distribution.
  • each energy is shown in Fig. 4.
  • the circular orbit has a circular orbit with a radius of 1.5 m corresponding to the orbit with the maximum energy of 435 MeV on the outermost side, and from there, there are a total of 51 circular orbits divided by 51 by magnetic rigidity up to 0 MeV. exists.
  • a dotted line is a line connecting the same orbital phases of each orbit, and is called an isometric phase line.
  • Rp radial direction
  • locations where trajectories with different kinetic energies are close to each other regions where orbits are aggregated: aggregated regions 240 and 241) and regions where they are distant from each other (regions where orbits are discrete: discrete regions) 242, 243) are formed. That is, the design trajectory of the beam is eccentric.
  • the accelerator 1 there are two aggregated regions 240 and 241 where the design trajectories are aggregated.
  • the line segments are orthogonal to all design trajectories.
  • the line segment that connects the points of the design trajectories that are the farthest from each other is a line segment that is orthogonal to all of the design trajectories.
  • a predetermined magnetic field distribution is formed by arranging iron shims 250 or the like on the magnetic poles 123a and 123b accordingly. ing.
  • the magnetic field gradient is maximized at the convergence point on the low energy side. Therefore, as shown in FIG. 2, a shim 250 is arranged at the edge of the beam incidence through hole 115 .
  • illustration of the shims arranged in the aggregated area 241 is omitted.
  • the isometric phase lines shown in FIG. 4 are plotted for each cyclic phase ⁇ /20 from the aggregated region.
  • An acceleration gap 223 formed between the Dee electrode 221 and the ground electrode 222 facing the Dee electrode 221 is set along an equicircular phase line 244 that rotates ⁇ 90 degrees when viewed from the consolidation point. Since the constant cycle phase line 244 has a W shape centered on the incident position 130 as shown in FIG. Moreover, it has a W shape along the shape of the isometric phase line 244 .
  • the high frequency acceleration cavity 21 excites a high frequency electric field in the acceleration gap 223 .
  • the RF acceleration cavity 21 is connected to the low-level RF generator 42 and the amplifier 43 through the input coupler 211 (see FIG. 1), as shown in FIG. High-frequency power generated by a low-level high-frequency generator 42 and amplified by an amplifier 43 is introduced into the high-frequency acceleration cavity 21 , thereby forming an acceleration gap 223 between the dee electrode 221 and the ground electrode 222 of the high-frequency acceleration cavity 21 .
  • the electromagnetic field excited by the Dee electrode 221 is an electromagnetic field with a specific resonance frequency and spatial distribution determined by the electrode shape and the capacitance of the rotary variable capacitor 212 .
  • an electric field in the same direction is generated from the dee electrode 221 to the ground electrode 222 throughout the acceleration gap 223 at a certain time, and the beam makes a half turn to pass through the acceleration gap on the opposite side.
  • an electric field is generated in the opposite direction to the previous direction.
  • the electric field exerts a force in the direction of acceleration, and the beam energy can be increased while circling.
  • a high-frequency electric field is excited in synchronism with the orbiting of the beam. Therefore, the frequency of the electric field is modulated according to the energy of the orbiting beam as shown in the graph of FIG. It gradually accelerates to energy (Fig. 8).
  • the high-frequency acceleration cavity 21 using the resonance mode it is necessary to sweep the high-frequency frequency over a wider range than the resonance width. Therefore, it is necessary to change the resonance frequency of the high-frequency acceleration cavity 21 as well.
  • the control is performed by changing the capacitance of a rotary variable capacitor 212 installed at the end of the high frequency acceleration cavity 21 .
  • a conductor plate is connected to the rotary shaft 213 of the rotary variable capacitor 212 , and by rotating the rotary shaft 213 , the electrostatic capacitance generated between the conductor plate and the external conductor is controlled by the rotation angle of the rotary shaft 213 .
  • low-energy ions are output from the ion source 12 and guided to the beam passing region 20 via the beam incidence through hole 115 and the incidence position 130 .
  • the ions When entering the beam injection through-hole 115 from the ion source 12 , the ions undergo drift motion due to the Lorentz force from the magnetic field 90 a of the magnetic lines of force 90 crossing the beam injection through-hole 115 .
  • the beam reaches the vicinity of the incident position 130 from a direction substantially perpendicular to the orbital plane 20a, and near the orbital plane 20a, the movement direction of the beam is made parallel to the orbital plane 20a by a deflector (not shown). biased towards
  • the beam incidence through hole 115 and the incidence position 130 are brought closer to the center 20c of the magnetic poles 123a and 123b than the variable energy accelerator of the comparative example (conventional structure) shown in FIGS. , so that the component of the magnetic field 90a orthogonal to the incident beam path can be reduced. Therefore, the electric field of the electrode 91 that gives a kick that balances the Lorentz force can be made smaller than in the comparative example of FIG. As a result, the amount of incident beam that can be incident on the incident position 130 is increased compared to the comparative example of FIG. 12, and the amount of charge that can be accelerated and irradiated in one operation cycle can be increased.
  • the beam that has entered the beam passage area 20 is accelerated by a high-frequency electric field each time it passes through the acceleration gap 223, increasing its energy and increasing the radius of rotation of its trajectory.
  • the beam is then accelerated to the desired energy while ensuring directional stability due to the high frequency electric field.
  • the frequency of the high-frequency electric field excited in the acceleration gap 223 is set so as to be synchronized at a ratio that is an integral multiple of the circulating frequency of the beam.
  • the particles do not pass through the acceleration gap 223 at the time when the high-frequency electric field is maximum, but at a predetermined phase in which the high-frequency electric field decreases temporally. set to Therefore, the particles accelerated through the acceleration gap 223 with a predetermined phase of the high-frequency electric field are accelerated through the acceleration gap 223 with substantially the same phase in the next turn.
  • the particles accelerated through the acceleration gap 223 at a phase earlier than the predetermined phase of the high-frequency electric field have a greater amount of acceleration than the particles accelerated through the acceleration gap 223 at the predetermined phase. Therefore, in the next turn, the vehicle passes through the acceleration gap 223 with a phase delayed from that of the previous turn and is accelerated. Conversely, particles accelerated through the acceleration gap 223 with a phase later than the predetermined phase have a smaller acceleration amount than particles accelerated through the acceleration gap 223 with the predetermined phase. In a turn, the vehicle passes through the acceleration gap in phase ahead of the previous turn and receives acceleration. In this way, the particles passing through the acceleration gap 223 at timings that deviate from the predetermined phase are restored to the predetermined phase.
  • synchrotron oscillation That is, the accelerating particles are gradually accelerated while undergoing synchrotron oscillation and reach a predetermined energy.
  • stable synchrotron oscillation individual particles rotate on the phase plane within a stable region called a high-frequency bucket.
  • the general controller 40 gradually lowers the amplitude of the high-frequency electric field applied to the high-frequency acceleration cavity 21 in order to extract a predetermined extracted beam with a target energy from the accelerator 1, until the beam reaches the target energy.
  • the outputs of the low-level high-frequency generator 42 and the amplifier 43 are controlled so that the amplitude of the high-frequency electric field becomes zero.
  • the beam circulates stably within the accelerator 1 at the target energy.
  • the beam undergoes disturbance depending on the position in the traveling direction, that is, the time when it passes through the disturbance electrode 313. receive. Focusing on a specific particle, since the frequencies of the disturbing electric field and the orbiting betatron oscillation are the same, they resonate and the betatron oscillation amplitude of a certain particle increases. As the betatron oscillation amplitude of the particle continues to increase, it passes through the region affected by the kick magnetic field excited by the additional magnetic field generating shim 311 placed outside the design orbit. As a result, the betatron oscillation abruptly diverges under the action of the kick magnetic field, and the beam is displaced outward from the design trajectory. As a result, the beam reaches the extraction channel 312 , passes on the extraction track 322 , and is extracted to the outside from the extraction beam through-hole 111 of the accelerator 1 .
  • the individual particles that make up the beam are exposed to the quadrupole magnetic field and the sextupole or more magnetic field generated by the additional magnetic field generating shim 311.
  • the multipolar magnetic field of . The boundary between this stable region and unstable region is called a separatrix.
  • the betatron oscillation amplitude of the beam stops increasing, and the beam circulates within the stable region, so that the extraction of the beam can be stopped.
  • the vertical axis of the diagram in FIG. 9 represents, from the top, the rotation angle of the rotating shaft 213 of the rotary variable capacitor 212, the resonance frequency of the high frequency acceleration cavity 21, the frequency of the high frequency power input to the high frequency acceleration cavity 21, the acceleration
  • the voltage amplitude of the high frequency electric field in the gap 223, the beam current waveform output by the ion source 12, the amplitude of the high frequency electric field for disturbance input to the disturbance electrode 313, the horizontal emittance (beam size) of the beam in the accelerator 1, the A beam current waveform to be output is shown.
  • the horizontal axis of the diagram shown in FIG. 9 is all time.
  • the flow of FIG. 10 shows the operations of the overall control device 40 and the voltage amplitude calculation device 45.
  • the overall control device 40 and the voltage amplitude calculation device 45 are configured by a computer or the like having a processor such as a CPU (Central Processing Unit) or GPU (Graphics Processing Unit) and a memory, and the CPU is a program stored in the memory. is read and executed, the operation of the flow in FIG. 10 is realized by software. It should be noted that the overall control device 40 and the voltage amplitude calculation device 45 can also be implemented partially or wholly by hardware.
  • a custom IC such as ASIC (Application Specific Integrated Circuit) or a programmable IC such as FPGA (Field-Programmable Gate Array) is used to configure part or all of the overall control device 40 and the voltage amplitude calculation device 45.
  • the circuit design may be performed so as to realize the operation of the flow of FIG.
  • the voltage amplitude calculator 45 reads the energy of the beam to be irradiated from the treatment plan database 60 in step 111 of FIG.
  • the general controller 40 calculates the high-frequency electric field application time T required to accelerate the beam to the energy of the beam to be irradiated. Specifically, the overall control device 40 reads the data based on a table or formula that defines the relationship between the application time T of the high-frequency electric field required for acceleration to the energy obtained in advance for each energy of the beam. Calculate the application time T of the high frequency electric field required to accelerate to the energy of the beam. Further, the general control device 40 calculates the drop start timing T1d corresponding to the read beam energy based on a table or formula that defines the relationship between the voltage drop timings Td obtained in advance for each beam energy.
  • the beam reaches the target energy at the time when the high-frequency electric field for acceleration in the acceleration gap 223 becomes zero. This is the expected timing.
  • the general control device 40 instructs the motor control device 41 to operate the servomotor 214 and rotate the rotating shaft 213 of the rotary variable capacitor 212 at a predetermined angular velocity, as shown in FIG.
  • the resonance frequency f1 of the fundamental mode of the high-frequency acceleration cavity 21 periodically changes as shown in FIG.
  • the high-frequency power for acceleration has not yet been input to the high-frequency acceleration cavity 21 .
  • the general controller 40 causes the ion source 12 to output a beam for a predetermined time immediately after the start of the operation cycle, as shown in FIG. As a result, the ion beam enters the accelerator 1 from the incident position 130 of the accelerator 1 for a predetermined time.
  • an electric field having a magnitude calculated in advance is applied from the electrode 91 to the beam-incidence through-hole 115 to balance the Lorentz force applied to the ion beam, thereby increasing the efficiency of incidence of the ion beam to the incident position 130. increasing.
  • step 115 immediately after the incidence of the ion source 12, the general control device 40 controls the voltage amplitude E1 calculated by the voltage amplitude calculation device 45 in step 111, and the high-frequency acceleration cavity 21 that changes according to the rotation angle of the rotation shaft 213.
  • High-frequency power of frequency f2 synchronized with the resonance frequency f1 of the fundamental mode is input to the high-frequency acceleration cavity 21 from the low-level high-frequency generator 42 and the amplifier 43 .
  • the beam that has entered the range in which stable synchrotron oscillation of the accelerator 1 is possible circulates inside the accelerator 1 while being accelerated by the high-frequency electric field E by passing through the acceleration gap 223 .
  • the beam is accelerated as the resonance frequency decreases, and is accelerated to near the predetermined extraction energy.
  • step 116 when the time T1d determined in step 112 has reached from the start of high frequency power input, the amplitude E of the high frequency voltage is stopped.
  • the voltage amplitude of the high-frequency electric field for acceleration generated by the high-frequency acceleration cavity 21 gradually decreases (decreases) based on the Q value of the resonance of the high-frequency acceleration cavity 21, and the above-described high-frequency bucket disappears.
  • the general control device 40 instructs the high-frequency disturbance control device 47 to start raising the high-frequency disturbance from this time T1d.
  • the high-frequency disturbance control device 47 operates the high-frequency power supply 46 to output high-frequency power to the electrode 313 for disturbance.
  • the voltage value of the high-frequency power output from the high-frequency power supply 46 to the disturbance electrode 313 is controlled by the high-frequency disturbance control device 47, and the specified value is a value uniquely determined from the extraction beam energy and the output current of the extraction beam. It is determined by the plan database 60 and instructed by the overall control device 40 .
  • the disturbing electrode 313 generates a disturbing high-frequency electric field, and the beam circulating in the accelerator 1 is disturbed by this electric field, and the horizontal emittance increases as shown in FIG.
  • step 118 the voltage amplitude of the high-frequency electric field for acceleration becomes zero when the application time T determined in step 112 has elapsed.
  • the beam in the accelerator 1 reaches a predetermined extraction energy.
  • the horizontal emittance (beam size) of the beam is increased by the action of the disturbing high-frequency electric field of the disturbing electrode 313, passes through the area affected by the kick magnetic field excited by the additional magnetic field generating shim 311, and is extracted. It reaches the range covered by the magnetic field formed by the septum electromagnet 312 for extraction, travels on the extraction track 322 , and is extracted to the outside from the extraction beam through-hole 111 of the accelerator 1 .
  • step 119 the general controller 40 continues to apply the disturbing high-frequency power to the disturbing electrode 313 until the time predetermined by the treatment plan database 60 elapses before the beam is extracted. During this time, extraction of the beam from the accelerator 1 continues due to the action of the disturbing high-frequency electric field of the disturbing electrode 313 .
  • the beam extraction time is set to the time when all the circulating electric charges are extracted from the accelerator 1 or the extracted beam reaches a predetermined irradiation dose determined by the treatment plan. In the present embodiment, the beam can be extracted from the accelerator 1 with high efficiency, so the beam extraction time can be set shorter than before.
  • the servo motor 214 attached to the high frequency acceleration cavity 21 continues to rotate, and the resonance frequency continues to fluctuate. . Therefore, the beam continues to circulate with constant energy and is sequentially extracted by the applied disturbing high frequency.
  • the general control device 40 proceeds to step 120 and stops applying the disturbing high-frequency power to the disturbing electrode 313 .
  • the disturbing RF By turning on/off the disturbing RF, it is possible to control the on/off of the beam, depending on the intensity of the disturbing RF.
  • FIG. 9 it is also possible to take out the beam for a period longer than the operating period.
  • operation cycle refers to a period from the time when the resonance frequency reaches its maximum to the next time when it reaches its maximum.
  • Step 112 and subsequent steps are performed in the same manner as the flow described above.
  • a beam with higher energy than in the previous operation cycle is irradiated, so the application time T2 of the high-frequency electric field is set longer than the application time T1 of the acceleration high-frequency electric field in the previous operation cycle.
  • a long setting accelerates the beam to a large energy.
  • the accelerator of the present embodiment is a compact accelerator capable of changing the energy of the extraction beam by devising the position of the beam injection through-hole 115 and the direction of movement of the orbit.
  • the efficiency of beam injection into the accelerator can be increased.
  • the dose rate of the emitted ion beam can be improved.
  • the second embodiment is a particle beam therapy system using the accelerator 1 of the first embodiment.
  • FIG. 11 shows an overall configuration diagram of the system.
  • the particle beam therapy system 1000 irradiates the affected area (target) of the patient 5 with proton beams or carbon beams (hereinafter collectively referred to as beams) having an appropriate energy value depending on the depth from the body surface of the affected area. It is a device that As shown in FIG. 11 , the particle beam therapy system 1000 includes an accelerator 1 that accelerates ions, a beam transport system 2 that transports the beam accelerated by the accelerator 1 to an irradiation apparatus described later, and a beam transport system 2.
  • An irradiation device 3 that irradiates a target in a patient 5 fixed to a treatment table 4 with the transported beam, an overall control device 40 and an irradiation control device 50 that control the accelerator 1, the beam transport system 2 and the irradiation device 3, It comprises a treatment planning device 70 that creates a beam irradiation plan for a target, and a treatment plan database 60 that stores the treatment plans created by this treatment planning device 70 . Further, the accelerator 1 is connected to the extraction channel 312 described in the first embodiment, and the beam can be extracted by the mechanism described in the first embodiment.
  • the energy and dose of the irradiated particle beam are determined by reading the treatment plan data stored in the treatment plan database 60.
  • the energy and irradiation dose of the particle beam determined by the treatment plan are sequentially input from the general control device 40 to the irradiation control device 50, and when the appropriate irradiation dose is irradiated, the energy is shifted to the next energy and the particle beam is irradiated again. .
  • the beam transport system 2 of the particle beam therapy system 1000 is not limited to the fixed system shown in FIG. can be done.
  • the irradiation device 3 is not limited to one, and a plurality of irradiation devices can be provided.
  • the beam can be directly transported from the accelerator 1 to the irradiation device 3 without providing the beam transport system 2 .

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

イオンビームが加速されるにつれ、周回軌道は、その半径が徐々に大きくなり、かつ、その中心がキャビティの所定の半径方向に沿って周縁部に近づく方向に移動した後、移動方向を反転して前記キャビティの中心に向かってさらに移動する。これを実現するように主磁場の軌道面内の強度分布が設計されている。これにより、小型で、取り出しビームのエネルギーが変更可能な加速器であって、外部イオン源から加速器内へのビーム入射の効率を高め、結果として出射されるイオンビームの線量率を向上させる。

Description

加速器および粒子線治療システム
 本発明は、陽子または炭素イオン等の重イオンを加速する加速器と粒子線治療システム、ならびに加速器の運転方法に関する。
 粒子線治療や物理実験などで使用する高エネルギーのイオンビームは加速器を用いて生成される。
 粒子線治療は、その粒子線の種類によって分類でき、陽子線を患部に照射する陽子線治療と、炭素やヘリウムなど陽子より重い原子核を照射する重粒子線治療がある。陽子線治療においては230MeV前後の核子当たりの運動エネルギーが必要であり、炭素線の場合は430MeV前後の核子当たりの運動エネルギーが必要である。これらのビームを生成しうる加速器には種類がいくつかある。例えば、サイクロトロンやシンクロトロン、特許文献1に記載されているようなシンクロサイクロトロン、特許文献2に記載されているような可変エネルギー加速器が知られている。
 サイクロトロンおよびシンクロサイクロトロンの特徴は、静磁場中を周回するビームを高周波電場で加速する点であり、加速されるにつれてビームはその軌道の曲率半径を増し、外側の軌道に移動し、最高エネルギーまで到達した後に取り出される。そのため取り出すビームのエネルギーは基本的には固定される。
 一方、シンクロトロンは、ビームを偏向する電磁石の磁場と加速する高周波電場の周波数を時間的に変化させることにより、ビームは一定の軌道を周回する。そのため、設計上の最大エネルギーに到達する前にビームを取り出すことが可能であり、取り出しエネルギーが制御可能である。
 特許文献1のシンクロサイクロトロンでは、半径Rの略円形の断面を有する一対の強磁性体のポールが、中心軸を一致させて、正中面を挟んで上下に配置されている。一対のポールは、ギャップによって離隔され、このギャップは、正中面に対して実質的に対称なプロファイルを有するキャビティを形成している。ギャップの高さは、ポールの半径方向において変化している。ギャップの高さは、中心軸ではHcenterであり、中心軸から半径R2までの円形の部分では、半径が大きくなるにつれてHcenterから徐々に増大し、半径R2において最大値Hmaxとなる。半径R2より大きい環状の部分は、半径が大きくなるにつれて、そのギャップの高さが徐々に減少し、ポールの縁におけるギャップの高さは、Hedgeである。このようなギャップ形状のキャビティを備えるシンクロサイクロトロンは、ギャップ内の磁場を最小化する一方で、シンクロサイクロトロンのサイズを最小化することができると特許文献1には開示されている。
 一方、特許文献2には、エネルギーの異なるイオンビームを出射可能な可変エネルギー加速器が開示されている。この加速器は、イオンビームを周回させる外周が円形のキャビティ(空間)を形成する電磁石を備えている。イオン源は、円形のキャビティの中心軸から半径方向に大きくずれた外周に近い所定の位置にイオンビームを入射する。入射したイオンビームには高周波が照射され、加速しながらキャビティ内を周回する。低速のイオンビームは、小さな軌道半径の軌道を周回し、加速されるにつれ軌道半径が徐々に大きくなるように、電磁石の主磁場の磁場分布が設計されている。
 このとき、特許文献2の加速器では、軌道半径が大きくなるにつれ、軌道の中心が、徐々に円形のキャビティの中心軸に向かって移動するように電磁石の主磁場分布が設計されている。これにより、特許文献2の図5に開示されているように、すべての軌道を、イオンの入射位置と、キャビティの外周との間の狭い領域を密に通過させることができる。よって、キャビティの最外周に磁場発生部を配置することにより、最外周のみならずその内側の1以上の軌道に対しても、その軌道を周回するイオンが軌道を外れる方向の力を与えることができる。これによりイオンビームに周回軌道から離れる方向の揺らぎを生じさせ、キャビティ外へ出射させる出射軌道に乗せ、加速器外部に出射することができる。
 このように許文献2の加速器は、最外周軌道のエネルギーのイオンビームのみならず、その内側の複数の軌道のエネルギーのイオンビームについても出射させることができるため、出射するイオンビームのエネルギーを変化させることができる。
特表2013-541170号公報 特開2019-96405号公報
 特許文献1に記載のシンクロサイクロトロンは、主磁場中を周回するビームを高周波電場で加速する類型の加速器である。このようなシンクロサイクロトロンでは、ビームのエネルギー増加に伴いビームの周回周波数が低下していく特性があり、ビームの周回周波数に同調して高周波電場の周波数を変調する必要がある。そのため、低エネルギーのビームを入射してから加速して取り出し、さらに再度ビームを入射するまでが一つの運転周期となる。シンクロサイクロトロンの運転周期は、高周波電場を励起する空胴の共鳴周波数の掃引速度で決められ、一般に数ミリ秒程度となる。この数ミリ秒の運転周期に1回の割合で周回しているビームの全量が取り出される。また、取り出されるビームのエネルギーは、基本的に固定されている。
 粒子線治療では、治療計画などで予め定められた照射線量の許容範囲を超過することなく照射対象の腫瘍にビームを照射することが求められる。シンクロサイクロトロンでは運転周期ごとにビームの全量が取り出されるため、シンクロサイクロトロンを用いる粒子線治療システムでは、シンクロサイクロトロンの一運転周期内で加速・取り出しの可能なビーム量を照射線量の許容範囲に対して十分小さく設定する必要が有る。よって、一運転周期に加速する電荷量を、加速器の性能で決まる上限より小さくせざるを得ず、照射完了に時間がかかる、という課題が有る。
 また、従来のサイクロトロンは、ビームの周回周波数をエネルギーに寄らず一定にするため、等時性磁場の励磁が必要であり、特に炭素線治療で使われるエネルギー領域まで等時性磁場を励起しビームを加速するのは困難である。さらに、サイクロトロンは、取り出しビームのエネルギー変更が不可能である。一方、シンクロトロンは、取り出しビームのエネルギーは可変であるが、現状では軌道の周長が50m以上と大型である、という課題がある。
 一方、特許文献2の加速器は、最外周のみならず、最外周よりも内側の1以上の軌道のエネルギーのイオンビームを出射させることができるが、キャビティの外周部に軌道が密の領域を形成するため、イオン源からイオンビームを入射する位置がキャビティの外周に近い位置になる。特許文献2の図2に示されるように、イオン源は、電磁石の上面に搭載され、電磁石の磁極等にはビーム入射用貫通孔115が設けられ、イオン源からイオンビームは、ビーム入射用貫通孔115内を通過してキャビティ内に入射する。ビーム入射用貫通孔115は、キャビティの外周に近い位置、すなわち、磁極の外周に近い位置を貫通するように設けられ、磁極を通過する磁力線を横切る配置になる。そのため、ビーム入射用貫通孔115の内部を進むイオンビームには、磁極内の磁力線の磁場が印加され、ローレンツ力が生じて、ドリフト運動する。これを回避するためには、例えば、ビーム入射用貫通孔115の近傍に一対の電極を配置し、電場をイオンビームに印加し、ローレンツ力と電場から受ける力をつり合わせ、イオンビームがビーム入射用貫通孔115内をまっすぐに進むようにする等の構成が必要である。そのため、特許文献2の加速器は、イオン源からキャビティ内へのイオンビームの入射効率が、イオン入射用貫通孔に印加することのできる電圧の大きさに影響される。
 本発明の目的は、小型で、取り出しビームのエネルギーが変更可能な加速器であって、外部イオン源から加速器内へのビーム入射の効率を高め、結果として出射されるイオンビームの線量率を向上させることにある。
 上記目的を達成するために、本発明の加速器は、イオンビームを周回させる軌道面を挟んで対向配置された一対の磁極を含み、軌道面に複数の周回軌道を生じさせる主磁場を形成する電磁石と、外部からイオンビームを軌道面の所定の入射位置に導入するために磁極に形成されたイオン入射用貫通孔と、一対の磁極間に形成されたキャビティに挿入され、前記軌道面を周回するイオンビームを加速する高周波を発生する高周波加速空胴と、キャビティの外周に配置された、最外周および最外周よりも内側の1以上の周回軌道上の移動中のイオンビームに磁場を印加して移動方向を周回軌道から外れさせる付加磁場発生部、および、周回軌道を外れたイオンビームをキャビティの外へ導く取出チャネルとを有する。イオンビームが加速されるにつれ、周回軌道は、その半径が徐々に大きくなり、かつ、その中心がキャビティの所定の半径方向に沿って周縁部に近づく方向に移動した後、移動方向を反転して前記キャビティの中心に向かってさらに移動するように、主磁場の軌道面内の強度分布が設計されている。
 本発明によれば、小型で、取り出しビームのエネルギーが変更可能な加速器からのビーム照射量の増加が可能となり、粒子線治療システムにおける線量率の向上が実現する。
本発明の第1の実施形態の加速器の全体概形を示す斜視図。 第1の実施形態の加速器の縦断面図。 第1の実施形態の加速器の横断面図。 本発明の第1の実施形態の加速器におけるビームの周回軌道と等周回位相線を示す図。 本発明の第1の実施形態の加速器における代表的な周回軌道とその中心の移動方向を説明する図。 本発明の第1の実施形態の加速器の制御ブロック図。 本発明の第1の実施形態の加速器における主磁場強度のビーム周回軌道エネルギー依存性を示す図。 本発明の第1の実施形態の加速器におけるビームの周回周波数のビーム周回軌道エネルギー依存性を示す図。 本発明の第1の実施形態の加速器における運転のタイミングチャート。 本発明の第1の実施形態の加速器における運転制御のフローチャート。 本発明の第2の実施形態の粒子線治療システムの構成図。 比較例の加速器の縦断面図。 比較例の加速器におけるビームの周回軌道と等周回位相線を示す図。 比較例の加速器における代表的な周回軌道とその中心の移動方向を説明する図。
 以下に本発明の加速器および粒子線治療システムの一実施形態を、図面を用いて説明する。
 <<<第1の実施形態>>>
 第1の実施形態として、粒子線治療システムの加速器1を図面を用いて以下に説明する。
 <概要>
 まず、加速器1の概要を説明する。加速器1の外観を図1に、その縦断面図を図2に、横断面図を図3に示す。なお、図3では、内部構造の理解を容易にするために断面ではない部分についてもハッチングを付している。図4は、加速器1の周回軌道と等周回位相線を示し、図5は、代表的な周回軌道の中心の移動を示す。図6は、加速器の制御系を示し、図7は、周回軌道のエネルギーごとの主磁場強度を示す。
 本実施形態の加速器は、例えば炭素イオンを最大435MeV/uまで加速する周波数変調型の可変エネルギー加速器である。
 この加速器は、図1から図3に示すように、電磁石11を含む。電磁石11は、イオンビームを周回させる軌道面20aを挟んで対向配置された一対の磁極123a,123bを備えている。これにより、軌道面20aに複数の周回軌道(図4、図5)を生じさせる主磁場を形成する。
 図1および図2のように、磁極123a,123bには、ビーム入射用貫通孔115が形成されている。ビーム入射用貫通孔115は、外部からイオンビーム25を軌道面20aの所定の入射位置130に導入する。
 図2および図3のように、軌道面20aを挟むように一対の磁極123a,123bの間には所定形状のキャビティ(空隙)11aが形成され、キャビティ11a内には高周波加速空胴21が挿入されている。高周波加速空胴21は、軌道面20aを周回するイオンビームを加速する高周波を発生する。
 キャビティ11aの外周には、最外周および最外周よりも内側の1以上の周回軌道上のイオンビームに磁場を印加して、周回軌道を外れさせる付加磁場発生部(付加磁場発生用コイル)が配置されている。さらに、周回軌道を外れたイオンビームをキャビティ11aの外部に導く取り出しチャネル312が、キャビティ11aの外周に配置されている。
 このとき、電磁石11が形成する主磁場の軌道面内の強度分布は、周回軌道(代表的な周回軌道O1~O12)が図4、図5のような配置になるように設計されている。すなわち、周回軌道のエネルギーに応じて図7に示す大きさ磁場(B)が、その周回軌道の位置に印加されるように主磁場強度分布が設計されている。
 具体的には、図4、図5に示した周回軌道は、イオンビームが加速されるにつれ、周回軌道(例えば、図5のO1~O12)の半径が徐々に大きくなり、かつ、その中心(C1~C12)は、キャビティ11aの所定の半径方向Rpに沿って周縁部に近づく方向に移動した後、移動方向を反転してキャビティ11aの中心に向かってさらに移動する。さらに詳しく言うと、その半径が予め定めた第1の半径に到達するまでの周回軌道(O1~O4)は、その中心(C1~C4)が順にキャビティ11aの周縁部に近づく方向に移動し、第1の半径に到達した後の周回軌道(O5~O12)は、その中心(C5~C12)が軌道面20aの中心20cに向かって順に移動していく。
 このように、周回軌道(例えばO1~O4)の中心(C1~C4)がいったん軌道面20aの周縁部20bに近づく方向に移動した後、周回軌道(例えばO5~O12)の中心(C5~C12)が軌道面20aの中心20cに向かって移動するように設計したことにより、入射位置130と軌道面20aの周縁部20bとの距離(図4、図5)は、比較例(図12~図14参照)の加速器のように周回軌道の中心位置を一方向に移動させる構成よりも、広くなる。
 言い換えると、イオンビームの入射位置130をキャビティ11aの中心20cに近づけて配置することができ、ビーム入射用貫通孔115も磁極123aの中心軸20eに近づけて配置することができる。
 図2に示すように、磁極123aの中心軸20eに近い領域は、磁極123a内の磁力線90が、ビーム入射用貫通孔115の中心軸に対して傾斜している。このため、ビーム入射用貫通孔115を磁極123aの中心軸20eに近づけて配置したことにより、イオンビームの進行方向(中心軸)に直交する磁場成分を、図12の比較例のよりも低減することができる。
 これにより、本実施形態の加速器1では、ビーム入射用貫通孔115内でイオンビーム25が磁場90aから受けるローレンツ力を図12の比較例よりも低減でき、ローレンツ力を打ち消すために印加するイオンビーム25に印加する電場を低減できる。よって、イオンビーム25を直進させるのに十分な電場を容易に印加でき、イオンビーム25の入射位置130への入射効率を高めることができ、結果として加速器から出射されるイオンビームの線量率を向上させることができる。
 一方、周回軌道(例えばO1~O4)の中心(C1~C4)がいったん軌道面20aの周縁部20bに近づく方向に移動した後、移動方向を反転して周回軌道(例えばO5~O12)の中心(C5~C12)が軌道面20aの中心20cに向かって移動するように設計したことにより、入射位置130と軌道面20aの周縁部20bとの距離が比較例よりも広いにも関わらず、軌道面20aの周縁部20b近傍には、周回軌道が密に通過する集約領域241を、比較例(図12~図14)と同様に形成することができる。
 よって、キャビティ11aの外周に配置された付加磁場発生用シム311から集約領域241に磁場を印加することにより、最外周および最外周よりも内側の1以上の周回軌道上の移動中のイオンビームの移動方向を周回軌道から外れさせ、取り出しチャネル312からキャビティ11aの外に取り出すことができる。
 なお、ビーム入射用貫通孔115の中心軸と、キャビティ11aの中心との距離は、キャビティ11aの半径の長さの50%以内に設けられていることが望ましい。
 磁極面124aには、ビーム入射用貫通孔115と磁極123aの磁極123aの中心との間であって、ビーム入射用貫通孔115に隣接する位置に、鉄片等のシム250を配置する構成にしてもよい。これにより、シム250が配置されている領域は、磁場勾配が大きくなるため、図4および図5のように、周回軌道(O1~O4)の中心(C1~C4)を、キャビティ11aの外周に近づく方向に移動させることができる。特に、ビーム入射用貫通孔115と磁極123aの中心との間であって、半径方向Rpに沿った各位置の磁場勾配は、シム250が配置されている位置の磁場勾配が最も大きいことが望ましい。
 ビーム入射用貫通孔115およびシム250は、対向する磁極123a,123bに軌道面20aを挟んで対称な位置にそれぞれ設けられていることが望ましい。
 また、一対のシム250間の距離は、ビーム入射用貫通孔115と磁極面124aの外周との間の所定の半径方向に沿った位置であってイオン入射用貫通孔に隣接する位置251の一対の磁極面124a,124b間の距離、または、その位置124a,124bに配置されたシムの距離よりも狭いことが望ましい。
 ビーム入射用貫通孔115とキャビティ11aの外周との間であって、半径方向に沿った各位置の磁場勾配は、キャビティ11aの周縁部の集約領域241が最も大きいことが好ましい。これにより、図4および図5に示したように、キャビティ11aの周縁部の集約領域241に周回軌道を密に配置することができる。
 電磁石11の外側には、ビーム入射用貫通孔115にイオンビームを入射するイオン源12が設置される。
 取り出しチャネル312は、キャビティ11aの所定の半径方向Rpの外周部に配置されていることが好ましい。
 磁極面124a,124bには、複数のリング状のトリムコイル33が備えられていることが好ましい。トリムコイル33は、軌道面20aの複数の周回軌道に対応する半径であり、周回軌道に対応する位置の磁極面124a,124bに備えられている。
 高周波加速空胴21は、ディー電極221を含んでいる。ディー電極221の辺縁は、軌道面20aに平行にキャビティ11aを横切るように配置されている。ディー電極221の形状は、入射位置130を中心とするW字型である。
 以下、本実施形態の加速器1について詳細に説明する。
 <<加速器1の構成>>
 図1に示すように、加速器1は、分割接続面12aを境に上下に分割可能な電磁石11を有する。図2のように、電磁石11は、分割接続面12aを挟んで対向配置された円柱形の上部磁極123aおよび下部磁極123bと、それら外周にそれぞれ配置された円筒形のリターンヨーク121a、121bと、円盤状の上部天板122aおよび下部天板122bとを備えている。円盤状の上部天板122aは、上部磁極123aの上端面と、リターンヨーク121aの上端面とを覆って連結するように配置されている。同様に下部天板122bは、下部磁極123bの下端面と、リターンヨーク121bの下端面とを覆って連結するように配置されている。本実施形態では、磁極123aとリターンヨーク121aと天板122a、ならびに、磁極123bとリターンヨーク121bと天板122bはそれぞれ一体に形成されている。磁極123aとリターンヨーク121aの間に形成された凹部、および、磁極123bとリターンヨーク121bの間に形成された凹部には、それぞれ円環状のコイル13が配置されている。コイル13は、磁極123の外周壁に沿って巻回されている。
 電磁石11の上部磁極123aと、下部磁極123bの互いに対向する面を磁極面124a,124bと定義する。磁極面124a,124bで挟まれたキャビティ11a(空隙)には、コイル13に電流を流すことによって上下方向に主磁場110が形成される。磁極面124a,124bは、分割接続面12aを挟んで対称な凹型の曲面形状であり、磁極面124a,124b間の距離は、磁極123a,123bの中心軸20eにおいて最も大きく、端部に近づくほど小さくなっている。
 キャビティ11a内の磁極面124a,124bから等距離にある面がビームの軌道面20aであり、軌道面20aを中心とする所定の厚さの円盤状の領域がビーム通過領域20である。ビーム通過領域20は、キャビティ11a内を加速・周回中のビームが通過する領域である。
 ビーム通過領域20に形成される磁場の強度分布は、その位置の周回軌道のエネルギーに応じて勾配するように設計される。磁場の勾配については後で詳しく説明する。なお、電磁石11のキャビティ11a内は、図示を省略した真空ポンプによって真空引きされている。
 電磁石11には、外部とビーム通過領域20とを接続する貫通孔が複数設けられている。具体的には、加速されたビームを取り出す取り出しビーム用貫通孔111、電磁石11内に配置されたコイル導体を外部に引き出すための引き出し用の貫通孔112、高周波電力入力用貫通孔114等の各種貫通孔が上下の分割接続面11bの面上に設けられている。
 高周波電力入力用貫通孔114を通じて、高周波加速空胴(加速電極)21が電磁石11内に挿入されている。高周波加速空胴21は、キャビティ11a内のイオンを加速してイオンビームとするための加速用電場Eを形成する。高周波加速空胴21は、後述するように、加速用のディー電極221(図3参照)と加速用電場の周波数を変調するための回転式可変容量キャパシタ(変調部)212とを含む。
 図1のように、電磁石11の上面の中心軸20eからずれた位置には、イオン(例えば炭素イオン)を供給するためのイオン源12が設置されている。また、イオン源12の搭載位置には、天板122aおよび磁極123aにビーム入射用貫通孔115(図1参照)が設けられている。イオン源12の出射するイオンビーム25は、ビーム入射用貫通孔115を通過して、入射位置130からキャビティ11a内に入射する。
 このとき、コイル13が発生し、磁極123a、リターンヨーク121aおよび天板122aを通って閉ループを描く磁力線90が、図2のようにビーム入射用貫通孔115を横切るように通過している。イオン源12から出射されたイオンは100KeV程度のエネルギーを有しているため、イオン源12から入射位置130に至るまで、ビーム入射用貫通孔115内の経路上の磁場90aからローレンツ力を受けて進行方向が偏向し、磁力線90に巻き付くようにドリフト運動をする。
 このローレンツ力を打ち消す力をイオンに与えるため、ビーム入射用貫通孔115の近傍には、ビーム入射用貫通孔115を挟むように一対の電極91が配置されている。一対の電極91は、イオンビーム25に電場を印加し、イオンビーム25が磁場90aから受けるローレンツ力とつり合う力を生じさせる。電極91が印加する電場の向きは、図2の矢印91aの方向である。なお、図2では、一対の電極91のうち、一方のみを図示している。一対の電極91に印加される電力は、ビーム入射用貫通孔115を通じて外部から供給される。ビーム入射用貫通孔115を進むイオンビーム25は、一対の電極91の生じる電場から受ける力と、磁場90aから受けるローレンツ力とがつり合うことによりビーム入射用貫通孔115内をまっすぐに進行して、キャビティ11a内の入射位置130に到達することができる。
 また、図示していないが、ビーム入射用貫通孔115の入射位置130近傍には、偏向器が配置されており、ビーム入射用貫通孔115内を進行して軌道面20aに対して垂直な方向から入射位置130に到達したイオンビーム25の進行方向を、軌道面20aに平行な方向に偏向させる。これにより、イオンは、軌道面20aにおいて周回する。
 電磁石11内に挿入された高周波加速空胴21のうち、特にキャビティ11a内に固定的に配置された部分をディー電極221と定義する。ディー電極221は、ビーム通過領域20の一部領域を上下から挟むように覆う一対の板状電極である。ディー電極221のビーム通過領域20を面内方向に横切る辺縁221aは、図3に示すように、入射位置130の近傍の頂点とするW字型に成形されている。ディー電極221の周縁部は、最外周軌道を内包しつつ、キャビティ11aの外周に沿う円弧形状である。高周波加速空胴21は、ディー電極22以外の部分は、ディー電極22の円弧状の周縁部から高周波電力入力用貫通孔114を貫通し、電磁石11の外側に引き出されている。
 電磁石11の外部に引き出された高周波加速空胴21には、図1に示すように、回転式可変容量キャパシタ(変調部)212が取り付けられている。回転式可変容量キャパシタ212は、回転軸213を有し、回転軸213には、サーボモータ214(図6参照)が接続されている。サーボモータ214は、回転軸213を回転駆動し、回転軸213の回転角が時間的に変化することにより、高周波加速空胴21の静電容量が時間的に変調され、高周波加速空胴21の基本モードの共振周波数が変化する。これにより、高周波加速空胴21が発生する加速用高周波電場の周波数を変化させることできる。また、高周波加速空胴21には、高周波電力を入力するための入力カプラ211が備えられている。
 ディー電極221のW字型の辺縁221aの端面には、当該端面と所定の間隔をあけて対向するようにW字型の線状の接地電極222が配置されている。ディー電極221と接地電極222とによって挟まれる領域が、加速ギャップ223である。
 高周波加速空胴21は、λ/4型の共振モードによってイオンを加速するための加速用高周波電場を加速ギャップ223に励起する。入射位置130から入射したイオンはビーム通過領域20の軌道面20a内で周回しながら、加速ギャップ223近傍を通過することにより、加速ギャップ223に冷気されている高周波電場により加速される。
 高周波加速空胴21が加速ギャップ223に励起する高周波電場の周波数は、ビームの周回周波数に同期させるために、ビームの周回周波数の整数倍になるように設定する。具体的には、サーボモータ214をモータ制御装置41(図6参照)により制御し、回転軸213の回転数を調整する。本実施形態の加速器1では、加速ギャップ223に高周波電場の周波数が、ビームの周回周波数の1倍となるように制御している。
 磁極123a,123bの磁極面124a,124bには、主磁場110の軌道面20aにおける分布を微調整するために、環状のトリムコイル33が複数系統備えられている。トリムコイル33は、軌道面20aの複数の周回軌道に対応する半径であり、周回軌道に対応する位置の磁極面124a,124bに備えられている。例えば、最大径のトリムコイル33の中心は、電磁石11の中心20cに一致にするように配置されている。一方、最小径のトリムコイル33の中心は、入射位置130に一致するように配置されている。すなわち、トリムコイル33の中心は、径が小さいものは、磁極123a,123bの中心に対して偏心している。トリムコイル33の径のサイズと中心位置は、イオンビームの軌道の径と中心の位置に対応している。
 トリムコイル33は、貫通孔112等を通じて外部の電源に接続され、各系統のトリムコイル33に供給する励磁電流は、運転前に個別に調整される。これにより、磁極123a,123bから軌道面20aに印加される主磁場110に、トリムコイル33からの磁場を重畳して、軌道面20aにおける主磁場110の分布を所望の分布に近づける。これにより、安定なベータトロン振動を実現するとともに、イオンの軌道の中心を、イオンビームの加速につれて所望の移動方向に移動させることができる。イオンの軌道の中心の移動方向については、後で詳しく説明する。
 また、図2および図3に示すように、加速器1内で加速したビームを外に取り出すために、四極磁場や六極以上の多極磁場を励磁する一対の付加磁場発生用シム(キック部)311と、擾乱用高周波電場をビームに印加するための擾乱用電極(擾乱部)313が、磁極面124a,124bの一部に、磁極面124a,124bに対して電気的に絶縁された状態で設置されている。また、磁極面124の端部の一か所に、取り出しチャネル312の入射部が設置されている。
 擾乱用電極313は、微小な振幅の高周波(RF)電場を擾乱用高周波電場としてビームに印加することにより、周回中のビームの粒子のベータトロン振動振幅を増大させ、付加磁場発生用シム311が励起するキック磁場の作用が及ぶ領域を通過させる。付加磁場発生用シム311のキック磁場は、粒子を設計軌道の外側にビームをキックし、設計軌道から外れさせる。ビームは、取り出しチャネル312が形成する主磁場110を遮蔽された領域に到達し、取り出し軌道322上を通り、加速器1の取り出しビーム用貫通孔111から外部に取り出される。付加磁場発生用シム311によって励磁されるキック磁場は、ビーム通過領域20中を周回するイオンビームに対して安定領域を制限し、安定領域外に出た粒子を取り出しチャネル312に導入する作用をする。本実施形態の加速器1では、付加磁場発生用シム311は一対であり、それぞれ逆極性の磁場を磁極123が形成する主磁場110に対して重畳励磁する構成である。
 このように、擾乱用電極313が発生する擾乱用高周波電場をオン/オフすることにより、それに同期してビームの取り出しをオン/オフ制御することができる。擾乱用電極313や取り出しチャネル312、付加磁場発生用シム311の動作の詳細については後述する。
 加速器1では、軌道面において主磁場110は面内成分がほぼ0となるように、上下の磁極123a,123b、コイル13、トリムコイル33、付加磁場発生用シム311、取り出しチャネル312、擾乱用電極313の形状と配置が設計されており、軌道面20aに対して面対称の配置・電流分布となっている。また、磁極123、ディー電極221、コイル13、トリムコイル33、擾乱用電極313の形状は、図3に示すように、加速器1を上面側から見たときに、貫通孔114の中心部と貫通孔112の中心部を結ぶ線分11cに対して左右対称の形状となっている。
 加速器1の制御部の構造を図6を用いて説明する。高周波加速空胴21の回転式可変容量キャパシタ212の回転軸213には、これを回転駆動するサーボモータ214が接続されている。サーボモータ214には、モータ制御装置41が接続されている。また、高周波加速空胴21の入力カプラ211には、高周波電力を生成する低レベル高周波発生装置42およびアンプ43が接続されている。また、擾乱用電極313には、高周波電源46が接続され、この高周波電源46には、制御する擾乱高周波制御装置47が接続されている。低レベル高周波発生装置、モータ制御装置41および擾乱高周波制御装置47には、これらを制御する全体制御装置40が接続されている。
 本実施形態では、全体制御装置40には、電圧振幅計算装置45と治療計画データベース60が接続されている。治療計画データベース60には、複数の照射位置と、照射位置ごとに照射すべき粒子線のエネルギーとその線量が格納されている。全体制御装置40は、あらかじめ定められた振幅の高周波電場を加速ギャップ223に励起されるように、低レベル高周波発生装置42の出力を制御する。
 以下、本実施形態の加速器1によりイオンを加速して、所望のエネルギーのイオンビーム(粒子線)を出射する際の各部の動作について説明する。
 <<加速器1内のビーム入射>>
 加速器1内にはイオン源12からのイオンがビーム入射用貫通孔115内に入射される。イオンは、ビーム入射用貫通孔115を横切る磁力線90の磁場90aからローレンツ力を受け、ドリフト運動するが、電極91が印加する電場により適切なキックを与えることにより、ほぼ軌道面20aに対して垂直な方向から入射位置130近傍に到達し、軌道面20a付近で、偏向器(不図示)によってビームの運動方向が軌道面20aに平行に偏向される。
 すなわちビーム入射用貫通孔115内においてイオンビームが磁場から受ける力と電場からの力をつり合わせるように電場の大きさを設定する必要がある。そのため、ビーム運動方向に対して鉛直な磁場、すなわち軌道面20aに平行な磁場は小さいほうが必要な電場が小さくて済むとともに、ビーム軌道とサイズの制御が容易となり、入射効率の向上が実現できる。
 そこで本加速器1では入射位置130を、図12に示した比較例(従来構造)の可変エネルギー加速器よりも、磁極123a,123bの中心20cに近づけて配置している。これにより、その真上に伸びるビーム入射用貫通孔115の入射ビーム経路上に印加される横方向磁場を電場による制御が可能な大きさまでに十分小さくすることができる。その結果、従来(図12)の可変エネルギー加速器と比較し、入射ビーム量が増加し、一つの運転周期で加速および照射可能な電荷量が増加させることができる。
 一方、入射位置130が磁極123a,123bの中心寄りになるため、入射位置130とキャビティ11aの外周との間隔が広がる。そこで、軌道からイオンビームを取り出す周縁部の集約領域241の軌道の間隔を、比較例(図12)の加速器の周回軌道(図13)と同様程度に狭くするため、本実施形態では、図4および図5に示したように、周回軌道の軌道半径が最小軌道から大きくなるにつれ、軌道の中心を一旦キャビティ11a(軌道面20a)の周縁方向に移動させた後、さらに軌道半径が大きくなるにつれ軌道の中心を、キャビティ11a(軌道面20a)の中心20cに向かって移動させている。
 <<加速器1内のビーム加速と取り出し>>
 次に、本加速器1中を周回するビームの軌道および運動について述べる。
 ビームは、ビーム通過領域20中を、入射位置130を中心として周回しながら加速ギャップ223を通過するたびに加速される。本実施形態の加速器1における取り出し可能なビームの運動エネルギーは、一例として、最小140MeV/u、最大430MeV/uである。運動エネルギーが大きいほどビームの周回周波数は小さくなり、入射直後の運動エネルギービームでは35MHz、430MeVに達したビームは22MHzでビーム通過領域20中を周回する。これらのエネルギーと周回周波数の関係は図8のようになる。
 加速器1において電磁石11およびトリムコイル33によって形成される主磁場110は、ビームの軌道に沿って一様で、かつエネルギーが高くなるにつれ磁場が低下していく(図7参照)のような分布を作る。つまり、径方向外側の磁場が低下するような磁場を形成する。
 このような磁場下では、設計軌道から半径方向に微小にずれた粒子は、設計軌道に戻すような復元力を受けると同時に、軌道面に対して鉛直な方向にずれた粒子も軌道面に戻す方向に主磁場110から復元力を受ける。すなわち、ビームのエネルギーに対して適切に磁場を小さくしていけば、常に設計軌道からずれた粒子は設計軌道に戻そうとする向きに復元力が働き、設計軌道の近傍を振動(ベータトロン振動)することになる。これにより、主磁場によって、安定にビームを周回・加速させることが可能である。各エネルギーのビームにおける主磁場110の値を図7に示した。主磁場110は、入射位置130で最大の4.63Tであり、最外周では4.45Tまで低下している。
 上述の主磁場110分布は、電磁石11のコイル13とそれを補助するトリムコイル33に所定の励磁電流を流すことにより、磁極123a,123bが磁化され、コイル13由来の磁場と磁極123a,123b由来の磁場の重ね合わせとして励起される。イオンの入射位置130で磁場を大きくし、外周に向かって磁場を小さくする分布を形成するために、磁極123a,123bの磁極面124a,124bが対向する距離(ギャップすなわちキャビティ11aの高さ)は、キャビティ11aの中心部においてもっとも広がり、外周に向かって小さくなるように磁極面124a,124bおよびシム250の形状が定められている。さらに、磁極面124の形状は、ギャップ中心を通る平面(軌道面)に対して面対称の形状であり、軌道面上においては軌道面に垂直な方向の磁場成分のみを持つ。さらに、磁場分布の微調整を磁極面に設置されたトリムコイル33に印加する電流を調整することで行い、所定の主磁場110分布を励起している。
 各エネルギーの軌道を図4に示す。図4のように、周回軌道は、最も外側に最大エネルギー435MeVの軌道に対応した半径1.5mの円軌道が存在し、そこから、0MeVまで磁気剛性率で51分割した都合51本の円軌道が存在している。点線は、各軌道の同一の周回位相を結んだ線であり、等周回位相線と呼ぶ。
 図5に示すように、本実施形態の加速器1では、ビームの加速に従ってビームの軌道中心(設計軌道)が、軌道面内で一方向(半径方向Rp:図4のX=0におけるY方向)に向きを変えながら移動する。設計軌道が移動する結果、異なる運動エネルギーの軌道が互いに近接している箇所(周回軌道が集約する領域:集約領域240,241)と互いに遠隔している領域(周回軌道が離散する領域:離散領域242、243)が形成されている。すなわち、ビームの設計軌道が偏心している。
 加速器1では、設計軌道が集約する集約領域240,241が2か所存在し、いずれの集約領域240,241においても設計軌道同士が最も近接している設計軌道の各点(集約点)を結ぶ線分は、すべての設計軌道に対して直交する線分となる。また、二つの離散領域242,243において、設計軌道同士が最も遠隔している設計軌道の各点を結ぶ線分は、すべての設計軌道に直交する線分となる。これら二つの線分は、同一直線上(図4ではX=0におけるY方向:半径方向Rp)に存在する。この直線を対称軸と定義すると、設計軌道の形状は、対称軸を通り、軌道面に垂直な面に対して面対称となる。
 集約領域240,241では磁場の空間的な勾配が周囲と比較して急になるため、それに合わせて磁極123a,123bに対して鉄製のシム250等を配置することで所定の磁場分布を形成している。特に、本加速器1において、磁場勾配は低エネルギー側の集約点において最大となる。そのため、図2に示したように、ビーム入射用貫通孔115の縁にシム250が配置されている。なお、図2では、集約領域241に配置されているシムの図示を省略している。
 図4に示す等周回位相線は、集約領域から周回位相π/20ごとにプロットしている。ディー電極221とディー電極221に対向する接地電極222との間に形成される加速ギャップ223は集約点から見て±90度周回した等周回位相線244に沿って設置される。等周回位相線244は、図4のように入射位置130を中心とするW字型であるため、ディー電極221の辺縁221aと接地電極222は、等周回位相線244を挟んで対向し、かつ等周回位相線244の形状に沿ったW字型である。
 上述のように高周波加速空胴21は、加速ギャップ223に高周波電場を励起する。上述したように高周波加速空胴21には、図6に示すように、低レベル高周波発生装置42およびアンプ43が入力カプラ211(図1参照)を通じて接続されている。高周波加速空胴21には、低レベル高周波発生装置42が発生し、アンプ43が増幅した高周波電力が導入され、これにより高周波加速空胴21のディー電極221と接地電極222の間の加速ギャップ223に高周波電場が励起される。一般に、ディー電極221が励起する電磁場は、電極形状および回転式可変容量キャパシタ212が持つ静電容量によって定まる特定の共振周波数および空間分布の電磁場となる。この場合、ビームが加速ギャップを通過する際に、加速ギャップ223のいたるところでディー電極221から接地電極222に対してある時刻において同じ向きの電場が生じ、ビームが半周して反対側の加速ギャップを通過する際に先ほどの向きとは逆向きに電場が生じる。結果として、加速ギャップ223をビームが通過する際に加速する方向に電場から力を与え、周回しながらビームエネルギーを増大させることができる。
 本発明の加速器1においては、ビームの周回に同期して高周波電場を励起するため、電場の周波数を周回中のビームのエネルギーに対応して図8のグラフのように変調し、ビームを所望のエネルギーまで徐々に加速していく(図8)。共振モードを用いた高周波加速空胴21では、共振の幅よりも広い範囲で高周波の周波数を掃引する必要がある。そのために高周波加速空胴21の共振周波数も変更する必要が有る。その制御は高周波加速空胴21の端部に設置された回転式可変容量キャパシタ212の静電容量を変化せることで行う。回転式可変容量キャパシタ212の回転軸213には、導体板が接続されており、回転軸213を回転させることにより、導体板と外部導体との間に生じる静電容量を回転軸213の回転角によって制御することができる。すなわち、ビームの加速に伴い回転軸213の回転角を変化させることにより、高周波加速空胴21の共振周波数を変更することができる。
 次いで、本実施形態の加速器1のビーム入射から取り出しまでのビームの挙動をさらに説明する。
 まずイオン源12から低エネルギーのイオンが出力され、ビーム入射用貫通孔115および入射位置130を介してビーム通過領域20にビームが導かれる。
 イオン源12からビーム入射用貫通孔115内に入射した際、イオンは、ビーム入射用貫通孔115を横切る磁力線90の磁場90aからローレンツ力を受け、ドリフト運動するが、電極91が印加する電場により適切なキックを与えることにより、ほぼ軌道面20aに対して垂直な方向から入射位置130近傍に到達し、軌道面20a付近で、偏向器(不図示)によってビームの運動方向が軌道面20aに平行に偏向される。
 このとき、本実施形態では、ビーム入射用貫通孔115および入射位置130を、図12、図13に示した比較例(従来構造)の可変エネルギー加速器よりも、磁極123a,123bの中心20cに近づけて配置しているため、磁場90aの入射ビーム経路に直交する成分を低減することができる。よって、ローレンツ力につり合うキックを与える電極91の電場を、図12の比較例よりも小さくすることができる。その結果、図12の比較例よりも入射位置130に入射することのできる入射ビーム量が増加し、一つの運転周期で加速および照射可能な電荷量が増加させることができる。
 ビーム通過領域20に入射されたビームは、加速ギャップ223を通過するたびに高周波電場による加速を受け、そのエネルギーが増大するとともに、軌道の回転半径を増加させていく。その後ビームは高周波電場による進行方向安定性を確保しながら、所望のエネルギーまで加速される。
 上述したように加速ギャップ223に励起する高周波電場の周波数は、ビームの周回周波数のちょうど整数倍の比で同期するように設定されている。本実施形態では、粒子が、高周波電場が最大となる時刻に加速ギャップ223を通過するのではなく、時間的に高周波電場が減少している所定の位相で、粒子が加速ギャップ223を通過するように設定する。そのため、高周波電場の所定の位相で加速ギャップ223を通過して加速された粒子は、次のターンもほぼ同じ位相で加速ギャップ223を通過し加速される。一方、高周波電場の所定の位相よりも早い位相で、加速ギャップ223を通過して加速された粒子は、所定の位相で加速ギャップ223を通過して加速された粒子よりも、その加速量が大きいため、次のターンでは、前のターンよりも遅れた位相で加速ギャップ223を通過し、加速を受ける。また逆に、所定の位相より遅い位相で加速ギャップ223を通過し加速された粒子は、所定の位相で加速ギャップ223を通過して加速された粒子よりも、その加速量が小さいため、次のターンでは、前のターンよりも進んだ位相で加速ギャップを通過し、加速を受ける。このように、所定の位相からずれたタイミングの加速ギャップ223を通過する粒子には、所定の位相に戻す復元作用が働き、この作用によって、運動量分散Δpと高周波の位相からなる位相平面(進行方向)内において安定に振動する。この振動をシンクロトロン振動と呼ぶ。すなわち、加速中の粒子はシンクロトロン振動をしながら、徐々に加速され、所定のエネルギーに達する。安定なシンクトロン振動をする間、個々の粒子は、位相平面上に高周波バケツと呼ばれる安定領域内で回転運動をする。
 全体制御装置40は、所定の取り出しビームを目標のエネルギーで加速器1から取り出すために、高周波加速空胴21に印加されている高周波電場の振幅を、徐々に低くし、ビームが目標エネルギーに達したところで高周波電場の振幅が0となるように、低レベル高周波発生装置42とアンプ43の出力を制御する。これにより、ビームは、目標エネルギーで安定に加速器1内を周回する。
 この状態で、擾乱用電極313に対して、ビームのベータトロン振動の周波数に一致する高周波電圧を印加すると、ビームは、進行方向の位置、すなわち擾乱用電極313を通過する時刻に依存する擾乱を受ける。特定の粒子に着目すると、擾乱用電場と周回のベータトロン振動の周波数が一致しているため、両者は共鳴し、ある粒子のベータトロン振動振幅が増大する。その粒子のベータトロン振動振幅が増大し続けると、設計軌道の外側に設置された付加磁場発生用シム311が励起するキック磁場の作用が及ぶ領域を通過する。これにより、キック磁場の作用を受けて、急激にベータトロン振動が発散し、設計軌道から見て外側に、ビームが変位する。その結果、ビームは、取り出しチャネル312に到達し、取り出し軌道322上を通り、加速器1の取り出しビーム用貫通孔111から外部に取り出される。
 上述のようにビームが、加速器1内で目標エネルギーに達してから加速器1から取り出されるまでの間、ビームを構成する個々の粒子は、付加磁場発生用シム311が形成する四極磁場および六極以上の多極磁場によって、ビームの水平方向の位置と傾きで定まる位相空間上において、安定に周回できる領域と不安定に軌道ずれが増大し続ける領域とに分けられた状態で周回する。この安定領域と不安定領域の境界をセパラトリクスと称する。
 また、擾乱用電極313に印加される電場が切られるとビームのベータトロン振動振幅の増大が停止し、安定領域内でビームが周回するため、ビームの取り出しを停止することができる。
 上述のような原理によってビームを加速し、あるひとつのエネルギーのビームを加速器1外に取り出すときの各機器の制御動作を、図9のダイアグラムと図10のフローチャートを用いて説明する。
 図9のダイアグラムの縦軸は、上から順に、回転式可変容量キャパシタ212の回転軸213の回転角、高周波加速空胴21の共振周波数、高周波加速空胴21に入力する高周波電力の周波数、加速ギャップ223における高周波電場の電圧振幅、イオン源12が出力するビーム電流波形、擾乱用電極313に入力される擾乱用高周波電場の振幅、加速器1内のビームの水平エミッタンス(ビームサイズ)、加速器1から出力されるビーム電流波形を示している。図9に示すダイアグラムの横軸はすべて時間である。
 図10のフローは、全体制御装置40および電圧振幅計算装置45の動作を示す。全体制御装置40および電圧振幅計算装置45は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等のプロセッサーと、メモリとを備えたコンピュータ等によって構成され、CPUが、メモリに格納されたプログラムを読み込んで実行することにより、図10のフローの動作をソフトウエアにより実現する。なお、全体制御装置40および電圧振幅計算装置45は、その一部または全部をハードウエアによって実現することも可能である。例えば、ASIC(Application Specific Integrated Circuit)のようなカスタムICや、FPGA(Field-Programmable Gate Array)のようなプログラマブルICを用いて全体制御装置40および電圧振幅計算装置45の一部または全部を構成し、図10のフローの動作を実現するように回路設計を行えばよい。
 ユーザからビームの照射開始を指示されたならば、図10のステップ111において、電圧振幅計算装置45は、治療計画データベース60から照射すべきビームのエネルギーを読み込む。
 つぎに、ステップ112において、全体制御装置40は、照射すべきビームのエネルギーまでビームを加速するために必要な高周波電場の印加時間Tを算出する。具体的には、全体制御装置40は、ビームのエネルギーごとに予め求めておいたそのエネルギーまで加速するのに要する高周波電場の印加時間Tとの関係を定めたテーブルや数式に基づいて、読み込んだビームのエネルギーまで加速するのに必要な高周波電場の印加時間Tを算出する。また、全体制御装置40は、ビームのエネルギーごとに予め求めておいた電圧低下タイミングTdの関係を定めたテーブルや数式に基づいて、読み込んだビームのエネルギーに対応する低下開始タイミングT1dを算出する。この低下開始タイミングT1dは、そのタイミングで高周波加速空胴21への高周波電力の電圧振幅を低下または停止させた場合、加速ギャップ223の加速用高周波電場が0になる時点で、ビームが目標エネルギーに到達すると見込まれるタイミングである。
 ステップ113において、全体制御装置40は、モータ制御装置41に指示し、サーボモータ214を動作させ、図9に示すように、回転式可変容量キャパシタ212の回転軸213を所定の角速度で回転させる。その回転軸213の回転角によって、図9のように高周波加速空胴21の基本モードの共振周波数f1が周期的に変化する。この時間では、まだ加速用の高周波電力は、高周波加速空胴21には入力されていない。
 ステップ114において、全体制御装置40は、図9に示すように、運転周期の開始直後から、イオン源12から所定時間ビームを出力させる。これにより、加速器1の入射位置130から加速器1の内部に、イオンビームが所定時間入射する。
 このとき、ビーム入射用貫通孔115には、電極91から予め計算しておいた大きさの電場を印加し、イオンビームが受けるローレンツ力につり合わせ、イオンビームの入射位置130への入射効率を高めている。
 ステップ115において、イオン源12の入射直後から全体制御装置40は、ステップ111で電圧振幅計算装置45が算出した電圧振幅E1で、かつ、回転軸213の回転角によって変化する高周波加速空胴21の基本モードの共振周波数f1に同期した周波数f2の高周波電力を、高周波加速空胴21に低レベル高周波発生装置42およびアンプ43から入力させる。これにより、加速器1の安定なシンクロトロン振動が可能な範囲に入射したビームは、加速ギャップ223を通過することにより高周波電場Eにより加速されながら加速器1の内部を周回する。これに対し、シンクロトロン振動が安定しない粒子は、加速されずに加速器1内部の構造物に衝突し、失われる。共振周波数が低下するにつれてビームは加速されていき、所定の取り出しエネルギー近くまで加速される。
 ステップ116において、高周波電力の入力開始からステップ112で定めた時刻T1dに達したならば、高周波電圧の振幅Eを停止させる。高周波加速空胴21が発生する加速用高周波電場は、高周波加速空胴21の共振のQ値に基づいて徐々に電圧振幅が小さくなり(漸減)、上述の高周波バケツが消失していく。
 ステップ117において、全体制御装置40は、この時刻T1dから擾乱高周波の立ち上げを開始するように擾乱高周波制御装置47に指示する。これにより、擾乱高周波制御装置47は、高周波電源46を動作させ、擾乱用電極313に高周波電力を出力する。高周波電源46から擾乱用電極313に出力される高周波電力の電圧値は、擾乱高周波制御装置47によって制御されており、その指定値は取り出しビームエネルギーと取り出しビームの出力電流から一意に定まる値として治療計画データベース60によって定められ、全体制御装置40より指示される。擾乱用電極313は、擾乱用高周波電場を発生し、加速器1を周回しているビームは、この電場により擾乱を受けて、図9のように水平方向のエミッタンスが増大する。
 ステップ118において、ステップ112で定めた印加時間Tが経過した時点で加速用高周波電場の電圧振幅がゼロになる。加速用高周波電場の電圧振幅が十分小さくなった時点で、加速器1内のビームは所定の取り出しエネルギーに達している。
 同時に、ビームの水平エミッタンス(ビームサイズ)は、擾乱用電極313の擾乱高周波電場からの作用で増大しており、付加磁場発生用シム311が励起するキック磁場の作用が及ぶ領域を通過し、取り出し用セプタム電磁石312が形成する磁場が及ぶ範囲に到達し、取り出し軌道322上を通り、加速器1の取り出しビーム用貫通孔111から外部に取り出される。
 ステップ119において、全体制御装置40は、ビームを取り出す時間が治療計画データベース60により予め定められた時間を経過するまで、擾乱用電極313に擾乱高周波電力の印加を継続する。その間、擾乱用電極313の擾乱用高周波電場の作用により、加速器1からのビームの取り出しが継続される。ビーム取り出し時間は、周回中の全電荷が加速器1からすべて取り出されるか、取り出したビームが、治療計画で定められた所定の照射線量に到達する時間に設定されている。本実施形態では、高効率で加速器1からビームを取り出す際の取り出すことができるため、ビーム取り出し時間を従来よりも短く設定することができる。
 この間、高周波加速空胴21に付随のサーボモータ214は回転を続け、共振周波数は変動を続けるが、高周波加速空胴21には加速用高周波が入力されていないため、ビームに対する影響はほとんど生じない。よってビームは一定のエネルギーで周回し続け、印加されている擾乱高周波によって順次取り出されていく。
 ビーム取り出し時間が経過したならば、全体制御装置40は、ステップ120に進み、擾乱用電極313への擾乱高周波電力の印加を停止する。擾乱高周波の強度によってではあるが、擾乱高周波をオン/オフすることにより、ビームのオン/オフの制御が可能である。また、図9に示すように、運転周期よりも長い期間ビームを取り出すことも可能である。なお、ここでいう運転周期とは、共振周波数が最大となる時刻から次に最大となる時刻までの期間である。
 照射が終了すると、ステップ111に戻り、電圧振幅計算装置45は、次に取り出すべきビームのエネルギーを治療計画データベースから読み込む。ステップ112以降が上述のフローと同様に行われる。図9に示した例では、後半の運転周期では、前の運転周期よりも大きなエネルギーのビームを照射するため、高周波電場の印加時間T2を前の運転周期の加速用高周波電場の印加時間T1より長く設定して、大きなエネルギーまでビームを加速している。
 本実施形態の加速器は、ビーム入射用貫通孔115の位置と、周回軌道の移動方向に工夫を凝らしたことにより、小型で、取り出しビームのエネルギーが変更可能な加速器でありながら、外部イオン源から加速器内へのビーム入射の効率を高めることができる。その結果として出射されるイオンビームの線量率を向上させることができる。
 <<<第2の実施形態>>>
 本発明の第2の実施形態の粒子線治療システムについて図11を用いて説明する。第1の実施形態と同じ構成には同一の符号を示し、説明は省略する。
 第2の実施形態は、第1の実施形態の加速器1を用いた粒子線治療システムである。システムの全体構成図を図11に示す。
 粒子線治療システム1000は、患者5の患部(標的)に対して、患部の体表からの深さに応じて適切なエネルギー値の陽子線あるいは炭素線(以下ではまとめてビームと呼ぶ)を照射する装置である。図11に示すように、粒子線治療システム1000は、イオンを加速する加速器1と、加速器1で加速されたビームを後述する照射装置に対して輸送するビーム輸送系2と、ビーム輸送系2によって輸送されたビームを治療台4に固定された患者5内の標的に照射する照射装置3と、加速器1、ビーム輸送系2および照射装置3を制御する全体制御装置40および照射制御装置50と、標的に対するビームの照射計画を作成する治療計画装置70と、この治療計画装置70によって作成された治療計画が記憶された治療計画データベース60と、を備えている。また、加速器1には、第1の実施形態で説明した取り出しチャネル312が接続され、第1の実施形態で説明した仕組みによりビームを取り出すことができる。
 粒子線治療システム1000では、照射する粒子線のエネルギーと線量は、治療計画データベース60に記憶された治療計画のデータを読み込むことによって定められる。治療計画が定めた、粒子線のエネルギーと照射量を全体制御装置40から照射制御装置50に順次入力し、適切な照射量を照射した時点で次のエネルギーに移行して再度粒子線を照射する。
 なお、粒子線治療システム1000のビーム輸送系2は、図11に示すような固定されたものに限られず、回転ガントリと呼ばれる照射装置3ごと患者5の周りを回転可能とした輸送系とすることができる。また、照射装置3は一つに限られず、複数設けることができる。更には、ビーム輸送系2を設けずに、加速器1から直接照射装置3に対してビームを輸送する形態とすることができる。
 <その他>
 なお、本発明は、上記の実施形態に限定されるものではなく、様々な変形例が含まれる。上記の実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1…加速器
2…ビーム輸送系
3…照射装置
11…電磁石
12…イオン源
13…コイル
20…ビーム通過領域
20a…軌道面
21…高周波加速空胴
33…トリムコイル
40…全体制御装置
41…モータ制御装置
42…低レベル高周波発生装置
43…アンプ
46…高周波電源
47…擾乱高周波制御装置
50…照射制御装置
60…治療計画データベース
91…電極
111…取り出しビーム用貫通孔
112…コイル接続用貫通孔
114…高周波電力入力用貫通孔
115…ビーム入射用貫通孔
121…リターンヨーク
122…天板
123…磁極
130…入射位置
211…入力カプラ
212…回転式可変容量キャパシタ
213…回転軸
214…サーボモータ
221…ディー電極
222…接地電極
223…加速ギャップ
311…付加磁場発生用シム
312…取り出しチャネル
313…擾乱用電極
322…取り出し軌道
1000…粒子線治療システム

Claims (13)

  1.  イオンビームを周回させる軌道面を挟んで対向配置された一対の磁極を含み、前記軌道面に複数の周回軌道を生じさせる主磁場を形成する電磁石と、
     外部からイオンビームを前記軌道面の所定の入射位置に導入するために前記磁極に形成されたイオン入射用貫通孔と、
     前記一対の磁極間に形成されたキャビティに挿入され、前記軌道面を周回するイオンビームを加速する高周波を発生する高周波加速空胴と、
     前記キャビティの外周に配置された、最外周および最外周よりも内側の1以上の前記周回軌道上の移動中のイオンビームに磁場を印加して移動方向を前記周回軌道から外れさせる付加磁場発生部、および、前記周回軌道を外れたイオンビームを前記キャビティの外へ導く取出チャネルとを有し、
     前記イオンビームが加速されるにつれ、前記周回軌道は、その半径が徐々に大きくなり、かつ、その中心が前記キャビティの所定の半径方向に沿って周縁部に近づく方向に移動した後、移動方向を反転して前記キャビティの中心に向かってさらに移動するように前記主磁場の前記軌道面内の強度分布が設計されていることを特徴とする加速器。
  2.  請求項1に記載の加速器であって、前記周回軌道は、その半径が予め定めた第1の半径に到達するまで、その中心が前記キャビティの前記所定の半径方向に沿って前記キャビティの周縁部に近づく方向に移動し、前記第1の半径に到達した後、前記半径方向に沿って前記キャビティの中心に向かって移動するように、前記電磁石の前記主磁場の前記強度分布が設計されていることを特徴とする加速器。
  3.  請求項1に記載の加速器であって、前記一対の磁極は、それぞれ円筒形であり、前記軌道面を挟んで対称になるように配置された磁極面を有し、
     前記イオン入射用貫通孔は、中心軸が前記軌道面に対して垂直であって、前記所定の半径方向と直交する位置に設けられていることを特徴とする加速器。
  4.  請求項1に記載の加速器であって、前記イオン入射用貫通孔の中心軸と、前記キャビティの中心との距離は、前記キャビティの半径の長さの50%以内に設けられていることを特徴とする加速器。
  5.  請求項3に記載の加速器であって、前記磁極面には、前記イオン入射用貫通孔と前記磁極の中心との間であって、前記イオン入射用貫通孔に隣接する位置に、シムが配置されていることを特徴とする加速器。
  6.  請求項5に記載の加速器であって、前記イオン入射用貫通孔および前記シムは、対向する前記磁極に前記軌道面を挟んで対称な位置にそれぞれ設けられ、
     前記一対のシム間の距離は、前記イオン入射用貫通孔と前記磁極面の外周との間の前記所定の半径方向に沿った位置であって、前記イオン入射用貫通孔に隣接する位置の前記一対の磁極面間の距離、または、その位置に配置されたシムの距離よりも狭いことを特徴とする加速器。
  7.  請求項1に記載の加速器であって、前記電磁石の外側には前記イオン入射用貫通孔にイオンビームを入射するイオン源が設置されていることを特徴とする加速器。
  8.  請求項1に記載の加速器であって、前記取出チャネルは、前記キャビティの前記所定の半径方向の外周部に配置されていることを特徴とする加速器。
  9.  請求項5に記載の加速器であって、前記イオン入射用貫通孔と前記磁極の中心との間であって、前記半径方向に沿った各位置の磁場勾配は、前記シムが配置されている位置の磁場勾配が最も大きいことを特徴とする加速器。
  10.  請求項9に記載の加速器であって、前記イオン入射用貫通孔と前記キャビティの外周との間であって、前記半径方向に沿った各位置の磁場勾配は、前記キャビティの周縁部が最も大きいことを特徴とする加速器。
  11.  請求項3に記載の加速器であって、前記磁極面には、複数のリング状のトリムコイルが備えられ、前記トリムコイルは、前記軌道面の複数の前記周回軌道に対応する半径であり、前記周回軌道に対応する位置の磁極面に備えられていることを特徴とする加速器。
  12.  請求項1に記載の加速器であって、前記高周波加速空胴は、ディー電極を含み、前記ディー電極の辺縁は、前記軌道面に平行に前記キャビティを横切るように配置され、前記辺縁の形状は、前記入射位置の近傍を中心とするW字型であることを特徴とする加速器。
  13.  粒子線ビームを患者に照射する粒子線治療システムにおいて、前記粒子線ビームの発生装置として、請求項1ないし12のいずれか1項に記載の加速器を用いることを特徴とする粒子線治療システム。
PCT/JP2021/047985 2021-02-08 2021-12-23 加速器および粒子線治療システム WO2022168484A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/276,094 US20240306286A1 (en) 2021-02-08 2021-12-23 Accelerator and particle therapy system
EP21924869.7A EP4290984A1 (en) 2021-02-08 2021-12-23 Accelerator and particle beam therapy system
CN202180091992.1A CN116803215A (zh) 2021-02-08 2021-12-23 加速器以及粒子束治疗系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021018465A JP7399127B2 (ja) 2021-02-08 2021-02-08 加速器および粒子線治療システム
JP2021-018465 2021-02-08

Publications (1)

Publication Number Publication Date
WO2022168484A1 true WO2022168484A1 (ja) 2022-08-11

Family

ID=82742152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047985 WO2022168484A1 (ja) 2021-02-08 2021-12-23 加速器および粒子線治療システム

Country Status (5)

Country Link
US (1) US20240306286A1 (ja)
EP (1) EP4290984A1 (ja)
JP (1) JP7399127B2 (ja)
CN (1) CN116803215A (ja)
WO (1) WO2022168484A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116634649A (zh) * 2023-05-30 2023-08-22 迈胜医疗设备有限公司 加速器腔体老练装置及方法、电子设备、相关装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091553A (ja) * 2017-11-13 2019-06-13 株式会社日立製作所 円形加速器および粒子線治療システム
JP2020038797A (ja) * 2018-09-04 2020-03-12 株式会社日立製作所 加速器、およびそれを備えた粒子線治療システム
JP2020202015A (ja) * 2019-06-06 2020-12-17 株式会社日立製作所 加速器、粒子線治療システムおよびイオン取り出し方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019091553A (ja) * 2017-11-13 2019-06-13 株式会社日立製作所 円形加速器および粒子線治療システム
JP2020038797A (ja) * 2018-09-04 2020-03-12 株式会社日立製作所 加速器、およびそれを備えた粒子線治療システム
JP2020202015A (ja) * 2019-06-06 2020-12-17 株式会社日立製作所 加速器、粒子線治療システムおよびイオン取り出し方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116634649A (zh) * 2023-05-30 2023-08-22 迈胜医疗设备有限公司 加速器腔体老练装置及方法、电子设备、相关装置
CN116634649B (zh) * 2023-05-30 2024-01-26 迈胜医疗设备有限公司 加速器腔体老练装置及方法、电子设备、相关装置

Also Published As

Publication number Publication date
US20240306286A1 (en) 2024-09-12
JP2022121224A (ja) 2022-08-19
EP4290984A1 (en) 2023-12-13
CN116803215A (zh) 2023-09-22
JP7399127B2 (ja) 2023-12-15

Similar Documents

Publication Publication Date Title
US11849533B2 (en) Circular accelerator, particle therapy system with circular accelerator, and method of operating circular accelerator
CN109923946B (zh) 圆形加速器
WO2019097721A1 (ja) 粒子線治療システムおよび加速器、ならびに加速器の運転方法
JP7240262B2 (ja) 加速器、粒子線治療システムおよびイオン取り出し方法
US11097126B2 (en) Accelerator and particle therapy system
WO2022168484A1 (ja) 加速器および粒子線治療システム
WO2020044604A1 (ja) 粒子線加速器および粒子線治療システム
JP6899754B2 (ja) 円形加速器および粒子線治療システム
US10850132B2 (en) Particle therapy system
JP7359702B2 (ja) 粒子線治療システム、イオンビームの生成方法、および、制御プログラム
JP2022026175A (ja) 加速器および粒子線治療装置
WO2023162640A1 (ja) 加速器および加速器を備える粒子線治療システム
JP2021035467A (ja) 円形加速器および粒子線治療システム、円形加速器の運転方法
WO2023013458A1 (ja) 円形加速器および粒子線治療システム
JP6663618B2 (ja) 加速器および粒子線照射装置
JP2024055638A (ja) 円形加速器及び粒子線治療装置、並びに円形加速器の運転方法
JP2024092822A (ja) 加速器及び粒子線治療システム
CN117356173A (zh) 粒子束加速器以及粒子束治疗系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924869

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180091992.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18276094

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021924869

Country of ref document: EP

Effective date: 20230908