JP2019069922A - 高純度トリフルオロメチル基置換芳香族ケトンの製造方法 - Google Patents

高純度トリフルオロメチル基置換芳香族ケトンの製造方法 Download PDF

Info

Publication number
JP2019069922A
JP2019069922A JP2017197648A JP2017197648A JP2019069922A JP 2019069922 A JP2019069922 A JP 2019069922A JP 2017197648 A JP2017197648 A JP 2017197648A JP 2017197648 A JP2017197648 A JP 2017197648A JP 2019069922 A JP2019069922 A JP 2019069922A
Authority
JP
Japan
Prior art keywords
substituted aromatic
aromatic ketone
trifluoromethyl group
acid
grignard reagent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017197648A
Other languages
English (en)
Other versions
JP6830051B2 (ja
Inventor
仁郎 中谷
Niro Nakatani
仁郎 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Fine Chemicals Co Ltd
Original Assignee
Toray Fine Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Fine Chemicals Co Ltd filed Critical Toray Fine Chemicals Co Ltd
Priority to JP2017197648A priority Critical patent/JP6830051B2/ja
Publication of JP2019069922A publication Critical patent/JP2019069922A/ja
Application granted granted Critical
Publication of JP6830051B2 publication Critical patent/JP6830051B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】 本発明は、高純度のトリフルオロメチル基置換芳香族ケトンを、高い収率で製造する方法を提供する。【解決手段】 ハロゲン置換ベンゾトリフルオライド化合物をマグネシウム金属と反応させて、グリニャール試薬に転化し、そのグリニャール試薬を酸無水物と反応させた後、酸を含む水溶液で加水分解処理して、トリフルオロメチル基置換芳香族ケトンを生成させた後、塩基を含む水溶液を用いて、塩基性条件下で加水処理することにより、トリフルオロメチル基置換芳香族ケトンと蒸留分離が難しい不純物である脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルを分解除去し、トリフルオロメチル基置換芳香族ケトンの蒸留収率を向上させ、高純度化させることができる。【選択図】なし

Description

本発明は、高純度トリフルオロメチル基置換芳香族ケトンの製造方法に関する。特に工業的に優れた高純度トリフルオロメチル基置換芳香族ケトンを製造する方法に関する。
トリフルオロメチル基置換芳香族ケトンは、ファインケミカル、医農薬原料、樹脂・プラスチック原料、電子情報材料、光学材料など有用な化合物である。トリフルオロメチル基置換芳香族ケトンは、多岐にわたる分野の工業用途で有用である。特に医農薬原料として、トリフルオロメチル基置換芳香族ケトンの純度が99%を超える極めて高純度であることが求められる。
特許文献1は、トリフルオロメチル基置換芳香族ケトンの製造方法として、ハロゲン置換ベンゾトリフルオライド化合物をマグネシウム金属と反応させて、グリニャール試薬に転化し、該グリニャール試薬を酸無水物と反応させた後、塩化水素水溶液で加水分解処理し、その粗液からトリフルオロメチル基置換芳香族ケトンを蒸留で取得することを記載する。
しかし、特許文献1では、得られるトリフルオロメチル基置換芳香族ケトンの純度が99%を越えるものが得られず、蒸留収率も66〜72%と低くなっていた。トリフルオロメチル基置換芳香族ケトンを製造するとき、不純物として脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルが副生する。これら不純物は、目的物であるトリフルオロメチル基置換芳香族ケトンと沸点が近いことから、蒸留分離が難しく、高純度の目的物を得ることを困難にする原因であった。また、脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルを蒸留で除去し、高純度の目的物を得ようとすると、目的物の蒸留ロスが大きくなり、蒸留収率が大きく低下させていた。
そこで、高収率で、かつ高純度の目的物を得るために、脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルを蒸留前に低減させる方法が望まれていた。
国際公開2016/043079号公報
本発明の目的は、高純度のトリフルオロメチル基置換芳香族ケトンを、高い収率で製造する方法を提供することである。
本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法は、下記一般式(1)で示されるハロゲン置換ベンゾトリフルオライド化合物を
Figure 2019069922
(但し、Xは、ClまたはBrである。)
マグネシウム金属と反応させて、グリニャール試薬に転化し、該グリニャール試薬を酸無水物と反応させた後、酸を含む水溶液で加水分解処理して、下記一般式(2)で示されるトリフルオロメチル基置換芳香族ケトンを生成させた後、
Figure 2019069922
(但し、nは、1〜4の整数である。)
前記反応の副生成物を、塩基を含む水溶液を用いて、塩基性条件下で加水処理することを特徴とする。
本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法は、トリフルオロメチル基置換芳香族ケトンとの蒸留分離が難しい不純物である脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルを速やかに塩基性条件下で加水分解し、その分解物を水相に移行させ除去することができる。分解処理した油相を蒸留することで、高純度のトリフルオロメチル基置換芳香族ケトンを高い蒸留収率で、取得することができ、工業的に優れた製造方法である。
本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法により製造されたトリフルオロメチル基置換芳香族ケトンは、ファインケミカル、医農薬原料、樹脂・プラスチック原料、電子情報材料、光学材料などとして用いることができる。
以下に本発明の詳細を記載する。
本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法は、下記一般式(1)で示されるハロゲン置換ベンゾトリフルオライド化合物を出発基質とする。
Figure 2019069922
(但し、Xは、ClまたはBrである。)
ハロゲン置換ベンゾトリフルオライド化合物の具体例としては、o−クロロベンゾトリフルオライド、o−ブロモベンゾトリフルオライド、m−クロロベンゾトリフルオライド、m−ブロモベンゾトリフルオライド、p−クロロベンゾトリフルオライド、p−ブロモベンゾトリフルオライドである。好ましくは、o−クロロベンゾトリフルオライド、o−ブロモベンゾトリフルオライドである。
本発明において、ハロゲン置換ベンゾトリフルオライド化合物のハロゲン原子をマグネシウム金属と反応させて、グリニャール試薬に転化する。グリニャール試薬への転化反応は、公知の転化反応を利用することができる。
本発明において、用いるマグネシウム金属は、粉末状または削り屑状のものを用いることが好ましい。
本発明において、マグネシウム金属の使用量は、原料ハロゲン置換ベンゾトリフルオライド化合物に対して、0.8〜3モル倍が好ましい。
本発明において、マグネシウム金属の表面酸化皮膜をとり、反応性を高めるため、ヨウ素、臭素あるいは、これらを含む安価な化合物を添加することが好ましい。このような化合物の例としては、ヨウ化メチル、臭化メチル、ヨウ化エチル、臭化エチル等が好ましく挙げられる。
本発明において、グリニャール試薬に転化する反応は、脱水された系で行われる。このため、反応は、事前に脱水した溶媒を用いても良いし、あるいは反応前、溶媒に安価なグリニャール試薬を添加し、溶媒中に含まれる水を除去してもよい。
本発明のグリニャール試薬製造で用いる溶媒は、反応を効率よく進行させることができる溶媒が使用される。グリニャール試薬製造で用いる溶媒は、テトラヒドロフランである。
また、溶媒の使用量は、ハロゲン置換ベンゾトリフルオライド化合物またはグリニャール試薬の溶解性やスラリー濃度または反応液の性状に応じ、使用量を決めることが好ましい。溶媒の使用量は、好ましくは、ハロゲン置換ベンゾトリフルオライド化合物に対し1〜100モル倍量である。1モル倍以下だと、グリニャール試薬の収率が低くなることがあり、100モル倍以上だと生産性が悪くなるころがあり、非経済的なプロセスとなる場合がある。
本発明のグリニャール試薬製造において、前記一般式(1)で示されるハロゲン置換ベンゾトリフルオライド化合物をマグネシウム金属と反応させ、グリニャール試薬に転化する際に、LiCl(塩化リチウム)を共存させることが好ましい。LiCl共存させることで、グリニャール試薬の生成が速やかに起こり、続く、酸無水物との反応が高収率で起こるためである。
本発明において、用いるLiClの量は、ハロゲン置換ベンゾトリフルオライド化合物に対して、好ましくは、0.01〜3モル倍である。より好ましくは、0.05〜1モル倍量である。LiClの量が、ハロゲン置換ベンゾトリフルオライド化合物に対して、0.01〜3モル倍であると、グリニャール試薬の生成が、より速やかに起こり、LiClが反応系に完全に溶解する。
本発明の製造方法においてグリニャール試薬と反応させる酸無水物の具体例としては、無水酢酸、無水プロピオン酸、無水酪酸、無水吉草酸があげられる。本発明の製造方法においてグリニャール試薬と反応させる酸無水物は、好ましくは、無水酢酸、無水プロピオン酸、または、無水酪酸である。
酸無水物の使用量は、ハロゲン置換ベンゾトリフルオライド化合物1モルに対し、0.5〜10モル倍量用いるのが好ましく、より好ましくは、1モル倍量〜5モル倍量である。0.5モル倍量より少ないと未反応のグリニャール試薬が残存し、収率が低下する場合があり、目的物の単離精製で負荷がかかる場合がある。10モル倍量より多いと未反応の酸無水物が残存し、生産性が悪くなる場合があり、未反応の酸無水物とトリフルオロメチル基置換芳香族ケトンの分離に負荷が大きくなる場合がある。
本発明において、グリニャール試薬と酸無水物の反応は、溶媒を用いても良い。溶媒は、反応を阻害せず、効率よく進行させることができる溶媒が好ましい。溶媒の具体例としては、ジエチルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジオキサン、1,4−ジオキサン、シクロプロピルメチルエーテル、メチル−ターシャリーブチルエーテル、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ベンゼン、トルエン、キシレンなどが挙げられる。中でも好ましいのは、テトラヒドロフラン、1,3−ジオキサン、シクロプロピルメチルエーテル、ベンゼン、トルエン、キシレン。メシチレンである。
溶媒の使用量は、グリニャール試薬に対し、0.05〜50重量倍が好ましい。溶媒の使用量が、0.05重量倍以下だと、反応熱を除熱しづらく、反応が暴走してしまう場合がある。50重量倍以上だと生産性が悪い場合がある。
グリニャール試薬と酸無水物の反応方法は、グリニャール試薬溶液中へ酸無水物を含む溶液を投入しても良いし、酸無水物を含む溶液中にグリニャール試薬溶液を投入してもよい。急な発熱反応や反応暴走を防ぐために、投入する溶液を、時間をかけて連続的にまたは分割して間欠的に投入するなど反応系内の温度が設定範囲になるように制御しながら、投入速度を調整することが好ましい。投入に要する時間は、0.5〜6時間が好ましく選ばれる。
本発明の製造方法において、グリニャール試薬と酸無水物の反応温度は、0〜100℃が好ましく、10〜50℃がさらに好ましい。反応温度が0℃より低いと、反応がほとんど進行せず、例え反応が進行したとしても、途中で停止することがあり、また100℃を超えると、グリニャール試薬が反応する前に熱分解することがあり好ましくない。
本発明の製造方法において、グリニャール試薬と酸無水物の反応時間は、通常、グリニャール試薬溶液と酸無水物を含む溶液を全量混合後、0〜100℃で0.5〜40時間である。
本発明の製造方法において、グリニャール試薬と酸無水物との反応終了後、トリフルオロメチル基置換芳香族ケトンとハロゲン化マグネシウムとからなる塩を形成していることから、これを酸を含む水溶液で加水分解することで、トリフルオロメチル基置換芳香族ケトンが得られる。好ましくは、反応終了液に、塩酸、硝酸、または硫酸などの鉱酸からなる酸を含む水溶液を加え、トリフルオロメチル基置換芳香族ケトンとハロゲン化マグネシウムからなる塩を加水分解し、生成したハロゲン化マグネシウムを水相に除去した後、トリフルオロメチル基置換芳香族ケトンを含んだ油相を取得する方法が好ましい。
使用する酸の量は、使用したマグネシウム金属に対し、0.1〜2.0モル倍量が好ましく用いられる。酸の量が0.1モル倍量未満であると、トリフルオロメチル基置換芳香族ケトンとハロゲン化マグネシウムからなる塩が残存することがある。2.0モル倍量を超える過剰の酸を用いると、続く塩基による塩基性条件下での加水分解の際、残存する酸により塩基が消費されてしてしまうことから、過剰の塩基が必要となってしまう。酸水溶液の濃度は、5〜35重量%が好ましく用いられる。
酸による加水分解処理の後、下層となる水相を除去して、トリフルオロメチル基置換芳香族ケトンを含んだ油相を取得する。この後、水で水洗することで、残存する酸性水を除去することが好ましい。
続いて、得られたトリフルオロメチル基置換芳香族ケトンを含んだ油相を塩基を含む水溶液を用いて、塩基性条件下で加水処理する。これにより、目的物であるトリフルオロメチル基置換芳香族ケトンと分離が困難な不純物である脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルを分解除去する。脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルは、下記一般式(3)および(4)で表される副生成物である。
Figure 2019069922
(但し、XはClまたはBr、nは1〜4の整数である。)
Figure 2019069922
(但し、nは1〜4の整数である。)
これらの分解物となる脂肪酸、ハロゲン化ブチルアルコールおよびトリフルオロメチルフェノールは、主に水相側に抽出され、除去される。脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステル以外の不純物で一部油相に残存するものは、トリフルオロメチル基置換芳香族ケトンと物性が大きく異なることから、分離が容易となる。
本発明で用いる塩基は、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等の無機塩基、リチウムメトキシド、ナトリウムメトキシド、カリウムメトキシド、リチウムエトキシド、ナトリウムエトキシド、カリウムエトキシド、リチウムプロポキシド、ナトリウムプロポキシド、カリウムプロポキシド、リチウムブトキシド、ナトリウムブトキシド、カリウムブトキシド等のアルカリ金属アルコキシド等が挙げられる。その中でも水酸化リチウム、水酸化ナトリウム、水酸化カリウムの無機塩基がより好ましい。
用いる塩基の量は、用いる酸無水物に対し、1.1モル倍以上用いれば良く、通常は、1.2〜5.0モル倍が好ましく用いられる。
トリフルオロメチル基置換芳香族ケトンを含んだ油相を、塩基を含む水溶液を用いて、塩基性条件下で加水処理する際、相関移動触媒の共存下で行うことが好ましい。相関移動触媒を添加し共存させることにより、不純物である脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルの加水分解が促進される。
本発明において、相関移動触媒とは、第四級アンモニウム塩や第四級ホスホニウム塩が挙げられる。第四級アンモニウム塩としては、テトラメチルアンモニウム、トリメチル−エチルアンモニウム、ジメチルジエチルアンモニウム、トリエチル−メチルアンモニウム、トリプロピル−メチルアンモニウム、トリブチル−メチルアンモニウム、トリオクチル−メチルアンモニウム、テトラエチルアンモニウム、トリメチル−プロピルアンモニウム、トリメチルフェニルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、ジアリルジメチルアンモニウム、n−オクチルトリメチルアンモニウム、ステアリルトリメチルアンモニウム、セチルジメチルエチルアンモニウム、テトラプロピルアンモニウム、テトラn−ブチルアンモニウム、β−メチルコリンおよびフェニルトリメチルアンモニウム等の臭化塩、塩化塩、ヨウ化塩、硫酸水素塩および水酸化物等を挙げることができる。特に好ましくは、トリオクチル−メチルアンモニウム、テトラエチルアンモニウム、ベンジルトリメチルアンモニウム、ベンジルトリエチルアンモニウム、テトラn−ブチルアンモニウムの臭化塩、塩化塩、硫酸水素塩および水酸化物である。
また第四級ホスホニウム塩としては、テトラメチルホスホニウム、トリメチル−エチルホスホニウム、ジメチルジエチルホスホニウム、トリエチル−メチルホスホニウム、トリプロピル−メチルホスホニウム、トリブチル−メチルホスホニウム、トリオクチル−メチルホスホニウム、テトラエチルホスホニウム、トリメチル−プロピルホスホニウム、トリメチルフェニルホスホニウム、ベンジルトリメチルホスホニウム、ジアリルジメチルホスホニウム、n−オクチルトリメチルホスホニウム、ステアリルトリメチルホスホニウム、セチルジメチルエチルホスホニウム、テトラプロピルホスホニウム、テトラn−ブチルホスホニウム、フェニルトリメチルホスホニウム、メチルトリフェニルホスホニウム、エチルトリフェニルホスホニウムおよびテトラフェニルホスホニウム等の臭化塩、塩化塩、ヨウ化塩、硫酸水素塩および水酸化物等を挙げることができる。
用いる相関移動触媒の量は、トリフルオロメチル基置換芳香族ケトンに対し、0.001モル倍以上用いれば良く、通常は、0.01〜1.0モル倍が好ましく用いられる。
塩基を含む水溶液による加水分解においては、得られた油相に塩基を添加するだけでもよいし、新たに溶媒を追加して使用することもできる。追加する溶媒としては、炭化水素系溶媒が好ましく、例えばヘキサン、2−メチルペンタン、2,2−ジメチルブタン、2,3−ジメチルブタン、ヘプタン、オクタン、イソオクタン、ノナン、トリメチルヘキサン、デカン、ドデカン、ベンゼン、トルエン、キシレン、エチルベンゼン、クメン、メシチレン、シクロヘキシルベンゼン、ジエチルベンゼン、シクロペンタン、メチルシクロペンタン、シクロヘキサン、メチルシクロヘキサンおよびエチルシクロヘキサンなどが挙げられる。
溶媒の使用量は、トリフルオロメチル基置換芳香族ケトン 1モルに対して好ましくは0.05L以上を用いれば良く、0.1Lから10Lがより好ましく用いられる。
本発明において、塩基による加水分解の処理温度は、好ましくは、10〜100℃で行われ、特に20〜70℃が好ましい。
処理時間は、通常は24時間以内であるが、脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルの低減状況を追跡し、不純物が殆ど消失した時点を処理の終点とすることが好ましい。
本発明の製造方法において、製造されるトリフルオロメチル基置換芳香族ケトンは、下記式(2)で示される。
Figure 2019069922
(但し、nは、1〜4の整数である。)
本発明の製造方法において、製造される高純度トリフルオロメチル基置換芳香族ケトンは、2’-トリフルオロメチルアセトフェノン、2’-トリフルオロメチルプロピオフェノン、2’-トリフルオロメチルブチロフェノン、2’-トリフルオロメチルバレロフェノン、3’-トリフルオロメチルアセトフェノン、3’-トリフルオロメチルプロピオフェノン、3’-トリフルオロメチルブチロフェノン、3’-トリフルオロメチルバレロフェノン、4’-トリフルオロメチルアセトフェノン、4’-トリフルオロメチルプロピオフェノン、4’-トリフルオロメチルブチロフェノン、4’-トリフルオロメチルバレロフェノン、である。好ましくは、2’-トリフルオロメチルアセトフェノン、2’-トリフルオロメチルプロピオフェノン、2’-トリフルオロメチルブチロフェノンである。
本発明の反応液から目的のトリフルオロメチル基置換芳香族ケトンを単離する方法は、蒸留法が好ましく用いられる。例えば、単蒸留、精留、減圧蒸留、常圧蒸留が好ましく、より好ましくは、減圧蒸留が用いられる。本発明の製造方法で得られたトリフルオロメチル基置換芳香族ケトンの純度は、好ましくは99.0%以上、より好ましくは99.2%以上100.0%以下、更に好ましくは99.5%以上100.0%以下であるとよい。
本発明の製造方法により得られた高純度トリフルオロメチル基置換芳香族ケトンは、多岐にわたる分野で有用な化合物であることから、これを効率よく工業的に得られることの意義は大きい。
以下、実施例により本発明をさらに詳細に説明する。なお、ここで用いている試薬類のメーカーグレードは、いずれも1級レベル以上に相当するものである。
トリフルオロメチル基置換芳香族ケトンの純度、並びに脂肪酸ハロゲン化ブチルエステルおよび脂肪酸トリフルオロメチルフェニルエステルの含有量(トリフルオロメチル基置換芳香族ケトン基準の%)は、ガスクロマトグラフィー(GC)法による測定における面積%として求めることができる。GC法の分析条件を以下に示す。
1. GC法の測定条件
検出器 : FID
カラム :TC−17,0.32mmφ×60m,0.25μm(J&W社製)
カラム温度:50℃(3.0分保持)→(10℃/分)→250℃(3.0分保持)
注入口温度:250℃
検出器温度:250℃
全流量 :62.6mL/分 (He 141.9kPa)
スプリット比:1/20
サンプル注入量:1.0μL
2. サンプル
10mlメスフラスコにサンプル0.2gを、電子上皿天秤を使用し秤量する。これにアセトンを加え、メスアップした溶液をサンプル溶液とした。
[実施例1]
テトラヒドロフラン75.0g(1.04mol;nacalai tesque社製)、マグネシウム粉末5.1g(0.208mol;中央工産社製)、LiCl 2.5g(0.08mol;nacalai tesque社製)を温度計付き四つ口フラスコ(容量200ml)に投入し、系内を窒素置換しながら、撹拌した。これに1mol/LエチルマグネシウムブロミドTHF溶液0.5g(東京化成社製)を添加し、系内の水分を除去した。続いて、臭化エチル 0.44g(0.004mol;和光純薬社製)を加えた。暫く撹拌し、発熱が起こることを確認した。次に反応液温度45〜50℃に保ちながら、o−クロロベンゾトリフルオライド36.1g(0.2mol;和光純薬社製)を徐々に滴下した。滴下終了後、45℃で5時間撹拌しながら、熟成した。熟成後、トルエン 10.8gを加えて、希釈し、グリニャール試薬溶液を得た。
次に、無水酢酸19.8g(0.19mol;和光純薬社製)、トルエン43.3g(1.2重量倍/o−クロロベンゾトリフルオライド:和光純薬社製)を温度計付き四つ口フラスコ(容量200ml)に投入し、系内を窒素置換しながら、水浴中で撹拌した。これに上記グリニャール試薬溶液を反応液温度20〜30℃になるように制御しながら滴下した。グリニャール試薬溶液を全量滴下した後、25℃で2時間攪拌した。
攪拌終了後、反応液を室温へ降温し、水浴中で、13重量%塩化水素水溶液57.8gを徐々に滴下した。滴下後、1時間攪拌することで、加水分解を完結させた。加水分解後、攪拌を停止し、静置分液により、水相を除去した。得られた油相を5重量%食塩水 18.6gで洗浄し、水相を除去した。
この油相に27.5重量%NaOH水溶液 42.3g、テトラn−ブチルアンモニウムブロミド 1.67gを加え、液温50℃で塩基性条件下での加水分解処理を3時間行った。加水分解処理後、攪拌を停止し、静置分液により、水相を除去した。得られた油相を5重量%食塩水 18.6gで2回洗浄し、水相を除去することで、2’−トリフルオロメチルアセトフェノンを含む油相を取得した。この油相に含まれる不純物酢酸クロロブチルエステルおよび酢酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルアセトフェノンに対して、それぞれ0.1%、0.1%であった。
この油相を濃縮後、減圧蒸留(減圧度0.4〜1.3kPa、留出温度95〜100℃)した結果、トータル収率82.7%(原料o−クロロベンゾトリフルオライド基準)で、GC純度99.2%の2’-トリフルオロメチルアセトフェノンを得た。不純物として、酢酸クロロブチルエステルおよび酢酸トリフルオロメチルフェニルエステルの含有量は、0.1%以下であった。
[実施例2]
実施例1において、無水酢酸19.8g(0.19mol)を無水プロピオン酸25.2g(0.19mol;和光純薬社製)に変更した以外は、実施例1と同様に反応を行った。塩基性条件下での加水分解処理を行った後、油相に含まれる不純物プロピオン酸クロロブチルエステルおよびプロピオン酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルプロピオフェノンに対して、それぞれ0.2%、0.1%であった。
得られた油相を減圧蒸留(減圧度0.4〜1.3kPa、留出温度105〜110℃)した結果、トータル収率84.5%(原料o−クロロベンゾトリフルオライド基準)で、GC純度99.6%の2’-トリフルオロメチルプロピオフェノンを得た。不純物として、プロピオン酸クロロブチルエステルおよびプロピオン酸トリフルオロメチルフェニルエステルの含有量は、0.1%以下であった。
[比較例1]
実施例1において、塩基性条件下での加水分解処理を行わず、油相を取得した。この油相に含まれる不純物 酢酸クロロブチルエステルおよび酢酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルアセトフェノンに対して、それぞれ2.5%、1.2%であった。これを減圧蒸留(減圧度0.4〜1.3kPa、留出温度95〜100℃)した結果、トータル収率62.5%(原料o−クロロベンゾトリフルオライド基準)で、GC純度97.2%の2’-トリフルオロメチルアセトフェノンを得た。不純物として、酢酸クロロブチルエステル 1.2%および酢酸トリフルオロメチルフェニルエステルの含有量は、0.7%であった。
[比較例2]
実施例2において、塩基性条件下での加水分解処理を行わず、油相を取得した。この油相に含まれる不純物 プロピオン酸クロロブチルエステルおよびプロピオン酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルプロピオフェノンに対して、それぞれ3.1%、1.4%であった。これを減圧蒸留(減圧度0.4〜1.3kPa、留出温度105〜110℃)した結果、トータル収率68.2%(原料o−クロロベンゾトリフルオライド基準)で、GC純度96.8%の2’−トリフルオロメチルプロピオフェノンを得た。不純物として、プロピオン酸クロロブチルエステル 1.5%およびプロピオン酸トリフルオロメチルフェニルエステルの含有量は、0.9%であった。
[実施例3]
実施例1において、テトラn−ブチルアンモニウムプロミドを入れずに加水分解処理を行った以外、実施例1と同様に反応を行った。油相に含まれる不純物 酢酸クロロブチルエステルおよび酢酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルアセトフェノンに対して、それぞれ0.5%、0.3%であった。さらに加水分解処理時間を延長し、10時間行ったところ、それぞれ0.3%、0.2%となった。
[実施例4]
実施例2において、テトラn−ブチルアンモニウムプロミドを入れずに加水分解処理を行った以外、実施例2と同様に反応を行った。油相に含まれる不純物 プロピオン酸クロロブチルエステルおよびプロピオン酸トリフルオロメチルフェニルエステルの含有量は、含まれる2’−トリフルオロメチルプロピオフェノンに対して、それぞれ0.4%、0.2%であった。さらに加水分解処理時間を延長し、10時間行ったところ、それぞれ0.3%、0.1%となった。
本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法は、グリニャール試薬を中間体として生成し、このグリニャール試薬を酸無水物と反応させた後、酸を含む水溶液で加水分解処理して水相を分離除去し、続いて、油相を塩基を含む水溶液を用いて、塩基性条件下で加水処理し水相を分離除去することにより、高純度トリフルオロメチル基置換芳香族ケトンを製造することができる。本発明の高純度トリフルオロメチル基置換芳香族ケトンの製造方法は、工業的に優れた製造方法である。
本発明のトリフルオロメチル基置換芳香族ケトンの製造方法により製造された高純度トリフルオロメチル基置換芳香族ケトンは、ファインケミカル、医農薬原料、樹脂・プラスチック原料、電子情報材料、光学材料などとして用いることができる。

Claims (5)

  1. 下記一般式(1)で示されるハロゲン置換ベンゾトリフルオライド化合物を
    Figure 2019069922
    (但し、Xは、ClまたはBrである。)
    マグネシウム金属と反応させて、グリニャール試薬に転化し、該グリニャール試薬を酸無水物と反応させた後、酸を含む水溶液で加水分解処理して、下記一般式(2)で示されるトリフルオロメチル基置換芳香族ケトンを生成させた後、
    Figure 2019069922
    (但し、nは、1〜4の整数である。)
    前記反応の副生成物を、塩基を含む水溶液を用いて、塩基性条件下で加水処理する高純度トリフルオロメチル基置換芳香族ケトンの製造方法。
  2. 前記塩基を含む水溶液を用いて、塩基性条件下で加水分解する際、相関移動触媒を共存させる請求項1に記載の高純度トリフルオロメチル基置換芳香族ケトンの製造方法。
  3. 酸無水物が、無水酢酸、無水プロピオン酸または無水酪酸である請求項1または2記載の高純度トリフルオロメチル基置換芳香族ケトンの製造方法。
  4. トリフルオロメチル基置換芳香族ケトンが、トリフルオロメチルアセトフェノン、トリフルオロメチルプロピオフェノン、または、トリフルオロメチルブチロフェノンである請求項1から3のいずれか記載の高純度トリフルオロメチル基置換芳香族ケトンの製造方法。
  5. 塩基を含む水溶液を用いて加水分解処理する際に、処理温度40〜100℃で実施する請求項1〜4のいずれか記載の高純度トリフルオロメチル基置換芳香族ケトンの製造方法。
JP2017197648A 2017-10-11 2017-10-11 高純度トリフルオロメチル基置換芳香族ケトンの製造方法 Active JP6830051B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017197648A JP6830051B2 (ja) 2017-10-11 2017-10-11 高純度トリフルオロメチル基置換芳香族ケトンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017197648A JP6830051B2 (ja) 2017-10-11 2017-10-11 高純度トリフルオロメチル基置換芳香族ケトンの製造方法

Publications (2)

Publication Number Publication Date
JP2019069922A true JP2019069922A (ja) 2019-05-09
JP6830051B2 JP6830051B2 (ja) 2021-02-17

Family

ID=66440630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197648A Active JP6830051B2 (ja) 2017-10-11 2017-10-11 高純度トリフルオロメチル基置換芳香族ケトンの製造方法

Country Status (1)

Country Link
JP (1) JP6830051B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11840507B2 (en) 2020-08-19 2023-12-12 Arxada Ag Process for the preparation of phenyl ketones
CN117222615A (zh) * 2020-08-19 2023-12-12 阿尔萨达股份公司 用于制备苯基酮的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11840507B2 (en) 2020-08-19 2023-12-12 Arxada Ag Process for the preparation of phenyl ketones
CN117222615A (zh) * 2020-08-19 2023-12-12 阿尔萨达股份公司 用于制备苯基酮的方法
JP7441378B2 (ja) 2020-08-19 2024-02-29 アークサーダ・アー・ゲー フェニルケトンの調製方法

Also Published As

Publication number Publication date
JP6830051B2 (ja) 2021-02-17

Similar Documents

Publication Publication Date Title
JP2019069922A (ja) 高純度トリフルオロメチル基置換芳香族ケトンの製造方法
JP6086163B2 (ja) 2’−トリフルオロメチル基置換芳香族ケトンの製造方法
CN102757455B (zh) 环丙基硼酸的制备方法
JP5211876B2 (ja) 高純度2’−トリフルオロメチルプロピオフェノンの製造方法
WO1994024086A1 (en) Process for producing 2-fluoroisobutyric acid or ester thereof
CN109485541B (zh) 一种制备1h,1h,2h-全氟-1-辛烯的方法
JP2018043956A (ja) β−アルコキシプロピオン酸エステルの製造方法
CN104447230B (zh) 一种4-甲氧基苯乙烯的制备方法
CN108863717B (zh) 一种高效地制备炔醇的方法
CN111072455B (zh) 一种微反应器连续制备五氟苯酚的方法
JP6225788B2 (ja) 1,1,1,5,5,5−ヘキサフルオロアセチルアセトンの製造方法
CN106046046A (zh) 一种三(三甲基硅烷基)亚磷酸酯的制备方法
JP2019104702A (ja) 3’−トリフルオロメチル基置換芳香族ケトンの製造方法
JP2021054745A (ja) 2′,3′−ジメチル芳香族ケトンの製造方法
JP2001322955A (ja) 2−ブロモ−3,3,3−トリフルオロプロペンの製造方法
JP2016069299A (ja) 2−トリフルオロメチル安息香酸エステルの製造方法
US11066422B2 (en) Method of producing cycloalkyl(trifluoromethyl)benzene
JP2010001222A (ja) アルコール類の製造方法
JP6753193B2 (ja) 2−ヒドロキシ−2−メチル−1−プロピル(メタ)アクリレートおよび/または3−ヒドロキシ−3−メチル−1−ブチル(メタ)アクリレートの製造方法、ならびに、精製方法および組成物
JP4281258B2 (ja) 2−ブチルオクタン二酸の製造法
JP6194353B2 (ja) ラバンジュラールの製造方法
JP6341040B2 (ja) 1,1,1,5,5,5−ヘキサフルオロアセチルアセトンの製造方法
WO2002051798A1 (en) PROCESS FOR PRODUCING β-KETONITRILE COMPOUND
KR20220092200A (ko) 부산물 생성을 억제하는 크레졸의 제조 방법
WO2011152501A1 (ja) 長鎖飽和脂肪族一級アルコールの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R150 Certificate of patent or registration of utility model

Ref document number: 6830051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250