JP2019066871A - 偏光ビームスプリッタ及びその製造方法 - Google Patents

偏光ビームスプリッタ及びその製造方法 Download PDF

Info

Publication number
JP2019066871A
JP2019066871A JP2018232082A JP2018232082A JP2019066871A JP 2019066871 A JP2019066871 A JP 2019066871A JP 2018232082 A JP2018232082 A JP 2018232082A JP 2018232082 A JP2018232082 A JP 2018232082A JP 2019066871 A JP2019066871 A JP 2019066871A
Authority
JP
Japan
Prior art keywords
beam splitter
polarization
light
polarizing beam
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018232082A
Other languages
English (en)
Other versions
JP7312546B2 (ja
Inventor
アウダーカーク,アンドリュー,ジェイ.
J Ouderkirk Andrew
カールズ,ジョセフ,シー.
C Carls Joseph
チャールズ,スコット,ビー.
B Charles Scott
マレー,キャメロン,ティー.
T Murray Cameron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of JP2019066871A publication Critical patent/JP2019066871A/ja
Application granted granted Critical
Publication of JP7312546B2 publication Critical patent/JP7312546B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0176Head mounted characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B2027/0178Eyeglass type

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

【課題】3次元投射及び結像等の新規用途で発生する偏光ビームスプリッタの問題を解決する。【解決手段】偏光ビームスプリッタは、第1ポリマープリズム1360、第2ポリマープリズム1370、第1ポリマープリズム及び第2ポリマープリズムそれぞれの斜辺の間に配設され、これらに接着された反射型偏光子1350、並びに第1ポリマープリズム及び第2ポリマープリズムのそれぞれに配設されたハードコートを含む。偏光ビームスプリッタは、入射主表面及び出射主表面を含む。入射主表面及び出射主表面のうちの少なくとも一方は、少なくとも3Hの鉛筆硬度を有する。【選択図】図13h

Description

(関連出願の相互参照)
本明細書は、係属中の米国特許出願第61/564161号、「Polarizing Beam Splitters Providing High Resolution Images and Systems Utilizing Such Beam Splitters」(代理人整理番号第67895US002号、2011年11月28日出願)、係属中の米国特許出願第61/564172号、「Method of Making Polarizing Beam Splitters Providing High Resolution Images and Systems Utilizing Such Beam Splitters」(代理人整理番号第68016US002号、2011年11月28日出願)、米国特許出願第61/683390号、「Polarizing Beam Splitter Plates Providing High Resolution Images and Systems Utilizing Such Beam Splitter Plates」(代理人整理番号第70226US002号、2012年8月15日出願)、及び、米国特許出願第61/691,537号「Viewing Device」(代理人整理番号第70234US002号、2012年8月21日出願)に関し、これらは参照により本明細書の全体に援用される。
本明細書は、視覚装置に関する。より詳細には、本発明は、高い実行分解能で結像光を観者に向かって反射する偏光ビームスプリッタプレートを組み込む頭部装着型視覚装置に関する。
偏光ビームスプリッタ(PBS)が組み込まれた照射システムが、投射ディスプレイ等の鑑賞スクリーン上に画像を形成するために使用されている。典型的な表示画像は照射源を組み込んでおり、この照射源は、照射源からの光線が、投射される所望の画像を含む画像形成装置(即ち、結像器)で反射するように配置されている。こうしたシステムは、照射源からの光線と投射される画像の光線とが、PBSと結像器との間の同じ物理的空間を共有するように光線を折曲する。PBSは、結像器からの、偏光状態が回転した光から、入射する照明光を分離する。PBSへの新たな需要により、一つには3次元投射及び結像等の用途における新規利用により、いくつかの問題が浮上してきている。本出願は、そのような問題に対処する物品を提供する。
一態様では、本明細書は、偏光サブシステムに関する。偏光サブシステムは、第1の結像器と、偏光ビームスプリッタとを含む。いくつかの実施形態では、結像器は、LCOS結像器であってもよい。偏光ビームスプリッタは、部分的に反射型偏光子からなり、結像器からの結像光を受光する。反射型偏光子は、多層光学フィルムであってもよい。一部の実施形態では、反射型偏光子は45nm未満の表面粗さRa、又は80nm未満の表面粗さRqを有する。偏光ビームスプリッタは、12マイクロメートル未満の有効画素解像度で観者又はスクリーンに向かって結像光を反射させる。いくつかの実施形態では、偏光ビームスプリッタは、9マイクロメートル未満又は6マイクロメートル未満の有効画素解像度で観者又はスクリーンに向かって結像光を反射させることができる。偏光サブシステムは、第2の結像器を含むことができ、これは、偏光ビームスプリッタが第1の結像器からの光を受光するのとは異なる面で偏光ビームスプリッタが第2の結像器からの結像光を受光する。偏光サブシステムはまた、観者又はスクリーンに向かって偏光ビームスプリッタからの光を投影する投影レンズを含むことができる。いくつかの場合では、偏光サブシステムは、3次元画像投影器の一部であってもよい。
別の態様では、本明細書は、偏光ビームスプリッタに関する。偏光ビームスプリッタは、第1のカバーと第2のカバーとの間に位置決めされる反射型偏光子を含む。反射型偏光子は、多層光学フィルムであってもよい。偏光ビームスプリッタは、12マイクロメートル未満、潜在的に9マイクロメートル未満、又は6マイクロメートル未満の有効画素解像度で観者又はスクリーンに向かって結像光を反射させることができる。偏光ビームスプリッタの第1及び/又は第2のカバーは、ガラス又は好適な光学プラスチックで少なくとも部分的に作製されてもよい。第1のカバー及び/又は第2のカバーは、多層光学フィルムの所望の平坦度を達成するために、真空に対する露光などの更なる処理で好適な光学接着剤によって反射型偏光子に取り付けられてもよい。反射型偏光子は、45nm未満の表面粗さRa又は80nm未満の表面粗さRqを有することができる。
更なる他の態様において、本明細書は投射サブシステムに関する。投影サブシステムは、光源と、偏光ビームスプリッタと、少なくとも第1の結像器と、潜在的に第2の結像器と、を含む。偏光ビームスプリッタは、光源からの光を受光し、多層光学フィルムからなる反射型偏光子を含む。第1の結像器は、偏光ビームスプリッタに隣接して位置決めされる。第2の結像器は、偏光ビームスプリッタの第1の結像器とは異なる側で偏光ビームスプリッタに隣接して位置決めされる。光源からの光が偏光ビームスプリッタに入射し、入射光の第1の偏光が反射型偏光子を透過し、一方第1の偏光状態に直交する入射光の第2の偏光は反射型偏光子によって反射される。第2の偏光の光が偏光ビームスプリッタから第2の結像器へと進み、結像され、偏光ビームスプリッタに向かって後方に反射する第2の結像器から反射された光が、偏光ビームスプリッタを通じて像平面に透過される。第1の偏光の光が偏光ビームスプリッタを通じて第1の結像器に透過され、結像され、偏光ビームスプリッタに向かって後方に反射する。第1の結像器から反射された光が、12マイクロメートル未満の有効画素解像度で像平面に向かって偏光ビームスプリッタで反射される。少なくともいくつかの実施形態では、第1の結像器から反射された光が、9マイクロメートル未満又は6マイクロメートル未満の有効解像度で像平面に向かって偏光ビームスプリッタで反射される。反射型偏光子は、45nm未満の表面粗さRa又は80nm未満の表面粗さRqを有することができる。投影サブシステムの光源は、アーク灯又は1つ若しくは複数のLEDなどの任意の好適な光源であってもよい。
別の態様では、本明細書は、偏光サブシステムに関する。偏光サブシステムは、第1の結像器と、偏光ビームスプリッタとを含む。偏光ビームスプリッタは、部分的に反射型偏光子からなり、結像器からの結像光を受光する。反射型偏光子は、多層光学フィルムであってもよい。偏光ビームスプリッタは、観者又はスクリーンに向かって結像光を反射させる。いくつかの実施形態では、反射型偏光子は、45nm未満の表面粗さRa又は80nm未満の表面粗さRqを有する。いくつかの実施形態では、反射型偏光子は、40nm未満の表面粗さRa又は70nm未満の表面粗さRqを有する。いくつかの実施形態では、反射型偏光子は、35nm未満の表面粗さRa又は55nm未満の表面粗さRqを有する。
別の態様では、偏光サブシステムは、第1の結像器と、結像器からの結像光を受光するようになっている偏光ビームスプリッタプレートとを含む。偏光ビームスプリッタプレートは、第1基材、第1基材上に配設された多層光学フィルム反射型偏光子、第1最外主表面、及び第1最外主表面と20°未満の角度を形成する、反対側の第2最外主表面を含む。偏光ビームスプリッタプレートは、受光した結像光を観者又はスクリーンに向けて反射し、反射した結像光は12μm未満の有効画素解像度である。
別の態様では、偏光ビームスプリッタプレートは、第1基材、第2基材、第1及び第2基材の間に配設され並びにそれらに接着された多層光学フィルム反射型偏光子、第1最外主表面、並びに第1最外主表面と20°未満の角度を形成する、反対側の第2最外主表面を含む。偏光ビームスプリッタプレートは、結像光を観者又はスクリーンに向かって、12μm未満の有効画素解像度の反射結像光で反射するように適合されている。
別の態様では、投射サブシステムは、光源と、光源から受光した光を結像する第1結像器と、第1結像器から結像光を受光するとともに、多層光学フィルム反射型偏光子、第1最外主表面、第1最外主表面と20°未満の角度を形成する、反対側の第2最外主表面を含む偏光ビームスプリッタプレートとを含む。偏光ビームスプリッタプレートは、受光した結像光を画像平面に向かって、12μm未満の有効画素解像度で反射する。
別の態様では、偏光サブシステムは、第1結像器と、結像器からの結像光を受光し、多層光学フィルム反射型偏光子、第1最外主表面、及び第1最外主表面と20°未満の角度を形成する、反対側の第2最外主表面を含む偏光ビームスプリッタプレートとを含む。偏光ビームスプリッタプレートは、受光した結像光を観者又はスクリーンに反射する。多層光学フィルム反射型偏光子は、45nm未満の表面粗さRa、又は80nm未満の表面粗さRqを有する。
別の態様では、平坦なフィルムを製造する方法は、多層光学フィルムを用意する工程と、一時的平坦基材を用意する工程と、多層光学フィルムの第1基材を一時的平坦基材に着脱自在に取り付ける工程と、第1最外主表面、及び第1最外主表面と20°未満の角度を形成する、反対側の第2最外主表面を含む永久基材をもたらす工程とを含む。方法は、多層光学フィルムの第2表面を永久基材に取り付ける工程、及び多層光学フィルムを一時的平坦基材から取り除く工程を更に含む。
別の態様では(another respect)、場合により、光学的に平坦な偏光ビームスプリッタプレートを作る方法は、多層光学フィルム反射型偏光子を用意する工程と、感圧接着剤の層を多層光学フィルムの第1表面に適用する工程と、第1基材を多層光学フィルムと反対側の上の感圧接着剤層に適用する工程であって、第1基材は、第1最外主表面、及び第1最外主表面と約20°未満の角度を形成する、反対側の第2最外主表面を含む、工程と、
真空を感圧接着剤、多層光学フィルム、及び第1基材に適用する工程と、を含む。
別の態様では、視覚装置は、第1結像光を投影するプロジェクタと、プロジェクタから投射された第1結像光を受光し、観者が見るための受光された第1結像光を反射する偏光ビームスプリッタプレートとを含む。偏光ビームスプリッタプレートは、第2画像を受光し、観者によって見られるための第2画像を透過する。偏光ビームスプリッタプレートは、第1基材と、第1基材に接着された多層光学フィルム反射型偏光子とを含む。反射型偏光子は、第1偏光状態の偏光を実質的に反射するとともに、第1偏光状態に垂直な第2偏光状態の偏光を実質的に透過する。偏光ビームスプリッタプレートはまた、第1最外主表面、及び第1最外主表面と20°未満の角度を形成する、反対側の第2最外主表面を含む。偏光ビームスプリッタプレートは、12μm未満の有効画素解像度を有する受光した第1結合光で観者に向かって反射する。
別の態様では、偏光ビームスプリッタは、第1ポリマープリズム、第2ポリマープリズム、第1ポリマープリズム及び第2ポリマープリズムそれぞれの斜辺の間に配設され、これらに接着された反射型偏光子、並びに第1ポリマープリズム及び第2ポリマープリズムのそれぞれに配設されたハードコートを含む。偏光ビームスプリッタは、入射主表面及び出射主表面を含む。入射主表面及び出射主表面のうちの少なくとも一方は、少なくとも3Hの鉛筆硬度を有する。偏光ビームスプリッタは、第1偏光状態の偏光が、入射主表面から光学要素に入り、少なくとも2mmの偏光ビームスプリッタを通って進み、出射主表面から偏光ビームスプリッタを出るとき、偏光ビームスプリッタを出る光の少なくとも95%が偏光され、第1偏光状態を有するような、低複屈折率を有する。
別の態様では、光学要素を製造する方法は、(a)頂部表面を有する頂部ポリマーシート、底部表面を有する底部ポリマーシート、を含むアセンブリを用意すること、及び、頂部ポリマーシートと底部ポリマーシートとの間に配設され、これらに接着された光学フィルムを含むアセンブリを用意すること、
(b)頂部ポリマーシートの頂部表面、底部ポリマーシートの底部表面を改質して、複数の頂部構造体と、頂部表面粗さとを有する頂部構造化表面、及び複数の底部構造体と、底部表面粗さとを有する底部構造化表面を生じさせること、(c)トップコーティングを、頂部構造体表面に適用することにより、複数のトップコーティング済み構造体及び頂部表面粗さ未満のトップコーティング済み粗さを有するトップコーティング済み表面を生じさせ、並びにボトムコーティングを、底部構造体表面に適用することにより、複数のボトムコーティング済み構造体及び底部表面粗さ未満のボトムコーティング済み粗さを有するボトムコーティング済み表面を生じさせて、コーティング済みアセンブリを形成すること、(d)コーティング済みアセンブリの横方向に沿ってコーティング済みアセンブリを少なくとも2つの別個の片に細分化して光学素子を形成することを含む。
本明細書による偏光変換システムである。 本明細書による偏光ビームスプリッタである。 本明細書による投射サブシステムである。 PBSでの使用のための平坦な多層光学フィルムの製造方法を示すフローチャートである。 多層光学フィルムを用いた偏光ビームスプリッタの作製方法を示す。 偏光サブシステムの概略図である。 偏光ビームスプリッタプレートの最外表面の概略図である。 反射型結像システムの概略図である。 透過型結像システムの概略図である。 反射−透過型結像システムの概略図である。 視覚装置の概略図である。 頭部装着型投射ディスプレイの概略図である。 光学要素の製造方法を図示する。 光学要素の製造方法を図示する。 光学要素の製造方法を図示する。 光学要素の製造方法を図示する。 光学要素の製造方法を図示する。 光学要素の製造方法を図示する。 光学要素の製造方法を図示する。 光学要素の製造方法を図示する。 光学要素の製造方法を図示する。 光学要素の概略図である。 別の光学要素の概略図である。
高性能なPBSは、シリコン基板上の反射型液晶(LCOS)(Liquid Crystal on Silicon)結像器を用いるプロジェクタ用の発展可能な光学エンジンを作製するために必須である。加えて、PBSは、DLP結像器等の名目上は非偏光の結像器に対してでさえ、そのような結像器が偏光を扱うことが要求されるときには、必要とされる場合がある。典型的には、PBSは、名目上は、p偏光を透過し、かつ、名目上は、s偏光を反射する。マクニール型PBS及びワイヤグリッド偏光子を含め、いくつかの異なった種類のPBSが使用されてきた。しかしながら、多層光学フィルムに基づくPBSは、波長域及び入射角にわたって効果的に偏光させる能力を含む、投射システムにおける光の扱いに関連した問題に対して、最も効果的な偏光ビームスプリッタの1つであり、かつ、反射及び透過の両方について高い効率を有することが、わかってきた。このような多層光学フィルムは、Jonza et al.に対する米国特許第5,882,774号及びWeber et al.に対する米国特許第6,609,795号に記載されているように、3M Companyによって製造されている。
例えば、3次元投射及び結像を含む、いくつかの新しい結像及び投射用途の出現とともに、新たな課題が浮上している。具体的には、少なくともいくつかの3次元結像用途において、反射偏光フィルムを透過するときだけでなく、反射偏光フィルムによって反射されるときにも、PBSが(後に定義されるような)高有効解像度を有する結像光を提供することが要求される場合がある。不幸なことに、多層光学フィルムに基づく偏光子は、他の多くの利点にも関わらず、高解像度で結像光を反射するために必要な平坦度を有するよう処方することが困難な場合がある。むしろ、そのような多層フィルム反射偏光子を結像光を反射するために用いた場合、反射した画像は歪んでしまう場合がある。しかしながら、広範囲な角度及び波長の入射光を効率的に偏光させることに関する懸念にも対処しなければならない。それ故、観者又はスクリーンに向かってPBSから反射した結像光に対して、有効解像度を高めることを達成すると同時に、多層光学フィルムを有するPBSの利点を有した偏光ビームスプリッタを提供することが強く望まれている。本明細書では、そのような解決策が提供される。
図1は、本明細書による偏光サブシステムの一例を示す。偏光サブシステムは第1結像器102を含む。図1に示されているような、いくつかの実施形態においては、結像器は適切な反射型結像器である。大抵、投射システムで用いられる結像器は、典型的には、偏光を回転させる、液晶表示結像器等の画像形成装置であり、デジタル映像信号に合わせて画像を生成するために、光の偏光を回転させることにより動作する。このような結像器が、投射システムにおいて使用されるときは、典型的には、光を直交偏光状態(例えば、s偏光とp偏光)の対へと分離する偏光子に依存している。図1に示されている実施形態で使用される場合がある一般的な2つの結像器としては、シリコン基プレート上に載せた反射型液晶(LCOS)結像器、又はデジタルライ卜プロセッシング(DLP)(digital light processing)結像器が挙げられる。当業者であれば、DLPシステムにおいて、図1に示すPBS構成を使用するためには、偏光を回転させる外部手段(位相差プレート等)、並びに照明形状の多少の変更が必要であることを認識するであろう。この偏光サブシステムは、偏光ビームスプリッタ(PBS)104も含む。光源110からの光112は、PBS 104へ向かって進む。PBS 104の内部には反射偏光子106がある。反射偏光子は、3M Company(St.Paul、MN)から入手可能であり、かつ、例えば、それぞれの全体が参照により本明細書に援用される、Jonza et al.に対する米国特許第5,882,774号及びWeber et al.に対する米国特許第6,609,795号に記載されているもののような、多層光学フィルムであってよい。光112がフィルム106に入射するとき、入射光のある1つの直交偏光状態(p偏光状態等)がフィルムを透過し、光120としてPBSを出てから、次に結像器102へ入射する。前記入射光の直交偏光状態(この場合は、s偏光)は、反射偏光子106によって、異なった方向(ここでは、ビーム120と直角)の分離ビーム118として反射される。
所与の偏光状態の未結像光120が結像器102に入射する。その後、この光は結像され、反射し、PBS 104及び組み込まれた反射偏光子106へ向かって戻る。結像器102がLCOS結像器であり、かつ、「オン(on)」状態のこれらの画素に対するものである場合、光114も直交偏光状態へ変換される。この場合、p偏光入射光(まだ結像していない)は、s偏光の結像光として反射される。そのs偏光が偏光ビームスプリッタ104、及び特に多層光学フィルム反射偏光子106に入射したとき、その光は、s偏光のビーム116として、観者又は鑑賞スクリーン130へ向かって反射する。結像器102は、用途において望ましい場合がある任意のタイプの結像器であってもよい。例えば、結像器102は、LCOS結像器、OLED結像器、微小電気機械システム(MEMS)結像器、又はDLP結像器などのデジタルマイクロミラーデバイス(DMD)結像器であってもよい。
先行技術のいくつかの実施形態において、結像器は、例えば、ビーム118が進む方向に位置してよい。このような実施形態においては、結像光は偏光ビームスプリッタ104で反射されるのではなく、偏光ビームスプリッタ104を透過するであろう。偏光ビームスプリッタを透過する結像光は、画像の歪みをより小さくできるため、より高い有効解像度を可能とする。しかしながら、後に更に説明するように、いくつかの実施形態においては、結像器102を図1で位置しているように備えることが望ましい場合がある。これにより、例えば、異なる偏光の画像を重ねることができる。多層光学フィルムの反射偏光子としての多くの利点にも関わらず、従来は、そのようなフィルムに反射する結像光に対して高有効解像度を達成することは困難であった。
素子により生成される画像又は光の有効解像度は、どの画素サイズが信頼性を持って解像され得るかを予測するのに役立つため、便利な定量的測定法である。最新の結像器(LCOS及びDLP)は約12.5μm〜約5μmの画素サイズを有する。そのため、反射型の結像状況において有用であるためには、リフレクタは少なくとも12.5μm、理想的にはそれ以上にまで解像可能でなければならない。それ故、PBSの有効解像度は約12.5μm未満、好ましくはより小さくなくてはならない。この場合には、高有効解像度であると言える。
本明細書に記載した手法を使用すれば、実際に、結像光を非常に高い解像度で反射できるPBS 104で使用するための多層光学フィルムを準備することができる。実際、図1を見ると、結像光116は、12マイクロメートル未満の有効画素解像度で、偏光ビームスプリッタ104から観者又は鑑賞スクリーン130へ向かって反射することができる。実際、いくつかの実施形態では、結像光116は、11マイクロメートル未満、10マイクロメートル未満、9マイクロメートル未満、8マイクロメートル未満、7マイクロメートル未満、又は可能性としては更に、6マイクロメートル未満の有効画素解像度で、偏光ビームスプリッタ104から観者又は鑑賞スクリーン130に向かって反射することができる。
既に述べたように、少なくともいくつかの実施形態において、前記偏光サブシステム100は第2結像器108を備える。一般的に、第2結像器108は、第1結像器106と同じ種類の結像器(LCOS又はDLP等)であってよい。ある1つの偏光状態の光(s偏光等)はPBS 104から、特にPBSの反射偏光子106から第2結像器へ向かって反射してよい。その後、この光は結像され、反射されてPBS 104へ戻ってよい。この場合も、s偏光未結像光118が結像器108に入射した場合に、p偏光結像光122が結像器108からPBS 104へ向かって戻る方へ向きを変えられるよう、第1結像器104と同様に、第2結像器108から反射した光は偏光変換される。結像器102から反射した光114は第1偏光状態(例えば、s偏光)にあるため、PBS 104から観者又は鑑賞スクリーン130へ向かって反射する一方で、結像器108から反射した光(例えば、光122)は第2偏光状態(例えば、p偏光)であるため、PBS 104を透過して観者又は鑑賞スクリーン130へ向かう。図1からわかるように、PBSが第1面126で第1結像器102からの結像光114を受け取り、かつ、第1面とは異なる第2面124で第2結像器108からの結像光122を受けるように、2つの結像器はPBS 104の異なる側に位置している。
一旦、結像光116、及び場合によっては光122が、PBS 104を出ると、観者又は鑑賞スクリーン130へ向かって、方向づけられる。光を観者へ向かって最良に方向づけるため、かつ、画像を適切にスケーリングするため、光が投射レンズ128又は何らかの投射レンズシステムを通り抜けるようにしてもよい。単一要素の投射レンズ128を有するように図示されているのみであるが、必要であれば、偏光変換システム100は更に結像光学系を含んでもよい。例えば、実際、投射レンズ128は、本願の権利者が所有し譲渡された米国特許第7,901,083号のレンズ群250のような、複数のレンズであってよい。なお、任意の結像器108が使用されない場合には、入力光112は光線120と同じ偏光状態を有するようにあらかじめ偏光させられる。これは、例えば、入力光の流れ112の偏光純度を上げるための偏光変換システム(PCS)、付加的な若しくは反射型の若しくは吸収型の直線偏光子又は他のそのような装置の使用により達成できる。このような手法は、システムの全体的な効率性を改善することができる。
PBS 104は反射偏光子106に加えて他の要素を含んでもよい。例えば、図1では、PBS 104はまた第1カバー132及び第2カバー134を備える。反射偏光子106は、第1カバー132と第2カバー134との間に位置することで、これらのカバーによって、保護され、かつ、適切に配置される。第1カバー132及び第2カバー134は、ガラス、プラスチック、又は他の潜在的に適切な材料等、当該技術分野において既知の任意の適切な材料で作製されてよい。更に付加的な材料及び構造体が、例えば、PBSの表面に、又は反射偏光子と隣接して、かつ実質的に同一の広がりを持って、取り付けられてよいことが理解されるべきである。このような他の材料又は構造体としては、付加的な偏光子、ダイクロイックフィルタ/リフレクタ、位相差プレート、反射防止コーティング、カバーの表面に成形若しくは接着されたレンズ等を挙げることができる。
結像光が異なる偏光状態である、異なる結像器からの光を発する投射又は偏光サブシステムは、例えば、米国特許第7,690,796号(Bin et al.)で記載されるような3次元画像プロジェクタの一部として特に有用である。2つの結像器システムに基づくPBSを使用することの明白な利点は、タイムシーケンス処理又は偏光シーケンス処理が必要とされないことである。これは、両方の結像器が常に動作し、プロジェクタの光の出力を効果的に重ね合わせていることを意味する。既に述べたように、偏光子から反射した結像光116が歪まず、かつ、高有効解像度を有するように、反射偏光子106が平坦であることは非常に重要である。平坦度は標準的な粗さパラメータRa(平均からの表面の垂直偏差の絶対値の平均)、Rq(平均からの表面の垂直偏差の二乗平均平方根)、及びRz(各サンプリング長さにおける最も高い頂部と最も低い底部との間の平均距離)によって定量化できる。特に、反射偏光子は、好ましくは、表面粗さRaが45nm未満であり、又は表面粗さRqが80nm未満であり、より好ましくは、表面粗さRaが40nm未満であり、又は表面粗さRqが70nm未満であり、更により好ましくは、表面粗さRaが35nm未満であり、又は表面粗さRqが55nm未満である。フィルムの表面粗さ又は平坦度を測定する例示的な一つの方法が、以下の実施例のセクションで提供される。
別の態様では、本明細書は、偏光ビームスプリッタに関する。そのような偏光ビームスプリッタ200の1つが図2に示されている。偏光ビームスプリッタ200は、第1カバー232と第2カバー234との間に位置する、反射偏光子206を含む。図1の反射偏光子106と同様に、図2の反射偏光子206は、上記したもののような多層光学フィルムである。偏光ビームスプリッタ200は結像光216を観者又は表面230へ反射することができる。観者又は表面へ向かって方向づけられる結像光216の有効画素解像度は、12マイクロメートル未満、可能性としては11マイクロメートル未満、10マイクロメートル未満、9マイクロメートル未満、8マイクロメートル未満、7マイクロメートル未満、可能性としては更に6マイクロメートル未満である。
図1のカバーと同様に、PBS 200の第1カバー232及び第2カバー234は、とりわけガラス又は光学プラスチック等の当該分野において使用される、任意の数の適切な材料で作製されてよい。また、第1カバー232及び第2カバー234は、いくつかの異なる手段によりそれぞれ反射偏光子206へ取り付けられてよい。例えば、一実施形態においては、第1カバー232は、感圧性接着剤層240を用いて反射偏光子206に取り付けられてよい。好適な感圧性接着剤は、3M(商標)Optically Clear Adhesive 8141(3M Company(St.Paul、MN)より入手可能)である。同様に、第2カバー234は、感圧性接着剤層242を用いて反射偏光子に取り付けられてよい。他の実施形態においては、第1カバー及び第2カバーは、層240及び層242に対して異なる接着剤を用いて反射偏光子206に取り付けられてもよい。例えば、層240及び層242は硬化性光学接着剤で作製されてよい。好適な光学接着剤としては、NOA73、NOA75、NOA76又はNOA78等のNorland Products Inc.(Cranbury、NJ)により製造された光学接着剤、並びに、それぞれ本明細書に参照により援用される、本願の権利者が所有し譲渡された米国特許出願公開第2006/0221447号(DiZio et al.)、及び本願の権利者が所有し譲渡された米国特許出願公開第2008/0079903号(DiZio et al.)に記載された光学接着剤を挙げることができる。また、紫外線硬化性接着剤を使用してもよい。更に付加的な材料及び構造体が、例えば、PBSの表面に、又は反射偏光子と隣接して、かつ実質的に同一の広がりを持って、取り付けられてよいことが理解されるべきである。このような他の材料又は構造体としては、付加的な偏光子、ダイクロイックフィルタ/リフレクタ、位相差プレート、反射防止コーティング等が挙げられる。図1で記載したPBSと同様に、図2の反射偏光子206は結像光216を歪ませることなく最も効率的に反射するために非常に平坦でなくてはならない。反射偏光子は、表面粗さRaが45nm未満、又は表面粗さRqが80nm未満であってよい。米国特許第7,234,816(B2)号(Bruzzone et al.)に記載されているような、感圧性接着剤の典型的な塗布手順では、必要とされる反射偏光子表面の平坦度は達成されない。特定の種類の後処理によって、必要とされる表面の平坦度が達成できることが発見された。
更なる他の態様において、本明細書は投射サブシステムに関する。そのような投射サブシステムの1つが図3に示されている。投射サブシステム300は光源310を含む。光源310は、投射システムで一般に使用される、任意の数の適切な光源であってよい。例えば、光源310は、赤色、緑色、又は青色光等の特定の色の光を発する、レーザー又は発光ダイオード(LED)等の固体エミッタであってよい。光源310は、発光源から光を吸収し、他の波長(一般的にはより長い波長)で再放出する、蛍光体又は他の光変換材料を含んでもよい。好適な蛍光体としては、CeドープYAG(Ce-doped YAG)、ストロンチウムチオガレート(strontiumthiogallate)、ドープしたシリカ、及びサイアロン型(SiAlON-type)材料等の周知の無機蛍光体が挙げられる。他の光変換材料としては、III−V及びII−VI族半導体、量子ドット、及び有機蛍光染料が挙げられる。あるいは、光源は、赤色、緑色又は青色LED等の、複数の光源からなっていてもよく、それらのLEDは同時に作動してもよく、又は順に作動してもよい。光源310は、レーザー光源でもよく、又は可能性としては従前のUHPランプでもよい。カラーホイール、ダイクロイックフィルタ又はリフレクタ等の補助的な構成要素が、光源310を付加的に構成してもよいことが理解されるべきである。
投射サブシステム300は、更に偏光ビームスプリッタ304を含む。偏光ビームスプリッタ304は、光源からの光312を受けるように位置する。一般的に、この入射光312は、部分的には、2つの直交偏光状態(例えば、s偏光部分とp偏光部分)からなっている。偏光ビームスプリッタ内には、この場合にもまた、反射偏光子106に関して上述したような多層光学フィルムである、反射偏光子306がある。光312は反射偏光子306に入射し、ある第1偏光(例えば、p偏光)の光は光320として透過する一方で、直交する第2偏光(例えば、s偏光)の光は光318として反射する。
反射偏光子306を透過する第1偏光の光320は、PBS 304に隣接して位置する第1結像器302へ向かって進む。光は結像され、第1結像器302で反射して、光の偏光が変換されてPBS 304へ戻る。その後、変換された結像光314はPBS 304で、光316として、画像平面350へ向かって反射する。光316はPBSの反射偏光子306から反射し、12マイクロメートル未満、及び可能性としては11マイクロメートル未満、10マイクロメートル未満、9マイクロメートル未満、8マイクロメートル未満、7マイクロメートル未満、又は可能性としては更に6マイクロメートル未満の有効解像度で、画像平面350に到達する。典型的には、反射偏光子306は表面粗さRaが45nm未満であり、又は表面粗さRqが80nm未満である。
初めにPBS 304の反射偏光子で反射した、第2偏光(例えば、s偏光)の光は、光318として、第2結像器308へ向かって進む。第1結像器302と同様に、第2結像器308も、PBS 304の隣に位置しているが、第2結像器はPBSの異なった側に位置している。入射光318は結像され、反射して、PBS 304へ向かって戻る。同様に、結像器からの反射の際、この光の偏光は90度(例えば、s偏光からp偏光へ)回転させられる。結像光322は、PBS 304を透過し、画像平面350へ送られる。第1結像器302及び第2結像器308は、図1の要素102及び108に関して上述したような、任意の適当な種類の反射型結像器であってよい。
既に述べたように、本明細書において、PBSから反射した結像光に対して高有効解像度を達成するためには、PBSの反射偏光子は特に光学的に平坦でなければならない。ここで、本明細書は、多層光学フィルムである、光学的に平坦な反射偏光子の製造方法、及び/又は光学的に平坦な偏光ビームスプリッタの製造方法を提供する。
そのような方法の1つが図4のフローチャートに示されている。この方法は、多層光学フィルム410を準備すること、及び平面基プレート420を準備することから開始される。多層光学フィルム410は、上述した物品に関して説明した多層光学フィルムと同様のものであってよい。平面基プレートは、アクリル、ガラス、又は他の適当なプラスチック等の、任意の数の適当な材料であってよい。最も重要なことは、基プレート420は少なくとも偏光ビームスプリッタに必要とされるのと同程度の光学的な平坦度を有していなければならず、かつ、その基プレートの表面に湿潤溶液を行き渡らせることが可能でなければならない。それ故、他のプラスチック、無機ガラス、セラミック、半導体、金属又はポリマー類が適当な材料となる場合がある。加えて、基プレートはわずかに可撓性であることが有用である。
次の工程において、平面基プレートの表面425を、多層光学フィルムの第1表面に着脱自在に取り付ける。少なくとも1つの実施形態において、着脱自在な取り付けを形成するために、平面基プレートの表面425若しくは多層光学フィルムの第1表面のどちらか、又はその両方を湿潤剤で湿潤させ、溶液430の薄い層にする。好適な湿潤剤は、基材又はフィルムを湿潤させるのに十分に低い表面エネルギー及び室温で蒸発可能な十分に高い蒸気圧を有しているべきである。いくつかの実施形態では、イソプロピルアルコールを湿潤剤として用いる。少なくともいつくかの実施形態において、湿潤剤は少なくとも少量の界面活性剤を含有する(例えば、1容量%未満)水溶液である。界面活性剤は、一般的な市販の工業用湿潤剤、又は更に食器用洗剤等の家庭用の材料でもよい。他の実施形態では、蒸発の際に残渣を残さない、アンモニア、酢、又はアルコール等の化合物の水性混合物であってもよい。湿潤剤は、(例えば、スプレー瓶からの)噴霧等を含む、適当な方法により塗布されてよい。次の工程では、多層光学フィルムは、溶液430がフィルムと基プレートとの間に挟み込まれるように、基プレート425の表面に取り付けられる。典型的には、多層光学フィルムの接触表面にも湿潤剤を塗布する。その後、スキージ等の加圧器435を、多層光学フィルム410上全体で引きずり、光学フィルム410を、基プレート420の表面425にぴったりと平坦化され、これら2つを分離する溶液430の薄く、極めて均一な層のみが残るようにする。少なくともいくつかの実施形態において、初めに、基プレート420に塗布されている表面440とは反対の側で、多層光学フィルムに保護層を塗布してよい。ここで、この構造体を、溶液430を蒸発させるために放置する。押し付け処理では、少量のみが残るように、残留水を多層光学フィルムの縁を越えて押し出す。次に、多層光学フィルム、平面基プレート、及び湿潤剤を乾燥させる。時間の経過とともに、層410若しくは420を通して、又は蒸発の起き得る層410の縁への、層410と420との間の空間に沿ったウィッキングによってか、のどちらかで、湿潤溶液の揮発成分の全てが蒸発する。このプロセスが起きるにつれ、多層光学フィルム410は、層410が表面425にぴったりと適合するまで、基プレート420のより近くへと引っ張られていく。図4の次の工程にその結果が示されている。乾燥によりフィルム410が基プレート420にぴったりと引っ張られ、多層光学フィルムの底面440が効果的に平坦化されている。一旦この平坦度が達成されると、多層光学フィルム410は安定して平坦なまま残るが、基プレートに着脱自在に取り付けられる。ここで、フィルム410の露出面に、永久基プレートを付着させてもよい。
図5は、偏光ビームスプリッタの最終的な構造体の提供において行われる場合がある更なる工程を示す。例えば、接着剤550を、フィルム410の平坦化した表面450に塗布してもよい。接着剤は、PBSの光学的又は機械的性能に悪影響を及ぼさない任意の適当な接着剤であってよい。いくつかの実施形態では、接着剤は、Norland Products Inc.(Cranbury、NJ)製のNOA73、NOA75、NOA76又はNOA78等の硬化性光学接着剤であってよい。他の実施形態においては、光学エポキシを使用してもよい。いくつかの実施形態では、接着剤は感圧性接着剤であってよい。次に、永久第2基プレートを準備することができる。1実施形態において、永久第2基プレートはプリズムであってよい。図5に示されているように、プリズム560は接着剤550に対して取り付けられ、この構造体は、必要に応じて、硬化される。ここで、フィルム410は、基プレート420から取り除かれてよい。少なくとも1つの実施形態において、フィルム410は、典型的には、基プレート420をわずかに曲げて、フィルム410を基プレート420から解放させることによって、基プレート420から剥がし取られる。紫外線接着剤又はエポキシ等の硬化接着剤に対しては、新たに露出したフィルム440の底面は、基プレート420の平坦度を保持する。感圧性接着剤に対しては、フィルム440の底面は、基プレート420の平坦度を保持するか、又は平坦度を維持するために更なる処理を必要とする場合がある。一旦、フラットフィルムの表面440が出来上がると、接着剤の第2層570をフィルム440の底面に取り付け、第2プリズム又は他の永久基プレート580を接着剤へ取り付けてよい。必要であれば、再び構造体を硬化させ、偏光ビームスプリッタが完成する。
光学的に平坦な偏光ビームスプリッタを製造する他の方法として、特に感圧性接着剤の使用が挙げられる。適当な手法により、多層光学フィルムをプリズムの平坦面にぴったりと適合させることができる。次の工程を含むことができる。初めに、多層光学フィルムが準備される。多層光学フィルムは反射偏光子として機能する。この多層光学フィルムは、表面440が、図4に示される工程を経て、既に実質的に平坦化されていなくてもよいという点を除いて、図5の反射偏光子光学フィルム410と同様であってよい。感圧性接着剤の層(ここでは、接着剤層550に対応する)は、多層光学フィルムの第1表面440へ塗布されてよい。次に、多層光学フィルム410とは反対の側で、プリズム560を感圧性接着剤層接着剤層に対して取り付けてよい。この方法は、接着剤の第2層(例えば、層570)を、第1表面440とは反対の側である、フィルムの第2表面575に塗布することを含んでもよい。その後、層570の、フィルム410とは反対の側に第2プリズム580を取り付けてよい。本発明の方法は、PBSからの結像された反射の解像度が向上するように、更に反射偏光子/プリズム接合面の平坦度を向上させる、この方法の改良版を提供する。感圧性接着剤550をプリズム560と多層光学フィルム410との間に塗布した後、その構造体に真空を加える。これは、例えば、この構造体を、従来の真空ポンプを備えた真空槽の中に配置することによって実施することができる。真空槽を所与の圧力まで減圧し、試料を所与の時間(例えば5〜20分)、その圧力下で保持してよい。真空槽に空気が再導入されたとき、空気圧によりプリズム560と多層光学フィルム410はともに押し合わせられる。第2接着剤層及び第2プリズムがまた取り付けられた場合は、任意で、槽において真空を加える処理を、(例えば、層570における)第2接合面に対して繰り返してもよい。プリズム/MOF組立体に対して真空を加えることにより、結像光がPBSから反射するときに、高い有効解像度を提供するPBSがもたらされる。真空処理の代わりに、又は真空処理とともに、熱/圧力処理が使用されてもよい。処理は、2回以上行うことが有利である場合がある。
材料及びその供給源の次の一覧は、実施例全体にわたって参照される。他に指定がない場合、材料は、Aldrich Chemical(Milwaukee、WI)から入手可能である。多層光学フィルム(MOF)を概して、例えば、米国特許番号第6,179,948号(Merrill et al.)、同第6,827,886号(Neavin et al.)、米国特許出願公開第2006/0084780号(Hebrink et al.)、同第2006/0226561号(Merrill et al.)、及び同第2007/0047080号(Stoverら)に従って調製された。
粗さ測定法
粘土上にプリズムを配置し、プランジャレベラ(plungerleveler)を用いて水平にした。トポグラフィックマップを、10倍の対物レンズ及び0.5倍の視野レンズ、並びに以下の設定を備えたWyko(登録商標)9800光学干渉計(Veeco Metrology,Inc.,Tucson,AZから入手可能)で測定した:VSI検出、6行及び5列の個別マップを使用して綴じられた4mm×4mmのスキャン面積、1.82μmのサンプリングを有する2196×2196画素、傾斜及び球体補正の使用、30〜60μmの後方スキャン長及び60〜100前方スキャン長、2%の変調検出閾値。オートスキャン検出は、95%において10μmのポストスキャン長(post scan length)(この短いポストスキャン長によりデータ収集における表面下の反射を回避した)で、可能とされた。
各プリズムの斜辺面の中心領域において、4mm×4mmの領域を測定した。具体的には、各領域の表面微小構成を測定して、プロットし、粗さパラメータRa、Rq及びRzを計算した。プリズム毎に1つの測定領域を得た。各場合において、3つのプリズム試料を測定し、粗さパラメータの平均及び標準偏差を決定した。
実施例1:湿式適用方法
反射偏光多層光学フィルム(MOF)を、次の方法で、光学的に平坦な基プレートに着脱自在に配置した。初めに、水中におよそ0.5%の中性食器用洗剤を含む湿潤溶液をスプレー瓶に入れた。およそ6mmの高光沢アクリルのシートを得、クリーンフード内で一方の側から保護層を取り除いた。表面全体が湿潤するように、露出したアクリル表面を湿潤溶液で噴霧した。別途、MOF片を得、そのスキン層の一方をクリーンフード内で取り除いた。MOFの露出面を湿潤溶液で噴霧し、MOFの湿潤面をアクリルシートの湿潤面に接触させた。MOFへの損傷を防ぐために、重剥離ライナーをMOFの表面に取り付け、3M(商標)PA−1アプリケータ(3M Company(St.Paul,MN)から入手可能)を用いて、MOFからアクリルの表面までの溶液をスキージで取り除いた。これにより、ほとんどの湿潤溶液が、2つの湿潤面の間から排出された。この後、第2スキン層をMOFから取り除いた。取り付け済みMOFの検査により、MOFの表面はアクリルの表面よりも凹凸が激しいことが示された。24時間後に再度検査を行った際、MOF表面の平坦度はアクリルシートと同程度であることが観察された。この観察された経時的な平坦化は、残留湿潤溶液が2つの表面の間から蒸発して、MOFをアクリルの表面にぴったりと適合させることができることと一貫性がある。MOFは、ぴったりとかつ安定してアクリルの表面に適合しているにも関わらず、アクリルの表面からMOFを剥がすことで、このMOFを簡単に取り除くことができた。
結像PBSは、Norland Optical Adhesive 73(Norland Products(Cranbury、NJ)から入手可能)を少量、MOFの表面上に塗布することによって用意された。10mm、45°斜辺のBK7研磨済みガラス製プリズムを、接着剤に気泡が入り込まないように、ゆっくりと接着剤に接触するように配置した。接着剤の量は、プリズムを接着剤上に配置するときに、プリズムの縁まで流れ出るのに十分ではあるが、プリズムの周囲を越えて接着剤が大量にあふれ出るほどには多くない程度の接着剤が存在するように選択された。結果として、プリズムはMOFの表面に対して実質的に平行となり、かつ、ほぼ均一な厚さの接着剤層によって分離された。
紫外線硬化ランプを使用し、プリズムを通して、接着剤層を硬化させた。硬化後、プリズムより大きく、かつ、プリズムを有したMOFの切片をアクリル基プレートから剥がし取った。アクリルプレートを曲げることにより、堅いプリズムとMOFの複合体をアクリルプレートからより容易に分離でき、取り除きやすくなった。プリズム/MOF複合体の検査により、アクリルプレートから取り除かれたにも関わらず、MOFは平坦度を維持していることが示された。
その後、「粗さ測定法」で記載したように、MOFの粗さパラメータが測定された。次の表に報告する。
Figure 2019066871
少量のNorland optical adhesiveをプリズム/MOF複合体のMOF表面に塗布した。第2の10mm、45°のプリズムを作製し、その斜辺を接着剤に接触するように配置した。第2プリズムを、その主軸と副軸が第1プリズムの主軸と副軸と実質的に平行になるように、整列させ、2つの斜辺面は実質的に同一の広がりを持っていた。紫外線硬化ランプを用いて、第2の45°プリズムがプリズム/MOF複合体に接着されるように、接着剤層を硬化させた。得られた構成は偏光ビームスプリッタであった。
実施例2:熱及び圧力を使用するPSA方法
3M(商標)Optically Clear Adhesive 8141(3M Company(St.Paul、MN)から入手可能)の試料を使って、ロールラミネート処理を用いて反射偏光MOFに積層することにより、接着剤構造体を形成した。この接着剤構造体の1片を、実施例1で使用したものと同様のガラス製プリズムの斜辺に付着させた。得られたMOF/プリズム複合体をオートクレーブ炉内に配置し、60℃、550kPa(80psi)で2時間処理した。試料を取り除き、少量の熱硬化性光学エポキシをMOF/プリズム複合体のMOF表面に塗布した。実施例1と同様に、プリズムを整列させた。その後、試料を炉に戻し、再び60℃、550kPa(80psi)で、今度は24時間処理した。得られた構成は偏光ビームスプリッタであった。
実施例2A:熱及び圧力を使用するPSA方法から生じる粗さ
実施例2の方法を用いて作製されたMOFの粗さを、次のように判定した。17mm×17mmのMOF片を、17mmの幅を有するガラス製の立方体に、ハンドローラーを用いて積層した。このガラス製の立方体は約0.25λの平坦度(λ=632.80nm(光の基準波長))を有していた。ロールラミネート済みMOFを、60℃、550kPa(80psi)で2時間オートクレーブ炉でアニールした。Zygo干渉計(Zygo Corporation(Middlefield、CT)から入手可能)を用い、λ=632.80nmの波長を有する光を用いて、ロールラミネート済みMOFの平坦度を測定した。Zygo干渉計により、PV粗さ(peak to valley roughness)が報告された(傾き補正は使用されたが、球面補正は適用されていない)。17mm×17mm領域にわたって計測したPV粗さは、1.475λ、又は約933nmと判定された。
実施例3:真空を使用するPSA方法
実施例2の接着剤構造体片を、実施例2と同様の方法で、ガラス製プリズムに付着させた。得られたプリズム/MOF複合体を、従来の真空ポンプを備えた真空槽の中に配置した。チャンバは、約71cm(28in)のHg(95kPa)に脱気され、試料は約15分間真空状態で維持された。
試料を真空槽から取り出し、「粗さ測定法」で記載したように、MOFの粗さパラメータが測定された。測定値を次の表に報告する。
Figure 2019066871
実施例1の手法及び紫外線光学接着剤を用いて、第2プリズムをプリズム/MOF複合体に取り付けた。得られた構成は偏光ビームスプリッタであった。
実施例4:
実施例3のフィルムは、7mm幅、10mm長、及び181μm厚の透明なガラス基材に接合された。フィルムは、3M(商標)Optically Clear Adhesive 8141(3M Company,St.Paul,MNから入手可能)を使用して、ガラス基材に接着された。接着剤厚さは、12.5μmであった。ガラス基材及びフィルム積層体を、ローラーニップに通過させた。次に積層体は、45°の角度で基材に接合され、反射された偏光が基材に平行になり、透過した偏光は名目上45°の入射角を有した。MPro 120 picoprojector(また3M Companyから入手可能)は、プロジェクタの照射源からの光が、積層体のフィルム側がLCOS結像器に面している状態の積層体を通ってプロジェクタのLCoS結像器までまっすぐ通過し、結像器によって選択された光は90°に反射されるように、修正された。
比較例C−1
米国特許第7,234,816号(Bruzzone et al.)に従い、偏光ビームスプリッタの構成を作製した。実施例2の接着剤構造体片を、ガラス製プリズムに、ハンドローラーを用いて付着させることにより、MOF/プリズム複合体を形成した。
その後、「粗さ測定法」で記載したように、MOFの粗さパラメータが測定された。次の表に報告する。
Figure 2019066871
実施例1の手法及び紫外線光学接着剤を用いて、第2プリズムをプリズム/MOF複合体に取り付けた。得られた構成は偏光ビームスプリッタであった。
性能評価
実施例1、2、3及び比較例C−1の偏光ビームスプリッタに対し、解像度試験用プロジェクタを用いて、画像の反射能力を評価した。試験用プロジェクタに対して、発揮し得る最良の性能を確認するために、他の実施例で用いられた45°プリズムのうちの1つからなり、かつ内部全反射(TIR)リフレクタとして動作する基準リフレクタを使用した。
24倍に縮小した試験対象に、アーク灯光源により背後から照光した。試験対象の前面に、これまでの実施例で用いられたものと同一の45°プリズム(ここでは、照光プリズムと呼ぶ)が取り付けられた。光源から試験対象を通って水平に進む、試験対象からの光は、照光プリズムの一面に入り、(TIRを介して)斜辺から反射し、プリズムの第2面から出る。プリズムの第2面は、出射光が垂直に方向づけられるように、配向された。基準プリズム、並びに実施例からの種々のPBSが、照光プリズムの第2面上に配置された。基準プリズムの斜辺、並びにPBS内の反射表面(MOF)は、MOF又は基準プリズムの斜辺から反射する光が、前方にかつ水平に方向づけられるように配向される。3M(商標)SCP 712デジタルプロジェクタ(3M Company(St.Paul、MN)から入手可能)から得られた、F/2.4の投射レンズをPBS又は基準プリズムの出射面に配設し、試験対象に焦点を戻し、一種の「潜望鏡」配設を形成する。
その後、この光学システムを用い、反射モードで動作させながら、それぞれ異なるPBSの、試験対象を解像する能力を評価した。前記システムにおいては、試験対象のおよそ5mm×5mm部分が、対角線約150cm(60インチ)で投射された。試験対象のこの領域内には、複数の解像度の画像の繰り返しがあった。上部左、底部左、中央部、上部右、及び底部右の投影した画像の異なる位置で試験対象の5つの異なる同一反復を評価した。それぞれの試験対象が、明瞭に解像される最も高い解像度を判定するために評価された。手順によると、最大解像度、並びにそのレベル未満の全ての解像度が解像されることが要求された。(わずかに異なる位置にある)より高い解像度が解像されたにも関わらず、局所的な歪みにより、より低い解像度が解像されない場合があった。このように選択した理由は、PBSが反射モードで有効に機能するためには、小さな領域だけではなく、全範囲が解像されなければならないからである。
各実施例の複数の試料について、試験が行われた。一度、各PBSの各位置に対して最大解像度が確認されると、平均及び標準偏差が各種のプリズム(即ち、実施例1〜3、比較例C−1及び基準プリズム)毎に計算された。「有効解像度」は、平均から標準偏差の2倍を引いたものとして定義された。このメトリックは「ラインペア/mm」(lp/mm)のデータから決定されてから、lp/mmで表された有効解像度の逆数の1/2として決定された、解像可能な最小画素サイズによって表わされた。この定義は、この解像度が、領域全体における最小の解像度とせいぜい同程度であるという事実によるものである。有効解像度は、特定のPBSセットが信頼性を持って(画像の95%にわたって)解像することを期待できる最大の解像度を表す。
表1は、本開示内の様々な実施例の測定結果を示し、表2は得られた有効解像度を示す。理解できるように、基準試料は5μmの画素を解像できる。実施例1のPBSも、5μmに非常に近い画素を解像できる。実施例2は、少なくとも12μmまで解像でき、実施例3のPBSは、7μmまで解像できる。これら全ての構造体は、少なくともいくつかの反射式結像用途に十分であろう。一方で、比較例C−1のPBSは、約18マイクロメートルの画素を解像するにとどまり、反射式結像構造体として手堅い選択とはなりにくいであろう。
Figure 2019066871
Figure 2019066871
一部の場合では、偏光ビームスプリッタは、相対する平行な及びほぼ平行な主表面を有するプレートの形態である。このようなビームスプリッタプレートは、薄く、並びに画像平面上に投影され、及び/又は観者に対して表示される、高コントラスト及び高解像度の画像に至り得る平坦な最外主表面及び内部主表面を有する。偏光ビームスプリッタは、1つ以上の薄い光学的に透明な基材に接合された多層光学フィルム反射型偏光子を含む。透明な基材は、ガラスなどの無機材料、若しくはポリマーなどの有機材料、又は無機若しくは有機材料の組合せであってもよい。
図6は、光源605、第1結像器610、及び偏光ビームスプリッタプレート620を含む、偏光サブシステム600の概略図である光源605は、照射する光625を放出し、これは第1結像器610によって受光される。第1結像器610は、受光した光を変調し、偏光ビームスプリッタプレート620によって受光される結像光615を放出する。偏光ビームスプリッタプレートは、受光した結像光を反射光695として、観者680又はスクリーン690に向けて反射する。偏光ビームスプリッタプレート620は、多層光学フィルム反射型偏光子640が第1基材630と第2基材650との間に配設されるように、第1基材630、第1基材上に配設された多層光学フィルム反射型偏光子640、及び多層光学フィルム反射型偏光子640上に配設された第2基材650を含む。多層光学フィルム反射型偏光子640は、接着剤層660及び670それぞれによって、第1基材630及び第2基材650に接合又は接着され、2つのそれぞれの接着剤層は、本明細書に開示される任意の接着剤であってもよく又はこれを含んでもよい。例えば、一部の場合では、一方又は両方の接着剤層660、670は、感圧接着剤、UV硬化済接着剤、若しくは光学エポキシであってもよく又は含んでもよい。偏光ビームスプリッタプレート620は、第1最外主表面622と、第1最外主表面622とは角度θを形成する相対する第2最外主表面624とを含み、角度θは約20°未満、又は約15°未満、又は約10°未満、又は約7°未満、又は約5°未満、又は約3°未満、又は約2°未満、又は約1°未満である。
観者680又はスクリーン690へと伝搬する反射光695は、15μm未満、又は12μm未満、又は10μm未満、又は9μm未満、又は8μm未満、又は7μm未満、又は6μm未満、又は5μm未満、又は4μm未満の有効画素解像度を有する。一部の場合では、偏光ビームスプリッタプレート620は、薄い。このような場合、第1最外主表面622及び第2最外主表面624の間の最大距離間隔dは、約2mm未満、又は約1.75mm未満、又は約1.5mm未満、又は約1.25mm未満、又は約1mm未満、又は約0.75mm未満、又は約0.5mm未満である。一部の場合では、第1最外主表面622及び第2最外主表面624は、平面である。一部の場合では、第1最外主表面622及び第2最外主表面624は、非平面である。例えば、一部の場合では、第1最外主表面622及び第2最外主表面624の少なくとも一方は、図7に全体的に概略的に示されるように、曲線の部分を含み、又は凹部であり、又は凸部である。一部の場合では、第1最外主表面622及び第2最外主表面624の少なくとも一方は、偏光ビームスプリッタプレート620から離れるように又は向かうように曲がる。
基材630及び650のそれぞれは、用途において望ましくあり得る任意のタイプの基材であってもよい。例えば、基材630及び650は、ガラス又はポリマーを含んでもよい。基材630及び650は単層であってもよく、これは基材の内部に埋め込まれた主表面又は内部主表面が存在しないことを意味する。一部の場合では、第1主表面630及び第2最外主表面650の少なくとも一方が、2つ以上の層を含む。一部の場合では、基材630及び650は、基材が、3つの相互に直交する方向に沿って実質的に等しい屈折率を有することを意味する光学的等方性である。一部の場合では、基材630及び650は、とても低い光散乱特性を有する。例えば、このような場合、基材630及び650のそれぞれは、約5%未満、又は約4%未満、又は約3%未満、又は約2%未満、又は約1%未満、又は約0.5%未満の拡散透過率を有する。本明細書で使用するとき、拡散透過とは、コリメートされた垂直光入射に対して2°の円錐半角の外側に透過された光を指す。
第1結像器605は、用途において望ましくあり得る、本明細書で開示される任意の第1結像器であってもよい。例えば、一部の場合では、第1結像器605は、LCOS結像器を含んでもよく又はLCOS結像器であってもよい。一部の場合では、偏光サブシステム600は、光が結像した後、偏光ビームスプリッタプレート620からの光を受光し、観者又はスクリーンに向けて光695として投影する投影レンズ675を含む。一部の場合では、多層光学フィルム反射型偏光子620は、45nm未満の表面粗さRa、又は80nm未満の表面粗さRq、又は40nm未満の表面粗さRa、又は70nm未満の表面粗さRq、又は35nm未満の表面粗さRa、又は55nm未満の表面粗さRqを有する。
偏光サブシステム600は、用途において望ましくあり得る任意のシステムに組み込まれてもよい。例えば、一部の場合では、三次元の画像プロジェクタは、偏光システム600を含む。光源605は、本明細書に開示する任意のタイプの光源であってもよく又はこれを含んでもよい。一部の場合では、光源605は、1つ以上のLEDを含む。一部の場合では、投影システムは、投影サブシステム600を含み、第1結像器610は、画素化され、複数の画素を含む。画素は、画素の行と列を形成する規則的な画素配列を形成してもよい。投影システムは、スクリーン上に複数の画素の画素画像を投影する。各画素は、スクリーン上の予想位置、スクリーン上の予想面積、スクリーン上の実際の位置、スクリーン上の実面積を有する。一部の場合では、スクリーン上の各画素の実際の位置は、画素の予想位置を中心とした円の内側にあり、画素の予想面積の100倍未満、又は75倍未満、又は50倍未満、又は25倍未満、又は15倍未満、又は10倍未満、又は5倍未満、又は2倍未満である実面積を有する。一部の場合では、スクリーン上の投影された画素の実面積は、スクリーン上の投影された画素の予想面積の10倍未満、又は7倍未満、又は5倍未満、又は3倍未満、又は2倍未満である。
図8は、反射型投影システム800の概略図であり、ここで、光源605によって放出された光625が、結像器610に向かって偏光ビームスプリッタプレート620を透過し、結像光615として結像器によってビームスプリッタプレートの方に反射され、このスプリッタプレートは結像光を反射光695として観者680に向けて反射する。多層光学フィルム反射型偏光子640は、実質的に平坦なので、反射された結像光695は、大幅に改善された有効画素解像度を有する。図9は、透過型結像システム900の概略図であり、光源605によって発光された光625が、偏光ビームスプリッタプレート620によって結像器610に向けて反射され、及び結像光615として結像器によってビームスプリッタプレートに向けて反射され、このスプリッタプレートは結像光を透過された光695としてスクリーン690に向かって(又は、システム800と同様に観者680に向かって)透過する。多層光学フィルム反射型偏光子640は、実質的に平坦であり、ビームスプリッタプレートによって結像器に向けられた反射光は、大幅に改善された均一性で結像器を照射する。図10は、反射−透過型結像システム1000の概略図であり、ここで、結像した光源1005によって放出された結像光615が、偏光ビームスプリッタプレート620によって観者680に向かって反射される。観者680はまた、周囲光1020によって伝搬され、ビームスプリッタプレート620によって透過される周囲結像を見てもよい。
偏光ビームスプリッタプレート620は、本明細書に開示の任意のプロセス又は方法を使用して製造されてもよい。例えば、偏光ビームスプリッタプレート620は、プリズム560及び580が基材630及び650に替えられることを除いて、図4及び5に関連して開示されるプロセスを使用して構成又は製造されてもよい。
本明細書が開示する偏光ビームスプリッタプレートは、反射型偏光子からの結像光を画像の解像度及び/若しくはコントラストを劣化させず、又はほとんど劣化させずに反射することが望ましい任意の用途に使用してもよい。例えば、図11は、観者1101が見るための2つの異なる画像を提供する視覚装置1100の概略図である。視覚装置1100は、プロジェクタ1110と、本明細書に開示される任意の偏光ビームスプリッタプレートであるか、又はこれを含み得る偏光ビームスプリッタプレート1130とを含む。プロジェクタ1100は、偏光ビームスプリッタプレート1130に向かって伝搬する第1結像光1120を投影する。偏光ビームスプリッタプレートは、プロジェクタから投影された第1結像光を受光し、受光された第1結像光を、観者1101が見るための反射された第1結像光1125として反射する。反射された第1結像光は、15μm未満、又は12μm未満、又は10μm未満、又は9μm未満、又は8μm未満、又は7μm未満、又は6μm未満、又は5μm未満、又は4μm未満の有効画素解像度を有する。偏光ビームスプリッタプレート1130はまた、第2画像1132を受光し、観者1101が見るための第2画像を透過する。第2画像1132は、周囲画像などの、あらゆるタイプの画像であってもよい。偏光ビームスプリッタプレート1130は、第1基材630と同様の第1基材1140、及び反射型偏光子640と同様であり、接着剤1150によって第1基材1140に接着された、多層光学フィルム反射型偏光子1160を含む。反射型偏光子1160は、第1偏光状態の偏光を実質的に反射し、及び第1偏光状態と逆の第2偏光状態の偏光を実質的に透過する。例えば、反射型偏光子1160は、第1偏光状態の偏光の少なくとも70%、又は少なくとも80%、又は少なくとも90%、又は少なくとも95%、又は少なくとも99%、又は少なくとも99.5%を反射し、かつ第1偏光状態と反対側の第2の偏光状態の偏光の少なくとも70%、又は少なくとも80%、又は少なくとも90%、又は少なくとも95%、又は少なくとも99%、又は少なくとも99.5%を透過する。第2偏光状態は、第1の偏光状態と逆であり、これは、いずれの偏光状態も他方の偏光状態に沿った成分を有さないことを意味する。例えば、第1偏光状態は、時計回りの円偏光状態であってもよく、第2偏光状態は、反時計回りの円偏光状態であってもよい。一部の場合では、第2偏光状態は、第1偏光状態に垂直であってもよい一部の場合では、反射型偏光子1160は、広帯域反射型偏光子であってもよい。例えば、一部の場合では、反射型偏光子は、400nm〜650nmの範囲内の第1偏光状態の偏光を実質的に反射してもよく、及び同範囲内の第1偏光状態に反対側の第2偏光状態の偏光を実質的に透過してもよい。一部の場合では、反射型偏光子1160は、2つ以上の別個の波長帯域の第1偏光状態を反射してもよく、他の帯域の光を透過してもよい。例えば一部の場合では、反射型偏光子1160は、実質的に445nm〜460nmの、530nm〜550nmの、600nm〜620nmの波長帯域内の第1偏光状態の偏光を実質的に反射してもよく、並びに第1偏光状態と、その他の波長帯域の、逆の又は垂直の第2偏光状態との両方を有する光を実質的に透過してもよい。
偏光ビームスプリッタプレート1130は、第1最外主表面1165と、第1最外主表面1165に対して約20°未満、又は約15°未満、又は約10°未満、又は約7°未満、又は約5°未満、又は約3°未満、又は約2°未満、又は約1°未満の角度を形成する、反対側の第2最外主表面1145とを含む。一方又は両方の主表面が曲線状である場合、2つの主表面間の角度は、曲線主表面に最良に適合する平面間の角度を求めることにより測定される。
プロジェクタ1110は、用途に望ましくあり得る任意のタイプのプロジェクタであってもよい。例えば、プロジェクタ1110は、LCOS結像器、OLED結像器、微小電気機械システム(MEMS)結像器、又はDLP結像器などのデジタルマイクロミラーデバイス(DMD)結像器であってもよい。一部の場合では、プロジェクタ1110は、偏光された第1結像光1120を投影する。一部の場合では、プロジェクタ1110は、非偏光の第1結像光1120を投影する。一部の場合では、第1結像光1120は、偏光又は非偏光であってもよい。代表的な視覚装置1100では、偏光ビームスプリッタプレート1130は、偏光ビームスプリッタプレートの多層光学フィルム反射型偏光子1160側から、投影された第1結像光1120を受光する。一部の場合では、ビームスプリッタプレートは、スプリッタプレートが、投影された第1結像光を偏光ビームスプリッタプレートの第1基材1140側から受光するように、反転されてもよい。代表的な視覚装置1100では、偏光ビームスプリッタプレート1130は、第2画像1132を偏光ビームスプリッタプレートの第1基材1140側から受光する。一部の場合では、ビームスプリッタプレートは、スプリッタプレートが、第2画像を偏光ビームスプリッタプレートの多層光学フィルム反射型偏光子1160側から受光するように、反対にされてもよい。
一般的に、偏光ビームスプリッタプレート1130は、使用する際に望ましくあり得る任意の形状を有してもよい。例えば一部の場合では、図6又は8に示されるように、偏光ビームスプリッタプレート1130は平坦である。図11に示されるものなどの、別の例のように一部の他の場合では、偏光ビームスプリッタプレート1130は、曲線状である。偏光ビームスプリッタプレート1130は、使用する際に望ましくあり得る任意の方法を使用して、形付けられてもよい。例えば、プレート全体が例えばプレートを加熱することにより形付けられてもよい。別の例として、第1基材1140は、最初に形付けられ、次に多層光学フィルム反射型偏光子が基材に適用されてもよい。第1基材1140は、本明細書で開示される任意の基材であってもよい。例えば、基材1140は、ガラス及び/又はポリマーを含んでもよい一部の場合では、第1基材1140の最大厚さは、2mm未満、又は1.5mm未満、又は1mm未満、又は0.5mm未満、又は0.25mm未満、又は0.15mm未満、又は0.1mm未満、又は0.05mm未満である。一部の場合では、偏光ビームスプリッタプレート1130は、非常に薄い。例えばこのような場合では、第1最外主表面1165及び第2最外主表面1145の間の最大距離間隔は、約5mm未満、又は4mm未満、又は3mm未満、又は2mm未満、又は1.5mm未満、又は1mm未満、又は0.75mm未満、又は0.5mm未満、又は0.25mm未満である。
一部の場合では、偏光ビームスプリッタプレート1130の幅及び長さは、偏光ビームスプリッタプレートの厚さよりも実質的に大きい。例えばこのような場合では、偏光ビームスプリッタプレートの最小横寸法と偏光ビームスプリッタプレートの第1最外主表面と第2最外主表面との間の最大距離間隔との比は、5超、又は10超、又は15超、又は20超、又は30超である。
図11の代表的な偏光ビームスプリッタプレート1130は、1つの基材を含む。図6に示されるものなどの一部の場合では、ビームスプリッタは2つの基材を含む。このような場合では、多層光学フィルム反射型偏光子1160は、接着剤を使用して第1基材と第2基材の間に配設並びに接着されてもよい。
図12は、観者の頭部に装着されるように構成されたフレーム1210を含む頭部装着型投影ディスプレイ1200の概略図である。投影ディスプレイ1200は、結像光を投影する右側プロジェクタ1204と、投影された結像光を右側プロジェクタから受光する右側偏光ビームスプリッタプレート1240とを更に含み、フレームが観者の頭部に装着されるとき、偏光ビームスプリッタプレートが観者の右目に向かい、かつプロジェクタが観者の頭部の右側部に配設されるようにフレームに取り付けられている。投影ディスプレイ1200は、結像光を投影する左側プロジェクタ1205と、投影された結像光を左側プロジェクタから受光する左側偏光ビームスプリッタプレート1245とを更に含み、並びにフレームが観者の頭部に装着されるとき、偏光ビームスプリッタプレートが観者の左目に向かい、かつプロジェクタが観者の頭部の左側部に配設されるようにフレームに取り付けられている。頭部装着型投影ディスプレイ1200は、フレームが観者の頭部に装着されるとき、イヤピースが観者の耳部に近接して配設されるようにフレームに取り付けられた右側及び左側イヤピース1230を更に含む。一部の場合では、プロジェクタ1204及び1205、並びにイヤピース1230は、フレーム1210と一体型であってもよい。
代表的な投影ディスプレイ1200では、フレームは、イヤピース1230が観者の耳部上に、ノーズピース1220が観者の鼻部上に置かれるように構成されためがねの形態である。一般的に、投影ディスプレイ1200は、用途に望ましくあり得る任意のタイプのフレームを有してもよい。例えば一部の場合では、フレームは、フレームが頭部を包囲し、及びフレームの大きさを調整する手段を有するように観者の頭部に装着されてもよい。更にこのような場合には、ディスプレイは、1つの偏光ビームスプリッタ及び1つのプロジェクタのみを有してもよい。
図13a〜13iは、光学要素を作製する方法又は製造する方法を示す。方法は、まずポリマーシートを作製するプロセスを含む。最初に、図13aに概略的に示されるように、底部基材1310が提供される。次に、図13bに概略的に示されるように、止め部1320は、頂部表面上及び底部基材1310の縁部に沿って配設される。次に、図13cに概略的に示されるように、止め部1320によって画定されるキャビティは有機液体1330で充填される。次に、図13dに概略的に示されるように、頂部基材1342は止め部1320及び有機液体1330上に配設され、有機液体は有機液体を乾燥させる並びに/又は硬化させることによって固化され、ポリマーシート1330になる。ポリマーシートは、次にポリマーシートの光学的複屈折率を減少させるために選択的な焼きなましが行われる。一部の場合では、ポリマーシートの最大厚さhは、少なくとも2mm、又は少なくとも3mm、又は少なくとも4mm、又は少なくとも5mmである。
光学要素の作製方法又は製造方法は、次に図13eに概略的に示されるようなアセンブリ1338の作製プロセスを含む。最初に、本明細書の他所に示され及び記載されるように、一時的平坦基材が提供される。次に、光学フィルム1350の第1表面が、一時的平坦基材に着脱自在に取り付けられる。次に、第1ポリマーシート1330/1335は、接着剤1340を使用して、相対する光学フィルムの第2表面に接着される。光学フィルムは、次に一時的平坦基材から取り除かれ、第2ポリマーシート1330/1337は、接着剤1345によって光学フィルムの第1表面に接着されて、アセンブリ1338を生じ、これは、各接着剤層1340及び1345によって頂部ポリマーシート1335と底部ポリマーシート1337との間に配設され及びこれらに接着された光学フィルム1350を含み、頂部ポリマーシートは頂部表面1335aを有し、底部ポリマーシートは底部表面1337aを有する。一部の場合では、各頂部ポリマーシート1335及び底部ポリマーシート1337の最大厚さは、少なくとも2mm、又は少なくとも3mm、又は少なくとも4mm、又は少なくとも5mmである。
光学フィルム1350は、使用する際に望ましくあり得る任意のタイプの光学フィルムであってもよい。例えば、光学フィルム1350は、1/4波長リターダー若しくは1/2リターダーなどのリターダー、吸収性偏光子若しくは反射型偏光子などの偏光子であってもよく、又これらを含んでもよい。任意の好適な反射型偏光子のタイプ、例えば、多層光学フィルム(MOF)反射型偏光子、Vikuiti(商標)拡散型反射型偏光子(「DRPF」)(3M Company(St.Paul,Minnesota)から入手可能)などの、連続相及び分散位相を有する拡散型反射型偏光フィルム(DRPF)、例えば米国特許第6,719,426号に記載のワイヤグリッド反射型偏光子、又はコレステリック反射型偏光子などが、反射型偏光子1350に使用されてもよい。
例えば一部の場合では、反射型偏光子1350は、異なるポリマー材料の交互層で形成された多層光学フィルム(MOF)反射型偏光子であってもよく、又これを含んでもよく、交互層の1つのセットは、複屈折材料から形成され、様々な材料の屈折率は、1つの直線偏光状態に偏光された光に整合し、直交する直線偏光状態にある光に対しては整合しない。このような場合、整合した偏光状態の入射光は、反射型偏光子1350に実質的に透過され、整合しない偏光状態の入射光は、反射型偏光子1350によって実質的に反射される。一部の場合では、MOF反射型偏光子1350は、無機誘電体層の積層体を含んでもよい。
他の例として、反射型偏光子1350は、通過状態で中間的な軸上の平均反射率を有する、部分的反射層であってもよく、又はこれを含んでもよい。例えば、部分的反射層は、例えば、xy平面などの第1平面において偏光された可視光の少なくとも約90%の軸上平均反射率を有してもよく、第1平面に垂直の、例えばxz平面などの第2平面において偏光された可視光の少なくとも約25%〜約90%の範囲内の軸上平均反射率を有してもよい。このような部分反射層は、例えば、米国特許公報第2008/064133号に記載され、これらの開示は、参照により全体を本明細書に援用される。
一部の場合では、反射型偏光子1350は、右回りの向き、又は左回りの向き(また右又は左円偏光とも呼ばれる)であり得る、一方の向きに円偏光した光が優先的に透過され、またその反対の向きに偏光した光が優先的に反射される円反射型偏光子であってもよく、又はこれを含んでもよい。円偏光子の1つのタイプは、コレステリック液晶偏光子を含む。
一部の場合では、光学フィルム1350は、非偏光の部分的偏光子であってもよい。例えば、光学フィルム1350は、部分的偏光金属層及び/又は誘電体層を含んでもよい。一部の場合では、光学フィルム1350は、構造化表面を有してもよい。光学フィルム1350は、ポリマーなどの有機、若しくは無機、又はこれらの組合せであってもよい。
次に、頂部ポリマーシート1335の頂部表面1335a、底部ポリマーシート1337の底部表面1337aを改質して、複数の頂部構造体1360及び頂部表面粗さ1362aを有する頂部構造化表面1335bと、複数の底部構造体1370及び底部表面粗さ1362bを有する底部構造化表面1337bとを生じさせる。構造体1360及び1370は、使用する際に望ましくあり得る任意のタイプの構造体であってもよい。例えば、偏光ビームスプリッタの場合、構造体1360及び1370は、直角プリズムなどのプリズムであってもよい。このような場合、複数の頂部構造体1360及び複数の底部構造体1370は、複数のプリズムを含む。一部の場合(I some cases)、各頂部プリズム1360及び各底部プリズム1370は実質的に正方形の斜辺を有する。
別の例のように、構造体1360及び1370は、図15に概略的に示されるようなレンズであってもよい。図13fに示される代表的な場合などの一部の場合では、構造体1360及び1370は、ランド領域1362によって分離される。図15に示される代表的な場合などの一部の場合では、構造体1360及び1370は、密接して詰まっており、ランド領域によって分離されていない。各構造体1360及び1370は、基部及び複数の側部を含む。例えば、図13f及び13gに示される各代表的なプリズム構造体1360は、斜辺1360E及び4つの側部1360A、1360B、1360C及び1360Dを含む。同様に、各構造体1370は、斜辺1370Eを含む。
表面粗さ1362a及び1362bのサイズすなわち寸法は、構造体1360及び1370のサイズよりもかなり小さい。例えば一部の場合では、斜辺1360E又は1370Eの最大横寸法は、1mm超、2mm超、3mm超、5mm超、7mm超、10mm超、15mm超であり、頂部表面粗さ1362a又は底部表面粗さ1362bの平均サイズは、500μm未満、又は250μm未満、又は100μm未満、又は75μm未満、又は50μm未満である。一般的に、頂部表面粗さ1362a及び底部表面粗さ1362bは、光学的に平滑な頂部表面1335b及び底部構造化表面1337bからの意図しないずれにつながる、主に加工/製造の限界に起因するものであり、意図された構造1360及び1370に重ね合わせられる表面粗さをもたらす。
一部の場合では、頂部構造化表面1335bは複数の規則的に配列された頂部構造体1360を有し、底部構造化表面1337bは、複数の規則的に配列された底部構造体1370を有する。
一般的に、構造体1360及び1370は1対1で対応するが、一部の場合では、このような対応は存在しなくてもよい。例えば、図13fに示される代表的な構造などの一部の場合では、底部構造対1370は頂部構造体1360と垂直に整列し、頂部ランド領域及び底部ランド領域1362は、互いに対して垂直に整列する。
一般的に、任意の好適な方法を使用して、頂部ポリマーシート1335の頂部表面1335a及び底部ポリマーシート1337の底部表面1337aを改質し、構造化表面1335b及び1337bをもたらしてもよい。例示的な方法には、エッチング、フォトリソグラフィー、ワイヤEDM、機械加工、例えば、研削加工(ダイヤモンド研削加工など)、ダイヤモンド端部ミリングなどのミリング、ダイヤモンド旋盤加工、並びに軸方向フライカッティング及び半径方向フライカッティングなどのフライカッティングが挙げられる。
光学要素の作製又は製造方法は次に、y方向などの横方向に沿って、コーティング済みアセンブリのランド領域1362における垂直線1341A及び1341Bに沿って、アセンブリ1338を少なくとも2つの別個の片に細分化し、図13hに概略的に示されるような別個のアセンブリ1391を形成することを含む。任意の好適な方法を使用して、アセンブリ1338を細分化してもよい。代表的な方法には、レーザー切削加工、ナイフ若しくは鋸切削加工、回転切削加工、かみそり切削加工、打ち抜き加工、並びに超音波振動切削加工などの切削加工、又はミリング及びフライカッティングなどの機械加工が挙げられる。
次に、コーティング済みアセンブリ、すなわち光学要素1390は、トップコーティング1380を頂部構造体1360に適用することにより、頂部表面粗さ1362a未満のトップコーティング済み表面粗さ1381を有するトップコーティング済み構造体1367を生じさせ、ボトムコーティング1385を底部構造体1370に適用することにより、底部表面粗さ1362b未満のボトムコーティング済み表面粗さ1386を有するボトムコーティング済み構造体1377を生じさせて、形成される。任意の好適なコーティング方法が、トップコーティング1380及びボトムコーティング1385に適用されてもよい。代表的な方法には、別個のアセンブリをコーティング溶液に浸漬させる浸漬コーティング、スプレーコーティング、真空コーティング、スライドコーティング、スロットコーティング、カーテンコーティング、及びインクジェット印刷などの印刷加工が挙げられる。コーティング方法が別個のアセンブリをコーティング溶液に浸漬する浸漬方法を含むときなどの一部の場合では、別個のアセンブリは次に、コーティング溶液から取り出され、コーティングは、コーティングを乾燥及び/又は硬化することにより固化される。一部の場合では、頂部表面粗さ1362aとトップコーティング済み表面粗さ1381との比、及び底部表面粗さ1362bとボトムコーティング済み表面粗さ1386との比のそれぞれは、少なくとも2、又は少なくとも3、又は少なくとも4、又は少なくとも5である。
トップコーティング1380及びボトムコーティング1385は、用途に望ましくあり得る任意のタイプのコーティングであってもよい。例えば、一部の場合では、コーティングの主要な利益は、表面粗さを減少させることである。一部の場合では、コーティングはハードコーティングである。このような場合、入射主表面1396a及び出射主表面1396bのうちの少なくとも一方が、少なくとも3H、又は少なくとも4H、又は少なくとも5Hの鉛筆硬度を有する。一部の場合では、入射主表面1396a及び出射主表面1396bのそれぞれは、少なくとも3H、又は少なくとも4H、又は少なくとも5Hの鉛筆硬度を有する。一部の場合では、頂部構造体1360及び底部構造体1370それぞれの斜辺以外の各主表面は、少なくとも3H、又は少なくとも4H、又は少なくとも5Hの鉛筆硬度を有する。一部の場合では、コーティングは、反射を減少する主要な利益を伴った反射防止コーティングである。このような場合、トップコーティング1380及びボトムコーティング1385のそれぞれは、可視光線の平均反射率を少なくとも1%、又は少なくとも2%、又は少なくとも3%、又は少なくとも4%減少させる。一部の場合では、コーティングは、ハードコーティング及び反射防止コーティングの組合せであってもよい。概ね、コーティングは、単層コーティング又は多層コーティングであってもよい。
一部の場合では、開示された光学要素1390を作製又は製造する方法は、連続的に実施されてもよい。一部の場合では、少なくとも一部のステップの順番は、変更されてもよい。例えば、一部の場合では、コーティング済みアセンブリの形成するステップは、アセンブリを細分化する前に行われてもよい。このような場合の例として、頂部ポリマーシート1335の頂部表面1335a及び底部ポリマーシート1337の底部表面1337aは最初に、改質され、複数の頂部構造体1360及び頂部表面粗さ1362aを有する頂部構造化表面1335b、複数の底部構造体1370及び底部表面粗さ1362bを有する底部構造化表面1337bを生じる。次に、コーティング済みアセンブリ1399は、トップコーティングを頂部構造化表面に適用することにより、複数のトップコーティング済み構造と頂部表面粗さ未満のトップコーティング済み表面粗さとを有するトップコーティング済み構造化表面を生じさせ、並びに、ボトムコーティングを底部構造化表面に適用することにより、複数のボトムコーティング済み構造と底部表面粗さ未満のボトムコーティング済み表面粗さとを有するボトムコーティング済み構造化表面を生じさせて、形成される。次に、コーティング済みアセンブリを、コーティング済みアセンブリの横方向に沿って少なくとも2つの別個の片に細分化して、光学要素1390を形成する。
光学要素1390は、そこを通って入射光1383が光学要素に入る入射主表面1396aと、そこを通って入射した光が光1382として光学要素から出る出射主表面1396bとを含む。光学要素1390は低複屈折率を有し、これは第1偏光状態の偏光1383が、入射主表面1396aから光学要素1390に入って、少なくとも2mmの光学要素を通って進み、出射主表面1396bから光学要素を出るとき、光学要素を出る光1382の少なくとも90%、又は少なくとも92%、又は少なくとも95%、又は少なくとも97%、又は少なくとも99%が偏光され、第1偏光状態を有することを意味する。一部の場合では、第1偏光状態の偏光1383が、入射主表面1396aから光学要素1390に入って、少なくとも3mmの光学要素を通って進み、出射主表面1396bから光学要素を出るとき、光学要素を出る光1382の少なくとも90%、又は少なくとも92%、又は少なくとも95%、又は少なくとも97%、又は少なくとも99%が偏光され、第1偏光状態を有する。一部の場合では、第1偏光状態の偏光1383が、入射主表面1396aから光学要素1390に入って、少なくとも4mmの光学要素を通って進み、出射主表面1396bから光学要素を出るとき、光学要素を出る光1382の少なくとも90%、又は少なくとも92%、又は少なくとも95%、又は少なくとも97%、又は少なくとも99%が偏光され、第1偏光状態を有する。一部の場合では、第1偏光状態の偏光1383が、入射主表面1396aから光学要素1390に入って、少なくとも5mmの光学要素を通って進み、出射主表面1396bから光学要素を出るとき、光学要素を出る光1382の少なくとも90%、又は少なくとも92%、又は少なくとも95%、又は少なくとも97%、又は少なくとも99%が偏光され、第1偏光状態を有する。
一部の場合では、光学要素1390は、第1ポリマープリズム1360と、第2ポリマープリズム1370と、第1ポリマープリズム1360及び第2ポリマープリズム1370それぞれの斜辺の間に配設され、接着層1340及び1345でそれぞれに接着された反射型偏光子1350と、を有する偏光ビームスプリッタ1390である。反射型偏光子1350は、第1偏光状態の偏光を実質的に反射するとともに、相対する第2偏光状態の偏光を実質的に透過する。偏光ビームスプリッタ1390は、第1ポリマープリズム及び第2ポリマープリズムのそれぞれに配設されたハードコート1380/1385を更に含む。偏光ビームスプリッタ1390は、入射主表面1396a及び出射主表面1396bを更に含む。入射主表面及び出射主表面のうちの少なくとも一方が、少なくとも3H、又は少なくとも4H、又は少なくとも5Hの鉛筆硬度を有する。偏光ビームスプリッタ1390は、偏光状態の偏光1383が、入射主表面から光学要素に入り、少なくとも2mmの、又は少なくとも3mmの、少なくとも4mmの、又は少なくとも5mmの偏光ビームスプリッタを通って進み、出射主表面1396bから偏光ビームスプリッタを出るとき、偏光ビームスプリッタを出る光の少なくとも95%の、又は少なくとも97%の、又は少なくとも99%の、又は少なくとも99.5%が偏光され、偏光状態を有するような、低複屈折率を有する。一部の場合では、第1ポリマープリズム1360及び第2ポリマープリズム1370のそれぞれは、直角プリズムである。一部の場合では、第1ポリマープリズム1360及び第2ポリマープリズム1370は、実質的に立方体を形成する。一部の場合では、偏光ビームスプリッタ1390は、少なくとも2mm、又は少なくとも3mm、又は少なくとも4mm、又は少なくとも5mm、又は少なくとも7mm、又は少なくとも10mmの最大厚さを有する。一部の場合では、第1ポリマープリズム1360及び第2ポリマープリズム1370は、ポリメチルメタクリレート(PMMA)を含む。一部の場合では、ハードコート1380/1385は、アクリレート及び/若しくはウレタン、又はシリカ及び/若しくはセラミック材料を含む。一部の場合では、ハードコート1380/1385の最大厚さは、約20μm未満、又は約15μm未満、又は約15μm未満、又は約10μm未満、又は約7μm未満、又は約5μm未満、又は約3μm未満、又は約2μm未満、又は約1μm未満である。一部の場合では、第1ポリマープリズム1360及び第2ポリマープリズム1370それぞれの屈折率と、ハードコート1380/1385の屈折率との差は、約0.1未満、又は約0.075未満、又は約0.05未満、又は約0.025未満、又は約0.01未満である。一部の場合では、入射主表面1396aは、出射主表面1396bに対して平行である。一部の場合では、入射主表面1396aは、出射主表面1396bに対して垂直である。
(実施例)
PMMAポリマーシートが提供された。ポリマーシートは、44.7mmの長さ、20.6mmの幅、12.5mmの厚さを有した。ポリマーシートの頂部表面は、ダイヤモンドフライカッティングを行い、約0.5μmの最大表面粗さを有する概ね平坦な表面を生じさせた。次に、コーティング溶液が、12.31gの1:1ヘキサンジオールジアクリレート:ペンタエリスリトールトリアクリレート(HDDA:PETA)、0.51gのアクリルアミドメチル酢酸セルロースブチラート、0.21gのビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキシド(Irgacure 819)、0.04gのシリコーンポリエーテルアクリレート(Tegorad 2250)、及び29.19gのイソプロパノールが追加され調製された。溶液は3500rpmで1分間かき混ぜられた。次に、改質されたポリマーシートがコーティング溶液に浸漬された。次に、改質されたシートが取り除かれ、空気乾燥され、その後70℃で3分間焼結された。次に、焼結された試料が、不活性雰囲気下で、36秒間、250mW/cm2の広域スペクトル紫外線を使用して硬化された。得られた試料の最大表面粗さは、約0.2μmであった。
以下は、本開示の項目リストである。
項目1は、偏光ビームスプリッタであって、
第1ポリマープリズムと、
第2ポリマープリズムと、
各前記第1ポリマープリズム及び前記第2ポリマープリズムの斜辺の間に配設され及びこれらに接着された反射型偏光子であり、反射型偏光子は、第1偏光状態の偏光を実質的に反射するとともに、相対する第2偏光状態の偏光を実質的に透過する、反射型偏光子と、
各第1ポリマープリズム及び第2ポリマープリズム上に配設されたハードコートと、
入射主表面と、
出射主表面と、を含み、入射主表面及び出射主表面の少なくとも一方は、少なくとも3Hの鉛筆硬度を有し、偏光ビームスプリッタは、偏光状態の偏光が入射主表面から光学要素に入り、少なくとも2mmの偏光ビームスプリッタを通って進み、出射主表面から前記偏光ビームスプリッタを出るとき、偏光ビームスプリッタを出る光が少なくとも95%偏光され、偏光状態を有するような、低複屈折率を有する。
項目2は、第1ポリマープリズム及び第2ポリマープリズムのそれぞれは、直角プリズムである、項目1の偏光ビームスプリッタである。
項目3は、第1ポリマープリズム及び第2ポリマープリズムは、実質的に立方体である、項目1の偏光ビームスプリッタである。
項目4は、反射型偏光子は、多層光学フィルム反射型偏光子を含む、項目1の偏光ビームスプリッタである。
項目5は、少なくとも5mmの最大厚さを有する、項目1の偏光ビームスプリッタである。
項目6は、入射主表面及び出射主表面のそれぞれは、少なくとも3Hの鉛筆硬度を有する、項目1の偏光ビームスプリッタである。
項目7は、入射主表面及び出射主表面のうちの少なくとも一方は、少なくとも4Hの鉛筆硬度を有する、項目1の偏光ビームスプリッタである。
項目8は、入射主表面及び出射主表面のそれぞれは、少なくとも4Hの鉛筆硬度を有する、項目1の偏光ビームスプリッタである。
項目9は、入射主表面及び出射主表面のうちの少なくとも一方は、少なくとも5Hの鉛筆硬度を有する、項目1の偏光ビームスプリッタである。
項目10は、入射主表面及び出射主表面のそれぞれは、少なくとも5Hの鉛筆硬度を有する、項目1の偏光ビームスプリッタである。
項目11は、第1ポリマープリズム及び第2ポリマープリズムの斜辺以外の各主表面は、少なくとも3Hの鉛筆硬度を有する、項目1の偏光ビームスプリッタである。
項目12は、偏光状態の偏光が、入射主表面から光学要素に入って、少なくとも2mmの偏光ビームスプリッタ通って進み、出射主表面から偏光ビームスプリッタを出るとき、偏光ビームスプリッタを出る光の少なくとも99%が偏光され、偏光状態を有する、項目1の偏光ビームスプリッタである。
項目13は、偏光状態の偏光が、入射主表面から光学要素に入って、少なくとも2mmの偏光ビームスプリッタ通って進み、出射主表面から偏光ビームスプリッタを出るとき、偏光ビームスプリッタを出る光の少なくとも99.5%が偏光され、偏光状態を有する、項目1の偏光ビームスプリッタである。
項目14は、偏光状態の偏光が、入射主表面から光学要素に入って、少なくとも5mmの偏光ビームスプリッタ通って進み、出射主表面から偏光ビームスプリッタを出るとき、偏光ビームスプリッタを出る光の少なくとも95%が偏光され、偏光状態を有する、項目1の偏光ビームスプリッタである。
項目15は、偏光状態の偏光が、入射主表面から光学要素に入って、少なくとも5mmの偏光ビームスプリッタ通って進み、出射主表面から偏光ビームスプリッタを出るとき、偏光ビームスプリッタを出る光の少なくとも99%が偏光され、偏光状態を有する、項目1の偏光ビームスプリッタである。
項目16は、第1ポリマープリズム及び第2ポリマープリズムのそれぞれは、ポリメチルメタクリレート(PMMA)を含む、項目1の偏光ビームスプリッタである。
項目17は、ハードコートは、アクリレート及び/又はウレタンを含む、項目1の偏光ビームスプリッタである。
項目18は、ハードコートは、シリカ及び/又はセラミック材料を含む、項目1の偏光ビームスプリッタである。
項目19は、ハードコートの最大厚さは約15μm未満である、項目1の偏光ビームスプリッタである。
項目20は、ハードコートの最大厚さは約10μm未満である、項目1の偏光ビームスプリッタである。
項目21は、ハードコートの最大厚さは約5μm未満である、項目1の偏光ビームスプリッタである。
項目22は、ハードコートの最大厚さは約2μm未満である、項目1の偏光ビームスプリッタである。
項目23は、第1ポリマープリズム及び第2ポリマープリズムのそれぞれの屈折率と、ハードコートの屈折率との差は、約0.05未満である、項目1の偏光ビームスプリッタである。
項目24は、第1ポリマープリズム及び第2ポリマープリズムのそれぞれの屈折率と、ハードコートの屈折率との差は、約0.025未満である、項目1の偏光ビームスプリッタである。
項目25は、入射主表面は出射主表面に対して平行である、項目1の偏光ビームスプリッタである。
項目26は、入射主表面は出射主表面に対して垂直である、項目1の偏光ビームスプリッタである。
項目27は、光学要素を製造する方法であり、
頂部表面を有する頂部ポリマーシートと、底部表面を有する底部ポリマーシートと、頂部ポリマーシートと底部ポリマーシートの間に配設され、並びにこれらに接着された光学フィルムとを含むアセンブリを用意することと、
頂部表面を有する頂部ポリマーシート、及び底部表面を有する底部ポリマーシートを改質して、複数の頂部構造体及び頂部表面粗さを有する頂部構造化表面、並びに複数の底部構造体及び底部表面粗さを有する底部構造化表面を生じさせることと、
トップコーティングを頂部構造化表面に適用することにより、複数のトップコーティング済み構造と頂部表面粗さ未満のトップコーティング済み表面粗さとを有するトップコーティング済み構造化表面を生じさせ、並びに、ボトムコーティングを底部構造化表面に適用することにより、複数のボトムコーティング済み構造と底部表面粗さ未満のボトムコーティング済み表面粗さとを有するボトムコーティング済み構造化表面を生じさせて、コーティング済みアセンブリを形成することと、
コーティング済みアセンブリの横方向に沿ってコーティング済みアセンブリを少なくとも2つの別個の片に細分化して光学要素を形成することとを含む。
項目28は、光学要素は、入射主表面と、出射主表面と、第1偏光状態の偏光が入射主表面から光学要素に入って、少なくとも2mmの光学要素を通って進み、出射主表面から光学要素を出るとき、光学要素を出る光の少なくとも95%が偏光され、第1偏光状態を有するような、低複屈折率とを有する、項目27の方法である。
項目29は、光学要素は、入射主表面と、出射主表面と、第1偏光状態の偏光が入射主表面から光学要素に入って、少なくとも2mmの光学要素を通って進み、出射主表面から光学要素を出るとき、光学要素を出る光の少なくとも97%が偏光され、第1偏光状態を有するような、低複屈折率とを有する、項目27の方法である。
項目30は、光学要素は、入射主表面と、出射主表面と、第1偏光状態の偏光が入射主表面から光学要素に入って、少なくとも2mmの光学要素を通って進み、出射主表面から光学要素を出るとき、光学要素を出る光の少なくとも99%が偏光され、第1偏光状態を有するような、低複屈折率とを有する、項目27の方法である。
項目31は、ステップは、連続的に実施される、項目27の方法である。
項目32は、アセンブリを用意するステップは、
一時的平坦基材を用意するステップと、
光学フィルムの第1表面を、一時的平坦基材に着脱自在に取り付けるステップと、
頂部ポリマーシート及び底部ポリマーシートを相対する光学フィルムの第2表面に接着させるステップと、
光学フィルムを一時的平坦基材から取り除くステップとを含む、項目27の方法である。
項目33は、光学フィルムは、多層光学フィルムである、項目27の方法である。
項目34は、光学フィルムは、多層光学フィルム反射型偏光子である、項目27の方法である。
項目35は、頂部ポリマーシート及び底部ポリマーシートを焼きなまして、減少した光学複屈折率を有するシートを生じさせることを更に含む、項目27の方法である。
項目36は、ポリマーシートが焼きなますステップが、ポリマーシートを加熱することを含む、項目35の方法である。
項目37は、頂部ポリマーシートの頂部表面と、底部ポリマーシートの底部表面とを改質するステップは、頂部表面及び底部表面を機械加工することを含む、項目27の方法である。
項目38は、頂部ポリマーシートの頂部表面と、底部ポリマーシートの底部表面とを改質するステップは、頂部表面及び底部表面をフライカッティングすることを含む、項目27の方法である。
項目39は、頂部ポリマーシートの頂部表面と、底部ポリマーシートの底部表面とを改質するステップは、頂部表面及び底部表面を軸方向にフライカッティングすることを含む、項目27の方法である。
項目40は、頂部ポリマーシートの頂部表面と、底部ポリマーシートの底部表面とを改質するステップは、頂部表面及び底部表面を半径方向にフライカッティングすることを含む、項目27の方法である。
項目41は、頂部ポリマーシートの頂部表面と、底部ポリマーシートの底部表面とを改質するステップは、頂部表面及び底部表面をダイヤモンド端部ミリングすることを含む、項目27の方法である。
項目42は、頂部ポリマーシートの頂部表面及び底部ポリマーシートの底部表面を改質するステップは、ダイヤモンド研削することを含む、項目27の方法である。
項目43は、頂部表面粗さとトップコーティング済み表面粗さの比と、底部表面粗さとボトムコーティング済み表面粗さの比のそれぞれは、少なくとも2である、項目27の方法である。
項目44は、頂部表面粗さとトップコーティング済み表面粗さの比と、底部表面粗さとボトムコーティング済み表面粗さの比のそれぞれは、少なくとも5である、項目27の方法である。
項目45は、トップコーティングを頂部構造化表面に、ボトムコーティングを底部構造化表面に適用するステップは、アセンブリをコーティング溶液に浸漬することを含む、項目27の方法である。
項目46は、アセンブリをコーティング溶液から取り除き、アセンブリ上のコーティングを乾燥させるステップを更に含む、項目45の方法である。
項目47は、トップコーティングを頂部構造化表面に、ボトムコーティングを底部構造化表面に適用するステップは、頂部及び底部構造化表面をスプレーコーティングすることを含む、項目27の方法である。
項目48は、トップコーティングを頂部構造化表面に、ボトムコーティングを底部構造化表面に適用するステップは、頂部及び底部構造化表面を真空コーティングすることを含む、項目27の方法である。
項目49は、トップ及びボトムコーティングは、ハードコーティング及び/又は反射防止コーティングである、項目27の方法である。
項目50は、トップ及びボトムコーティングのそれぞれは、多層コーティングを含む、項目27の方法である。
項目51は、頂部及び底部ポリマーシートのそれぞれの最大厚さは、少なくとも2mmである、項目27の方法である。
項目52は、頂部及び底部ポリマーシートのそれぞれの最大厚さは、少なくとも5mmである、項目27の方法である。
項目53は、前記頂部構造化表面は、複数の規則的に配列された頂部構造体を有し、前記底部構造化表面は、複数の規則的に配列された底部構造体を有する、項目27の方法である。
項目54は、複数の頂部構造体及び複数の底部構造体のそれぞれは、複数のプリズムを含む、項目27の方法である。
項目55は、各プリズムは実質的に正方形の斜辺を有する、項目54の方法である。
項目56は、頂部構造体及び底部構造体の間には、1対1の対応が存在する、項目27の方法である。
項目57は、光学要素は、偏光ビームスプリッタである、項目27の方法である。
本発明は、上記の特定の実施例及び実施形態に限定されるものとみなされるべきではなく、そのような実施形態は、本発明の様々な態様の説明を容易にするように詳細に記載されている。むしろ本発明は、添付される特許請求の範囲によって定義される本発明の趣旨及び範囲内に含まれる様々な改変形態、等価の工程、及び選択的装置を含む、本発明の全ての態様を包含するものと理解されたい。

Claims (10)

  1. 偏光ビームスプリッタであって、
    第1ポリマープリズムと、
    第2ポリマープリズムと、
    前記第1ポリマープリズム及び前記第2ポリマープリズムのそれぞれの斜辺の間に配設され及び接着された反射型偏光子であり、前記反射型偏光子は、第1偏光状態の偏光を実質的に反射するとともに、相対する第2偏光状態の偏光を実質的に透過する、反射型偏光子と、
    前記第1ポリマープリズム及び前記第2ポリマープリズムそれぞれの上に配設されたハードコートと、
    入射主表面と、
    出射主表面と、を含み、前記入射主表面及び前記出射主表面の少なくとも一方は、少なくとも3Hの鉛筆硬度を有し、前記偏光ビームスプリッタは、偏光状態の偏光が前記入射主表面から前記光学要素に入り、少なくとも2mmの前記偏光ビームスプリッタを通って進み、前記出射主表面から前記偏光ビームスプリッタを出るとき、前記偏光ビームスプリッタを出る光の少なくとも95%が偏光され、前記偏光状態を有するような、低複屈折率を有する、偏光ビームスプリッタ。
  2. 前記第1ポリマープリズム及び前記第2ポリマープリズムそれぞれは、直角プリズムである、請求項1に記載の偏光ビームスプリッタ。
  3. 偏光状態の偏光が前記入射主表面から前記光学要素に入り、少なくとも2mmの前記偏光ビームスプリッタを通って進み、前記出射主表面から前記偏光ビームスプリッタを出るとき、前記偏光ビームスプリッタを出る光の少なくとも99%が偏光され、前記偏光状態を有する、請求項1に記載の偏光ビームスプリッタ。
  4. 前記入射主表面は、前記出射主表面に対して垂直である、請求項1に記載の偏光ビームスプリッタ。
  5. 光学要素を製造する方法であって、
    頂部表面を有する頂部ポリマーシート、底部表面を有する底部ポリマーシート、並びに前記頂部ポリマーシートと前記底部ポリマーシートの間に配設され及び接着された光学フィルムを含むアセンブリを用意する工程と、
    前記頂部ポリマーシートの前記頂部表面、及び前記底部ポリマーシートの前記底部表面を改質して、複数の頂部構造体及び頂部表面粗さを有する頂部構造化表面、並びに複数の底部構造体及び底部表面粗さを有する底部構造化表面を生じさせる工程と、
    トップコーティングを前記頂部構造化表面に適用することにより、複数のトップコーティング済み構造体と前記頂部表面粗さ未満のトップコーティング済み表面粗さとを有するトップコーティング済構造化表面を生じさせ、並びに、ボトムコーティングを前記底部構造化表面に適用することにより、複数のボトムコーティング済み構造体と前記底部表面粗さ未満のボトムコーティング済み表面粗さとを有するボトムコーティング済構造化表面を生じさせて、コーティング済みアセンブリを形成する工程と、
    前記コーティング済みアセンブリを前記コーティング済みアセンブリの横方向に沿って少なくとも2つの別個の断片に細分化して、前記光学要素を形成する工程と、を含む、方法。
  6. 前記光学要素は、入射主表面と、出射主表面と、第1偏光状態の偏光が前記入射主表面から前記光学要素に入り、少なくとも2mmの前記光学要素を通って進み、前記出射主表面から前記光学要素を出るとき、前記光学要素を出る光の少なくとも95%が偏光され、前記第1偏光状態を有するような、低複屈折率とを有する、請求項5に記載の方法。
  7. 前記アセンブリを用意する工程は、
    一時的平坦基材を用意することと、
    前記光学フィルムの第1表面を前記一時的平坦基材に着脱自在に取り付けることと、
    前記頂部ポリマーシート又は前記底部ポリマーシートを前記光学フィルムの相対する第2表面に接着させることと、
    前記光学フィルムを前記一時的平坦基材から取り除くことと、を含む、請求項5に記載の方法。
  8. 前記頂部ポリマーシートの前記頂部表面と、前記底部ポリマーシートの前記底部表面とを改質する工程は、前記頂部表面及び前記底部表面を機械加工することを含む、請求項5に記載の方法。
  9. 前記頂部構造化表面は、複数の規則的に配列された頂部構造体を有し、前記底部構造化表面は、複数の規則的に配列された底部構造体を有する、請求項5に記載の方法。
  10. 前記光学要素は、偏光ビームスプリッタである、請求項5に記載の方法。
JP2018232082A 2012-08-22 2018-12-12 偏光ビームスプリッタ及びその製造方法 Active JP7312546B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261692071P 2012-08-22 2012-08-22
US61/692,071 2012-08-22
JP2015528527A JP6453217B2 (ja) 2012-08-22 2013-08-15 偏光ビームスプリッタ及びその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015528527A Division JP6453217B2 (ja) 2012-08-22 2013-08-15 偏光ビームスプリッタ及びその製造方法

Publications (2)

Publication Number Publication Date
JP2019066871A true JP2019066871A (ja) 2019-04-25
JP7312546B2 JP7312546B2 (ja) 2023-07-21

Family

ID=49029250

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015528527A Expired - Fee Related JP6453217B2 (ja) 2012-08-22 2013-08-15 偏光ビームスプリッタ及びその製造方法
JP2018232082A Active JP7312546B2 (ja) 2012-08-22 2018-12-12 偏光ビームスプリッタ及びその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015528527A Expired - Fee Related JP6453217B2 (ja) 2012-08-22 2013-08-15 偏光ビームスプリッタ及びその製造方法

Country Status (7)

Country Link
US (2) US9488848B2 (ja)
EP (2) EP2888625A2 (ja)
JP (2) JP6453217B2 (ja)
KR (1) KR102069572B1 (ja)
CN (2) CN106444066B (ja)
TW (1) TWI629514B (ja)
WO (1) WO2014031417A2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9851576B2 (en) 2012-08-15 2017-12-26 3M Innovative Properties Company Polarizing beam splitter plates providing high resolution images and systems utilizing such polarizing beam splitter plates
JP6576242B2 (ja) 2012-08-21 2019-09-18 スリーエム イノベイティブ プロパティズ カンパニー 視覚装置
EP2888625A2 (en) * 2012-08-22 2015-07-01 3M Innovative Properties Company Polarizing beam splitter and methods of making same
US9740030B2 (en) 2013-05-23 2017-08-22 Omnivision Technologies, Inc. Near-eye display systems, devices and methods
TW201528379A (zh) * 2013-12-20 2015-07-16 Applied Materials Inc 雙波長退火方法與設備
US9851575B2 (en) 2014-05-15 2017-12-26 Omnivision Technologies, Inc. Wafer-level liquid-crystal-on-silicon projection assembly, systems and methods
EP3234869A4 (en) 2014-12-18 2018-08-15 Corning Research & Development Corporation Identification tag
CN107111968A (zh) 2014-12-18 2017-08-29 3M创新有限公司 用于连接部阵列的并行标记的制品和方法
EP3286495A1 (en) * 2015-04-24 2018-02-28 3M Innovative Properties Company Optical film
US9927619B2 (en) 2015-11-06 2018-03-27 Omnivision Technologies, Inc. Pupillary adjustable head mounted device
CN108885353A (zh) * 2016-04-11 2018-11-23 可来灵菇日本株式会社 投影装置、投影系统以及眼镜型显示装置
CN106526861A (zh) * 2016-12-16 2017-03-22 擎中科技(上海)有限公司 一种ar显示装置
CN110720062A (zh) * 2017-06-05 2020-01-21 3M创新有限公司 包括多层光学膜和薄粘合剂层的光学主体
US11009662B2 (en) * 2017-09-05 2021-05-18 Facebook Technologies, Llc Manufacturing a graded index profile for waveguide display applications
CN111566543A (zh) * 2017-11-08 2020-08-21 亚利桑那大学董事会 使用圆偏振光的成像方法及装置
WO2020115679A2 (en) * 2018-12-07 2020-06-11 3M Innovative Properties Company Optical film and polarizing beam splitter
JP7062606B2 (ja) * 2019-03-08 2022-05-06 株式会社東芝 マルチビュー光学系、光学装置、撮像装置、及び、移動体
JP2023041424A (ja) * 2021-09-13 2023-03-24 日本電気硝子株式会社 Atrプリズム
CN114236855A (zh) * 2022-02-14 2022-03-25 北京瑞波科技术有限公司 光学系统和ar设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005258120A (ja) * 2004-03-12 2005-09-22 Fuji Photo Film Co Ltd 光学部品用硬化性樹脂組成物、光学部品及び画像表示装置
JP2006047903A (ja) * 2004-08-09 2006-02-16 Canon Inc 偏光分離素子及びそれを有する投影装置
JP2007504516A (ja) * 2003-05-16 2007-03-01 スリーエム イノベイティブ プロパティズ カンパニー 偏光ビームスプリッターおよび偏光ビームスプリッターを用いる投影システム
JP2007520756A (ja) * 2004-02-03 2007-07-26 スリーエム イノベイティブ プロパティズ カンパニー 感圧接着剤を含む偏光ビームスプリッタ
JP2009058703A (ja) * 2007-08-31 2009-03-19 Tokai Kogaku Kk 光学多層膜およびその製造方法
JP2009521721A (ja) * 2005-12-22 2009-06-04 スリーエム イノベイティブ プロパティズ カンパニー 反射型偏光子を使用するプロジェクションシステム
JP2010230856A (ja) * 2009-03-26 2010-10-14 Fujifilm Corp 偏光変換素子及び偏光照明光学素子並びに液晶プロジェクタ
JP2015532729A (ja) * 2012-08-22 2015-11-12 スリーエム イノベイティブ プロパティズ カンパニー 偏光ビームスプリッタ及びその製造方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3704934A (en) * 1971-08-16 1972-12-05 Union Carbide Corp Laser polarizing beam splitter
JPH02148002A (ja) * 1988-11-30 1990-06-06 Nippon Sheet Glass Co Ltd 光学部品
US5638479A (en) * 1988-07-19 1997-06-10 Nippon Sheet Glass Co., Ltd. Optical part
JPH02154203A (ja) * 1988-12-07 1990-06-13 Toshiba Corp プリズムの製造方法
JP3036818B2 (ja) * 1989-11-20 2000-04-24 日本ゼオン株式会社 ハードコート層を有する成形品およびその製造方法
JP2999259B2 (ja) * 1990-07-24 2000-01-17 ドイチエ トムソン―ブラント ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 偏光された光を用いた照明装置
FR2685100A1 (fr) * 1991-12-17 1993-06-18 Thomson Csf Separateur de polarisations optique et application a un systeme de visualisation.
US5376408A (en) 1992-12-23 1994-12-27 Honeywell Inc. Spin deposition of a nonconformal coating surface to machined optical asphere surfaces
WO1994014586A1 (en) 1992-12-23 1994-07-07 Honeywell Inc. Replication of optically flat surfaces
US5882774A (en) 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
JP2911762B2 (ja) * 1994-10-27 1999-06-23 キヤノン株式会社 紙端部検知装置
US6036873A (en) 1997-11-26 2000-03-14 Eastman Kodak Company Process for generating precision polished non-plannar aspherical surfaces
US6179948B1 (en) 1998-01-13 2001-01-30 3M Innovative Properties Company Optical film and process for manufacture thereof
US6808658B2 (en) 1998-01-13 2004-10-26 3M Innovative Properties Company Method for making texture multilayer optical films
US6515785B1 (en) * 1999-04-22 2003-02-04 3M Innovative Properties Company Optical devices using reflecting polarizing materials
JP2002167132A (ja) 2000-12-06 2002-06-11 Hitachi Building Systems Co Ltd 乗りかご内位置表示器
US6609795B2 (en) 2001-06-11 2003-08-26 3M Innovative Properties Company Polarizing beam splitter
JP2003248122A (ja) * 2001-12-18 2003-09-05 Fuji Photo Film Co Ltd 楕円偏光板およびこれを用いた液晶表示装置
JP2005519326A (ja) 2002-02-28 2005-06-30 スリーエム イノベイティブ プロパティズ カンパニー 複合偏光ビームスプリッタ
JP2004211813A (ja) 2002-12-27 2004-07-29 Nsk Ltd 鉄道車両の車軸用軸受装置
CN100476505C (zh) 2003-07-18 2009-04-08 晶荧光学科技有限公司 一种三维/二维可切换的彩色投影显示装置及其方法
JP2005055884A (ja) * 2003-07-18 2005-03-03 Toray Ind Inc 熱可塑性プラスチックレンズ
DE602004010402T2 (de) * 2003-07-23 2008-04-30 Thomson Licensing Beleuchtungseinrichtung mit polarisations-recycling in einem doppelprisma
KR100576870B1 (ko) 2004-08-11 2006-05-10 삼성전기주식회사 질화물 반도체 발광소자 및 제조방법
US7345137B2 (en) 2004-10-18 2008-03-18 3M Innovative Properties Company Modified copolyesters and optical films including modified copolyesters
US20060221447A1 (en) 2005-03-31 2006-10-05 3M Innovative Properties Company Stabilized polarizing beam splitter assembly
WO2006110402A1 (en) 2005-04-08 2006-10-19 3M Innovative Properties Company Heat setting optical films
US20070023941A1 (en) * 2005-07-29 2007-02-01 Duncan John E Method for making polarizing beam splitters
US20070048457A1 (en) * 2005-08-25 2007-03-01 Fuji Film Corporation Producing method of film having coated layer, film having coated layer, optical film, polarizing plate and liquid crystal display
US20070047080A1 (en) 2005-08-31 2007-03-01 3M Innovative Properties Company Methods of producing multilayer reflective polarizer
US7548290B1 (en) 2005-11-28 2009-06-16 Nitto Denko Corporation Polarizing plate with optical compensation layer and image display apparatus using the same
US7463417B2 (en) 2006-02-13 2008-12-09 3M Innovative Properties Company Optical articles from curable compositions
US20080013051A1 (en) * 2006-07-14 2008-01-17 3M Innovative Properties Company Polarizing beam splitters incorporating reflective and absorptive polarizers and image display systems thereof
EP2049947A1 (en) 2006-07-31 2009-04-22 3M Innovative Properties Company Optical projection subsystem
US20080079903A1 (en) 2006-09-29 2008-04-03 3M Innovative Properties Company Adhesives inhibiting formation of artifacts in polymer based optical elements
KR100951842B1 (ko) * 2007-09-14 2010-04-12 엘지전자 주식회사 광학필름, 이를 포함하는 백라이트 유닛 및 액정표시장치.
JP4979549B2 (ja) * 2007-11-20 2012-07-18 キヤノン株式会社 偏光分離素子及びそれを有する光学機器
KR101581488B1 (ko) * 2008-08-29 2015-12-30 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 광학 필름, 반사 방지 필름, 편광판 및 액정 표시 장치
JP2010060770A (ja) * 2008-09-03 2010-03-18 Epson Toyocom Corp 光学物品及び光学物品の製造方法
JP5724171B2 (ja) 2009-01-09 2015-05-27 ソニー株式会社 光学素子およびその製造方法、原盤およびその製造方法、ならびに表示装置
KR101182468B1 (ko) * 2009-12-15 2012-09-12 주식회사 엘지화학 편광판, 그 제조방법 및 이를 이용한 화상 표시 장치
CN201820036U (zh) * 2010-01-22 2011-05-04 红蝶科技(深圳)有限公司 一种宽角度偏振分光器及使用其的投影光学引擎
JP2011150984A (ja) * 2010-01-25 2011-08-04 Toyo Aluminium Kk 電解質にヨウ素を含有しない非ヨウ素系の色素増感型太陽電池
JP2013019957A (ja) * 2011-07-07 2013-01-31 Asahi Kasei Chemicals Corp 偏光透過光学部品及び光学投影装置
US20130063819A1 (en) * 2011-09-13 2013-03-14 Donald K. Wilson Methods and apparatus for polarizing laser light
US20140326398A1 (en) 2011-11-28 2014-11-06 3M Innovative Properties Company Method of making polarizing beam splitters providing high resolution images and systems utilizing such beam splitters
EP3203307A1 (en) 2011-11-28 2017-08-09 3M Innovative Properties Company Polarizing beam splitters providing high resolution images and systems utilizing such beam splitters
US9851576B2 (en) 2012-08-15 2017-12-26 3M Innovative Properties Company Polarizing beam splitter plates providing high resolution images and systems utilizing such polarizing beam splitter plates
JP6576242B2 (ja) 2012-08-21 2019-09-18 スリーエム イノベイティブ プロパティズ カンパニー 視覚装置
JP7138530B2 (ja) 2018-10-02 2022-09-16 三菱電機株式会社 光クロスコネクト装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007504516A (ja) * 2003-05-16 2007-03-01 スリーエム イノベイティブ プロパティズ カンパニー 偏光ビームスプリッターおよび偏光ビームスプリッターを用いる投影システム
JP2007520756A (ja) * 2004-02-03 2007-07-26 スリーエム イノベイティブ プロパティズ カンパニー 感圧接着剤を含む偏光ビームスプリッタ
JP2005258120A (ja) * 2004-03-12 2005-09-22 Fuji Photo Film Co Ltd 光学部品用硬化性樹脂組成物、光学部品及び画像表示装置
JP2006047903A (ja) * 2004-08-09 2006-02-16 Canon Inc 偏光分離素子及びそれを有する投影装置
JP2009521721A (ja) * 2005-12-22 2009-06-04 スリーエム イノベイティブ プロパティズ カンパニー 反射型偏光子を使用するプロジェクションシステム
JP2009058703A (ja) * 2007-08-31 2009-03-19 Tokai Kogaku Kk 光学多層膜およびその製造方法
JP2010230856A (ja) * 2009-03-26 2010-10-14 Fujifilm Corp 偏光変換素子及び偏光照明光学素子並びに液晶プロジェクタ
JP2015532729A (ja) * 2012-08-22 2015-11-12 スリーエム イノベイティブ プロパティズ カンパニー 偏光ビームスプリッタ及びその製造方法

Also Published As

Publication number Publication date
CN104620158B (zh) 2018-06-08
US9864207B2 (en) 2018-01-09
EP2888625A2 (en) 2015-07-01
CN104620158A (zh) 2015-05-13
CN106444066A (zh) 2017-02-22
JP6453217B2 (ja) 2019-01-16
TWI629514B (zh) 2018-07-11
TW201415088A (zh) 2014-04-16
KR20150046143A (ko) 2015-04-29
EP3037868A1 (en) 2016-06-29
WO2014031417A3 (en) 2014-04-17
JP2015532729A (ja) 2015-11-12
JP7312546B2 (ja) 2023-07-21
CN106444066B (zh) 2019-02-26
US20150219919A1 (en) 2015-08-06
US9488848B2 (en) 2016-11-08
KR102069572B1 (ko) 2020-01-28
US20170003514A1 (en) 2017-01-05
WO2014031417A2 (en) 2014-02-27

Similar Documents

Publication Publication Date Title
JP7312546B2 (ja) 偏光ビームスプリッタ及びその製造方法
JP7321205B2 (ja) 偏光ビームスプリッタ及び視覚装置
TWI588542B (zh) 提供高解析度影像之偏極化分光鏡及使用此等分光鏡之系統
JP6560980B2 (ja) 高解像度画像を提供する偏光ビームスプリッタプレート及びかかる偏光ビームスプリッタプレートを利用するシステム
JP6348846B2 (ja) 高解像度画像を提供する偏光ビームスプリッタの製造方法及びそのビームスプリッタを利用するシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181212

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210705

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210705

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210713

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210720

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20211008

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20211012

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220308

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220412

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220426

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20220516

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220725

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220922

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R150 Certificate of patent or registration of utility model

Ref document number: 7312546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150