JP2019064938A - エキス輸送作用を呈する環状イソプレノイド誘導体 - Google Patents

エキス輸送作用を呈する環状イソプレノイド誘導体 Download PDF

Info

Publication number
JP2019064938A
JP2019064938A JP2017189453A JP2017189453A JP2019064938A JP 2019064938 A JP2019064938 A JP 2019064938A JP 2017189453 A JP2017189453 A JP 2017189453A JP 2017189453 A JP2017189453 A JP 2017189453A JP 2019064938 A JP2019064938 A JP 2019064938A
Authority
JP
Japan
Prior art keywords
derivative
cyclic
extract
preferable
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017189453A
Other languages
English (en)
Inventor
二村 芳弘
Yoshihiro Futamura
芳弘 二村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017189453A priority Critical patent/JP2019064938A/ja
Publication of JP2019064938A publication Critical patent/JP2019064938A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Cosmetics (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Medicinal Preparation (AREA)

Abstract

【課題】 エキス輸送作用を呈する環状イソプレノイド誘導体を提供する。【解決手段】 目的とする環状イソプレノイド誘導体はフラボノイド、イソプレニル基、ジヒドロキシフェニルからなる環状体である。この誘導体はリポソームより優れたエキス輸送作用を発揮し、かつ、皮膚細胞のケラチンを増加させる。また、水素ガスを発生させる。その製造方法はオオバギを紅麹菌と大豆菌により発酵させた発酵液に分岐シクロデキストリンを添加してプロテアーゼ処理する工程からなる。この環状イソプレノイド誘導体は健康食品、化粧料、医薬品、医薬部外品や植物活性化剤に利用できる。【選択図】 なし

Description

この発明はエキス輸送作用を呈する環状イソプレノイド誘導体に関するものである。
有用なエキスであっても体内に輸送されない、または、皮膚に浸透しないことからその効果が発揮しないエキスや物質が存在する。薬物動態学の観点から、有用なエキスや物質の輸送システムと到達システム、さらに、製剤学的観点及び品質管理的観点からエキスや物質の安定性と輸送が研究開発されている。
脂溶性の高いエキスの成分は細胞膜には到達するものの水溶性の高い細胞内には浸透しにくい。一方、水溶性の高いエキスの成分は細胞膜にとりこまれにくいという欠点がある。なお、脂溶性の高い物質を水溶化する方法の一つとしてシクロデキストリンによる包接がある。この包接は脂溶性の高い物質の輸送には適している。しかし、水溶性の高いエキスに適した輸送方法は少ない。
水溶性の高いエキスについてはリン脂質を用いたリポソームという技術が考えられている。また、脂質中での超音波による乳化という方法もある。しかし、リポソームの技術では水溶液との分離も問題点がある。また、リン脂質を用いるため、高分子になるという欠点がある。
エキス輸送剤に関する発明としてたとえばリポソームを用いた輸送として哺乳類疾病の治療のための化学組成物およびその使用があるものの、有用なエキスの輸送実績はなく、その働きは限定的である。(例えば、特許文献1参照。)
また、リポソームを用いた輸送として細胞膜を通って活性分子を輸送するためのリポソームキヤリヤーの適用、並びに皮膚治療及び化粧品におけるその使用の発明があるものの、
有用な水溶性エキスの輸送については記載がない(例えば、特許文献2参照。)
さらに、新規なリポソームを調製するための方法および装置の発明があるものの、その働きと安全性は不明瞭であり、利用は限られている。(例えば、特許文献3参照。)
このように、エキス輸送作用を発揮し、副作用の少ない天然物は望まれているものの、有用な物質に関する発明はない。
特願2014−242478 特願平3−259929 特願2012−554934
上記したように既存の天然物によるエキス輸送作用は軽度であり、産業上への利用が限定されるという課題があり、また、化学合成された物質では安全性に問題があり、利用が限られている。
そのため、副作用が弱く優れたエキス輸送作用を呈する物質が望まれている。
上記の目的を達成するために、請求項1に記載の発明は下記の式(1)に示されるエキス輸送作用を呈する環状イソプレノイド誘導体に関するものである。
この発明は、以上のように構成されているため、次のような効果を奏する。
請求項1に記載の誘導体によれば、優れたエキス輸送作用を発揮することができる。
以下、この発明を具体化した実施形態について詳細に説明する。
まず、下記の式(1)に示されるエキス輸送作用を呈する環状イソプレノイド誘導体は炭素元素33個、水素元素32個及び酸素元素9個から構成されている。
すなわち、C33H32O9の化学式である。また、環状に結合したイソプレノイドとポリフェノール類である。
この誘導体の環状イソプレノイドは1分子のフラボノイドを中心としてジヒドロフェニル基、イソプレニル基2分子、さらにジヒドロフェニル基より構成されている。フラボノイドのB環とジヒドロキシフェニル基は結合している。このジヒドロキシフェニル基から2分子のイソプレニル基が結合し、終末のメチル基はもう一つのジヒドロフェニル基に結合し、このジヒドロフェニル基はメチルカルボニル基を呈してフラボノイドのA環と結合している。
構造的にフラボノイドのベンゼン環は疎水性を呈し、かつ、側鎖のベンゼン環も疎水性を示し、さらに、2分子のイソプレノイドとジヒドロキシフェニル基のベンゼン環も疎水性を示す。
これらの疎水性の官能基により、この環状構造の内部は疎水性を示すことになる。この疎水性は脂溶性エキスを安定化させることから好ましい。また、2分子のベンゼン環の二重結合は活性酸素やラジカルを吸着して活性酸素による障害を分散させられることから好ましい。
すなわち、この誘導体はビタミンA、ビタミンE、ビタミンDなどの脂溶性ビタミン類、アスタキサンチン、レスベラトロールなどの脂溶性の高い有用な成分を環状構造の内部に結合することができる。一方、この誘導体の外側にはベンゼン環の4分子の水酸基、フラボノイドの水酸基とエステル結合のカルボニル基が存在し、水溶性を呈している。つまり、この誘導体の環状部分の内側は疎水性または脂溶性を示し、外側は親水性を示す。
この誘導体は有用な疎水性エキス、脂溶性物質、脂溶性エキスや脂溶性ビタミンと結合するが、用いられる脂溶性エキスとしてはアスタキサンチン、レスベラトロール、カロテノイド、EPAやDHAなどのオメガ3脂肪酸などである。脂溶性エキスの結合性は高く、数個から10個程度のエキス成分と結合することが可能である。
この誘導体は脂溶性エキスを結合したまま、安定に維持し、低温、高温、高湿の環境下でもエキスを安定に維持する。さらに、構成要素がイソプレニル基であるため、粘性は少なく、さらさらとした乾燥した感触が得られる点から、化粧料や食品に利用されやすいことは好ましい。
この誘導体と水溶性エキスの結合の方法は容易であり、この誘導体と水溶性エキスを4℃〜50℃で混合して反応させるだけである。その後、水溶性エキスと結合した誘導体を疎水性や脂溶性の溶媒に分散することにより、疎水性や脂溶性溶媒に均一に分散することができる。
得られた誘導体と脂溶性エキスの結合体は乾燥にも耐えられ、また、100℃の沸騰にも安定である。さらに、マイナス200℃程度の液体窒素の中でも安定である。
また、この得られた誘導体と脂溶性エキスの結合体は親水性の溶媒の中で安定である。たとえば、水溶性として100℃程度の加熱にも安定である。
さらに、この誘導体と脂溶性エキスの結合体は酸性及びアルカリ性に対して耐性を示し、いずれに対しても安定的に維持される。たとえば、胃酸の中でも室温で24時間以上安定である。一方、強アルカリ、たとえば、水酸化ナトリウム溶液の中でも安定である。
この誘導体と脂溶性エキスとの結合体はリパーゼやヒドロキシラーゼに対して防御作用を呈して有用エキスを安定に維持して水溶性を高めて血液中を輸送する。一方、細胞内にはエステラーゼが存在していることから細胞膜を通過した後に、脂溶性の高い細胞内環境下で分解されて脂溶性エキスを細胞内に放出する。
この誘導体自体は細胞内でフラボノイド、イソプレニル基とジヒドロキシベンゼンに分解され、これらの物質は安全性が高く、結果としてこの環状イソプレノイド誘導体の安全性も高いことから好ましい。この環状イソプレノイド誘導体をフラボノイド、ジヒドロキシベンゼン、イソプレノイドを原料として有機化学的に合成することができる。この有機合成された誘導体は標準物質として解析や分析に利用される。しかし、化学的な製造にはコストがかかり、かつ、有害な有機溶媒と重金属を使用することから、産業には利用しにくいという安全性上の欠点がある。
この環状イソプレノイド誘導体の構造についてはこの誘導体の重水素化クロロホルム中の400MHzのH−NMR(1H−NMR)解析(ブルカー製)により、ピークの位置は2.51、2.61、2.81、2.93、3.74、3.83、3.87、4.01、4.15、4.62、4.83、6.05、6.17、6.48及び6.59ppmに認められる。
また、この誘導体の重水素化クロロホルム中のC−NMR(13C−NMR)解析ではピークの位置は17.8、28.4、28.5、61.2、61.3、68.6、69.3、83.1、84.7、97.0、98.3、102.4、102.9、107.5、108.3、108.7、109.1、136.3、137.6、137.9、138.1、152.8、153.1、153.9、155.9、156.1、156.3、156.4及び157.2ppmに認められる。
この環状イソプレノイド誘導体は天然由来であることから安全性が高く、また、エキス結合性や細胞への吸収性に優れている。仮に、この誘導体を大量に摂取した場合でも、生体内に過剰量は分解されることから安全性が高い。
さらに、この誘導体は粉末にして水溶液と反応する際に水素ガスを発生する。発生する水素ガスは活性酸素を除去する働きがあるため、紫外線や酸化物質によって発生した活性酸素を除去して生体を安定に維持できることから好ましい。また、水素ガスはヒドロキシルラジカルを消去し、還元作用を呈し、かつ、抗酸化作用を発揮することから好ましい。
また、この誘導体は皮膚表皮細胞に働き、皮膚細胞を増殖させ、また、ケラチンを増加させる。この環状イソプレノイド誘導体はケラチン合成酵素を活性化してケラチン量を増加させる。ケラチンの増加作用は皮膚や毛髪を強固にすることから好ましい。
さらに、この誘導体は炎症物質であるプロスタグランジンやキニン類を吸着して排泄する働きもあることから有害物質の排泄に役立つことは好ましい。
この環状イソプレノイド誘導体の抽出方法または製造方法としては発酵法、酵素反応法や化学合成法などがある。たとえば、この環状イソプレノイド誘導体の製造方法としてはオオバギ、コメヌカ、大豆などから抽出することができる。また、種々の植物からも抽出することができる。また、この抽出方法ではプロテアーゼやリパーゼなどの消化酵素を利用することは抽出効率が高められることから好ましい。
特に、オオバギ、コメヌカ、大豆を紅麹菌や納豆菌で発酵させる発酵法とシクロデキストリンとプロテアーゼによる低分子化を組み合わせる方法はこの誘導体の製造工程として優れている。オオバギの根や葉にはフェニル基を持つ物質が豊富であり、この誘導体の製造には適している。
オオバギ、マキベリー、ウコン、アサイヤシなどの植物を紅麹菌で発酵させる発酵法もこの環状イソプレノイド誘導体の製造方法として有用である。これらの発酵技術は日本では知識が豊富であり、食用としての実績も多く、かつ、安全性も高いことから好ましい。
さらに、高純度の誘導体を得る目的で精製されることは好ましい。精製の方法としては、分離用の樹脂を用いて分離用溶媒で抽出する精製操作を利用することは好ましい。
例えば、分離用担体または樹脂により分離され、分取されることは好ましい。分離用担体または樹脂としては、表面が後述のようにコーティングされた、多孔性の環状イソプレノイド、酸化珪素化合物、ポリアクリルアミド、ポリスチレン、ポリプロピレン、スチレン−ビニルベンゼン共重合体等が用いられる。0.1〜300μmの粒度を有するものが好ましく、粒度が細かい程、精度の高い分離が行なわれるが、分離時間が長い欠点がある。
例えば、逆相担体または樹脂として表面が疎水性化合物でコーティングされたものは、疎水性の高い物質の分離に利用される。陽イオン物質でコーティングされたものは陰イオン性に荷電した物質の分離に適している。また、陰イオン物質でコーティングされたものは陽イオン性に荷電した物質の分離に適している。特異的な抗体をコーティングした場合には、特異的な物質のみを分離するアフィニティ担体または樹脂として利用される。
アフィニティ担体または樹脂は、抗原抗体反応を利用して抗原の特異的な調製に利用される。分配性担体または樹脂は、シリカゲル(メルク社製)等のように、物質と分離用溶媒の間の分配係数に差異がある場合、それらの物質の単離に利用される。
これらのうち、製造コストを低減することができる点から、吸着性担体または樹脂、分配性担体または樹脂、分子篩用担体または樹脂及びイオン交換担体または樹脂が好ましい。さらに、分離用溶媒に対して分配係数の差異が大きい点から、逆相担体または樹脂及び分配性担体または樹脂はより好ましい。
分離用溶媒として有機溶媒を用いる場合には、有機溶媒に耐性を有する担体または樹脂が用いられる。また、医薬品製造または食品製造に利用される担体または樹脂は好ましい。これらの点から吸着性担体としてダイヤイオン(三菱化学(株)社製、HP−20及びHP−21)及びXAD−2またはXAD−4(ロームアンドハース社製)、分子篩用担体としてセファデックスLH−20(アマシャムファルマシア社製)、分配用担体としてシリカゲル、イオン交換担体としてIRA−410(ロームアンドハース社製)、逆相担体としてDM1020T(富士シリシア社製)がより好ましい。
これらのうち、ダイヤイオンHP−20、セファデックスLH−20及びDM1020Tはさらに好ましい。
得られた抽出物は、分離前に分離用担体または樹脂を膨潤化させるための溶媒に溶解される。その量は、分離効率の点から抽出物の重量に対して1〜40倍量が好ましく、4〜20倍量がより好ましい。分離の温度としては物質の安定性の点から4〜30℃が好ましく、10〜25℃がより好ましい。
分離用溶媒には、水、または、水を含有する低級アルコール、親水性溶媒、親油性溶媒が用いられる。低級アルコールとしては、メタノール、エタノール、プロパノール、ブタノールが用いられるが、食用として利用されているエタノールが好ましい。
セファデックスLH−20を用いる場合、分離用溶媒には低級アルコールが好ましい。シリカゲルを用いる場合、分離用溶媒にはクロロホルム、メタノール、酢酸またはこれらの混合液が好ましい。
ダイヤイオンHP−20及びDM1020Tを用いる場合、分離用溶媒はメタノール、エタノール等の低級アルコールまたは低級アルコールと水の混合液が好ましい。また、活性を含む画分を採取して乾燥または真空乾燥により溶媒を除去し、粉末または濃縮液として得ることは溶媒による影響を除外できることから、好ましい。
この環状イソプレノイド誘導体は優れたエキス輸送作用を発揮して化粧料に用いられることは好ましい。また、皮膚細胞のケラチン増加作用を呈することから、化粧料、シャンプー、まつ毛増殖剤、育毛剤、毛髪用化粧料としても利用できる。さらに、アミノ酸やイソプレノイド類もエキスとして結合でき、たとえば、成長因子作用を呈するイソプレノイド類の結合と安定化と輸送を実施できる点から好ましい。
この環状イソプレノイド誘導体にエキスを添加した後、油脂に分散することは、得られる活性部分が油脂の中で安定に維持することから好ましい。例えば、大豆油、米ぬか油、グレープシード油、オリーブ油、ホホバ油で抽出することは好ましい。この誘導体は水溶性と油溶性の両方の溶媒に溶解する。この両親媒性の性質はこの誘導体の利用を広げることから好ましい。
医薬品として注射剤または経口剤または塗布剤などの非経口剤として利用され、医薬部外品としては、錠剤、カプセル剤、ドリンク剤、石鹸、塗布剤、ゲル剤、歯磨き粉等に配合されて利用される。特に、胃酸に対して耐性を示すことから、内容物が胃酸に対して保護されることから、腸溶性の製剤に利用される。
経口剤としては錠剤、カプセル剤、散剤、シロップ剤、ドリンク剤等が挙げられる。上記の錠剤及びカプセル剤に混和される場合には、結合剤、賦形剤、膨化剤、滑沢剤、甘味剤、香味剤等とともに用いることができる。上記の錠剤は、シェラックまたは砂糖で被覆することもできる。
また、上記のカプセル剤の場合には、上記の材料にさらに液体エキス担体を含有させることができる。上記のシロップ剤及びドリンク剤の場合には、甘味剤、防腐剤、色素香味剤等を添加することができる。
非経口剤としては、軟膏剤、クリーム剤、水剤等の外用剤の他に、注射剤が挙げられる。外用剤の基材としては、ワセリン、パラフィン、油脂類、ラノリン、マクロゴールド等が用いられ、通常の方法によってエキスを導入するための軟膏剤やクリーム剤等とすることができる。
注射剤には、液剤があり、その他、凍結乾燥剤がある。これは使用時、注射用蒸留水や生理食塩液等に無菌的に溶解して用いられる。
食品製剤としてエキス輸送作用を目的とした食品、エキス輸送作用を目的とした健康食品、さらには、皮膚保護のための食品などに利用される。また、保健機能食品として栄養機能食品や特定保健用食品に利用することは好ましい。
得られた食品製剤をイヌやネコなどのペットや家畜動物に利用する場合、有用なエキスやビタミンなどの栄養素の導入を目的として飼料やペット用サプリメントとして利用される。
化粧料として常法に従って界面活性化剤、溶剤、増粘剤、賦形剤等とともに用いることができる。例えば、クリーム、毛髪用ジェル、洗顔剤、美容液、化粧水等の形態とすることができ、エキス輸送作用及びケラチンの産生を呈する化粧料となる。化粧料の形態は任意であり、溶液状、クリーム状、ペースト状、ゲル状、ジェル状、固形状または粉末状として用いることができる。この誘導体は水溶性と油溶性の両方の溶媒に溶解する。この両親媒性の性質はこの誘導体の利用を広げることから好ましい。
また、この誘導体はエキス輸送作用を利用した植物活性化剤としても利用される。この誘導体に結合した有用なエキスを植物細胞内に導入することにより植物の生育を活性化し、開花、結実、収穫量の増加をもたらすことは好ましい。たとえば、この誘導体にHB−101(株式会社フローラ製)の植物活力剤を結合することにより植物の成長を促進する働きが増強され、維持され、安定化されることから好ましい。
以下に、紅麹菌、納豆菌によってオオバギ、コメヌカと大豆を発酵する製造工程からなるこの誘導体の製造について説明する。この製造工程は以下のように紅麹菌、納豆菌によりオオバギ、コメヌカと大豆を発酵させた発酵液に分岐シクロデキストリンを添加してプロテアーゼ処理を行う工程からなる。
原料は紅麹菌、納豆菌、オオバギ、コメヌカ、大豆、分岐シクロデキストリン及びプロテアーゼである。
オオバギは別名を大葉木といい。学名はMacaranga tanariusであり、日本では沖縄県で栽培されている食用植物である。トウダイグサ科の樹木の一種で、丸い大きな葉をつける。成長が早い先駆植物の樹木として知られる。オオバギにはフェニルプロパノイド系化合物が含有されている。オオバギは日本、中国、台湾、アメリカなどいずれの国の由来でも良い。特に、沖縄で低農薬や減農薬で生産されたものは好ましい。たとえば、沖縄県のやまだ農園本舗が栽培したオオバギは品質が良いことから好ましい。オオバギは乾燥され、粉末化されることが好ましく、発酵の前にオートクレーブ滅菌されることは発酵をスムーズに行うることから好ましい。3マイクロメーター以下の粒子サイズの粉末が発酵の工程を実施しやすくすることから好ましい。
原料となるコメヌカは米から得られる外皮と胚芽部分である。日本産のコメヌカはトレーサビリティーが確実であり、生産者が明確である点から好ましい。また、原料となる大豆は国産、アメリカ産などいずれの産地でも良いが遺伝子組み換え体ではないものが好ましい。
このうち、有機栽培や無農薬で栽培されたコメヌカや大豆は有害な農薬や金属を含有しないことから、さらに好ましい。
これらの原料は使用に際して株式会社奈良機械製作所製の自由ミル、スーパー自由ミル、サンプルミル、ゴブリン、スーパークリーンミル、マイクロス、減圧乾燥機として東洋理工製の小型減圧乾燥機、株式会社マツイ製の小型減圧伝熱式乾燥機DPTH−40、エーキューエム九州テクノス株式会社製のクリーンドライVD−7、VD−20、中山技術研究所製DM−6などの粉砕機で乾燥され、粉砕される。これにより発酵の工程が効率的に進行されやすい。
用いる紅麹菌は学名Monascaceaeで、食経験が豊富で有用な食用菌である。沖縄や鹿児島などの日本産、中国や台湾の東南アジア原産の菌種が用いられる。このうち、紅麹本舗製の紅麹菌は高い発酵性を呈することから好ましい。
用いる納豆菌は学名Bacillus subtilisで日本では納豆の製造や食品加工に汎用され、食経験が豊富で有用な食用菌である。沖縄や鹿児島などの日本産、中国や台湾の東南アジア原産の菌種が用いられる。このうち、納豆素本舗製の納豆菌は高い発酵性を呈することから好ましい。
上記の発酵に関するそれぞれの添加量は、オオバギ1重量に対し、コメヌカは0.5〜4重量、大豆は0.4〜4重量、納豆菌は0.002〜0.08重量、紅麹菌は0.001〜0.07重量が好ましい。納豆菌と紅麹菌は発酵される前に、前培養することは、発酵の初発時間を短縮し、発酵時間が短縮されることから好ましい。
上記の発酵は清浄な培養用タンクで実施され、滅菌された水道水により上記の材料を混合することは好ましい。さらに、発酵物は以下の工程により実施され、製造される。
分岐シクロデキストリンは環状ブドウ糖の一つであり、内腔に疎水性部分を有することから疎水性の高い物質を吸着しやすい。塩水港精糖社製の分岐シクロデキストリンは品質が高いことから好ましい。
用いるプロテアーゼとしては天野エンザイム社製の食品加工用プロテアーゼであるプロテアーゼA「アマノ」SD、プロテアーゼM「アマノ」SDまたはプロテアーゼP「アマノ」3SDの品質が安定し、使用実績が豊富なことから好ましい。
まず、オオバギとコメヌカと大豆は紅麹菌により発酵される。この紅麹菌による発酵によりフラボノイドとイソプレノイドがねじれ、結合して環状化が生じる。この発酵の工程は静置法または撹拌法のいずれでも良いが、発酵を短時間で実施できる点から撹拌法が好ましい。発酵は40〜44℃で24時間から72時間行われることが好ましい。
温度が低く、時間が短い場合には発酵が進まず、温度が高く、時間が長い場合には産生された環状イソプレノイド誘導体が分解されてしまうおそれがある。
この発酵液は濾過布などにより濾過されて次の納豆菌による発酵が行われる。発酵は38〜44℃で24時間から96時間行われることが好ましい。温度が低く、時間が短い場合には発酵が進まず、温度が高く、時間が長い場合には目的とする環状イソプレノイド誘導体が分解されてしまうおそれがある。発酵物はろ過されてろ液が以下の工程に供される。
発酵の条件は上記の発酵法に準ずる。納豆菌の発酵によりタンパク質が分解されて低分子化される。
このろ液に分岐シクロデキストリンが添加される。これはイソプレノイドの吸着を行い、目的とする環状イソプレノイドが安定に維持されることから好ましい。
添加される分岐シクロデキストリンは上記の発酵液100gに対して分岐シクロデキストリンの100gから300gが好ましい。この分岐シクロデキストリンにより目的とする環状イソプレノイド誘導体が内部に包接されて安定に維持される。この分岐シクロデキストリンとの懸濁液は攪拌されることが好ましい。一方、余分なタンパク質や菌体成分は分岐シクロデキストリンに包接されないことから以下のプロテアーゼ処理により分解される。
この懸濁液にプロテアーゼが添加される。添加されるプロテアーゼは上記の発酵液100gに対して0.001gから0.8gが好ましい。このプロテアーゼは精製水に懸濁して添加されることは反応が進むことから好ましい。
この懸濁液は反応を促進するために加温され、攪拌されることは好ましい。加温としては38〜45℃が好ましい。また、攪拌は1分間当り10〜25回が好ましい。時間は1時間から6時間が好ましい。
このプロテアーゼ反応液は濾過される。濾紙やメンブランフィルターを用いることにより効率良くろ過される。ろ過してろ液を得ることにより反応していない余分な成分や原料を排除できることから好ましい。
得られた反応物は煮沸滅菌され、プロテアーゼを失活させることは好ましい。さらに、得られた反応物は、凍結乾燥することにより粉末化され、用いられる。
上記の反応物から、目的とする環状イソプレノイド誘導体を上記に記載した精製方法により分離し、精製することは純度の高い物質として摂取量を減少させることができる点から好ましい。
環状イソプレノイド誘導体を含む画分を採取して乾燥または真空乾燥により溶媒を除去し、目的とする環状イソプレノイド誘導体を粉末または濃縮液として得ることは溶媒による影響を除外できることから、好ましい。
また、この環状イソプレノイド誘導体を粉末化することは防腐の目的から好ましい。
以下、上記実施形態を実施例及び試験例を用いて具体的に説明する。なお、これらは一例であり、素材、原料や検体の違いに応じて常識の範囲内で条件を変更させることが可能である。
沖縄県のやまだ農園本舗が栽培したオオバギを購入して用いた。葉を水道水で水洗後、天日で乾燥させ、粉砕機(株式会社奈良機械製作所製のスーパー自由ミル)にて粉砕し、オオバギ葉の乾燥粉末粉砕物を1kg得た。
秋田県で無農薬栽培されたコメより得られたコメヌカを農業生産法人シェアふぁーむ秋田五城目より購入して用いた。これをミキサー(クイジナート)に供し、コメヌカ粉砕物1kgを得た。上記のオオバギとコメヌカ粉砕物をオートクレーブに供し、121℃、20分間、滅菌した。
また、千葉県産の大豆をみやもと山農園より購入して用いた。洗浄後、粉砕して約1kgを発酵に利用した。
これらを清浄な発酵タンク(滅菌された発酵用丸形40リットルタンク)に入れ、滅菌された水道水10kgを添加し、攪拌した。
これとは別に、有限会社紅麹本舗より購入した紅麹菌の10gを小型発酵タンクに供し、滅菌した大豆粉末、コメヌカ粉末と前培養させた培養液を用意した。
上記の前培養した紅麹菌の溶液を上記のオオバギ粉末、大豆粉末とコメヌカ粉末を入れた発酵タンクに添加し、攪拌後、40〜42℃の温度範囲で加温し、発酵させた。
発酵過程では、通気によりバブリングと攪拌を行いつつ、発酵液のサンプリングを行った。
発酵の状態は溶解したタンパク質の定量(ビューレット法)によりモニタリングした。
発酵後、得られた発酵液の上清を濾過布により粗濾過してろ液を得た。
このろ液10リットルを清浄なタンクに移して納豆素本舗製の納豆菌10gを添加してさらに、発酵させた。発酵温度は39〜42℃とし、40時間発酵させた。
発酵後、発酵液をろ過してろ液を採取した。このろ液に塩水港精糖社製の分岐シクロデキストリン(イソエリート)50gを添加して十分に攪拌した。
さらに、天野エンザイム製のプロテアーゼM「アマノ」SDの4gを添加し、37℃に加温して攪拌した。
攪拌は攪拌装置を用いて室温で12時間実施した。この反応液を短時間、煮沸滅菌し、酵素を失活させた。得られた反応液を東洋濾紙の濾紙(No.2)により吸引ろ過してろ液を得た。
この溶液を凍結乾燥機(タイテック社製のフリーズトラップVA−140S)により凍結乾燥させて目的とする粉末13.2gを得た。これを検体1とした。
得られた検体1の粉末10gを精製水100mLに懸濁して3%エタノールで膨潤させたダイヤイオンHP−20(三菱化学製)500gに供した。3%エタノール1800mLで洗浄後、10%エタノール1000mLでさらに洗浄した。
これに50%エタノール700mLを添加し、目的とする環状イソプレノイド誘導体を分画した。この精製操作を3回実施して最終精製物とした。得られた最終分画を減圧乾燥器により乾燥して粉末3.9gを得た。これを検体2とした。
以下に、環状イソプレノイド誘導体の構造解析に関する試験方法及び結果について説明する。
(試験例1)
上記のように得られた検体2を精製水に溶解し、濾過後、高速液体クロマトグラフィ(HPLC、島津製作所)で分析した。
さらに、重水素化クロロホルム中、400MHzの核磁気共鳴装置(NMR、ブルカー製)で解析した。構造解析の結果、検体2及び検体1から環状イソプレノイド、つまり、ジヒドロキシフェニル基を有するフラボノイド、2分子のイソプレニル基及びメチルヒドロキシフェニルが結合した目的とする誘導体が検出された。
その結合はいずれも天然に存在する結合形式であった。
400MHzのH−NHR分析結果では、2.51、2.61、2.81、2.93、3.74、3.83、3.87、4.01、4.15、4.62、4.83、6.05、6.17、6.48及び6.59ppmにピークが認められた。
さらに、C−NMR分析結果では、17.8、28.4、28.5、61.2、61.3、68.6、69.3、83.1、84.7、97.0、98.3、102.4、102.9、107.5、108.3、108.7、109.1、136.3、137.6、137.9、138.1、152.8、153.1、153.9、155.9、156.1、156.3、156.4及び157.2ppmにピークが認められた。
以下に、C−NMRの解析結果のチャートを示した。(横軸単位はppm、縦軸単位はピーク強度を示す。)
上記の分析値は有機化学合成された環状イソプレノイド誘導体のピークと同一であり、目的とする環状イソプレノイド誘導体として同定された。検体2に含まれるこの誘導体は98.0%、つまり、純度98.0%であり、一方、検体1の純度は77.1%であった。
また、得られた誘導体の粉末0.1gを精製水10mLに溶解した場合、水素ガスの発生が認められた。ガスクロマトグラフィー(島津製作所製、PDD高感度分析システム)で定量した結果、1.6ppmの水素ガス濃度を検出した。
以下に、ビタミンE結合環状イソプレノイド誘導体の結合性及び安定性に関する確認試験について述べる。
(試験例2)
ビタミンEと上記の検体2を結合させた場合とリン脂質によりリポソーム化したビタミンEを製造し、ビタミンEの結合性及び安定性について試験した。なお、この結合性及び安定性に関する試験方法は分析法の常法であり、試験例が豊富である。
まず、検体2の粉末0.1mgを精製水10mLに懸濁した。ここにビタミンE(トコフェロール、和光純薬製)0.1mgを添加して撹拌しながら1時間31℃〜33℃に加温した。これを濾紙(アドバンテック東洋ろ紙製、No.2)により濾過して濾液を採取した。このろ液をゲル濾過(GEヘルスケア・ジャパン製)カラムに供して分子量1000〜1500の分画を採取した。ここには、ビタミンEを結合した環状イソプレノイド誘導体が採取される分画である。
これとは別に常法によりリン脂質によりビタミンE含有リポソームを製造した。つまり、日油株式会社製のPEG化リン脂質(SUNBRIGHT DSPE−020CN)を用いて加温下、ビタミンEをリポソーム化した。これを対照とした。
検体2を用いたビタミンE結合環状イソプレノイド誘導体とリポソーム化ビタミンEの安定性を検討した。つまり、1%w/vの水溶液状態にして100℃に6時間加温した後、両者に含有されるビタミンE量をHPLC(島津製作所製)により定量した。測定条件はShimpackSCRを用い、移動相として0.1%酢酸含有30%アセトニトリルを用いてカラム温度40℃で354nmの波長で測定した。標準物質として上記のビタミンEを用いた。
その結果、検体2の結合環状イソプレノイド誘導体に結合したビタミンE量は144μgであった。一方、リポソーム化ビタミンEのビタミンE含量は28μgであった。この結果、検体2の方が5倍以上、安定性に優れ、より多くのビタミンEを含有すると結論された。
以下に、アスタキサンチン結合環状イソプレノイド誘導体の結合性及び安定性に関する確認試験について述べる。
(試験例3)
精製されたアスタキサンチンを武田紙器株式会社より購入して用いた。アスタキサンチンと上記の検体2を結合させた場合とリン脂質によりリポソーム化したアスタキサンチンを製造し、アスタキサンチンの結合性及び安定性について試験した。なお、この結合性及び安定性に関する試験方法は常法であり、試験例が豊富である。
まず、検体2の粉末0.1mgを精製水10mLに懸濁した。ここに上記のアスタキサンチン10mLを添加して撹拌しながら1時間で38℃〜40℃に加温した。これを濾紙(アドバンテック東洋ろ紙製、No.2)により濾過して濾液を採取した。このろ液をゲル濾過(GEヘルスケア・ジャパン製)カラムに供して分子量1500〜2000の分画を採取した。ここには、アスタキサンチンを結合した環状イソプレノイド誘導体が採取される分画である。
これとは別に常法によりリン脂質によりアスタキサンチン含有リポソームを製造した。つまり、日油株式会社製のPEG化リン脂質(SUNBRIGHT DSPE−020CN)を用いて加温下、アスタキサンチンをリポソーム化した。これを対照とした。
検体2を用いたアスタキサンチン結合環状イソプレノイド誘導体とリポソーム化アスタキサンチンの安定性を比較した。つまり、これらの試験溶液を98℃に6時間加温した後、両者に含有されるアスタキサンチン量をHPLC(島津製作所製)により定量した。測定条件にはShimpackXR−ODS(粒子径2.2μm)カラムを用いた。移動相として0.1%SDS含有20%アセトニトリル(関東化学製)を用いて470nmの波長で測定した。
その結果、検体2のアスタキサンチン結合環状イソプレノイド誘導体のアスタキサンチン量は380μgであった。一方、リポソーム化アスタキサンチンのアスタキサンチン量は29μgであった。この結果、検体2の方が13倍以上、安定性に優れ、より多くのアスタキサンチンを安定的に結合して含有すると結論された。
以下に、ヒト由来皮膚細胞を用いたケラチン産生の確認試験について述べる。
(試験例4)
コスモ・バイオ株式会社より購入したヒト皮膚由来の初代表皮培養細胞を用いた。細胞を専用の培養液に懸濁し、前培養して細胞を増殖させた。37℃、5%炭酸ガス下、炭酸ガス培養器内で培養した。その後、増殖期にある細胞をトリプシン含有培地にて剥離して実験に供した。生細胞数をトリパンブルー色素排除法により顕微鏡下で計数した。細胞数を1mLあたり1000個に調整して5mLずつ培養シャーレに播種してさらに、37℃、5%炭酸ガス下で培養した。これを紫外線照射装置(ロックタイト、出力88MH)により紫外線を照射して細胞にダメージを与えた。照射はシャーレの蓋を外して1時間実施した。
この紫外線照射により皮膚細胞が障害を受け、この障害に対する回復を試験した。なお、この方法は皮膚に対する試験物質の評価に実施される方法である。
ここに試験物質として上記のアスタキサンチン結合環状イソプレノイド誘導体、対照としてリポソーム化アスタキサンチンを用いた。いずれも生理食塩液に懸濁し、希釈して最終濃度で1mg/mLになるように添加した。なお、溶媒対照として生理食塩液を用いた。これを37℃で3日間培養して生細胞数を顕微鏡下で計数した。さらに、細胞を精製水に分散して超音波破砕機により細胞分散液を得た。この細胞分散液中に含まれるケラチン量をELISA法(コスモ・バイオ株式会社)により定量した。
その結果、溶媒対照の細胞数を100%として検体2の添加による比率を求めた結果、アスタキサンチン結合環状イソプレノイド誘導体の添加により233%に増加した。一方、リポソーム化アスタキサンチンの添加により155%に増加した。ケラチン量については溶媒対照の値を100%としてアスタキサンチン結合環状イソプレノイド誘導体の添加により477%に増加した。一方、リポソーム化アスタキサンチンの添加により188%に増加した。また、この誘導体はヒト由来皮膚細胞に対して障害を与えず、細胞数を回復させたという結果から、安全性は高いと考えられた。
以下に、ヒト由来マスト細胞(肥満細胞)を用いたヒスタミン抑制及び吸着性の確認試験について述べる。
(試験例5)
スギ花粉アレルギーのあるヒト(男性5名及び女性5名、年齢28歳〜60歳)より採取した白血球よりマスト細胞を採取し、培養液に培養して96孔マイクロプレートに播種した。これを培養し、アレルゲンとなるスギ花粉(コスモ・バイオ株式会社)を0.1mg添加した。同時に、試験物質として検体2及び対照物質として塩酸ジフェンヒドラミンをいずれも生理食塩液に懸濁し、希釈して最終濃度で1mg/mLになるように添加した。なお、溶媒対照として生理食塩液を用いた。これを37℃で1日間培養して培養上清に遊離されたヒスタミン量をELISA法(高感度ヒスタミンELISAキット、コスモ・バイオ株式会社)により定量した。
その結果、ヒスタミン量は溶媒対照の値を100%として検体2の添加により33%に減少した。一方、塩酸ジフェンヒドラミンでは51%となり、検体2の方がヒスタミン抑制作用に優れていた。
また、検体2に結合されたヒスタミン量をELISA法により定量した結果、上記の検体2には94μgのヒスタミンが結合していた。すなわち、この検体2にはヒスタミンを吸着して生体に反応させないという作用が期待される。この結果から、検体2はヒスタミン遊離を抑制し、かつ、ヒスタミンを吸着して抗アレルギー作用を発揮する。
本発明で得られる環状イソプレノイド誘導体はエキス輸送作用を呈し、かつ、副作用が少ないことからアレルギー治療や予防に利用され、国民のQOLを改善できる。
本発明で得られる環状イソプレノイド誘導体は化粧料としても皮膚改善に利用され、化粧品業界の発展に寄与する。

Claims (1)

  1. 下記の式(1)に示されるエキス輸送作用を呈する環状イソプレノイド誘導体。
JP2017189453A 2017-09-29 2017-09-29 エキス輸送作用を呈する環状イソプレノイド誘導体 Pending JP2019064938A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017189453A JP2019064938A (ja) 2017-09-29 2017-09-29 エキス輸送作用を呈する環状イソプレノイド誘導体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017189453A JP2019064938A (ja) 2017-09-29 2017-09-29 エキス輸送作用を呈する環状イソプレノイド誘導体

Publications (1)

Publication Number Publication Date
JP2019064938A true JP2019064938A (ja) 2019-04-25

Family

ID=66339033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017189453A Pending JP2019064938A (ja) 2017-09-29 2017-09-29 エキス輸送作用を呈する環状イソプレノイド誘導体

Country Status (1)

Country Link
JP (1) JP2019064938A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852912A (ja) * 1971-11-08 1973-07-25
JP2017088522A (ja) * 2015-11-06 2017-05-25 二村 芳弘 遺伝子修復の活性化作用を呈するヘスペレチン誘導体及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4852912A (ja) * 1971-11-08 1973-07-25
JP2017088522A (ja) * 2015-11-06 2017-05-25 二村 芳弘 遺伝子修復の活性化作用を呈するヘスペレチン誘導体及びその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FANG, JIA-YOU ET AL.: "Efficacy and irritancy of enhancers on the in-vitro and in-vivo percutaneous absorption of curcumin", JOURNAL OF PHARMACY AND PHARMACOLOGY, vol. (2003), 55(5), 593-601, JPN6021025552, 2003, ISSN: 0004544783 *
GHAFOURIAN, TARAVAT ET AL.: "The effect of penetration enhancers on drug delivery through skin: a QSAR study", JOURNAL OF CONTROLLED RELEASE, vol. (2004), 99(1), 113-125, JPN6021025553, 2004, ISSN: 0004544782 *
R. J. FESSENDEN AND J. S. FESSENDEN: "Carbon-13 Nmr Spectroscopy, SECTION 8.12, pp 357-360", FESSENDEN & FESSENDEN ORGANIC CHEMISTRY, vol. THIRD EDITION, JPN6021025550, 1986, ISSN: 0004544785 *
SAIJA, ANTONELLA ET AL.: "Influence of different penetration enhancers on in vitro skin permeation and in vivo photoprotective", INTERNATIONAL JOURNAL OF PHARMACEUTICS, vol. (1998), 175(1), 85-94, JPN6021025551, 1998, ISSN: 0004544784 *

Similar Documents

Publication Publication Date Title
JP5399468B2 (ja) 脂肪分解活性を呈する組成物
JP6974661B2 (ja) 水溶性エキス輸送作用を呈する環状ペプチド誘導体
JP6369751B2 (ja) ケラチン産生作用を呈するクルクミン誘導体及びその製造方法
JP6388201B2 (ja) サイトケラチン増加作用を呈するカロチノイド誘導体
JP6273551B2 (ja) アミロイド形成阻害作用を呈するネルボン酸誘導体
JP2009084169A (ja) コラーゲン産生作用を呈するキサントン誘導体及びその製造方法
JP2009161484A (ja) 抗酸化作用を呈するベンゾピランペプチド誘導体及びその製造方法
JP6369752B2 (ja) ケラチン増加作用を呈するポリフェノール誘導体及びその製造方法
JP2019064938A (ja) エキス輸送作用を呈する環状イソプレノイド誘導体
JP2016088858A (ja) 水素を発生しケラチン産生作用を呈するレスベラトロール誘導体及びその製造方法
JP2017088522A (ja) 遺伝子修復の活性化作用を呈するヘスペレチン誘導体及びその製造方法
JP6751838B2 (ja) ランゲルハンス細胞活性化作用を呈するノイラミン酸誘導体及びその製造方法
JP6490997B2 (ja) Atp増加作用を呈するジェウェノールa誘導体及びその製造方法
JP6859559B2 (ja) 抗アレルギー作用を呈するフェニルペプチド誘導体
JP7079920B2 (ja) 血管内皮細胞増殖作用を呈するヒドロキシピラン誘導体及びヒト口腔細胞の培養工程からなるその製造方法
JP5399467B2 (ja) 皮膚上皮細胞増殖促進作用を呈する組成物
JP6802537B1 (ja) ヘミデスモゾーム活性化作用を呈するドーパキノン誘導体及びその製造方法
JP5621330B2 (ja) セラミド生成作用を呈するテルペンペプチド結合体の製造方法
JP2018070558A (ja) 遺伝子修復作用を呈するグリセロール誘導体
JP6606635B2 (ja) サイトケラチン増加作用を呈するカロチノイド誘導体
JP6738524B2 (ja) 酸化的リン酸化の活性化作用を呈するロイコシアニジン誘導体
JP2017052731A (ja) 皮膚幹細胞の活性化作用を呈するフラボノイド誘導体
JP6436338B2 (ja) メラニン分解作用を呈するペラルゴニジン誘導体
JP5403638B2 (ja) コラーゲン産生作用を呈する組成物
JP6010073B2 (ja) 水素ガスを産生し、ケラチン産生作用を呈するレスベラトロール誘導体及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220118