JP2019041434A - コンバータ - Google Patents

コンバータ Download PDF

Info

Publication number
JP2019041434A
JP2019041434A JP2017159268A JP2017159268A JP2019041434A JP 2019041434 A JP2019041434 A JP 2019041434A JP 2017159268 A JP2017159268 A JP 2017159268A JP 2017159268 A JP2017159268 A JP 2017159268A JP 2019041434 A JP2019041434 A JP 2019041434A
Authority
JP
Japan
Prior art keywords
switching
winding
switching element
bridge circuit
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017159268A
Other languages
English (en)
Other versions
JP6902962B2 (ja
Inventor
正雄 渡邉
Masao Watanabe
正雄 渡邉
将吾 中原
Shogo Nakahara
将吾 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2017159268A priority Critical patent/JP6902962B2/ja
Priority to US16/638,396 priority patent/US10998810B2/en
Priority to CN201880054681.6A priority patent/CN110999060B/zh
Priority to PCT/JP2018/030907 priority patent/WO2019039488A1/ja
Publication of JP2019041434A publication Critical patent/JP2019041434A/ja
Application granted granted Critical
Publication of JP6902962B2 publication Critical patent/JP6902962B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】ZVSに必要な電流を確保して、ZVS動作を行い、スイッチング損失を低減するコンバータを提供する。
【解決手段】DC−DCコンバータは、第1フルブリッジ回路と、第2フルブリッジ回路とが、トランスおよびインダクタを介して接続された構成である。制御回路は、スイッチング素子のデッドタイムに流れるインダクタ電流Iが閾値電流Iref以上となるように、スイッチング素子のスイッチング周波数f(角周波数ω)を変更し、出力電力を目標電力に追従させる。
【選択図】図9

Description

本発明は、ソフトスイッチングを行うコンバータに関する。
DC−DCコンバータなどの電力変換装置では、スイッチング損失を低減して、高効率で電力伝送を行うため、また、ノイズを低減して、スイッチングサージを抑えて、耐圧の低い安価な素子を用いるために、ゼロボルトスイッチング(以下、ZVSと言う)が用いられている。特許文献1には、1次側直流電圧と2次側直流電圧の電圧差が大きい場合に、ZVS動作を成立させて、高効率な電力伝送を可能としたDC−DCコンバータが開示されている。特許文献1に記載のDC−DCコンバータでは、1次側および2次側それぞれで電力を検出し、それら2つの電力差が最小となるように、1次側スイッチのデューティと2次側スイッチのデューティとを増減させている。これにより、ZVS動作が成立するようにしている。
特開2016−012970号公報
特許文献1では、1次側スイッチおよび2次側スイッチそれぞれを、デューティ制御している。この場合、オンデューティが短いと、ZVSをするために十分な電流を流すことができないことがある。その結果、スイッチング損失が増大し、電力伝送効率が低下するおそれがある。
そこで、本発明は、ZVSに必要な電流を確保して、ZVS動作を行い、スイッチング損失を低減するコンバータを提供することを目的とする。
上記課題を解決するため、本願の第1発明のコンバータは、寄生容量であるキャパシタ、または、並列接続された外付けの4つのキャパシタを含む第1フルブリッジ回路と、寄生容量であるキャパシタ、または、並列接続された外付けの4つのキャパシタを含む第2フルブリッジ回路と、前記第1フルブリッジ回路に接続された第1巻線と、前記第1巻線と磁界結合し、前記第2フルブリッジ回路に接続された第2巻線とを有するトランスと、前記第1巻線または前記第2巻線に直列接続されたインダクタンス成分と、前記第1フルブリッジ回路および前記第2フルブリッジ回路それぞれをソフトスイッチング制御して、指令値に応じて出力電力を調整させる制御回路と、を備え、前記制御回路は、スイッチング素子のターンオンとターンオフとの切り替えタイミングで、前記トランスおよび前記インダクタンス成分の等価インダクタに流れるインダクタ電流が、閾値電流以上となるように、前記第1巻線側の電圧、および、前記第2巻線側の電圧の駆動角周波数を変更する。
本願の第2発明は、第1発明のコンバータであって、前記制御回路は、前記指令値に応じて目標電力を設定し、前記目標電力に出力電力を追従させる追従過程において、前記目標電力に基づいて駆動角周波数を変更する。
本願の第3発明は、第1発明または第2発明のコンバータであって、前記第1フルブリッジ回路は、第1スイッチング素子および第2スイッチング素子が直列接続された第1レグと、第3スイッチング素子および第4スイッチング素子が直列接続された第2レグとを有し、前記第2フルブリッジ回路は、第5スイッチング素子および第6スイッチング素子が直列接続された第3レグと、第7スイッチング素子および第8スイッチング素子が直列接続された第4レグとを有し、前記制御回路は、前記第1〜前記第8スイッチング素子のスイッチング周波数および駆動角周波数の少なくともいずれか一方を変更する。
本願の第4発明は、第1発明から第3発明までのコンバータであって、前記第1フルブリッジ回路に第1直流電源が接続され、前記第2フルブリッジ回路に第2直流電源が接続され、前記目標値をP、前記駆動角周波数をω、前記第1直流電源の電源電圧をVx、前記第2直流電源の電源電圧をVy、前記等価インダクタのインダクタンスをL、前記第1巻線側の電圧と、前記第2巻線側の電圧との位相差に相当する時間差をtd、前記トランスの巻線比をnで表した場合、ω=π/td(1−(P・L)/(n・Vx・Vy・td))を満たす。
本願の第1発明〜第4発明によれば、駆動角周波数を調整することで、インダクタ電流が適正に確保され、各スイッチング素子のZVSを実現できる。
実施形態に係るDC−DCコンバータの回路図である。 各スイッチング素子のオンオフのタイミングチャートである。 DC−DCコンバータでの電流経路を説明するための図である。 DC−DCコンバータでの電流経路を説明するための図である。 DC−DCコンバータでの電流経路を説明するための図である。 V1(t1)≠V2(t2)の場合のインダクタ電流の波形を示す図である。 第1制御と第2制御とを説明するための図である。 第1制御での電圧およびインダクタ電流の波形を示す図である。 第2制御での電圧およびインダクタ電流の波形を示す図である。
以下、本発明の実施形態について、図面を参照しつつ説明する。以下では、本発明の「コンバータ」について、DC−DCコンバータを例に挙げて説明する。
<1.DC−DCコンバータの回路構成>
図1は、本実施形態に係るDC−DCコンバータ1の回路図である。
以下、本発明の実施形態について、図面を参照しつつ説明する。以下では、本発明の「コンバータ」について、DC−DCコンバータを例に挙げて説明する。
<1.DC−DCコンバータの回路構成>
図1は、本実施形態に係るDC−DCコンバータ1の回路図である。
DC−DCコンバータ1は、一対の入出力端子IO11および入出力端子IO12と、一対の入出力端子IO21および入出力端子IO22と、を備える。入出力端子IO11、IO12には、直流電源E1が接続されている。入出力端子IO21、IO22には、直流電源E2が接続されている。DC−DCコンバータ1は、入出力端子IO11、IO12から入力される、直流電源E1の電源電圧を変圧し、入出力端子IO21、IO22から出力する。また、DC−DCコンバータ1は、入出力端子IO21、IO22から入力される、直流電源E2の電源電圧を変圧し、入出力端子IO11、IO12から出力する。つまり、DC−DCコンバータ1は、双方向に電力伝送が可能なコンバータである。
DC−DCコンバータ1は、第1フルブリッジ回路10と、第2フルブリッジ回路20と、トランスTと、を備えている。
トランスTは、第1巻線n1と、第2巻線n2とを備えている。第1巻線n1と第2巻線n2とは磁気結合する。第1巻線n1は、第1フルブリッジ回路10を介して、入出力端子IO11、IO12に接続されている。第2巻線n2は、第2フルブリッジ回路20を介して、入出力端子IO21、IO22に接続されている。
第1フルブリッジ回路10は、スイッチング素子Q11と、スイッチング素子Q12とが直列接続された第1レグと、スイッチング素子Q13と、スイッチング素子Q14とが直列接続された第2レグと、を有している。スイッチング素子Q11、Q12、Q13、Q14は、本発明の「第1、第2、第3、第4スイッチング素子」の一例である。
トランスTの第1巻線n1は、第1レグおよび第2レグそれぞれの中点に接続されている。トランスTの第1巻線n1と、第1レグの中点との間には、インダクタL1が設けられている。ただし、インダクタL1は、第1巻線n1または第2巻線n2に直列接続されていればよく、その配置場所は適宜変更可能である。例えば、インダクタL1は、第1巻線n1と第2レグの中点との間に設けられていてもよい。また、インダクタL1は、実素子、トランスTの漏れインダクタンス、または、実素子と漏れインダクタンスとの組み合わせであってもよい。
スイッチング素子Q11、Q12、Q13、Q14には、ダイオードD11、D12、D13、D14、および、キャパシタC11、C12、C13、C14が並列に接続されている。スイッチング素子Q11〜Q14は、MOS−FETである。ただし、スイッチング素子Q11〜Q14は、IGBTまたはJFET等であってもよい。ダイオードD11〜D14は、実素子であってもよいし、寄生ダイオードであってもよい。また、キャパシタC11〜C14は、実素子、寄生容量、または、寄生容量と実素子との組み合わせであってもよい。
第2フルブリッジ回路20は、スイッチング素子Q21と、スイッチング素子Q22とが直列接続された第3レグと、スイッチング素子Q23と、スイッチング素子Q24とが直列接続された第4レグと、を有している。スイッチング素子Q21、Q22、Q23、Q24は、本発明の「第5、第6、第7、第8スイッチング素子」の一例である。
トランスTの第2巻線n2は、第3レグおよび第4レグそれぞれの中点に接続されている。前記のインダクタL1は、第2巻線n2と、第3レグまたは第4レグの中点との間に設けられていてもよい。
スイッチング素子Q21、Q22、Q23、Q24には、ダイオードD21、D22、D23、D24、および、キャパシタC21、C22、C23、C24が並列に接続されている。スイッチング素子Q21〜Q24は、MOS−FETである。ただし、スイッチング素子Q21〜Q24は、IGBTまたはJFET等であってもよい。ダイオードD21〜D24は、実素子であってもよいし、寄生ダイオードであってもよい。また、キャパシタC21〜C24は、実素子、寄生容量、または、寄生容量と実素子との組み合わせであってもよい。
スイッチング素子Q11〜Q14およびスイッチング素子Q21〜Q24それぞれのゲート端子は、制御回路30に接続されている。制御回路30は、DC−DCコンバータ1の出力電力が、設定される目標電力となるように、スイッチング素子Q11〜Q14、Q21〜Q24それぞれをスイッチング制御する。本実施形態では、制御回路30は、スイッチング損失を低減するために、スイッチング素子Q11〜Q14、Q21〜Q24それぞれをソフトスイッチングする。
<2.ソフトスイッチング動作について>
以下に、各スイッチング素子Q11〜Q14、Q21〜Q24のソフトスイッチング動作について説明する。
DC−DCコンバータ1は、入出力端子IO11、IO12および入出力端子IO21、IO22の一方から他方、または、他方から一方への電力伝送を行う。以下では、入出力端子IO11、IO12を入力側とし、入出力端子IO21、IO22を出力側として説明する。
図2は、各スイッチング素子Q11〜Q14、および、スイッチング素子Q21〜Q24のオンオフのタイミングチャートである。図3、図4および図5は、DC−DCコンバータ1での電流経路を説明するための図である。図3〜図5では、図1のインダクタL1およびトランスTを等価的なインダクタLで表している。このインダクタLは、本発明の「インダクタンス成分」の一例である。また、各図では、各スイッチング素子は簡略化した回路記号で示している。
図2において、V1は、図1に示す、スイッチング素子Q11とスイッチング素子Q12との中点と、スイッチング素子Q13とスイッチング素子Q14との中点との電位差である。V2は、スイッチング素子Q21とスイッチング素子Q22との中点と、スイッチング素子Q23とスイッチング素子Q24との中点との電位差である。Iは、インダクタLに流れる電流である。図2では、直流電源E1、E2それぞれが同じ電源電圧であるとする。つまり、V1(t1)=V2(t2)である。また、図2において、スイッチング素子Q11〜Q14、Q21〜Q24について、実線波形はソース・ドレイン間電圧の波形であり、破線波形は、ドレイン電流の波形を示す。
制御回路30は、第1フルブリッジ回路10において、スイッチング素子Q11、Q14と、スイッチング素子Q12、Q13とを、スイッチング周波数f(周期1/f)で、デッドタイム(第2デッドタイム)を設けて交互にオンオフする。また、制御回路30は、第2フルブリッジ回路20において、スイッチング素子Q21、Q24と、スイッチング素子Q22、Q23とを、スイッチング周波数fで、デッドタイム(第2デッドタイム)を設けて交互にオンオフする。
さらに、制御回路30は、第1フルブリッジ回路10と、第2フルブリッジ回路20とのスイッチングタイミングに、位相差δを持たせている。つまり、図2に示すように、スイッチング素子Q11、Q14と、スイッチング素子Q21、Q24との位相差、および、スイッチング素子Q12、Q13と、スイッチング素子Q22、Q23との位相差は、それぞれδである。その結果、電圧V1と、電圧V2との位相差も、δである。
(t0〜t1)
t0〜t1期間では、スイッチング素子Q11、Q14、および、スイッチング素子Q22、Q23が共にオン、スイッチング素子Q12、Q13、および、スイッチング素子Q21、Q24が共にオフである。この場合、図3(A)に示すように、直流電源E1から、スイッチング素子Q11、インダクタL、スイッチング素子Q22、直流電源E2、スイッチング素子Q23、スイッチング素子Q14の順に電流が流れる。インダクタLには、直流電源E1、E2の電源電圧が印加される。つまり、図2に示すように、インダクタ電流Iは増加する。
タイミングt1では、スイッチング素子Q22、Q23がターンオフされ、スイッチング素子Q21、Q24がターンオンされる。このとき、デッドタイムが設けられているため、デッドタイムでは、スイッチング素子Q21〜Q24すべてがオフとなる。このとき、インダクタLには、その性質上、インダクタ電流Iが流れ続ける。このため、図3(B)に示すように、インダクタLからキャパシタC21、キャパシタC23、スイッチング素子Q14を通る経路と、インダクタLからキャパシタC22、キャパシタC24、スイッチング素子Q14を通る経路とに、電流が流れる。
これにより、キャパシタC22、C23は充電される。また、キャパシタC21、C24は放電される。ここで、キャパシタC21〜C24の充放電が完了する時間は、インダクタ電流Iと、キャパシタC21〜C24の容量とで決まる。そして、キャパシタC22、C23の充電時間が、スイッチング素子Q22、Q23のターンオフ時間よりも長いと、スイッチング素子Q22、Q23のターンオフは、ソフトスイッチングとなる。
キャパシタC21、C24の放電が完了すると、ダイオードD21、D24がオンとなる。つまり、スイッチング素子Q21、Q24のドレイン・ソース間電圧はゼロである。このときに、スイッチング素子Q21、Q24をターンオンすると、ZVSとなる。
(t1〜t2)
t1〜t2期間では、スイッチング素子Q11、Q14、および、スイッチング素子Q21、Q24が共にオン、スイッチング素子Q12、Q13、および、スイッチング素子Q22、Q23が共にオフである。この場合、図4(A)に示すように、直流電源E1から、スイッチング素子Q11、インダクタL、スイッチング素子Q21、直流電源E2、スイッチング素子Q24、スイッチング素子Q14の順に電流が流れる。つまり、直流電源E1は放電し、直流電源E2は充電される。
タイミングt2では、スイッチング素子Q11、Q14がターンオフされ、スイッチング素子Q12、Q13がターンオンされる。このとき、スイッチング素子Q21〜Q24での説明と同様に、デッドタイムでは、スイッチング素子Q11〜Q14すべてがオフとなる。図4(B)に示すように、インダクタLには、インダクタ電流Iが流れ続けるため、インダクタLから、スイッチング素子Q21、直流電源E2、スイッチング素子Q24、キャパシタC14、キャパシタC12、インダクタLを通る経路と、インダクタLから、スイッチング素子Q21、直流電源E2、スイッチング素子Q24、キャパシタC13、キャパシタC11、インダクタLを通る経路とのそれぞれに、電流が流れる。
これにより、キャパシタC11、C14は充電され、キャパシタC12、C13は放電される。前記のように、キャパシタC11、C14の充電時間が、スイッチング素子Q11、Q14のターンオフ時間よりも長いと、スイッチング素子Q11、Q14のターンオフは、ソフトスイッチングとなる。
キャパシタC12、C13の放電が完了すると、ダイオードD12、D13がオンとなる。つまり、スイッチング素子Q12、Q13のドレイン・ソース間電圧はゼロである。このときに、スイッチング素子Q12、Q13をターンオンすることで、スイッチング素子Q12、Q13のZVSが行える。
(t2〜t3)
t2〜t3期間では、スイッチング素子Q12、Q13、および、スイッチング素子Q21、Q24が共にオン、スイッチング素子Q11、Q14、および、スイッチング素子Q22、Q23が共にオフである。この場合、図5に示すように、直流電源E1から、スイッチング素子Q12、インダクタL、スイッチング素子Q21、直流電源E2、スイッチング素子Q24、スイッチング素子Q13の順に電流が流れる。つまり、直流電源E1、E2はそれぞれ充電される。インダクタLには、直流電源E1、E2の電源電圧が、図3(A)の場合と逆方向に印可され、図2に示すように、インダクタ電流Iは減少する。
(t3〜t0)
t3〜t0期間は、t1〜t2期間の動作と同様に説明できる。タイミングt3では、スイッチング素子Q21、Q24のターンオフ、ZVSとなり、スイッチング素子Q22、Q23のターンオンは、ZVSとなる。また、タイミングt0では、スイッチング素子Q11、Q14のターンオン、ZVSとなり、スイッチング素子Q12、Q13のターンオフは、ZVSとなる。
以上のように、DC−DCコンバータ1において、各スイッチング素子Q11〜Q14、Q21〜Q24それぞれをZVSでターンオフおよびターンオンすることにより、スイッチング損失を低減し、電力伝送効率の低下を抑制できる。
<3.ターンオン時のZVSの条件について>
以下に、ZVSを実現するための条件について詳細に説明する。
<3.1.インダクタ電流Iの条件について>
前記のように、例えば、タイミングt2でのデッドタイムにおいて、インダクタLによって、キャパシタC11〜C14が充放電した後に、切替対象のスイッチング素子Q11〜Q14のドレイン・ソース間電圧がゼロであれば、スイッチング素子Q11〜Q14のターンオン、ターンオフはZVSとなる。つまり、インダクタLのエネルギーは、少なくとも、キャパシタC11〜C14それぞれに蓄積される全エネルギー以上であれば、スイッチング素子Q11〜Q14をZVSできる。
ここで、インダクタLのインダクタンスをL、キャパシタC11〜C14それぞれのキャパシタンスをC、直流電源E1の電源電圧をVx(図1参照)で表す場合、以下の式(1)が成り立つと、上記条件が満たされる。
Figure 2019041434
式(1)は、以下の式(2)に変換される。なお、式(2)のαは補正係数であり、必要に応じて適宜値が設定される。以下では、α=1とする。
Figure 2019041434
式(2)のα・Vx√(4C/L)を閾値電流Irefとする。タイミングt2、t0でのデッドタイムにおいて、|I|≧|Iref|であれば、スイッチング素子Q11〜Q14それぞれのZVSが可能となる。
図2は、Vx=Vyの場合の波形である。このため、V1(t1)=V2(t2)であり、タイミングt1、t2のインダクタ電流Iは等しく、タイミングt3、t0のインダクタ電流Iも等しい。このため、タイミングt0、t2で、|I|≧|Iref|であれば、タイミングt1、t3のデッドタイムでも|I|≧|Iref|が成り立つ。したがって、スイッチング素子Q21〜Q24のZVSも可能となる。
これに対し、Vx≠Vy、つまり、V1(t1)≠V2(t2)の場合、詳しくは、V1(t1)>V2(t2)、または、V1(t1)<V2(t2)の場合、インダクタLには、電圧V1と、電圧V2との電位差が印加される。このため。タイミングt1、t2それぞれのインダクタ電流Iは異なる。また、タイミングt3、t0それぞれのインダクタ電流Iも異なる。
図6は、V1(t1)≠V2(t2)の場合のインダクタ電流Iの波形を示す図である。図6(A)は、V1(t1)>V2(t2)の場合のインダクタ電流Iの波形を示し、図6(B)は、V1(t1)<V2(t2)の場合のインダクタ電流Iの波形を示す。
V1(t1)>V2(t2)の場合、図6(A)に示すように、タイミングt2でのインダクタ電流Iよりも、タイミングt1でのインダクタ電流I(以下、IL(t1)とする)の方が小さい。この場合、|IL(t1)|≧|Iref|を満たすと、スイッチング素子Q11〜Q14、Q21〜Q24のZVSが可能となる。
V1(t1)<V2(t2)の場合、図6(B)に示すように、タイミングt1でのインダクタ電流Iよりも、タイミングt2でのインダクタ電流I(以下、IL(t2)とする)の方が小さい。この場合、|IL(t2)|≧|Iref|を満たすと、スイッチング素子Q11〜Q14、Q21〜Q24のZVSが可能となる。
以上のように、電圧Vx、Vyに関わらず、インダクタLに閾値電流Iref以上のインダクタ電流Iが流れるように適宜設定することで、スイッチング素子Q11〜Q14、Q21〜Q24のZVSが可能となる。
<3.2.第1制御と第2制御とについて>
制御回路30は、DC−DCコンバータ1の出力電力が、設定される指令値に追従するように、スイッチング素子Q11〜Q14をスイッチング制御する。この指令値に応じたスイッチング制御の際、制御回路30は、前記した|I|≧|Iref|の条件を満たすように、第1制御と、第2制御とを、切り替えて実行する。
出力電力を指令値に追従させる途中で得られる電力Pは、以下の式(3)で表される。式(3)のVyは、直流電源E2の電源電圧(図1参照)であり。nは、第1巻線n1と、第2巻線n2との巻線比である。以下、電力Pは目標電力と称する。
Figure 2019041434
式(3)において、ωは駆動角周波数であり、前記のスイッチング周波数fで表すと、ω=2πfである。δは、スイッチング素子Q12、Q13と、スイッチング素子Q22、Q23との位相差、つまり、電圧V1と電圧V2との位相差である。
図7は、第1制御と第2制御とを説明するための図である。図7の横軸は、目標電力Pである。図7のtdは、電圧V1、V2の位相差(図2に示すδ)に相当する時間差[μs]であり、td=δ/ω=L・I/Vxである。
図7に示すように、目標電力Pが電力Pbより大きい場合、制御回路30は、第1制御を実行する。第1制御では、制御回路30は、スイッチング周波数f(駆動角周波数ω)を一定にしつつ、位相差δを変更するフェーズシフト制御を行う。
図8は、第1制御での電圧V1、V2およびインダクタ電流Iの波形を示す図である。図8において、実線は、位相変更前の波形を示し、破線は、位相変更後の波形を示す。位相変更後の位相を、δ1(<δ)で表す。
式(3)からわかるように、目標電力Pを変更させるためには、第1フルブリッジ回路10と第2フルブリッジ回路20との位相差δを変更させる。つまり、目標電力Pを下げる場合には、制御回路30は、第1フルブリッジ回路10と第2フルブリッジ回路20との位相差δを小さくする。目標電力Pを上げる場合には、制御回路30は、第1フルブリッジ回路10と第2フルブリッジ回路20との位相差δを大きくする。また、td=δ/ω=LI/Vxより、位相差δが小さくなると、時間差td、および、インダクタ電流Iも小さくなる。
この場合において、位相差δと共に小さくなるインダクタ電流Iが、閾値電流Irefを下回らないように、電力Pbは設定される。つまり、第1制御では、制御回路30は、インダクタ電流Iが、閾値電流Irefを下回らない範囲で、位相差δを変更する。これにより、スイッチング素子Q11〜Q14、Q21〜Q24のZVSが可能となる。
図7に示すように、目標電力Pが電力Pbより小さい場合、制御回路30は、第2制御を実行する。第2制御では、制御回路30は、時間差tdを一定にしつつ、スイッチング周波数f(駆動角周波数ω)を変更する周波数変換制御を行う。
図9は、第2制御での電圧V1、V2およびインダクタ電流Iの波形を示す図である。図9において、実線は、周波数変更前の波形を示し、破線は、周波数変更後の波形を示す。周波数変更後のスイッチング周波数を、f1(<f)で表す。
ここで、式(3)は、td=δ/ωにより、以下の式(4)に変換できる。
Figure 2019041434
式(4)からわかるように、目標電力Pを変更させるためには、駆動角周波数ω(すなわち、スイッチング周波数f)を変更させる。目標電力Pを電力Pbから小さくするためには、駆動角周波数ωを大きくする。また、td=δ/ω=LI/Vx、および、tdが一定であることから、駆動角周波数ωを大きくすると、位相差δも大きくなる。この場合、インダクタ電流Iは、閾値電流Irefを下回らずに一定である。したがって、第2制御において、スイッチング周波数fを変更しても、|I|≧|Iref|が維持される。このため、スイッチング素子Q11〜Q14のZVSが可能となる。
なお、第2制御では、駆動角周波数ωは、以下の式(5)で設定される。
Figure 2019041434
以上のように、制御回路30は、目標電力Pによって、第1制御または第2制御を実行することで、ZVSが行える領域を拡大できる。特に、スイッチング周波数fを変更する必要がない領域では第1制御を実行することで、スイッチング周波数fを変更することによるインダクタL(トランスT)の発熱、または、磁気飽和を抑制できる。
<4.変形例>
以上、本発明の一実施形態について説明したが、本発明は、上記の実施形態に限定されるものではない。
上記の実施形態では、入出力端子IO11、IO12を入力側とし、入出力端子IO21、IO22を出力側として説明した。しかしながら、DC−DCコンバータ1は双方向に電力伝送可能である。したがって、入出力端子IO11、IO12を出力側とし、入出力端子IO21、IO22を入出力側とすることが可能である。この場合、上記の実施形態と同様に説明することができため、その説明を省略する。なお、DC−DCコンバータ1は、双方向型でなくてもよい。
上記の実施形態では、第2制御において、スイッチング周波数fを変更させているが、別の第3制御を実行するようにしてもよい。第3制御では、Duty制御方式を行う。例えば、スイッチング素子Q11およびスイッチング素子Q12の駆動信号と、スイッチング素子Q13およびスイッチング素子Q14の駆動信号との位相差を変更し、または、スイッチング素子Q21およびスイッチング素子Q22の駆動信号と、スイッチング素子Q23およびスイッチング素子Q24の駆動信号との位相差を変更する。また、第2制御において、時間差tdは一定としているが、変動させてもよい。
また、上記の実施形態では、α・Vx√(4C/L)を閾値電流Irefとしているが、閾値電流Irefの値はこれに限定されず、適宜変更可能である。
また、上記の実施形態または変形例に登場した各要素を、矛盾が生じない範囲で、適宜に組み合わせてもよい。
1 :DC−DCコンバータ
10 :第1フルブリッジ回路
20 :第2フルブリッジ回路
30 :制御回路
C11、C12、C13、C14:キャパシタ
C21、C22、C23、C24:キャパシタ
D11、D12、D13、D14:ダイオード
D21、D22、D23、D24:ダイオード
E1 :直流電源
E2 :直流電源
IO11 :入出力端子
IO12 :入出力端子
IO21 :入出力端子
IO22 :入出力端子
L :インダクタ
L1 :インダクタ
Q11、Q12、Q13、Q14:スイッチング素子
Q21、Q22、Q23、Q24:スイッチング素子
T :トランス
Vx :電源電圧
Vy :電源電圧
V1 :電圧
V2 :電圧
n1 :第1巻線
n2 :第2巻線

Claims (4)

  1. 寄生容量であるキャパシタ、または、並列接続された外付けの4つのキャパシタを含む第1フルブリッジ回路と、
    寄生容量であるキャパシタ、または、並列接続された外付けの4つのキャパシタを含む第2フルブリッジ回路と、
    前記第1フルブリッジ回路に接続された第1巻線と、前記第1巻線と磁界結合し、前記第2フルブリッジ回路に接続された第2巻線とを有するトランスと、
    前記第1巻線または前記第2巻線に直列接続されたインダクタンス成分と、
    前記第1フルブリッジ回路および前記第2フルブリッジ回路それぞれをソフトスイッチング制御して、指令値に応じて出力電力を調整させる制御回路と、
    を備え、
    前記制御回路は、
    スイッチング素子のターンオンとターンオフとの切り替えタイミングで、前記トランスおよび前記インダクタンス成分の等価インダクタに流れるインダクタ電流が、閾値電流以上となるように、前記第1巻線側の電圧、および、前記第2巻線側の電圧の駆動角周波数を変更する、
    コンバータ。
  2. 請求項1に記載のコンバータであって、
    前記制御回路は、
    前記指令値に応じて目標電力を設定し、前記目標電力に出力電力を追従させる追従過程において、前記目標電力に基づいて駆動角周波数を変更する、
    コンバータ。
  3. 請求項1または請求項2に記載のコンバータであって、
    前記第1フルブリッジ回路は、
    第1スイッチング素子および第2スイッチング素子が直列接続された第1レグと、第3スイッチング素子および第4スイッチング素子が直列接続された第2レグとを有し、
    前記第2フルブリッジ回路は、
    第5スイッチング素子および第6スイッチング素子が直列接続された第3レグと、第7スイッチング素子および第8スイッチング素子が直列接続された第4レグとを有し、
    前記制御回路は、
    前記第1〜前記第8スイッチング素子のスイッチング周波数および駆動角周波数の少なくともいずれか一方を変更する、
    コンバータ。
  4. 請求項1から請求項3までのいずれか1つに記載のコンバータであって、
    前記第1フルブリッジ回路に第1直流電源が接続され、
    前記第2フルブリッジ回路に第2直流電源が接続され、
    前記目標値をP、前記駆動角周波数をω、前記第1直流電源の電源電圧をVx、前記第2直流電源の電源電圧をVy、前記等価インダクタのインダクタンスをL、前記第1巻線側の電圧と、前記第2巻線側の電圧との位相差に相当する時間差をtd、前記トランスの巻線比をnで表した場合、
    ω=π/td(1−(P・L)/(n・Vx・Vy・td))
    を満たす、コンバータ。
JP2017159268A 2017-08-22 2017-08-22 コンバータ Active JP6902962B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017159268A JP6902962B2 (ja) 2017-08-22 2017-08-22 コンバータ
US16/638,396 US10998810B2 (en) 2017-08-22 2018-08-22 Converter with soft switching function
CN201880054681.6A CN110999060B (zh) 2017-08-22 2018-08-22 转换器
PCT/JP2018/030907 WO2019039488A1 (ja) 2017-08-22 2018-08-22 コンバータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017159268A JP6902962B2 (ja) 2017-08-22 2017-08-22 コンバータ

Publications (2)

Publication Number Publication Date
JP2019041434A true JP2019041434A (ja) 2019-03-14
JP6902962B2 JP6902962B2 (ja) 2021-07-14

Family

ID=65440046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017159268A Active JP6902962B2 (ja) 2017-08-22 2017-08-22 コンバータ

Country Status (4)

Country Link
US (1) US10998810B2 (ja)
JP (1) JP6902962B2 (ja)
CN (1) CN110999060B (ja)
WO (1) WO2019039488A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902963B2 (ja) * 2017-08-22 2021-07-14 ダイヤモンド電機株式会社 コンバータ
EP4084314A4 (en) * 2020-01-07 2022-12-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. ADAPTER AND CONTROL METHOD
JP7306326B2 (ja) * 2020-05-25 2023-07-11 Tdk株式会社 Dabコンバータ
CN114024437B (zh) * 2022-01-04 2022-04-08 深圳市永联科技股份有限公司 调节桥臂死区的方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110249472A1 (en) * 2010-04-01 2011-10-13 Peregrine Power LLC Pwm control of dual active bridge converters
JP2013027201A (ja) * 2011-07-22 2013-02-04 Ihi Corp 直流電力変換装置
JP2014230369A (ja) * 2013-05-21 2014-12-08 トヨタ自動車株式会社 電力変換装置及び電力変換方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3137155B2 (ja) * 1993-10-28 2001-02-19 サンケン電気株式会社 Dc−dcコンバ−タ
US7796406B2 (en) * 2007-07-31 2010-09-14 Lumenis Ltd. Apparatus and method for high efficiency isolated power converter
DE102011003576A1 (de) * 2011-02-03 2012-08-09 Robert Bosch Gmbh Gegentaktwandler und Modulationsverfahren zum Ansteuern eines Gegentaktwandlers
PL2677652T3 (pl) * 2012-02-23 2017-04-28 Kyosan Electric Mfg. Co., Ltd. Falownik prądu i sposób sterowania falownikiem prądu
CN104143919A (zh) * 2013-05-07 2014-11-12 台达电子工业股份有限公司 双向直流变换器
JP6307368B2 (ja) 2014-06-27 2018-04-04 新電元工業株式会社 Dc/dcコンバータの制御装置及びその制御方法
ES2851675T3 (es) * 2014-07-21 2021-09-08 Huawei Tech Co Ltd Convertidor CC-CC bidireccional
US9614453B2 (en) * 2014-11-20 2017-04-04 Futurewei Technologies, Inc. Parallel hybrid converter apparatus and method
JP6135663B2 (ja) * 2014-12-26 2017-05-31 トヨタ自動車株式会社 電力変換装置及び電力変換方法
US9973099B2 (en) * 2015-08-26 2018-05-15 Futurewei Technologies, Inc. AC/DC converters with wider voltage regulation range
JP6477893B2 (ja) * 2015-08-28 2019-03-06 株式会社村田製作所 Dc−dcコンバータ
JP6586912B2 (ja) * 2015-08-31 2019-10-09 サンケン電気株式会社 双方向dc/dcコンバータ
CN105634286A (zh) * 2016-01-28 2016-06-01 山东鲁能智能技术有限公司 基于双向全桥变换器的软开关宽输出电压范围的控制方法
CN107346941B (zh) * 2016-05-05 2020-09-25 香港生产力促进局 一种负载范围扩展的软开关双向相移变换器
WO2017213029A1 (ja) * 2016-06-06 2017-12-14 株式会社村田製作所 スイッチング電源装置
EP3499700A4 (en) * 2016-08-10 2019-07-31 Mitsubishi Electric Corporation POWER CONVERSION DEVICE
WO2018159437A1 (ja) * 2017-03-01 2018-09-07 株式会社村田製作所 Dc-dcコンバータ
JP6883489B2 (ja) * 2017-08-22 2021-06-09 ダイヤモンド電機株式会社 コンバータ
JP6902963B2 (ja) * 2017-08-22 2021-07-14 ダイヤモンド電機株式会社 コンバータ
US11282625B2 (en) * 2017-10-12 2022-03-22 Mitsubishi Electric Corporation Transformer and power converter
JP6323635B1 (ja) * 2017-11-24 2018-05-16 三菱電機株式会社 並列電源装置
JP6951222B2 (ja) * 2017-12-06 2021-10-20 シャープ株式会社 電力変換装置及び電力変換システム
JP6963487B2 (ja) * 2017-12-14 2021-11-10 シャープ株式会社 Dc/dcコンバータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110249472A1 (en) * 2010-04-01 2011-10-13 Peregrine Power LLC Pwm control of dual active bridge converters
JP2013027201A (ja) * 2011-07-22 2013-02-04 Ihi Corp 直流電力変換装置
JP2014230369A (ja) * 2013-05-21 2014-12-08 トヨタ自動車株式会社 電力変換装置及び電力変換方法

Also Published As

Publication number Publication date
US10998810B2 (en) 2021-05-04
CN110999060A (zh) 2020-04-10
CN110999060B (zh) 2023-06-06
WO2019039488A1 (ja) 2019-02-28
JP6902962B2 (ja) 2021-07-14
US20200366184A1 (en) 2020-11-19

Similar Documents

Publication Publication Date Title
JP6883489B2 (ja) コンバータ
JP6902963B2 (ja) コンバータ
JP7036680B2 (ja) Dc-dcコンバータ
US7535733B2 (en) Method of controlling DC-to-DC converter whereby switching control sequence applied to switching elements suppresses voltage surges at timings of switch-off of switching elements
JP6902962B2 (ja) コンバータ
JP7175137B2 (ja) コンバータ
JP2020005331A5 (ja)
WO2020003717A1 (ja) Dc-dcコンバータ
JP7030254B2 (ja) Dc-dcコンバータ
US11973440B2 (en) Isolated DC/DC converter with secondary-side full bridge diode rectifier and asymmetrical auxiliary capacitor
JP6234651B1 (ja) 電力変換装置
JP2003348834A (ja) 単相昇降圧コンバータ
JP2020022299A (ja) 電源装置
JP2016158378A (ja) スイッチング電源回路およびスイッチング損失抑制方法
JP2014200173A (ja) Dc−dcコンバータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210622

R150 Certificate of patent or registration of utility model

Ref document number: 6902962

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350