WO2018159437A1 - Dc-dcコンバータ - Google Patents

Dc-dcコンバータ Download PDF

Info

Publication number
WO2018159437A1
WO2018159437A1 PCT/JP2018/006393 JP2018006393W WO2018159437A1 WO 2018159437 A1 WO2018159437 A1 WO 2018159437A1 JP 2018006393 W JP2018006393 W JP 2018006393W WO 2018159437 A1 WO2018159437 A1 WO 2018159437A1
Authority
WO
WIPO (PCT)
Prior art keywords
bridge circuit
full bridge
switching element
operation mode
phase
Prior art date
Application number
PCT/JP2018/006393
Other languages
English (en)
French (fr)
Inventor
伊東 淳一
隼 比嘉
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2019502926A priority Critical patent/JP6711449B2/ja
Priority to CN201880014577.4A priority patent/CN110383663B/zh
Publication of WO2018159437A1 publication Critical patent/WO2018159437A1/ja
Priority to US16/554,936 priority patent/US10622907B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/40Means for preventing magnetic saturation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4803Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode with means for reducing DC component from AC output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a DAB (Dual Active Bridge) type DC-DC converter.
  • Patent Document 1 discloses a DAB converter.
  • a full bridge circuit is connected to each of the primary winding and the secondary winding of the transformer, and power transmission is performed by appropriately controlling the switching phase difference between the two full bridge circuits. Do.
  • switching loss is reduced by performing zero voltage switching (ZVS) using the leakage inductance of the transformer and the parasitic capacitance of the semiconductor device.
  • ZVS zero voltage switching
  • the efficiency may be reduced.
  • the reactive current that does not contribute to the transmission power increases and the efficiency may deteriorate.
  • a DC component may be superimposed on the inductor current and the exciting current of the transformer (DC deviation) due to a transient change in power supply.
  • DC deviation occurs when the transmission power changes abruptly or when the operation mode is switched.
  • an object of the present invention is to realize a ZVS operation in a wide range even when the input / output voltage ratio is large and the load fluctuation range is wide, and to generate a DC deviation caused by a transient change in the operating state. It is an object to provide a DC-DC converter that suppresses the increase in size and cost of the apparatus.
  • the DC-DC converter of the present invention is A first leg composed of a first high-side switch and a first low-side switch, and a second leg composed of a second high-side switch and a second low-side switch, wherein the first leg and the second leg A first full bridge circuit in which a first DC voltage is applied to the leg; A third leg composed of a third high-side switch and a third low-side switch, and a fourth leg composed of a fourth high-side switch and a fourth low-side switch, wherein the third leg and the fourth leg A second full bridge circuit in which a second DC voltage is applied to the leg; A primary winding connected to the input / output unit of the first full bridge circuit and a secondary winding connected to the input / output unit of the second full bridge circuit; A transformer that insulates between two full bridge circuits; A control unit for controlling the first full bridge circuit and the second full bridge circuit; Have
  • the first high-side switch includes a first switching element connected to a high-side line and a second switching element connected in series to the first switching element
  • the first low-side switch includes a fourth switching element connected to the low-side line and a third switching element connected in series to the fourth switching element
  • the second high side switch includes a fifth switching element connected to the high side line and a sixth switching element connected in series to the fifth switching element.
  • the second low-side switch includes an eighth switching element connected to the low-side line and a seventh switching element connected in series to the eighth switching element.
  • the first full-bridge circuit is connected between a connection point between the first switching element and the second switching element and a connection point between the fifth switching element and the sixth switching element.
  • a second floating capacitor connected between a floating capacitor, a connection point between the third switching element and the fourth switching element, and a connection point between the seventh switching element and the eighth switching element;
  • At least one of the input / output unit of the first full bridge circuit and the primary winding or the input / output unit of the second full bridge circuit and the secondary winding is connected in series. With an inductor.
  • Each switching element of the first full bridge circuit is set so that the absolute value of the peak value of the voltage of the input / output unit of the first full bridge circuit becomes the first DC voltage over a half cycle of the drive frequency.
  • Full bridge operation mode to control The switching elements of the first full bridge circuit are controlled so that the absolute value of the peak value of the voltage at the input / output unit of the first full bridge circuit is half of the first DC voltage over the half cycle.
  • each switching element of the first full bridge circuit is switched between a state in which a full bridge operation is performed and a state in which a half bridge operation is performed, and a five-level voltage is applied to the first full bridge circuit.
  • the control unit Of the full-bridge operation mode, the half-bridge operation mode, and the five-level operation mode the first high-frequency signal is output at a reference cycle timing of the drive frequency in a cycle in which the operation mode is switched from one operation mode to another operation mode.
  • the switching phase of the side switch and the second low-side switch is shifted, the switching phase of the first low-side switch and the second high-side switch is shifted at a half cycle timing of the reference period of the driving frequency, and the operation mode
  • the phase shift amount is determined so that the output voltage of the first full bridge circuit is balanced between positive and negative.
  • the voltage output from the first full bridge circuit differs depending on whether the voltage input to the first full bridge circuit is applied to the first and second floating capacitors or not. Can be made. That is, by operating the first full-bridge circuit in the full-bridge operation mode or the half-bridge operation mode, even when the input / output voltage ratio is large and the fluctuation range of the load connected to the output unit is wide, By expanding the ZVS range rather than the configuration of the technology, it is possible to suppress an increase in reactive current that does not contribute to transmission and to operate the DC-DC converter efficiently.
  • first leg and the second leg constituting the first full bridge circuit are formed by connecting four switching elements in series, they are applied to each element as compared to the case where two switching elements are connected in series.
  • the applied voltage is low. For this reason, it is not necessary to increase the element breakdown voltage of each switching element.
  • a MOS-FET having a low on-resistance value can be used for each switching element.
  • the controller can output a five-level potential from the first full-bridge circuit by switching between the full-bridge operation mode and the half-bridge operation mode during one cycle of the driving frequency of the first full-bridge circuit, Providing a DC-DC converter that can operate even more efficiently when the ZVS operation is possible even in the light load region, the input / output voltage ratio is large, and the fluctuation range of the load connected to the output section is wide. can do.
  • the apparatus can be reduced in size and cost.
  • the control unit A U-phase carrier and a U-phase inverted carrier that determine a switching phase of the first high-side switch or the first low-side switch, a V-phase carrier and a V-phase inverted that determine a switching phase of the second high-side switch or the second low-side switch. Based on the carrier, the switching phase of each switching element of the first full bridge circuit is determined, the phase of the U-phase carrier and the V-phase inversion carrier is shifted at the reference period timing of the driving frequency, and the driving frequency of It is preferable to shift the phases of the U-phase inverted carrier and the V-phase carrier at a half cycle timing of a reference cycle.
  • the DC deviation at the time of switching the operation mode can be suppressed as compared with the case where the phase difference between the first full bridge circuit and the second full bridge circuit is changed at a time.
  • the U-phase carrier, the U-phase inversion carrier, the V-phase carrier, and the V-phase inversion carrier are reference clock count values, and the control unit is based on a comparison between the count value and the reference value. Controlling the first full bridge circuit and the second full bridge circuit; The phase shift amount is preferably determined by changing the count value.
  • the above configuration can simplify the configuration for controlling the phase shift and setting the phase shift amount.
  • the U-phase carrier, the U-phase inversion carrier, the V-phase carrier, and the V-phase inversion carrier are reference clock count values, and the control unit is based on a comparison between the count value and the reference value. Controlling the first full bridge circuit and the second full bridge circuit; The phase shift amount may be determined by changing the reference value.
  • the above configuration can simplify the configuration for controlling the phase shift and setting the phase shift amount.
  • the ZVS operation range can be expanded by switching the operation mode, and the operation mode can be switched.
  • the DC deviation that sometimes occurs is suppressed, and a compact and low-cost DC-DC converter can be obtained.
  • FIG. 1 is a circuit diagram of a DC-DC converter 1 according to the present embodiment.
  • FIG. 2 shows the relationship between the states of the eight switching elements of the full bridge circuit 10 and the voltages Vu, Vv, and V1, and the relative relationship between the charge / discharge states of the first floating capacitor Cf1 and the second floating capacitor Cf2 for each operation mode.
  • FIG. 3A, 3B, 3C, and 3D are diagrams illustrating paths of currents flowing through the full bridge circuit 10 in the respective states illustrated in FIG. 4A, 4B, 4C, and 4D are diagrams illustrating paths of currents flowing through the full bridge circuit 10 in the respective states illustrated in FIG.
  • FIG. 5A, 5B, 5C, and 5D are diagrams showing paths of current flowing through the full bridge circuit 10 in each state shown in FIG. 6A, 6B, 6C, and 6D are diagrams showing paths of currents flowing through the full bridge circuit 10 in the respective states shown in FIG.
  • FIG. 7 is a diagram showing combinations in which the full bridge operation mode is performed from the 16 states shown in FIG.
  • FIG. 8 is a diagram showing combinations in which the half-bridge operation mode is performed from among the 16 states shown in FIG.
  • FIG. 9 is a diagram showing a part of combinations for performing the five-level operation mode from the 16 states shown in FIG.
  • FIG. 10 is a diagram showing some of the combinations for performing the five-level operation mode from the 16 states shown in FIG. FIG.
  • FIG. 11 is a diagram showing a part of combinations for performing the five-level operation mode from the 16 states shown in FIG.
  • FIG. 12 is a waveform diagram showing the on / off states of switching elements Q1 to Q8 in the full bridge operation mode, the half bridge operation mode, and the 5-level operation mode.
  • FIG. 13 is a waveform diagram of the voltages Vu, Vv, V1 and the current iL flowing through the inductor L1 at each position of the full bridge circuit 10.
  • FIG. 17 is a diagram showing the relationship between the output power Pout of the DC-DC converter 1 and the input / output voltage ratio.
  • FIG. 18A is a waveform diagram of each part when the operation mode is switched from the half-bridge operation mode to the full-bridge operation mode in the DC-DC converter of the present embodiment.
  • FIG. 18A is a waveform diagram of each part when the operation mode is switched from the half-bridge operation mode to the full-bridge operation mode in the DC-DC converter of the present embodiment.
  • FIG. 18B is a waveform diagram of each part when the operation mode is switched from the half-bridge operation mode to the full-bridge operation mode in the DC-DC converter of the comparative example.
  • FIG. 19 is an enlarged view of the main waveform of FIG.
  • FIG. 20A is a waveform diagram of each part when the operation mode is switched from the full-bridge operation mode to the half-bridge operation mode in the DC-DC converter of the present embodiment.
  • FIG. 20B is a waveform diagram of each part when the operation mode is switched from the full-bridge operation mode to the half-bridge operation mode in the DC-DC converter of the comparative example.
  • FIG. 21 is an enlarged view of the main waveform of FIG. FIG.
  • FIG. 22A is a waveform diagram of each part when the operation mode is switched from the full-bridge operation mode to the 5-level operation mode in the DC-DC converter of the present embodiment.
  • FIG. 22B is a waveform diagram of the comparative example.
  • FIG. 23A is a waveform diagram of each part when the operation mode is switched from the 5-level operation mode to the full-bridge operation mode in the DC-DC converter of the present embodiment.
  • FIG. 23B is a waveform diagram of the comparative example.
  • FIG. 24A is a waveform diagram of each part when the operation mode is switched from the half-bridge operation mode to the 5-level operation mode in the DC-DC converter of the present embodiment.
  • FIG. 24B is a waveform diagram of the comparative example.
  • FIG. 25A is a waveform diagram of each part when the operation mode is switched from the 5-level operation mode to the half-bridge operation mode in the DC-DC converter of the present embodiment.
  • FIG. 25B is a waveform diagram of the comparative example.
  • FIG. 26 is a diagram showing the waveforms of the respective parts before and after the phase shift when the transmission power changes in the DC-DC converter of the present embodiment.
  • FIG. 27 is a waveform diagram showing changes and the like of each carrier and a reference value as a comparison target.
  • the DC-DC converter described below is an insulated bidirectional DC-DC converter in which two full bridge circuits are insulated from each other by a transformer and power is transmitted bidirectionally between the two full bridge circuits.
  • FIG. 1 is a circuit diagram of a DC-DC converter 1 according to this embodiment.
  • the DC-DC converter 1 includes input / output terminals IO1, IO2, IO3, and IO4. A load and a DC power source are connected to the input / output terminals IO1, IO2, IO3, and IO4.
  • the DC-DC converter 1 is a bidirectional DC-DC converter that transforms a DC voltage input from one of the input / output terminals IO1 and IO2 or the input / output terminals IO3 and IO4 and outputs it to the other.
  • the input capacitor C1 and the full bridge circuit 10 are connected to the input / output terminals IO1 and IO2.
  • the full bridge circuit 10 includes a first series circuit (first leg) of a first switching element Q1, a second switching element Q2, a third switching element Q3, and a fourth switching element Q4, a fifth switching element Q5, and a sixth switching element.
  • a second series circuit (second leg) of the element Q6, the seventh switching element Q7, and the eighth switching element Q8 is connected in parallel.
  • a first high-side switch is constituted by the first switching element Q1 connected to the high-side line and the second switching element Q2 connected in series to the first switching element Q1.
  • the fourth switching element Q4 connected to the low side line and the third switching element Q3 connected in series to the fourth switching element Q4 constitute a first low side switch.
  • the fifth switching element Q5 connected to the high side line and the sixth switching element Q6 connected in series to the fifth switching element Q5 constitute a second high side switch.
  • the eighth switching element Q8 connected to the low side line and the seventh switching element Q7 connected in series to the eighth switching element Q8 constitute a second low side switch.
  • the first to eighth switching elements Q1 to Q8 are n-type MOS-FETs, and a body diode and a parasitic capacitance are formed. Further, the gates of the first to eighth switching elements Q1 to Q8 are connected to the control unit 31, and the gate voltage is applied from the control unit 31 to perform switching control.
  • the first to eighth switching elements Q1 to Q8 are simply referred to as switching elements Q1 to Q8.
  • a conventional general full bridge circuit is configured by connecting in parallel a series circuit in which two switching elements are connected in series.
  • each of the first series circuit and the second series circuit constituting the full bridge circuit 10 is formed by connecting four switching elements in series, and thus has a structure in which two switching elements are connected in series.
  • the voltage applied to each element is low. For this reason, it is not necessary to increase the element breakdown voltage of each switching element. Since a switching element having a high withstand voltage generally has a large on-resistance value, a MOS-FET having a low on-resistance value can be used for each switching element.
  • the full bridge circuit 10 includes a first floating capacitor Cf1 and a second floating capacitor Cf2.
  • the first floating capacitor Cf1 is connected between a connection point between the first switching element Q1 and the second switching element Q2 and a connection point between the third switching element Q3 and the fourth switching element Q4.
  • the second floating capacitor Cf2 is connected between a connection point between the fifth switching element Q5 and the sixth switching element Q6 and a connection point between the fifth switching element Q5 and the sixth switching element Q6.
  • the full bridge circuit 10 corresponds to a “first full bridge circuit” according to the present invention.
  • the first floating capacitor corresponds to a “first floating capacitor” according to the present invention
  • the second floating capacitor corresponds to a “second floating capacitor” according to the present invention.
  • the input capacitor C2 and the full bridge circuit 20 are connected to the input / output terminals IO3 and IO4.
  • the full bridge circuit 20 includes a series circuit (third leg) of the ninth switching element Q9 and the tenth switching element Q10 connected in series, and a series circuit of the eleventh switching element Q11 and the twelfth switching element Q12 connected in series ( The fourth leg) is connected in parallel.
  • the ninth to twelfth switching elements Q9 to Q12 are n-type MOS-FETs, and a body diode and a parasitic capacitance are formed.
  • the ninth to twelfth switching elements Q9 to Q12 have their gates connected to the control unit 32, and are subjected to switching control when a gate signal is applied from the control unit 32.
  • the full bridge circuit 20 corresponds to a “second full bridge circuit” according to the present invention.
  • an output voltage detection circuit 21 and a load current detection circuit 22 are provided at the input / output terminals IO3 and IO4.
  • a transformer T1 is connected between the full bridge circuit 10 and the full bridge circuit 20.
  • the transformer T1 has a primary winding n1 and a secondary winding n2.
  • the primary winding n1 has one end connected to the connection point U between the second switching element Q2 and the third switching element Q3 via the inductor L1, and the other end connected to the sixth switching element Q6 and the seventh switching element Q7.
  • the secondary winding n2 has one end connected to a connection point W between the ninth switching element Q9 and the tenth switching element Q10, and the other end connected to a connection point X between the eleventh switching element Q11 and the twelfth switching element Q12.
  • the turns ratio of the primary winding n1 and the secondary winding n2 is N: 1.
  • the control unit 31 utilizes the parasitic capacitance of each of the switching elements Q1 to Q8 and the resonance between the inductor (resonant coil) L1 and performs a full bridge circuit with zero voltage switching. 10 is controlled. That is, during the dead time period when the switching element is switched on / off, the current flowing through the inductor L1 is passed through the parasitic capacitance of the switching element, the parasitic capacitance is discharged, and the switching element is turned on with zero voltage. Thereby, switching loss, switching noise, etc. can be reduced.
  • the inductor L1 may be provided on the secondary side of the transformer T1. Zero voltage switching may be performed using the resonance between the leakage inductance of the transformer T1 and the parasitic capacitances of the switching elements Q1 to Q8 without using the inductor L1.
  • the DC voltage Vin is applied to the input / output terminals IO1 and IO2 of the DC-DC converter 1 configured as described above.
  • the control unit 31 performs switching control of the switching elements Q1 to Q8 of the full bridge circuit 10.
  • a voltage V1 of five levels of 0, ⁇ Vin / 2, ⁇ Vin is applied to the primary winding n1 of the transformer T1.
  • the control unit 32 performs switching control of the full bridge circuit 20, and outputs DC voltages Vout of 0, Vin / 2N, and Vin / N from the input / output terminals IO3 and IO4. That is, the full bridge circuit 10 is a five-level circuit that outputs five voltage levels.
  • the full bridge circuit 20 is a three-level circuit that outputs three voltage levels.
  • the DC-DC converter 1 is a bidirectional DC-DC converter, when a DC voltage is input from the input / output terminals IO3 and IO4, the full bridge circuits 10 and 20 are controlled to switch the input / output. A DC voltage is output from the terminals IO1 and IO2.
  • FIG. 2 shows the relationship between the states of the eight switching elements of the full bridge circuit 10 and the voltages Vu, Vv, V1, and the relative relationship between the charge / discharge states of the first floating capacitor Cf1 and the second floating capacitor Cf2 for each operation mode.
  • the voltage Vu is a voltage at the connection point U between the switching elements Q2 and Q3.
  • the voltage Vv is a voltage at the connection point V of the switching elements Q6 and Q7.
  • the voltage V1 is an output voltage from the full bridge circuit 10 applied to the primary winding n1 of the transformer T1, and is a potential difference between the connection point U and the connection point V.
  • 3 (A) (B) (C) (D), FIG. 4 (A) (B) (C) (D), FIG. 5 (A) (B) (C) (D), FIG. 6 (A).
  • (B), (C), and (D) are diagrams showing paths of current flowing through the full bridge circuit 10 in each state shown in FIG.
  • the full bridge circuit 10 operates in any of the full bridge operation mode, the half bridge operation mode, and the 5-level operation mode.
  • V1 0
  • the full bridge circuit 10 operates in any of the full bridge operation mode, the half bridge operation mode, and the 5-level operation mode.
  • FIG. 7 is an example of a combination that satisfies the above-described conditions from the 16 states shown in FIG. That is, the state (7) and the state (8) are alternately repeated.
  • FIG. 8 is an example of a combination that satisfies the above-described conditions from the 16 states shown in FIG. That is, in the half-bridge operation mode, there are 12 combinations as shown in FIG.
  • the voltage V1 changes from 0 ⁇ Vin / 2 ⁇ Vin ⁇ Vin / 2 ⁇ 0 ⁇ ⁇ Vin / 2 ⁇ ⁇ Vin ⁇ ⁇ Vin / 2 ⁇ 0 within one cycle of the drive frequency. Is done.
  • FIG. 9, FIG. 10, and FIG. 9, FIG. 10 and FIG. 11 are diagrams showing transition patterns within “one switching period” of the operation mode shown in FIG. 2 in the five-level operation mode.
  • FIG. 12 is a waveform diagram showing the on / off states of the switching elements Q1 to Q8 in the full bridge operation mode, the half bridge operation mode, and the 5-level operation mode.
  • FIG. 13 is a waveform diagram of voltages Vu, Vv, V1 and current iL flowing through the inductor L1 at each position of the full bridge circuit 10.
  • phase 0 corresponds to a reference carrier peak timing described later
  • phase ⁇ corresponds to a reference carrier bottom timing described later.
  • is a phase difference between the voltages Vu and Vv.
  • the output period of each of the five levels of voltage is determined by the values of ⁇ and ⁇ .
  • FIG. 13 also shows switch timings of the switching elements Q9 to Q12 of the full bridge circuit 20.
  • Control unit 32 turns on and off switching elements Q9 and Q12 and switching elements Q10 and Q11 at a duty ratio of 50%.
  • is a switching phase difference between the full bridge circuits 10 and 20.
  • the transmission power of the DC-DC converter 1 is controlled by ⁇ , ⁇ , and ⁇ . In particular, even in the same operation mode, by changing ⁇ , the on-duty ratio of the second full bridge circuit 20 changes, so that the control unit 32 maintains the output voltage at a specified value by adjusting ⁇ .
  • the voltage V1 changes stepwise between ⁇ Vin, ⁇ Vin / 2, 0 as shown in FIG. It operates in the 5-level operation mode.
  • the DC-DC converter 1 Since the DC-DC converter 1 according to the present embodiment outputs three voltage levels, the DC-DC converter 1 can be operated with high efficiency in accordance with load fluctuations of a load connected to the DC-DC converter 1. it can.
  • the ZVS range In the case of a general insulated two-level DC-DC converter, the ZVS range is limited by the input / output voltage ratio and the transformer turns ratio. For this reason, when the input / output voltage ratio is large, when a light load is connected to the two-level DC-DC converter, the ZVS operation range may be exceeded, and the ZVS operation may not be performed. As a result, the reactive current that does not contribute to the transmission power increases, and the transmission efficiency of the DC-DC converter deteriorates.
  • the operation mode of the DC-DC converter 1 is determined according to the load variation, so that it can be operated with high efficiency.
  • a method for determining the operation mode of the full bridge circuit 10 will be described.
  • FIG. 17 is a diagram showing the relationship between the output power Pout of the DC-DC converter 1 and the input / output voltage ratio.
  • the input / output voltage ratio can be expressed as NVout / Vin.
  • N is a turn ratio (N: 1) between the primary winding n1 and the secondary winding n2 of the transformer T1.
  • Region (1) is the control range of the full-bridge operation mode
  • region (2) is the control range of the half-bridge operation mode
  • region (3) is the control range of the 5-level operation mode.
  • the operation mode of the DC-DC converter 1 is set to the full bridge operation mode.
  • the operation mode of the DC-DC converter 1 is set to the half-bridge operation mode in the region excluding the region (3) described above.
  • the operation mode of the DC-DC converter 1 is set to the five-level operation mode.
  • the ZVS operation can be performed in a wide load fluctuation range, so that the reactive current can be suppressed and the DC-DC converter 1 is operated with high efficiency. be able to. Further, even in the region (3) where the conventional two-level DC-DC converter cannot perform zero voltage switching, in this embodiment, zero voltage switching is possible, and zero voltage switching in a wide load fluctuation range is possible. It becomes possible.
  • the switching elements Q1, Q2, Q6, and Q8 are replaced with the switching elements Q1, Q3, Q7, and Q8 and the switching elements Q2, Q4, Q5, and Q6 alternately.
  • switching control which turns on and off switching elements Q3, Q4, Q5 and Q7 alternately may be used.
  • FIG. 18A is a waveform diagram of each part when the operation mode is switched from the half-bridge operation mode to the full-bridge operation mode in the DC-DC converter of the present embodiment.
  • FIG. 18B is a waveform diagram of each part when the operation mode is switched from the half-bridge operation mode to the full-bridge operation mode in the DC-DC converter of the comparative example.
  • FIG. 19 is an enlarged view of the main waveform of FIG.
  • FIG. 20A is a waveform diagram of each part when the operation mode is switched from the full-bridge operation mode to the half-bridge operation mode in the DC-DC converter of the present embodiment.
  • FIG. 20B is a waveform diagram of each part when the operation mode is switched from the full-bridge operation mode to the half-bridge operation mode in the DC-DC converter of the comparative example.
  • FIG. 21 is an enlarged view of the main waveform of FIG.
  • the voltage V2 is the input voltage of the second full bridge circuit 20.
  • the peak timing of the reference carrier is the reference cycle timing of the drive frequency
  • the bottom timing of the reference carrier is the half cycle timing of the reference cycle of the drive frequency.
  • the U-phase carrier and the U-phase inverted carrier are the first high-side switches Q1 and Q2 or the first low-side switches Q3 and Q4.
  • the V-phase carrier and the V-phase inverted carrier are values that determine the switching phases of the second high-side switches Q5 and Q6 and the second low-side switches Q7 and Q8.
  • the W-phase carrier is a value that determines the switching phase of the third high-side switch Q9 and the fourth low-side switch Q12
  • the X-phase carrier is a value that determines the switching phase of the third low-side switch Q10 and the fourth high-side switch Q11. is there.
  • the DC-DC converter of the comparative example is configured to shift the phase of the U-phase carrier, the U-phase inversion carrier, the V-phase carrier, and the V-phase inversion carrier when the operation mode is switched.
  • the U-phase carrier, the U-phase inversion carrier, the V-phase carrier, and the V-phase inversion carrier are reference clock count values, respectively.
  • the value is represented as a triangular waveform.
  • a horizontal broken line that is superimposed on a triangular waveform is a reference value that is compared in magnitude with these carriers.
  • the operation mode is switched at the peak timing of the reference carrier.
  • the U-phase carrier is phase-shifted at the peak timing of this reference carrier. Further, the U-phase inversion carrier is phase-shifted at the bottom timing of the reference carrier.
  • the phase shift of the capacitor is performed by adding or subtracting the count value of the reference clock by a value corresponding to the phase shift amount.
  • the U-phase carrier when switching from the half-bridge operation mode (HB) to the full-bridge operation mode (FB), the U-phase carrier is phase-shifted in the delay direction by ⁇ / 2, and the V-phase inversion carrier is ⁇ Phase shifted in the advance direction by / 2.
  • the U-phase inversion carrier is phase-shifted in the delay direction by ⁇ / 2, and the V-phase carrier is phase-shifted in the advance direction by ⁇ / 2.
  • the U-phase carrier is phase-shifted in the advance direction by ⁇ / 2
  • the V-phase inversion carrier is ⁇
  • the phase is shifted in the delay direction by / 2.
  • the U-phase inversion carrier is phase-shifted in the advance direction by ⁇ / 2
  • the V-phase carrier is phase-shifted in the delay direction by ⁇ / 2.
  • is a new phase shift amount with respect to the switching phase difference between the U phase and the V phase, which is generated when the operation mode is switched.
  • each carrier is divided into two times within one cycle of the drive frequency (every half cycle), and the phase shift is performed, so that the positive / negative voltage of the output voltage V1 of the first full bridge circuit 10 at the time of operation mode switching.
  • the difference in time product is reduced. That is, the DC deviation at the time of operation mode switching can be suppressed.
  • FIG. 22 (A) is a waveform diagram of each part when the operation mode is switched from the full-bridge operation mode to the 5-level operation mode in the DC-DC converter of the present embodiment.
  • FIG. 22B is a waveform diagram of each part when the operation mode is switched from the full-bridge operation mode to the 5-level operation mode in the DC-DC converter of the comparative example.
  • FIG. 23A is a waveform diagram of each part when the operation mode is switched from the 5-level operation mode to the full bridge operation mode in the DC-DC converter of the present embodiment.
  • FIG. 23B is a waveform diagram of each part when the operation mode is switched from the 5-level operation mode to the full-bridge operation mode in the DC-DC converter of the comparative example.
  • FIG. 24 (A) is a waveform diagram of each part when the operation mode is switched from the half-bridge operation mode to the 5-level operation mode in the DC-DC converter of the present embodiment.
  • FIG. 24B is a waveform diagram of each part when the operation mode is switched from the half-bridge operation mode to the 5-level operation mode in the DC-DC converter of the comparative example.
  • FIG. 25 (A) is a waveform diagram of each part when the operation mode is switched from the 5-level operation mode to the half-bridge operation mode in the DC-DC converter of the present embodiment.
  • FIG. 25B is a waveform diagram of each part when the operation mode is switched from the 5-level operation mode to the half-bridge operation mode in the DC-DC converter of the comparative example.
  • the voltage V2 is input to the second full bridge circuit 20. Voltage.
  • FIG. 26 is a diagram showing the waveforms of the respective parts before and after the phase shift when the transmission power changes in the DC-DC converter of the present embodiment.
  • the U-phase carrier, the V-phase inversion carrier, and the W-phase carrier are phase shifted at the reference carrier peak timing, and the U-phase inversion carrier, V-phase carrier, X at the bottom timing of the reference carrier.
  • a phase shift of the phase carrier is performed.
  • FIG. 27 is a waveform diagram showing changes and the like of each carrier and a reference value as a comparison target.
  • the U-phase carrier is generated with reference to the reference carrier peak timing
  • the U-phase inverted carrier is generated with reference to the reference carrier bottom timing.
  • the U-phase carrier and the U-phase inversion carrier are count values of the reference clock, and here, these values are represented as a triangular waveform.
  • a rectangular broken line that is superimposed on these triangular waveforms is a reference value to be compared with these carriers.
  • the switching phase of the first high-side switches Q1 and Q2 and the first low-side switches Q3 and Q4 may be shifted by changing the reference value in synchronization with the carrier cycle.
  • the shift amount of the phase shift when the operation mode is switched and the shift amount of the phase shift when the transmission power is changed are determined so that the output voltage of the first full bridge circuit is balanced between positive and negative before and after the phase shift control.
  • the phase shift is performed so that the energy accumulated in the inductor approaches the same amount before and after the operation mode is switched. This also means that a phase shift occurs in a direction in which the current flowing through the inductor L1 starts to decrease before and after the operation mode is switched.
  • the full bridge circuit 10 of the DC-DC converter 1 is configured to operate in any one of the full bridge operation mode, the half bridge operation mode, and the five level operation mode.
  • the configuration may be such that it operates in a full-bridge operation mode or a half-bridge operation mode. Even in this case, since it is not necessary to provide two circuits of a full bridge circuit and a half bridge circuit, an increase in size can be suppressed.
  • the voltage applied to both ends of the first winding of the transformer in the full bridge operation mode is applied to both ends of the first winding of the transformer in the DC voltage Vin and half bridge operation mode.
  • the voltage is half of the DC voltage (Vin / 2), these may include some errors.
  • the DC voltages Vin and Vin / 2 include a case where the DC voltages Vin and Vin / 2 vary due to variations in parasitic capacitance of FETs, manufacturing errors, and the like.
  • the inductor L1 is connected to the primary side of the transformer T1, but an inductor may be connected to the secondary side. Further, inductors may be connected to both the primary side and the secondary side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

トランス(T1)により絶縁された、第1フルブリッジ回路(10)および第2フルブリッジ回路(20)を有する。第1フルブリッジ回路(10)は、スイッチング素子(Q1~Q8)、第1フローティングキャパシタ(Cf1)および第2フローティングキャパシタ(Cf2)を有する。第1フルブリッジ回路(10)は、フルブリッジ動作モード、ハーフブリッジ動作モードの少なくとも一方で動作する。そして、動作モードの切替時に、駆動周波数の1周期内に2回に分けて、第1フルブリッジ回路(10)のスイッチング位相をシフトさせるとともに、動作モードが切り替わる前後で第1フルブリッジ回路の出力電圧が正負で平衡するように、位相のシフト量を定める。

Description

DC-DCコンバータ
 本発明は、DAB(Dual Active Bridge)方式のDC-DCコンバータに関する。
 特許文献1には、DAB方式のコンバータが開示されている。特許文献1に記載のコンバータは、トランスの一次巻線および二次巻線それぞれにフルブリッジ回路が接続されていて、2つのフルブリッジ回路のスイッチング位相差を適切に制御することで、電力伝送を行う。
米国特許第5355294号明細書
 特許文献1に記載のコンバータでは、トランスの漏れインダクタンスと半導体デバイスの寄生容量とを利用して、ゼロ電圧スイッチング(Zero Voltage Switching:ZVS)を行うことでスイッチング損失が低減される。しかし、入出力電圧比およびトランス巻き数比の差に比例して、ZVS範囲が制限され、無効電流が増加するため、効率低下を招くおそれがある。特に、例えば、入出力電圧比が大きく、出力端子に接続される負荷が軽負荷の場合、伝送電力に寄与しない無効電流が増加し、効率が悪くなることがある。
 また、DAB方式のDC-DCコンバータにおいては、供給電力の過渡的な変化によって、インダクタ電流とトランスの励磁電流に直流成分が重畳されること(直流偏差)がある。例えば、伝送電力が急激に変化したときや、動作モードが切り替わったときに、上記直流偏差が生じる。このような直流偏差があってもインダクタやトランスが磁気飽和しないようにするためには、磁性体コアの大きな、すなわち体積の大きな、インダクタやトランスを用いる必要がある。このことは装置の大型化およびコスト高の要因となる。
 そこで、本発明の目的は、入出力電圧比が大きく、負荷変動範囲が広い場合であっても、広範囲でZVS動作を実現できるようにするとともに、過渡的な動作状態の変化により発生する直流偏差を抑制して、装置の大型化およびコスト高を解消したDC-DCコンバータを提供することにある。
(1)本発明のDC-DCコンバータは、
 第1ハイサイドスイッチおよび第1ローサイドスイッチで構成される第1レグと、第2ハイサイドスイッチおよび第2ローサイドスイッチで構成される第2レグと、を有し、前記第1レグおよび前記第2レグに第1直流電圧が印加される、第1フルブリッジ回路と、
 第3ハイサイドスイッチおよび第3ローサイドスイッチで構成される第3レグと、第4ハイサイドスイッチおよび第4ローサイドスイッチで構成される第4レグと、を有し、前記第3レグおよび前記第4レグに第2直流電圧が印加される、第2フルブリッジ回路と、
 前記第1フルブリッジ回路の入出力部に接続される1次巻線および前記第2フルブリッジ回路の入出力部に接続される2次巻線を有し、前記第1フルブリッジ回路と前記第2フルブリッジ回路との間を絶縁するトランスと、
 前記第1フルブリッジ回路および前記第2フルブリッジ回路を制御する制御部と、
 を有する。
 前記第1ハイサイドスイッチは、ハイサイドラインに接続された第1スイッチング素子および当該第1スイッチング素子に直列接続された第2スイッチング素子で構成され、
 前記第1ローサイドスイッチは、ローサイドラインに接続された第4スイッチング素子および当該第4スイッチング素子に直列接続された第3スイッチング素子で構成され、
 前記第2ハイサイドスイッチは、ハイサイドラインに接続された第5スイッチング素子および当該第5スイッチング素子に直列接続された第6スイッチング素子で構成され、
 前記第2ローサイドスイッチは、ローサイドラインに接続された第8スイッチング素子および当該第8スイッチング素子に直列接続された第7スイッチング素子で構成される。
 前記第1フルブリッジ回路は、前記第1スイッチング素子と前記第2スイッチング素子との接続点と、前記第5スイッチング素子と前記第6スイッチング素子との接続点と、の間に接続される第1フローティングキャパシタと、前記第3スイッチング素子と前記第4スイッチング素子との接続点と、前記第7スイッチング素子と前記第8スイッチング素子との接続点と、の間に接続される第2フローティングキャパシタと、を有する。
 前記第1フルブリッジ回路の入出力部と前記1次巻線との間、または、前記第2フルブリッジ回路の入出力部と前記2次巻線との間、の少なくとも一方には直列接続されたインダクタを備える。
 そして、前記制御部は、
 前記第1フルブリッジ回路および前記第2フルブリッジ回路の各スイッチング素子を同じ駆動周波数で動作させ、且つ、
 前記駆動周波数の半周期に亘って、前記第1フルブリッジ回路の入出力部の電圧のピーク値の絶対値が前記第1直流電圧になるように、前記第1フルブリッジ回路の各スイッチング素子を制御するフルブリッジ動作モード、
 前記半周期に亘って、前記第1フルブリッジ回路の入出力部の電圧のピーク値の絶対値が前記第1直流電圧の半分になるように、前記第1フルブリッジ回路の各スイッチング素子を制御するハーフブリッジ動作モード、または、
 前記駆動周波数の1周期の期間中に、前記第1フルブリッジ回路の各スイッチング素子を、フルブリッジ動作させる状態とハーフブリッジ動作させる状態とを切り替えて、5レベルの電圧を前記第1フルブリッジ回路から出力する5レベル動作モード、
 のいずれかの制御を行う。
 更に、前記制御部は、
 前記フルブリッジ動作モード、前記ハーフブリッジ動作モードおよび前記5レベル動作モードのうち、一の動作モードから他の動作モードへ動作モードが切り替わる周期に、前記駆動周波数の基準周期タイミングで、前記第1ハイサイドスイッチおよび前記第2ローサイドスイッチのスイッチング位相をシフトさせ、前記駆動周波数の基準周期の半周期タイミングで、前記第1ローサイドスイッチおよび前記第2ハイサイドスイッチのスイッチング位相をシフトさせるとともに、前記動作モードが切り替わる前後で、前記第1フルブリッジ回路の出力電圧が正負で平衡するように、前記位相のシフト量を定める。
 上記構成によれば、第1フルブリッジ回路に入力される電圧が、第1、第2のフローティングキャパシタに印加される場合と、印加されない場合とで、第1フルブリッジ回路から出力する電圧を異ならせることができる。すなわち、フルブリッジ動作モード、またはハーフブリッジ動作モードで第1フルブリッジ回路を動作させることで、入出力電圧比が大きく、出力部に接続される負荷の変動範囲が広い場合であっても、先行技術の構成よりも、ZVS範囲を広げることによって、伝送に寄与しない無効電流の増加を抑制し、効率よくDC-DCコンバータを動作させることができる。
 また、第1フルブリッジ回路を構成する第1レグ、および第2レグは、4つのスイッチング素子が直列接続されてなるため、2つのスイッチング素子が直列接続された場合と比べて、各素子に印加される電圧は低い。このため、各スイッチング素子の素子耐圧を高くする必要がない。この結果、各スイッチング素子に、オン抵抗値の低いMOS-FETを用いることができる。
 前記制御部は、第1フルブリッジ回路の駆動周波数の1周期中に、フルブリッジ動作モードとハーフブリッジ動作モードとを切り替えることによって、第1フルブリッジ回路から5レベルの電位を出力できるため、特に軽負荷領域であっても、ZVS動作させることが可能となり、入出力電圧比が大きく、出力部に接続される負荷の変動範囲が広い場合において、さらに効率よく動作可能なDC-DCコンバータを提供することができる。
 その上、動作モードの切り替え前後で、第1フルブリッジ回路の出力電圧が正負で平衡するので、インダクタ電流およびトランスの励磁電流の直流偏差が抑制される。その結果、装置の小型化および低コスト化が図れる。
(2)前記制御部は、
 前記第1ハイサイドスイッチまたは前記第1ローサイドスイッチのスイッチング位相を定めるU相キャリアおよびU相反転キャリア、前記第2ハイサイドスイッチまたは前記第2ローサイドスイッチのスイッチング位相を定めるV相キャリアおよびV相反転キャリアに基づいて、前記第1フルブリッジ回路の各スイッチング素子のスイッチング位相を定め、前記駆動周波数の基準周期タイミングで、前記U相キャリアおよび前記V相反転キャリアの位相をシフトさせ、前記駆動周波数の基準周期の半周期タイミングで前記U相反転キャリアおよび前記V相キャリアの位相をシフトさせることが好ましい。
 上記構成によれば、第1フルブリッジ回路と第2フルブリッジ回路との位相差を一度に変更する場合に比べて、動作モードの切替時の直流偏差を抑制できる。
(3)前記U相キャリア、前記U相反転キャリア、前記V相キャリアおよび前記V相反転キャリアは基準クロックのカウント値であり、前記制御部は、前記カウント値と基準値との比較に基づいて前記第1フルブリッジ回路および前記第2フルブリッジ回路を制御し、
 前記位相のシフト量は、前記カウント値の変更によって定めることが好ましい。
 上記構成により、位相シフトの制御および位相のシフト量の設定のための構成を簡素化できる。
(4)前記U相キャリア、前記U相反転キャリア、前記V相キャリアおよび前記V相反転キャリアは基準クロックのカウント値であり、前記制御部は、前記カウント値と基準値との比較に基づいて前記第1フルブリッジ回路および前記第2フルブリッジ回路を制御し、
 前記位相のシフト量は、前記基準値の変更によって定めてもよい。
 上記構成により、位相シフトの制御および位相のシフト量の設定のための構成を簡素化できる。
 本発明によれば、入出力電圧比が大きく、出力部に接続される負荷変動が広い場合であっても、動作モードを切り替えることで、ZVS動作範囲を広げることができ、しかも動作モードの切替時に生じる直流偏差が抑制されて、小型化および低コストのDC-DCコンバータが得られる。
図1は、本実施形態に係るDC-DCコンバータ1の回路図である。 図2は、フルブリッジ回路10の8つのスイッチング素子の状態と電圧Vu,Vv,V1との関係、第1フローティングキャパシタCf1と第2フローティングキャパシタCf2の充放電状態の相対関係を動作モード毎に表す図である。 図3(A)(B)(C)(D)は、図2に示す各状態でのフルブリッジ回路10に流れる電流の経路を示す図である。 図4(A)(B)(C)(D)は、図2に示す各状態でのフルブリッジ回路10に流れる電流の経路を示す図である。 図5(A)(B)(C)(D)は、図2に示す各状態でのフルブリッジ回路10に流れる電流の経路を示す図である。 図6(A)(B)(C)(D)は、図2に示す各状態でのフルブリッジ回路10に流れる電流の経路を示す図である。 図7は、図2に示した16通りの状態の中から、フルブリッジ動作モードを行う組み合わせを示す図である。 図8は、図2に示した16通りの状態の中から、ハーフブリッジ動作モードを行う組み合わせを示す図である。 図9は、図2に示した16通りの状態の中から、5レベル動作モードを行う組み合わせの一部を示す図である。 図10は、図2に示した16通りの状態の中から、5レベル動作モードを行う組み合わせの一部を示す図である。 図11は、図2に示した16通りの状態の中から、5レベル動作モードを行う組み合わせの一部を示す図である。 図12は、フルブリッジ動作モード、ハーフブリッジ動作モードおよび5レベル動作モードにおける、スイッチング素子Q1~Q8のオン/オフ状態を表す波形図である。 図13は、フルブリッジ回路10の各位置での電圧Vu,Vv,V1およびインダクタL1に流れる電流iLの波形図である。 図14は、α,β=0の場合のフルブリッジ回路10の電圧Vu,Vv,V1の電圧波形を示す図である。 図15は、α=π/4、β=π/2の場合のフルブリッジ回路10の電圧Vu,Vv,V1の電圧波形を示す図である。 図16は、α=β=π/4の場合のフルブリッジ回路10の電圧Vu,Vv,V1の電圧波形を示す図である。 図17は、DC-DCコンバータ1の出力電力Poutと、入出力電圧比との関係を示す図である。 図18(A)は、本実施形態のDC-DCコンバータにおいて、動作モードがハーフブリッジ動作モードからフルブリッジ動作モードへ切り替わるときの各部の波形図である。図18(B)は、比較例のDC-DCコンバータにおいて、動作モードがハーフブリッジ動作モードからフルブリッジ動作モードへ切り替わるときの各部の波形図である。 図19は図18(A)の主要波形の拡大図である。 図20(A)は、本実施形態のDC-DCコンバータにおいて、動作モードがフルブリッジ動作モードからハーフブリッジ動作モードへ切り替わるときの各部の波形図である。図20(B)は、比較例のDC-DCコンバータにおいて、動作モードがフルブリッジ動作モードからハーフブリッジ動作モードへ切り替わるときの各部の波形図である。 図21は図20(A)の主要波形の拡大図である。 図22(A)は、本実施形態のDC-DCコンバータにおいて、動作モードがフルブリッジ動作モードから5レベル動作モードへ切り替わるときの各部の波形図である。図22(B)は、その比較例の波形図である。 図23(A)は、本実施形態のDC-DCコンバータにおいて、動作モードが5レベル動作モードからフルブリッジ動作モードへ切り替わるときの各部の波形図である。図23(B)は、その比較例の波形図である。 図24(A)は、本実施形態のDC-DCコンバータにおいて、動作モードがハーフブリッジ動作モードから5レベル動作モードへ切り替わるときの各部の波形図である。図24(B)は、その比較例の波形図である。 図25(A)は、本実施形態のDC-DCコンバータにおいて、動作モードが5レベル動作モードからハーフブリッジ動作モードへ切り替わるときの各部の波形図である。図25(B)は、その比較例の波形図である。 図26は、本実施形態のDC-DCコンバータにおいて、伝送電力が変化した時の位相シフト前後での各部の波形を示す図である。 図27は各キャリアとその比較対象である基準値の変化等を示す波形図である。
 以下に説明するDC-DCコンバータは、2つのフルブリッジ回路がトランスで互いに絶縁され、2つのフルブリッジ回路の間で電力が双方向に伝送される、絶縁型双方向DC-DCコンバータである。
 図1は、本実施形態に係るDC-DCコンバータ1の回路図である。
 DC-DCコンバータ1は、入出力端子IO1,IO2,IO3,IO4を備えている。入出力端子IO1,IO2,IO3,IO4には、負荷および直流電源が接続される。DC-DCコンバータ1は、入出力端子IO1,IO2または入出力端子IO3,IO4の一方から入力される直流電圧を変圧し、他方へ出力する双方向のDC-DCコンバータである。
 入出力端子IO1,IO2には、入力コンデンサC1およびフルブリッジ回路10が接続されていている。フルブリッジ回路10は、第1スイッチング素子Q1、第2スイッチング素子Q2、第3スイッチング素子Q3および第4スイッチング素子Q4の第1直列回路(第1レグ)と、第5スイッチング素子Q5、第6スイッチング素子Q6、第7スイッチング素子Q7および第8スイッチング素子Q8の第2直列回路(第2レグ)とが並列接続されて構成されている。
 ハイサイドラインに接続された第1スイッチング素子Q1およびこの第1スイッチング素子Q1に直列接続された第2スイッチング素子Q2で第1ハイサイドスイッチが構成されている。また、ローサイドラインに接続された第4スイッチング素子Q4およびこの第4スイッチング素子Q4に直列接続された第3スイッチング素子Q3で第1ローサイドスイッチが構成されている。また、ハイサイドラインに接続された第5スイッチング素子Q5およびこの第5スイッチング素子Q5に直列接続された第6スイッチング素子Q6で第2ハイサイドスイッチが構成されている。さらに、ローサイドラインに接続された第8スイッチング素子Q8およびこの第8スイッチング素子Q8に直列接続された第7スイッチング素子Q7で第2ローサイドスイッチが構成されている。
 第1~第8スイッチング素子Q1~Q8はn型MOS-FETであり、ボディーダイオードおよび寄生容量が形成されている。また、第1~第8スイッチング素子Q1~Q8は、ゲートが制御部31に接続されていて、制御部31からゲート電圧が印加され、スイッチング制御される。なお、以下では、第1~第8スイッチング素子Q1~Q8は、単にスイッチング素子Q1~Q8と言う。
 従来の一般的なフルブリッジ回路は、2つのスイッチング素子が直列接続された直列回路が、並列に接続されて構成されている。これに対し、本実施形態では、フルブリッジ回路10を構成する第1直列回路および第2直列回路はそれぞれ、4つのスイッチング素子が直列接続されてなるため、2つのスイッチング素子が直列接続された構造に比べて、各素子に印加される電圧は低い。このため、各スイッチング素子の素子耐圧を高くする必要がない。一般的に耐圧が高いスイッチング素子はオン抵抗値が大きいため、各スイッチング素子に、オン抵抗値の低いMOS-FETを用いることができる。
 フルブリッジ回路10は、第1フローティングキャパシタCf1と、第2フローティングキャパシタCf2とを備えている。第1フローティングキャパシタCf1は、第1スイッチング素子Q1と第2スイッチング素子Q2との接続点と、第3スイッチング素子Q3と第4スイッチング素子Q4との接続点との間に接続されている。第2フローティングキャパシタCf2は、第5スイッチング素子Q5と第6スイッチング素子Q6との接続点と、第5スイッチング素子Q5と第6スイッチング素子Q6との接続点との間に接続されている。
 フルブリッジ回路10は、本発明に係る「第1フルブリッジ回路」に相当する。第1フローティングキャパシタは、本発明に係る「第1フローティングキャパシタ」に相当し、第2フローティングキャパシタは、本発明に係る「第2フローティングキャパシタ」に相当する。
 入出力端子IO3,IO4には、入力コンデンサC2およびフルブリッジ回路20が接続されていている。フルブリッジ回路20は、直列接続された第9スイッチング素子Q9および第10スイッチング素子Q10の直列回路(第3レグ)と、直列接続された第11スイッチング素子Q11および第12スイッチング素子Q12の直列回路(第4レグ)とが並列接続されて構成されている。これら第9~第12スイッチング素子Q9~Q12はn型MOS-FETであり、ボディーダイオードおよび寄生容量が形成されている。また、第9~第12スイッチング素子Q9~Q12は、ゲートが制御部32に接続され、制御部32からゲート信号が印加されて、スイッチング制御される。フルブリッジ回路20は、本発明に係る「第2フルブリッジ回路」に相当する。
 さらに、入出力端子IO3,IO4には、出力電圧検出回路21および負荷電流検出回路22が設けられている。
 フルブリッジ回路10とフルブリッジ回路20との間には、トランスT1が接続されている。トランスT1は、1次巻線n1と2次巻線n2とを有している。1次巻線n1は、一端がインダクタL1を介して、第2スイッチング素子Q2と第3スイッチング素子Q3との接続点Uに接続され、他端が第6スイッチング素子Q6と第7スイッチング素子Q7との接続点Vに接続されている。2次巻線n2は、一端が第9スイッチング素子Q9と第10スイッチング素子Q10との接続点Wに接続され、他端が第11スイッチング素子Q11と第12スイッチング素子Q12との接続点Xに接続されている。本実施形態では、1次巻線n1と2次巻線n2との巻数比はN:1とする。
 このように構成されたDC-DCコンバータ1において、制御部31は、各スイッチング素子Q1~Q8の寄生容量と、インダクタ(共振コイル)L1との共振を利用して、ゼロ電圧スイッチングでフルブリッジ回路10を制御する。すなわち、スイッチング素子のオンオフ切替時のデッドタイム期間中に、インダクタL1に流れる電流をスイッチング素子の寄生容量に流して、寄生容量を放電し、ゼロ電圧でスイッチング素子をターンオンする。これにより、スイッチング損失、スイッチングノイズ等を低減できる。なお、インダクタL1は、トランスT1の2次側に設けられてもよい。インダクタL1を用いず、トランスT1の漏れインダクタンスと、各スイッチング素子Q1~Q8の寄生容量との共振を利用して、ゼロ電圧スイッチングを行うようにしてもよい。
 このように構成されたDC-DCコンバータ1の入出力端子IO1,IO2には、直流電圧Vinが印加される。制御部31は、フルブリッジ回路10の各スイッチング素子Q1~Q8をスイッチング制御する。トランスT1の1次巻線n1には、0,±Vin/2,±Vinの5レベルの電圧V1が印加される。1次巻線n1に電圧V1が印加されると、2次巻線n2には電圧が誘起される。制御部32は、フルブリッジ回路20をスイッチング制御して、入出力端子IO3,IO4から、0,Vin/2N,Vin/Nの直流電圧Voutを出力する。すなわち、フルブリッジ回路10は、5つの電圧レベルを出力する5レベル回路である。また、フルブリッジ回路20は、3つの電圧レベルを出力する3レベル回路である。
 なお、DC-DCコンバータ1は、双方向型のDC-DCコンバータであるため、入出力端子IO3,IO4から直流電圧が入力される場合、フルブリッジ回路10,20をスイッチング制御して、入出力端子IO1,IO2から直流電圧を出力する。
 図2は、フルブリッジ回路10の8つのスイッチング素子の状態と電圧Vu,Vv,V1との関係、第1フローティングキャパシタCf1と第2フローティングキャパシタCf2の充放電状態の相対関係を動作モード毎に示す図である。電圧Vuは、スイッチング素子Q2,Q3の接続点Uの電圧である。電圧Vvは、スイッチング素子Q6,Q7の接続点Vの電圧である。電圧V1は、トランスT1の1次巻線n1に印加される、フルブリッジ回路10からの出力電圧であり、接続点Uと接続点Vとの電位差である。図3(A)(B)(C)(D)、図4(A)(B)(C)(D)、図5(A)(B)(C)(D)、図6(A)(B)(C)(D)は、図2に示す各状態でのフルブリッジ回路10に流れる電流の経路を示す図である。
 本実施形態に係るフルブリッジ回路10は、フルブリッジ動作モード、ハーフブリッジ動作モードおよび5レベル動作モードのいずれかで動作する。フルブリッジ動作モードとは、電圧V1=±Vinとする動作モードである。このフルブリッジ動作モードでは、電流経路が第1フローティングキャパシタおよび第2フローティングキャパシタのいずれも経由しない。ハーフブリッジ動作モードとは、電圧V1=±Vin/2とする動作モードである。このハーフブリッジ動作モードでは、電流経路が第1フローティングキャパシタおよび第2フローティングキャパシタのいずれか一方のみを経由する。5レベル動作モードとは、フルブリッジ動作モードとハーフブリッジ動作モードとを組み合わせて、電圧V1=0,±Vin/2,±Vinとする動作モードである。
(V1=Vin)
 スイッチング素子Q1,Q2,Q7,Q8がON、スイッチング素子Q3,Q4,Q5,Q6がOFFである状態では、図3(A)に示す経路で電流が流れる。この場合の出力電圧V1はVinである。この場合、電圧Vu=Vin、電圧Vv=0、電圧V1=Vu-Vv=Vinである。
(V1=-Vin)
 スイッチング素子Q3,Q4,Q5,Q6がON、スイッチング素子Q1,Q2,Q7,Q8がOFFである状態では、図3(B)に示す経路で電流が流れる。この場合、トランスT1の1次巻線n1には、図3(A)の場合と反対の極性の電圧が印加され、電圧Vu=0、電圧Vv=Vin、電圧V1=Vu-Vv=-Vinである。
(V1=0)
 スイッチング素子Q1,Q3,Q6,Q8がON、スイッチング素子Q2,Q4,Q5,Q7がOFFである状態では、図3(C)に示す経路で電流が流れる。この場合、電圧Vu=Vin-Vc1である。ここでVc1は第1フローティングキャパシタCf1の充電電圧である。Vc1=Vin/2であるとすると、電圧Vu=Vin/2である。また、電圧Vv=Vc2である。ここでVc2は第2フローティングキャパシタCf2の充電電圧である。Vc2=Vin/2であるとすると、電圧Vu=Vin/2である。そして、電圧V1=Vu-Vv=0である。
 また、スイッチング素子Q2,Q4,Q5,Q7がON、スイッチング素子Q1,Q3,Q6,Q8がOFFである状態では、図3(D)に示す経路で電流が流れる。この場合、電圧Vu=Vin-Vc1=Vin/2、電圧Vv=Vin-Vc2=Vin/2、電圧V1=Vu-Vv=0である。
 他にも、スイッチング素子Q2,Q4,Q6,Q8がON、スイッチング素子Q1,Q3,Q5,Q7がOFFである場合は、図4(A)および図4(B)に示す経路で電流が流れる。この場合も電圧V1=0となるが、電流の流れる方向は、図4(A)と図4(B)とで逆になっている。これは、第1フローティングキャパシタCf1と第2フローティングキャパシタCf2との相対的な充放電状態によって異なる。
 さらには、スイッチング素子Q1,Q2,Q5,Q6がON、スイッチング素子Q3,Q4,Q7,Q8がOFFである場合も、図4(C)に示すように、電圧V1=0となり、スイッチング素子Q3,Q4,Q7,Q8がON、スイッチング素子Q1,Q2,Q5,Q6がOFFである場合も、図4(D)に示すように、電圧V1=0となる。
(V1=Vin/2)
 スイッチング素子Q1,Q3,Q7,Q8がON、スイッチング素子Q2,Q4,Q5,Q6がOFFである状態では、図5(A)に示す経路で電流が流れる。この場合、電圧Vu=Vin-Vc1=Vin/2、電圧Vv=0、電圧V1=Vu-Vv=Vin/2である。また、スイッチング素子Q2,Q4,Q7,Q8がON、スイッチング素子Q1,Q3,Q5,Q6がOFFである状態では、図5(B)に示す経路で電流が流れる。この場合、電圧Vu=Vc1=Vin/2、電圧Vv=0、電圧V1=Vu-Vv=Vin/2である。なお、電圧Vuは、図5(A)の状態時に第1フローティングキャパシタCf1に充電された電圧Vc1である。
 また、スイッチング素子Q1,Q2,Q6,Q8がON、スイッチング素子Q3,Q4,Q5,Q7がOFFである状態では、図5(C)に示す経路で電流が流れる。さらに、スイッチング素子Q1,Q2,Q5,Q7がON、スイッチング素子Q3,Q4,Q6,Q8がOFFである場合も、図5(D)に示す経路で電流が流れ、電圧V1=Vin/2となる。なお、この場合の電圧Vuは、図5(C)の状態時に第2フローティングキャパシタCf2に充電された電圧Vc2である。
(V1=-Vin/2)
 スイッチング素子Q3,Q4,Q5,Q7がON、スイッチング素子Q1,Q2,Q6,Q8がOFFである状態では、図6(A)に示す経路で電流が流れる。この場合、電圧Vu=0、電圧Vv=Vin-Vc2=Vin/2、電圧V1=Vu-Vv=-Vin/2である。また、スイッチング素子Q3,Q4,Q6,Q8がON、スイッチング素子Q1,Q2,Q5,Q7がOFFである状態では、図6(B)に示す経路で電流が流れる。この場合、電圧Vu=0、電圧Vv=Vc2=Vin/2、電圧V1=Vu-Vv=-Vin/2である。なお、電圧Vvは、図6(A)の状態時に第2フローティングキャパシタCf2に充電された電圧Vc2である。
 さらに、スイッチング素子Q2,Q4,Q5,Q6がON、スイッチング素子Q1,Q3,Q7,Q8がOFFである状態では、図6(C)に示す経路で電流が流れ、電圧V1=-Vin/2となる。さらに、スイッチング素子Q1,Q3,Q5,Q6がON、スイッチング素子Q2,Q4,Q7,Q8がOFFである状態では、図6(D)に示す経路で電流が流れ、電圧V1=-Vin/2となる。なお、この場合、電圧Vvは、図6(C)の状態時に第1フローティングキャパシタCf1に充電された電圧Vc1である。
 このように、フルブリッジ回路10は、フルブリッジ動作モード、ハーフブリッジ動作モード、および5レベル動作モードの何れで動作する。5レベル動作モードにおいて、5つの電圧レベルの出力期間は、電圧Vu=Vin/2となる期間と、電圧Vu,Vvの位相差とによって決まる。
 フルブリッジ動作モードで動作する場合、駆動周波数の1周期内において、電圧V1は、V1→-V1→V1→-V1→…という遷移が行われる。図7は、図2に示した16通りの状態の中から、上述した条件を満たす組み合わせの例である。つまり、状態(7)と状態(8)とを交互に繰り返す。
 ハーフブリッジ動作モードで動作する場合、駆動周波数の1周期内において、電圧V1は、V1/2→-V1/2→V1/2→-V1/2→…という遷移が行われる。図8は、図2に示した16通りの状態の中から、上述した条件を満たす組み合わせの例である。つまり、ハーフブリッジ動作モードでは、図8に示すように12通りの組み合わせがある。 5レベル動作モードで動作する場合、駆動周波数の1周期内において、電圧V1は0→Vin/2→Vin→Vin/2→0→-Vin/2→-Vin→-Vin/2→0という遷移が行われる。図2で示した16通りの状態の中から、上述した条件を満たす組み合わせの例を図9、図10および図11に示す。図9、図10および図11は、5レベル動作モードにおいて、図2で示す動作モードの「1スイッチング周期内」における遷移パターンを示す図である。
 図12は、フルブリッジ動作モード、ハーフブリッジ動作モードおよび5レベル動作モードにおける、スイッチング素子Q1~Q8のオン/オフ状態を表す波形図である。
 図13は、フルブリッジ回路10の各位置での電圧Vu,Vv,V1およびインダクタL1に流れる電流iLの波形図である。図13において、位相0は後に述べる基準キャリアピークタイミングに相当し、位相πは後に述べる基準キャリアボトムタイミングに相当する。
 図13に示すαは、1周期中に、電圧Vu=Vin/2となる期間である。また、βは、電圧Vu,Vvの位相差である。電圧V1=0となる期間は2α-βであり、電圧V1=Vin/2となる期間は2βであり、電圧V1=Vinとなる期間はπ-2α-βである。これらα,βの値によって、5レベルの各電圧の出力期間が定められる。
 図13には、フルブリッジ回路20のスイッチング素子Q9~Q12のスイッチタイミングも示している。制御部32は、スイッチング素子Q9,Q12と、スイッチング素子Q10,Q11とを、50%のデューティ比でオンオフする。δは、フルブリッジ回路10,20のスイッチング位相差である。DC-DCコンバータ1の伝送電力は、α,β,δにより制御される。特に、同じ動作モードにおいても、δを変えることによって、第2フルブリッジ回路20のオンデューティ比が変化するので、制御部32は、δを調節することによって、出力電圧を規定値に保つ。
 また、α,β=0となるようにフルブリッジ回路10をスイッチング制御した場合、電圧V1=±Vinとなる。図14は、α,β=0の場合のフルブリッジ回路10の電圧Vu,Vv,V1の電圧波形を示す図である。図14に示すように、フルブリッジ回路10はフルブリッジ動作モードで動作する。
 また、α=π/4、β=π/2となるようにフルブリッジ回路10をスイッチング制御した場合、電圧V1=±Vin/2となる。図15は、α=π/4、β=π/2の場合のフルブリッジ回路10の電圧Vu,Vv,V1の電圧波形を示す図である。図15に示すように、フルブリッジ回路10はハーフブリッジ動作モードで動作する。
 さらに、α=β=π/4となるようにフルブリッジ回路10をスイッチング制御した場合、電圧V1は、図16に示すように、±Vin,±Vin/2,0の間を階段状に遷移する5レベル動作モードで動作する。
 本実施形態に係るDC-DCコンバータ1は、3つの電圧レベルを出力するため、DC-DCコンバータ1に接続する負荷の負荷変動に応じて、高効率にDC-DCコンバータ1を動作させることができる。一般的な絶縁型の2レベルDC-DCコンバータの場合、ZVS範囲は入出力電圧比とトランスの巻き数比で制限される。そのため、入出力電圧比が大きい場合、2レベルDC-DCコンバータに軽負荷の負荷が接続されたとき、ZVS動作範囲を外れるため、ZVS動作をできない可能性がある。その結果、伝送電力に寄与しない無効電流が増加し、DC-DCコンバータの伝送効率が悪くなる。これに対し、本実施形態では、負荷変動に応じてDC-DCコンバータ1の動作モードを決定することで、高効率に動作させることができる。以下に、フルブリッジ回路10の動作モードを決定する方法について説明する。
 図17は、DC-DCコンバータ1の出力電力Poutと、入出力電圧比との関係を示す図である。入出力電圧比はNVout/Vinで表すことができる。なお、Nは、トランスT1の1次巻線n1と2次巻線n2との巻数比(N:1)である。領域(1)は、フルブリッジ動作モードの制御範囲、領域(2)は、ハーフブリッジ動作モードの制御範囲、領域(3)は、5レベル動作モードの制御範囲である。
 例えば、NVout/Vin=1.0である場合、DC-DCコンバータ1の動作モードは、フルブリッジ動作モードにする。NVout/Vin<0.6の場合であって、上述の領域(3)を除く領域では、DC-DCコンバータ1の動作モードは、ハーフブリッジ動作モードにする。NVout/Vin<1.0であり、上述の領域(1)、(2)に当てはまらない領域においては、DC-DCコンバータ1の動作モードは、5レベル動作モードにする。
 このように、入出力電圧比および出力電力Poutに応じた動作モードとすることで、広い負荷変動範囲でZVS動作をできるため、無効電流を抑制でき、DC-DCコンバータ1を高効率に動作させることができる。また、従来の2レベルDC-DCコンバータでは、ゼロ電圧スイッチングが不可能であった領域(3)においても、本実施形態では、ゼロ電圧スイッチングが可能となり、広い負荷変動範囲でのゼロ電圧スイッチングが可能となる。
 なお、例えば、ハーフブリッジ動作モードにおいて、スイッチング素子Q1,Q3,Q7,Q8と、スイッチング素子Q2,Q4,Q5,Q6とを交互にオンオフする方法に代えて、スイッチング素子Q1,Q2,Q6,Q8と、スイッチング素子Q3,Q4,Q5,Q7とを交互にオンオフするスイッチング制御をであってもよい。この場合、第2フローティングキャパシタCf2に電流が流れることにより、電圧V1=±Vin/2となる。
 次に、動作モードの切替時の位相シフト制御について示す。
 図18(A)は、本実施形態のDC-DCコンバータにおいて、動作モードがハーフブリッジ動作モードからフルブリッジ動作モードへ切り替わるときの各部の波形図である。図18(B)は、比較例のDC-DCコンバータにおいて、動作モードがハーフブリッジ動作モードからフルブリッジ動作モードへ切り替わるときの各部の波形図である。図19は図18(A)の主要波形の拡大図である。
 また、図20(A)は、本実施形態のDC-DCコンバータにおいて、動作モードがフルブリッジ動作モードからハーフブリッジ動作モードへ切り替わるときの各部の波形図である。図20(B)は、比較例のDC-DCコンバータにおいて、動作モードがフルブリッジ動作モードからハーフブリッジ動作モードへ切り替わるときの各部の波形図である。図21は図20(A)の主要波形の拡大図である。
 なお、図18(A)(B)、図19、図20(A)(B)において、電圧V2は第2フルブリッジ回路20の入力電圧である。また、図19、図21において、基準キャリアのピークタイミングは、駆動周波数の基準周期タイミングであり、基準キャリアのボトムタイミングは、駆動周波数の基準周期の半周期タイミングである。
 図18(A)(B)、図19、図20(A)(B)、図21において、U相キャリアおよびU相反転キャリアは第1ハイサイドスイッチQ1,Q2または第1ローサイドスイッチQ3,Q4のスイッチング位相を定める値であり、V相キャリアおよびV相反転キャリアは第2ハイサイドスイッチQ5,Q6および第2ローサイドスイッチQ7,Q8のスイッチング位相を定める値である。また、W相キャリアは第3ハイサイドスイッチQ9および第4ローサイドスイッチQ12のスイッチング位相を定める値であり、X相キャリアは第3ローサイドスイッチQ10および第4ハイサイドスイッチQ11のスイッチング位相を定める値である。
 比較例のDC-DCコンバータは、動作モードの切替時に、U相キャリア、U相反転キャリア、V相キャリア、V相反転キャリアを位相シフトさせるように構成したものである。
 図18(A)(B)、図20(A)(B)において、U相キャリア、U相反転キャリア、V相キャリア、V相反転キャリアそれぞれは基準クロックのカウント値であり、ここではそれらの値を三角波状の波形として表している。また三角波状の波形に重ねて表している水平方向の破線は、これらキャリアと大小比較する基準値である。
 本実施形態のDC-DCコンバータ1は、図19、図21に示すように、動作モードの切り替えは基準キャリアのピークタイミングで行われる。そして、U相キャリアはこの基準キャリアのピークタイミングで位相シフトされる。また、U相反転キャリアは基準キャリアのボトムタイミングで位相シフトされる。
 上記キャパシタの位相シフトは、上記基準クロックのカウント値を、位相シフト量に対応する値だけ加算または減算することによって行う。
 図19に示す例では、ハーフブリッジ動作モード(HB)からフルブリッジ動作モード(FB)への切替時に、U相キャリアはγ/2だけ遅れ方向に位相シフトされていて、V相反転キャリアはγ/2だけ進み方向に位相シフトされている。また、U相反転キャリアはγ/2だけ遅れ方向に位相シフトされていて、V相キャリアはγ/2だけ進み方向に位相シフトされている。
 図21に示す例では、フルブリッジ動作モード(FB)からハーフブリッジ動作モード(HB)への切替時に、U相キャリアはγ/2だけ進み方向に位相シフトされていて、V相反転キャリアはγ/2だけ遅れ方向に位相シフトされている。また、U相反転キャリアはγ/2だけ進み方向に位相シフトされていて、V相キャリアはγ/2だけ遅れ方向に位相シフトされている。
 ここで、γは、動作モードの切替に伴って生じる、U相とV相との間のスイッチング位相差に対する新たな位相シフト量である。このように、各キャリアを駆動周波数の1周期内に2回に分けて(半周期毎に)位相シフトすることにより、動作モード切替時の第1フルブリッジ回路10の出力電圧V1の正負の電圧時間積の差が小さくなる。すなわち、動作モード切替時の直流偏差が抑制できる。
 図18(A)のインダクタ電流iLと図18(B)のインダクタ電流iLとを比較すると明らかなように、リプルおよび直流偏差は抑制されている。同様に、図20(A)のインダクタ電流iLと図20(B)のインダクタ電流iLとを比較すると明らかなように、直流偏差は抑制されている。
 フルブリッジ動作モード(FB)からハーフブリッジ動作モード(HB)への切替時、またはハーフブリッジ動作モード(HB)からフルブリッジ動作モード(FB)への切替時だけでなく、以降に示すように、他の動作モード間での切替時についても同様に直流偏差が抑制できる。
 図22(A)は、本実施形態のDC-DCコンバータにおいて、動作モードがフルブリッジ動作モードから5レベル動作モードへ切り替わるときの各部の波形図である。図22(B)は、比較例のDC-DCコンバータにおいて、動作モードがフルブリッジ動作モードから5レベル動作モードへ切り替わるときの各部の波形図である。
 図23(A)は、本実施形態のDC-DCコンバータにおいて、動作モードが5レベル動作モードからフルブリッジ動作モードへ切り替わるときの各部の波形図である。図23(B)は、比較例のDC-DCコンバータにおいて、動作モードが5レベル動作モードからフルブリッジ動作モードへ切り替わるときの各部の波形図である。
 図24(A)は、本実施形態のDC-DCコンバータにおいて、動作モードがハーフブリッジ動作モードから5レベル動作モードへ切り替わるときの各部の波形図である。図24(B)は、比較例のDC-DCコンバータにおいて、動作モードがハーフブリッジ動作モードから5レベル動作モードへ切り替わるときの各部の波形図である。
 図25(A)は、本実施形態のDC-DCコンバータにおいて、動作モードが5レベル動作モードからハーフブリッジ動作モードへ切り替わるときの各部の波形図である。図25(B)は、比較例のDC-DCコンバータにおいて、動作モードが5レベル動作モードからハーフブリッジ動作モードへ切り替わるときの各部の波形図である。
 なお、図22(A)(B)、図23(A)(B)、図24(A)(B)、図25(A)(B)において、電圧V2は第2フルブリッジ回路20の入力電圧である。
 次に、動作モードが変わらないまま、伝送電力が変化した時の位相シフト制御について示す。
 図26は、本実施形態のDC-DCコンバータにおいて、伝送電力が変化した時の位相シフト前後での各部の波形を示す図である。この図に示すように、基準キャリアのピークタイミングで、U相キャリア、V相反転キャリア、W相キャリアの位相シフトが行われ、基準キャリアのボトムタイミングで、U相反転キャリア、V相キャリア、X相キャリアの位相シフトが行われる。
 次に、キャリアの位相をシフトする方法以外の方法による位相シフト方法の例を示す。
 図27は各キャリアとその比較対象である基準値の変化等を示す波形図である。ここでは、特に、第1ハイサイドスイッチQ1,Q2および第1ローサイドスイッチQ3,Q4のスイッチング位相をシフトするための部分について示す。図27において、U相キャリアは基準キャリアピークタイミングを基準にして生成され、U相反転キャリアは基準キャリアボトムタイミングを基準にして生成される。U相キャリアおよびU相反転キャリアは基準クロックのカウント値であり、ここではそれらの値を三角波状の波形として表している。これら三角波状の波形に重ねて表している矩形波状の破線は、これらキャリアと大小比較する基準値である。
 第2ハイサイドスイッチ(Q5,Q6)、第2ローサイドスイッチ(Q7,Q8)のスイッチング位相のシフトについても同様である。
 このように、基準値をキャリアの周期に同期して変動させることによって、第1ハイサイドスイッチQ1,Q2および第1ローサイドスイッチQ3,Q4のスイッチング位相をシフトしてもよい。
 上述の動作モードの切替時の位相シフトのシフト量および伝送電力変更時の位相シフトのシフト量は、位相シフト制御の前後で、第1フルブリッジ回路の出力電圧が正負で平衡するように定める。換言すると、動作モードが切り替わる前後で、インダクタに蓄積されるエネルギーが正負同量に近づくように位相シフトする。また、このことは、動作モードが切り替わる前後で、インダクタL1に流れる電流が減少に転じる方向に、位相シフトするということでもある。
 以上に示した例では、DC-DCコンバータ1のフルブリッジ回路10は、フルブリッジ動作モード、ハーフブリッジ動作モード、および5レベル動作モードのいずれかで動作する構成としているが、フルブリッジ回路10は、フルブリッジ動作モードまたはハーフブリッジ動作モードで動作する構成であってもよい。この場合であっても、フルブリッジ回路と、ハーフブリッジ回路との2つの回路を設ける必要がないため、大型化を抑制できる。
 なお、前記した実施形態では、フルブリッジ動作モードでのトランスの第1巻線の両端に印加される電圧が直流電圧Vin、ハーフブリッジ動作モードでのトランスの第1巻線の両端に印加される電圧が直流電圧の半分(Vin/2)としているが、これらは、多少の誤差を含んでいてもよい。例えば、直流電圧Vin、Vin/2は、FETの寄生容量のバラツキ、製造誤差等により変動する場合も含む。
 図1に示した例では、トランスT1の1次側にインダクタL1を接続したが、2次側にインダクタを接続してもよい。また、1次側と2次側の両方にインダクタを接続してもよい。
C1…入力コンデンサ
C2…入力コンデンサ
Cf1…第1フローティングキャパシタ
Cf2…第2フローティングキャパシタ
IO1,IO2,IO3,IO4…入出力端子
L1…インダクタ
n1…1次巻線
n2…2次巻線
Q1~Q12…スイッチング素子
Q1,Q2…第1ハイサイドスイッチ
Q3,Q4…第1ローサイドスイッチ
Q5,Q6…第2ハイサイドスイッチ
Q7,Q8…第2ローサイドスイッチ
Q9…第3ハイサイドスイッチ
Q10…第3ローサイドスイッチ
Q11…第4ハイサイドスイッチ
Q12…第4ローサイドスイッチ
T1…トランス
U…接続点
V…接続点
W…接続点
X…接続点
1…DC-DCコンバータ
10…第1フルブリッジ回路
20…第2フルブリッジ回路
21…出力電圧検出回路
22…負荷電流検出回路
31,32…制御部

Claims (4)

  1.  第1ハイサイドスイッチおよび第1ローサイドスイッチで構成される第1レグと、第2ハイサイドスイッチおよび第2ローサイドスイッチで構成される第2レグと、を有し、前記第1レグおよび前記第2レグに第1直流電圧が印加される、第1フルブリッジ回路と、
     第3ハイサイドスイッチおよび第3ローサイドスイッチで構成される第3レグと、第4ハイサイドスイッチおよび第4ローサイドスイッチで構成される第4レグと、を有し、前記第3レグおよび前記第4レグに第2直流電圧が印加される、第2フルブリッジ回路と、
     前記第1フルブリッジ回路の入出力部に接続される1次巻線および前記第2フルブリッジ回路の入出力部に接続される2次巻線を有し、前記第1フルブリッジ回路と前記第2フルブリッジ回路との間を絶縁するトランスと、
     前記第1フルブリッジ回路および前記第2フルブリッジ回路を制御する制御部と、
     を有するDC-DCコンバータであって、
     前記第1ハイサイドスイッチは、ハイサイドラインに接続された第1スイッチング素子および当該第1スイッチング素子に直列接続された第2スイッチング素子で構成され、
     前記第1ローサイドスイッチは、ローサイドラインに接続された第4スイッチング素子および当該第4スイッチング素子に直列接続された第3スイッチング素子で構成され、
     前記第2ハイサイドスイッチは、ハイサイドラインに接続された第5スイッチング素子および当該第5スイッチング素子に直列接続された第6スイッチング素子で構成され、
     前記第2ローサイドスイッチは、ローサイドラインに接続された第8スイッチング素子および当該第8スイッチング素子に直列接続された第7スイッチング素子で構成され、
     前記第1フルブリッジ回路は、前記第1スイッチング素子と前記第2スイッチング素子との接続点と、前記第3スイッチング素子と前記第4スイッチング素子との接続点と、の間に接続される第1フローティングキャパシタと、前記第5スイッチング素子と前記第6スイッチング素子との接続点と、前記第7スイッチング素子と前記第8スイッチング素子との接続点と、の間に接続される第2フローティングキャパシタと、を有し、
     前記第1フルブリッジ回路の入出力部と前記1次巻線との間、または、前記第2フルブリッジ回路の入出力部と前記2次巻線との間、の少なくとも一方に直列接続されたインダクタを備え、
     前記制御部は、
     前記第1フルブリッジ回路および前記第2フルブリッジ回路の各スイッチング素子を同じ駆動周波数で動作させ、且つ、
     前記駆動周波数の半周期に亘って、前記第1フルブリッジ回路の入出力部の電圧のピーク値の絶対値が前記第1直流電圧になるように、前記第1フルブリッジ回路の各スイッチング素子を制御するフルブリッジ動作モード、
     前記半周期に亘って、前記第1フルブリッジ回路の入出力部の電圧のピーク値の絶対値が前記第1直流電圧の半分になるように、前記第1フルブリッジ回路の各スイッチング素子を制御するハーフブリッジ動作モード、または、
     前記駆動周波数の1周期の期間中に、前記第1フルブリッジ回路の各スイッチング素子を、フルブリッジ動作させる状態とハーフブリッジ動作させる状態とを切り替えて、5レベルの電圧を前記第1フルブリッジ回路から出力する5レベル動作モード、
     のいずれかの制御を行い、
     前記フルブリッジ動作モード、前記ハーフブリッジ動作モードおよび前記5レベル動作モードのうち、一の動作モードから他の動作モードへ動作モードが切り替わる周期に、前記駆動周波数の基準周期タイミングで、前記第1ハイサイドスイッチおよび前記第2ローサイドスイッチのスイッチング位相をシフトさせ、前記駆動周波数の基準周期の半周期タイミングで、前記第1ローサイドスイッチおよび前記第2ハイサイドスイッチのスイッチング位相をシフトさせるとともに、前記動作モードが切り替わる前後で、前記第1フルブリッジ回路の出力電圧が正負で平衡するように、前記位相のシフト量を定めることを特徴とする、
     DC-DCコンバータ。
  2.  前記制御部は、
     前記第1ハイサイドスイッチまたは前記第1ローサイドスイッチのスイッチング位相を定めるU相キャリアおよびU相反転キャリア、前記第2ハイサイドスイッチまたは前記第2ローサイドスイッチのスイッチング位相を定めるV相キャリアおよびV相反転キャリアに基づいて、前記第1フルブリッジ回路の各スイッチング素子のスイッチング位相を定め、
     前記駆動周波数の基準周期タイミングで、前記U相キャリアおよび前記V相反転キャリアの位相をシフトさせ、前記駆動周波数の基準周期の半周期タイミングで前記U相反転キャリアおよび前記V相キャリアの位相をシフトさせる、
     請求項1に記載のDC-DCコンバータ。
  3.  前記U相キャリア、前記U相反転キャリア、前記V相キャリアおよび前記V相反転キャリアは基準クロックのカウント値であり、
     前記制御部は、前記カウント値と基準値との比較に基づいて前記第1フルブリッジ回路および前記第2フルブリッジ回路を制御し、
     前記位相のシフト量は、前記カウント値の変更によって定める、請求項2に記載のDC-DCコンバータ。
  4.  前記U相キャリア、前記U相反転キャリア、前記V相キャリアおよび前記V相反転キャリアは基準クロックのカウント値であり、
     前記制御部は、前記カウント値と基準値との比較に基づいて前記第1フルブリッジ回路および前記第2フルブリッジ回路を制御し、
     前記位相のシフト量は、前記基準値の変更によって定める、請求項2に記載のDC-DCコンバータ。
PCT/JP2018/006393 2017-03-01 2018-02-22 Dc-dcコンバータ WO2018159437A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019502926A JP6711449B2 (ja) 2017-03-14 2018-02-22 Dc−dcコンバータ
CN201880014577.4A CN110383663B (zh) 2017-03-01 2018-02-22 Dc-dc变换器
US16/554,936 US10622907B2 (en) 2017-03-01 2019-08-29 DC-DC converter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017038586 2017-03-01
JP2017-038586 2017-03-01
JP2017048361 2017-03-14
JP2017-048361 2017-03-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/554,936 Continuation US10622907B2 (en) 2017-03-01 2019-08-29 DC-DC converter

Publications (1)

Publication Number Publication Date
WO2018159437A1 true WO2018159437A1 (ja) 2018-09-07

Family

ID=63371282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/006393 WO2018159437A1 (ja) 2017-03-01 2018-02-22 Dc-dcコンバータ

Country Status (3)

Country Link
US (1) US10622907B2 (ja)
CN (1) CN110383663B (ja)
WO (1) WO2018159437A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375701B2 (ja) 2020-07-30 2023-11-08 株式会社明電舎 双方向絶縁型dc/dcコンバータおよびその制御方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6902962B2 (ja) * 2017-08-22 2021-07-14 ダイヤモンド電機株式会社 コンバータ
FR3093875A1 (fr) * 2019-03-14 2020-09-18 Safran Convertisseur de puissance isolé et reconfigurable
US10651726B1 (en) * 2019-05-02 2020-05-12 Analog Devices International Unlimited Company Soft transition techniques for H-bridge converter
US11901826B2 (en) * 2019-08-26 2024-02-13 Delta Electronics, Inc. Isolated DC/DC converters for wide output voltage range and control methods thereof
US11025172B2 (en) * 2019-08-26 2021-06-01 Delta Electronics, Inc. Three-level modulation for wide output voltage range isolated DC/DC converters
EP3846329A1 (en) * 2019-12-31 2021-07-07 Solaredge Technologies Ltd. Dc balancer circuit with zvs
CN111478572B (zh) * 2020-04-13 2021-02-19 北京理工大学 单极式ac-dc变换器模态平滑切换与功率因数校正控制方法
EP3916984A1 (en) * 2020-05-25 2021-12-01 Delta Electronics, Inc. Isolated dc/dc converters for wide output voltage range and control methods thereof
CN113258790B (zh) * 2021-07-15 2021-09-14 深圳市永联科技股份有限公司 变换器控制方法及相关装置
US11984727B2 (en) * 2022-08-26 2024-05-14 Sparq Systems Inc. Multi-level current driven DC/DC converter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116953A2 (de) * 2011-03-01 2012-09-07 Rheinisch-Westfälisch-Technische Hochschule Aachen Bidirektionaler gleichspannungswandler
JP2013027201A (ja) * 2011-07-22 2013-02-04 Ihi Corp 直流電力変換装置
WO2016038966A1 (ja) * 2014-09-11 2016-03-17 株式会社村田製作所 電力変換装置
WO2016125292A1 (ja) * 2015-02-05 2016-08-11 株式会社安川電機 Dc-dcコンバータ、電力変換装置、発電システムおよびdc-dc変換方法
JP2016152687A (ja) * 2015-02-17 2016-08-22 株式会社日本自動車部品総合研究所 Dcdcコンバータ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355294A (en) 1992-11-25 1994-10-11 General Electric Company Unity power factor control for dual active bridge converter
CA2369060C (en) * 2001-01-24 2005-10-04 Nissin Electric Co., Ltd. Dc-dc-converter and bi-directional dc-dc converter and method of controlling the same
KR102027802B1 (ko) * 2015-05-29 2019-10-02 엘에스산전 주식회사 전력 변환 장치 및 이의 동작 방법
DE112016003507T5 (de) * 2015-08-28 2018-04-19 Murata Manufacturing Co., Ltd. Gleichspannungswandler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012116953A2 (de) * 2011-03-01 2012-09-07 Rheinisch-Westfälisch-Technische Hochschule Aachen Bidirektionaler gleichspannungswandler
JP2013027201A (ja) * 2011-07-22 2013-02-04 Ihi Corp 直流電力変換装置
WO2016038966A1 (ja) * 2014-09-11 2016-03-17 株式会社村田製作所 電力変換装置
WO2016125292A1 (ja) * 2015-02-05 2016-08-11 株式会社安川電機 Dc-dcコンバータ、電力変換装置、発電システムおよびdc-dc変換方法
JP2016152687A (ja) * 2015-02-17 2016-08-22 株式会社日本自動車部品総合研究所 Dcdcコンバータ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375701B2 (ja) 2020-07-30 2023-11-08 株式会社明電舎 双方向絶縁型dc/dcコンバータおよびその制御方法

Also Published As

Publication number Publication date
US10622907B2 (en) 2020-04-14
CN110383663B (zh) 2020-04-24
US20190386572A1 (en) 2019-12-19
CN110383663A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
WO2018159437A1 (ja) Dc-dcコンバータ
JP6477893B2 (ja) Dc−dcコンバータ
JP5556859B2 (ja) 電流共振型dcdcコンバータ
JP6271099B1 (ja) 直流電圧変換回路
US7596007B2 (en) Multiphase DC to DC converter
US8780585B2 (en) Double phase-shifting full-bridge DC-to-DC converter
US7449867B2 (en) Multi-phase buck converter with a plurality of coupled inductors
WO2014174809A1 (ja) 双方向dc/dcコンバータ
US11025174B2 (en) Converter with soft switching function
US7957161B2 (en) Power converters
CN103856041A (zh) Ac/dc功率转换器装置
JP2011050134A (ja) 共振型スイッチング電源装置
US10381938B2 (en) Resonant DC-DC converter
US7158390B2 (en) Phase shift full bridge converter
US20200366198A1 (en) Converter
CN111492568A (zh) 交错式llc谐振变换器
JP6241334B2 (ja) 電流共振型dcdcコンバータ
US10164542B2 (en) Electronic converter, and corresponding method for designing a magnetic component
JP5892172B2 (ja) インバータ装置
JP6711449B2 (ja) Dc−dcコンバータ
CN111869076A (zh) 直流电压变换电路以及电源装置
JP2014068491A (ja) 共振型dc/dcコンバータ
JP2006158137A (ja) スイッチング電源装置
JP7388432B2 (ja) 直流変換装置
JP2019161853A (ja) コンバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18760445

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019502926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18760445

Country of ref document: EP

Kind code of ref document: A1